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Abstract

A random graph on n vertices is a random subgraph of the complete graph

on n vertices. By analogy with this, the present paper studies the

asymptotic properties of a random submatroid wi of the projective geometryr

PG(r-l,q). The main result concerns K , the rank of the largest projectiver

geometry occurring as a submatroid of . . We show that with probability

one, for sufficiently large r, K takes one of at most two values dependingr

on r. This theorem is analogous to a result of Bollobas and Erdos on the

clique number of a random graph. However, whereas from the matroid theorem

one can essentially determine the critical exponent of a , the graph theoremr

gives only a lower bound on the chromatic number of a random graph.
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A. Introduction

A random submatroid of a oat roid M is obtained from M by perforning

a set of independent trials, one for each element of M, at which the element

is deleted with probabilitY 1-p and retained with probability p. In the

study of random graphssuch a process is used starting with the complete graph

on n vertices: every simple graph on n vertices is a possible outcome of

the exper'ment. There are no matroids which are analogous to complete graphs

in this sense and so We choose to begin with projective 4eometries, the random

submiatroids of which can be thought of as random simple matroids representable

over a given finite field. A more complicated model for generating random

matroids was proposed by Knuth [7] and implemented by Cravetz [4]. However,

this approach does not seem eat;ily amenable to nrobabilistic analysis.

The theorems of this paper may be informally summarized as follows. Fix

a prime power q and for r = 1,2,..., let P denote PG(r-l,q), the pro-r

jective geometry of rank r over C-F(q). Our analysis is unaffected by

whe:her we assume the matroids Mr to be nested or disjoint. Let l,2,...

be tlre random submatroids of .I,!2,1... obtained by performing sets of inde-

pendent trials as described above, p being the fixed probability of retention

of an elemont. 1e shall assume that 0 < p ' 1. For any sequence kl,k 2 .

we derive the expected values in w of the numbers of circuits of size k,r r

independent sets of .ize k , flats of rank k , and bases (Proposition 1 andr r

Section D). In the cases of the numbers of circuits and independent sets, we

show that with probability one these random variables are asymptotic to their

expected values (Theorem 3). A consequence of this is Theorem 4 which implies ___

that with probability one there is r0 such that each &,r for r > r0 has a

circuit of size r + I, and therefore has rank r and is connected. In the

last section we consider the random variable 1, the rank of the largest

r - --
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subspace of M all of whose elements are deleted. We show that with prob-
r

ability one, for all sufficiently large r, L takes its value in a set Vr r

which contains either a single integer or a pair of consecutive integers. Since

the critical exponent c of i is just r - I, , a similar statement can be
r r r

made about c (Theorem 7). Curiously, the asymptotic value of c isr r

r - log qr + o(log qr), and only lower-order terms in the asymptotic expansion

involve tlie value of p.

The proofs in the last section parallel those of Crimmett and McDiarmid

[6], Matula [8,9],and Bollobis and Erd3s [3] for analogous results on random

graphs. A summary of many of these graph-theoretic results appearsin Bollobis's

book [2]. It should be noted that in the area of random graphs the t -minology

used in limiting results is not uniform. In particular, if A1 ,A2 .... is a

sequence of events, some authors use the term "A occurs almost surely" to meann

merely that 1 - P(A n) approaches zero as n approaches infinity. We have

stated our theorems using the term "with probability one"; such theorems are

true strong laws in the probabilistic sense.

In general we shall follow Welsh [11] for all matroid terminology which

is otherwise unexplained. Some notation and a few simple inequalities will

be useful. Remembering that q is fixed, we define

r
h Im - q - 1
r r q-1'

r r-l ,r-k+l[r], (qr - 1)(qr 1 _ ). ( r- l _ 1), k = 1,2,...,.r

[r]o 1; [r] k = 0 if k - 0 or k r

r [r]k

kI  [k] k

Evidently, hr r

We will be concerned with the asymptotic growth of the above quantities as r

increases, for various choices of k depending on r. The obvious

L .......1
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inequa I it ies

I -l _ (j for j 1,2 ....

and

if m n
q --

imply that

k(r-k) r k(r-k+l)q [k q
k (2)

We also have

1< kkr-(k) kr-(k))-k

" . r]k  q -(3)

To sharpen these bounds we notice that

kr-(k)
[r]k q 1tr,k

where

-r r+l) -r+k-i
H = (1 - qr)(1 - q )...(l - q )
r,k

Obviously Hr k  1. For lower hounds we observe first that

-r+k k
r,k -

- r+k
which approaches I as r tends to infinitv if kq approaches 0.

Regardless of the growth of k, we can obtain a lower bound by using the

inequality 7-(1 - a ) 1 - a (for 0 a 1):

n n --

T (1 - q ) " - 7 q -
r,k n=l q-l

Even though the simpler bound q_-2 is zero for q = 2, the infinite
q-1

product is never zero.

I
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Combining the above for later reference:

kr-( ) kr-(k) q l q-2 kr-( k

q > [r] k > q 2T (1 - -n) > a q (4)
n= 1

and kkr-( ) -r~k

2 k
[r] q as r if kq -* 0 (5)

k

We will use two standard theorems from probability:

Chebyshev's Inequality. If X is a random variable with finite

variance VX and expected value EX, then for any i > 0,

2

P(lX - EXI > IEX I )  < 2 VX I

c (EX) 2 (EX)
2

The First Borel-Cantelli Lemma. If {AIA 2 ,... is a sequence of

events and X P(A ) is a convergent series, then with probability 1 there

n=l n
exists na such that none of the A with n > no occurs. (That is,

P (U Ac) = 1.)

N=1 n=N

As easy consequence of these theorems we have the following lemmas, which

we will use repeatedly.

Lemma A. Let (XI,X 2 ,...) be a sequence of random variables, and suppose

VX X
n m
-2 is a convergent series. Then lim E- = 1 with probability 1.

n=l (EX n) n- n

If lim inf EX is positive, then with probability I there is no such thatn
n

X is positive for all n - nO0

Proof: For k = 1,2,..., let Ak be the event that there exists nk
Xk

such that -[ n l or
EX- 1< I for n . By Chebyshev's Inequality, the

n

Borel-Cantelli Lemma, and the hypothesis, PA k  1. Therefore

kt
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c X

P(r Ak) = P(lim - = 1). To prove the second assertion we note
k=l I . n

that if EX is positive, then P(X - 0) P(IX - EX > 1EXn1)

VX EX 2
Lemma B. If VX is finite, then P(X 0) < - - [

(EX)2 (EX) 2

Finally, the definition of expectation obviously implies

Lemma C. [f X is a nonnegative integer-valued random variable, then

P(X # 0) < EX.
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B. Some quantities associated with projective spaces

It is well-known (see, for example, [5]) that [r] equals the number

of rank-k subspaces of M . In this section we shall determine the otherr

numerical invariants of M that will be used in the remainder of the paper.
r

We shall need the following

Lemma 1). If B is a basis of M r then there are precisely (q-l)

elements x of H such that B u x is a circuit.
r

Proof: We view the projective space M as the submatroid of the vector
r

space V(r,q) consisting of those non-zero vectors whose first non-zero

coordinate is one. Then, by syomnetry, we may assume that B is the natural

basis of V(r,q). It is clear that B u x is a circuit of M if and onlyr

if the vector x has no zero coordinates. Hence if B , x is a circuit,

the first coordinate of x is 1, while each of the remaining r - 1

coordinates can be chosen in q -1 ways from among the non-zero elements of

GF(q). ]

We now count the members of I and C which are respectively ther,k ,r,k

collections of k-element independent sets and k-element circuits of M .r

A k-element independent set I of M lies in precisely one flat of
r

rank k, name ly its C losure, I. Therefore

r,k k k,k

But 1 k,k ic tL -. t of bases of tk and it is not difficult to show (see,

for exampIe, III, Exercise 16.1.4]) that

I
Ik,k =k! (hk - ho)(hk - h[)'''(hk - hk-l) (6)

I
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It follows that

kI I (k)

r,k k 'q I[] (7)(q-l) 2 k

To determine 1C r,k we note first that )C r,kJ0 for k 3.

Thus suppose k > 3. Then

Cr,k[ k-l Ck-l,k

Now, in - consider the set of ordered pairs (B,C) where B is a basis

and C is a circuit contaiLoing B. By coUtnt log the number of such

pairs in two different ways, first over circuits and then over bases, we get,

using Lemma D, that

k!Cl = (q-l)k-2kl

k-Iki Ikl

Thus, by (6),

Ck-l,k = (hk l - h0 )(hk- 1  - h I)...(hk _1  - hk _ ) ( q - 1 )
k - 2

and so 1 k- )

C 1 k q  [ for k > 3. (8)r,k q-1 k! k-i -

Now suppose that V equals C or I . Then for i in
r,k r,k"

(0,1,2,...,k} and D in P, the number of members of D which meet D

in exactly i elements does not depend on the choice of D. We shall call

this number -i when P = C and . when D = I . These numbersir,k r,k"

arise in second moment calculations in the next section and the following

result bounds them above.

Lemma E.

1( k-i
(k-i q. 2 2 (q-1) [r-i]kl if 0 < i k - 1

if i = k

_____ ____ ____ ____ __ .
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k i(k)-(2)

k 2 2 1 r-i] for all i in {0,1,2,...,kr.

-Ck -i (q-1) -

Proof: Clearly tk = 1. We now assume that i k and let X he a

fixed k-element circuit of M . It is clear that is equal to theri

product of the number of ways to choose an i-element subset Y of X and

the numbe- of ways to add a (k-i)-element set Z to Y so that Y u Z is

a k-element circuit meeting X in Y. Now Y can be chosen in (k) ways.1

Moreover, if N is the number of choices for Z, then

1
NI " (k-i)! N2

where N2  is the number of (k-i)-tuples (plp 2 .. 'Pk-i
)  such that

(i) for all j in {],2,...,k-i-l}, the element p. is not in

Y U (p 1,p9 . . .,p and

(ii) Y U {Pl,'P2. Pk-i-l } u {p ki} is a circuit.

On using Lemma D, we obtain that

k-2
N2 = (hr - hil - .. (hr - hk- 2 )(q - l)

Therefore
1 k-2

N I (h -h. ) (1h (h h1 )q1-
1 (k-i)! r I r i+l) .. (r - hk_2 )(q- )

and thus

1 r h I (h hr 1i+1 r k-2
i -(k-)! i r r

1 ,k, (2~)-() -
I (kki)(1(~ 2 -2(q-1) i [r- l~_

The last expression is the stated bound on t.1
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To obtain the bound on we usi, an argum,-nt , imilar to thf, above

to Cet

(k-i)! i r 1 r i+l r k-1

and rewriting the right-hand side of this, we obtain the rLopt ired bound.

The last result of this section specifies one further quantity which

will be needed in a second moment calculation. Def ine to be the number

of rank-k subspaces of M which meet a fixed rank-k subspace in a subspace
r

of rank i. Then it is not difficult to show (see, for example, [.1, p. 225j)

that
2k r-k (k- i)

i i k-i

C. Existence of circuits and independent sets

Let {k r be an arbitrarv sequence of positive integers which wer

will regard as fixed. For simplicity we denote the families C and• r,k
r

I by C and I . We also define the random variables C and I to be
r,k r r r r r

the numbers of kr-element circuits and k -element independent sets in .rr

Notice that a k -set J is a circuit (resp. independent set) in ;,rrr

if and only if J is a circuit (resp. independent set) in M and none ofr

the elements of .J is deleted. So if we define, for each k -set J
r

in M
r

1 I, if none of the elements of ,J is deleted,
X 0 (10)

Ootherwise,



then

( = X a nl d O Ir A I r "1

r r

Moreover, EXj = P(Xj 1) p Therefore we have by (5) and (7)

Proposition 1. k k -k
k r ( 

r r q--i r providedr- 3
r r

and

k k rEl = p r ___ r_ (., ) (12)
k r< [lE r -k .'k

r r r(q-1)

The central result of this section is

V VC r V 1
P roposition. are convergent series.

r=2 (EC) r i (El)I
r

The proof is given below. ,,\s a corollary of Proposition 2 we get, using Lerm~a A,

Theorem 3. For every choice of the sequence fk ,

r

c

rrjf 0 " k ":r+ for :all r, then, with proabilit one, li ra -1. 1

Proposition I together with (4) and (5) provide asmptotic expressions fr
r- r -- poiCvle o n

EC and El , which are almost-sure asymptotic values of C rand T

Since EC and El are bounded away from zero, we also have from
r r

lemma A:

Theorem 4. For every choice of the sequence k rr

if 3 • k - r + I for all r, then with probability 1 there exists
- r

such that r has a k -circuit for all r > r0r u m rr

4 __ ____ ____ ___
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if I < k r for alI r , then with probahi lity 1 there exists
r

r.. such that I, has a k -independent set for all r _- r .

In particular, if we choose k = r + 1 for uircui ts we see that with
r

probability 1 there exists r0  such that for all r > ro, U has aU U r

circuit of size r + 1 and thus is connected and has rank r.

Proof of Proposition 2.

2k-'J rJ
Ec2 = 1 P(X x = 2 = 712

J C r C 1~ 2 1 rC J ~C
S r .2r 1 r 2 r

2kr -
1 jnj2 I

cr 2 k r 1 2 (for any fixed J1 C)

k2k r

C r p i

i=O

where a* is the number of k -circuits intersecting a fixed k -circuit in
1 r r

i points.

Therefore,by Lemma E and (8),

2 2 ~ k - (kr~~~
ECr ECr 1 rr- k 2 -k

r Y r 1- qp r (q1 )i-i l +p
(EC) 2 - 2k 2  Cr I. -(k-i)K q q [-l kr-i-r 1 I C  r i

k -i r (r 2- ( q-~ q) 2

p r

kr -1 k ' "kr) -(1) ikk-i r -
+ -i) i + -r (k- -l)
= (r ir- 2 )-i p q r

q

where the last step follows by (3). Therefore

k -1 -1

VC rq kr k r

2r 1 <' t r-l
1 p r-1

(Cr i=i pq
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where

-t -i (r-2)(k! ki

r

Now
ti~ i(kr-i) 2 2

-i+l 1 r (r-2) r
t. p + -< r-2

qpq

and thus tI/t. i for sufficiently large r. So for sufficiently large r,

k-1
kt + kr r (+l) q(r+l) r+l 12

(rC --- r I p-2
rJ

th
This is the r term in a convergent series.

Turning now to independent sets, we proceed almost exactly as for circuits.

2k kr2r yElr = Irp r r; p- K
irO 

1

where 3i is the number of k -independent sets intersecting a fixed1 r

k -independent set in i points.r

Therefore,by Lemma E and (7),

k
El2 El2 k rr )_

r r 1 r - k 2 1
r ) 2kr 2 - r 0 (k ri) - [r-i]k -1

(Elr kI Ir _ ( (q-1) r r

kr k -()
p r 2

= (kr-)! q [.
i=l r

EC
2
r

This differs only slightly from the upper bound obtained on in the argument(ECr)2

above. A straightforward modification of that argument shows
VIr th

that _- 2  is the r term in a convergent series.
(El )

D. Expected numbers of bases and flats.

Again we consider as fixed a given sequence fk r of positive integers;r

_ _ _ _ _ _ -
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.1nd we de f ioe the faMi I 1 es a and F o f bases anid k - flat a(f 1 a t s o i
r r r

ra nk k ) i n M ,and t he random va r iab I es B anrd F , t lit- numbe rs of
r r r r

bases and k -flats in
rr

Notice that tbe results Of the previous section imply the existence

with probability 1 of an r 0  such that ;,; has full rank for a]ll r r

and therefore B r alotsrlyeul Trr fo large r. j n t )i s se( -

t ion we find the expected values of B rand F rin terms (if the Tut t(

pel~nomials (see [11, Chapter 151) of tite underlying prioject lye gf'orat nas M..

We do not obtain asymptotic results. The expected values are giveni in (1(1)

and (17).

Bases.
r

EB =)E(B r rank(w~ r i)P(rank(.;) i)

r r

and

E(B r rank(b) r i

-2 E(B rank&) = i and cJ) P(. c rank(. )=i

(where M.is the family of rank-i subsoaces of M
1 r

-E(B rI rank(w =i and T 0

for any fixed rank-i subspace J 0of M r' Now such at 0  is isomorphic to M.

so an argument similar to that used for Proposition I shows that this last

quantity equals p itimes the number of i-independent sets in M.; that is,

E(B rank(w ) i) = !q 2j3
r r(ql

To Fimd P(rank(w r i) we use the following theorem of Oxley and

Welsh [10]. If M is a matroid of rank i on h elements and -is
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a random submatroid of M, t htn

P(rank((,) i) - (1 p) ,(M;1,(l-p)- ) , (14)

where T(M;x,y) is tht Tut te polynomial of M. Using this theorem:

P(rank( , ) i) = P(all element, of M - 1 are deleted andr r

has ull rank in 1)

= M P( - .1 is de1eted)P(:. random submatroid of N hasi r 0i

full rank)

Here J can be any fixed member of A{.1 It follows that
'0

r r -i i hi
P(rank( ,) i) C., ]( r-p) I p (l-p) T(M.;],(l-p)

-  )
1 1

r -

r,] pi(,_p) r T(Yi~ , l p - )( 5

Combining (13) and (15) cives

r 2i ( ) r]. -1

EB = (lp) q T( (16)
i=O (q-l)1 1

Notice that the term corresponding to i = r dominates this sum because u
r

almost surely has rank r for sufficiently large r.

Flats. EF equals the number of k -flats in M timesr r r

the probabilitv that it given such flat has full rank in w r By (14),r

k rk -
r r k T

r r
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E. Largest full subspace.

For r = 1,2,..., let K be the rank of Cie largest full subspace ofr . .

w r that is, the largest subspace of M with no deleted elements. Our mainr r

result in this section is Theorem 6, which implies that with probability 1

there is r0 such that for all r > r0  the random variable K has at most

two possible values. Symmetry gives a similar result (Theorem 7) for the rank

of the largest subspace of M with no retained elements, and hence for the
r

critical exponent of ( . (It is merely for convenience of notation that our

results are proved for full rather than empty subspaces.)

For an arbitrary integer k, let F be the family of rank-k subspaces

of M ; then
r

F I = [r,r,k k

Let Nr, k be the number of full rank-k subspaces of i.r" As with circuits and

independent sets,

N rk= j Xj

r,k

where X is defined by (10). Therefore, for any J in Fr, k ,

h
ENr,k IFr kIP(XJ = 1) r k

Moreover, Kr < h if and only if Nr,k = 0 .

In this section "log" will denote base-q logarithms and "In" natural

logarithms. We also let

1

b = (i)q-i

p

so that

h kh I and pk = -q

, ! :I?
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For any 0 o, defie,

d r__L_._ r A
d og - log 1"

Notice that if 0 1 , then ei t her d and d are equal or they differ
r,0 r,

by 1. It can -ilso be cthckc-d tliht if i s a gi von positive number and] and k denote

d and d , then for sufficiently large r, EN . 1 > EN
r,O ri r,j r,k+l

Proposition 5. For any 0, 1P(K - d ) and 7 P(K (I ) are
r r,- r-- r r,0

convergent series.

The proof is given below. As a corollary we get from the Borel-Cantelli Lemma.

Theorem 6. Suppose 0 < , < 1. Then with probability 1 there exists r0  such

that for every r ' r0 , K has its value in the set fd d (which may be
r rO' r,"

a singleton or a pair).

This theorem translates immediately by syr=netry to a result on the rank

L of the largest subspace of H with no retained elements and on the criticalr r

exponent c of , r' where c = r - L . For C , 0 letr r r r

d' [log +log.r +r log b'

where I

S1q-

Theorem 7. Suppose 0 f. < 1. Then with probability 1 there exists r such

that for every r > r o , L and c have their values in the sets {dr'o,d' , )
r r r0r,

and {r - ,r d respectively.
rF- r 01

e.-
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1:c notLwo mor,, C consequnces of the above betore proving Proposition 5.

FirstIv, the as;vmptot ic expressions for K , 1, , and c have high-order terms
r r r

that are independent of p:

K - I. - d -log r + o(log r), and c r - log r + o(log r)r r r ,O r

This is in contrast to the growti of the size of the largest clique in a random

graph as fon-.,l in [6,9,2]. Secondly, with probability one, K is eventually
r

greater than two and hence for sufficiently large r, w r is representable only

over fields containing (F(q).

Proof of Proposition 5. We prove that

r 2P(K > d + 1) - 0 as r .. (18)
r --

and

r P(K d ) - 0 as r , (19)

and the proposition follows.

To prove (18) we notice that for any k, by lemma C,

P(Kr k) =  P(N # 0) . FN = [r, -q 1+1
r,k - r,k k

and so,by (2),

P(K ",k) < q k(r-k+l) b
- q k + 1

Now if k = d + 1, then

roIr k rolr 1+--o~ k _ ( I q _ Z - q 1
log b q log b

and
k

bq k qr(log r)q = rq

So
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r -d? 2( Y, lo? r 1+, r ,q

r P(K Nd + 1) .. _ _ ) r -
S r log b

1 r-d 2= 11L q 1+ 1b

r - log b J q dr
r

which tends to 0 as r • Thus (18) is proved.

Next we prove (19). For any k, bv lemma B,
?

EN 2 k
P(K r ) P(N = o) -1 (EN r 2

r,k

Now

2k IEN z P(X x =1) Pr,k L. I F
J CF J"2. F I(

JlCFr,k 2 r,k I r,k "2 r,k

2h - Jr'J2
IF iFpkk 1 2 (for anv fixed J F

r,k T r,k"T2 Fr,k

2h k k -h

i=0

where y' is the number of rank-k subspaces intersecting a fixed rank-k sub-

space in a rank-i subspace. Now, because of (9),

EN 2  k
-1+ ..... < - + Y T2- f(E~y~~)i=0

where k r-k
T. k-i (k-i) 2 i

I q b -1

Now, by (1), To  1; and (2) implies that

iT. b -I qk-i(r-2k+i) (i = 1,2..k)
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Therefore

k

11(K k) .

where

b (I kL I-i (r-2ki-)

Now we show that if k =d r 01 then for su~ffiCiently large r the function

f(x) = bq -I k-x(r-2k+x)

first decreases and then increases and has exactly one critical point in the

interval I1 x -k. It Will follow that

P(K < k) <' k (S+ S ) for k = (I and sufficiently large r. (2-0)
r -21. k r,0

lie use the fact that if k = d ,i then

r lopgrj k rlog2r ad bqk rr n
q lop b - -log b an 0  r(1

We can rewrite [(x) as

qk q(qx-l)log b - x(r-2k+x)

and it suffices to show that the nonconstant part of the exponent,

g(x) =qlog 1) - x 2 _Cr - 2k)x

has the properties claimed above for f(x). But

g'(x) =qxb - 2x- r +2d ,

so

g'(1) = qlnb -2 -r + 2d r,

IK-4
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which is obviously negat ive for largf r. >orevcr,

g' (k) ci (IkLb - r oj ,-r Ino r
'I lot, 1)

r I og r) nl(I r

which is positive for large r. ThIIU S g(x) f ir St LIec reases and t hen i ncreases

for I < x < k, and so g 1(x) , be, ng cont inuous , has an odd number of zeros in

[l,kI. But g' (x) has at most two zeros, since it is the difference

between the convex function q xlnb and the linear function 2x + (r -2k). So

g'(x) has exactly one zero in [1,k], the assertion about f(x) is

proved, and (20) follows. We get

rk 2

bq q3k-r + I k q k 2±k-kr

But we can use (21) to show that each of these terms is o(r- 2

2 bq 3k-r 2 b q o(h1 1I~ 0ar - -kq r -- 1g-g ),0a r2bq -- 2bq log b r-3k

and

1og(r ? kb q -2+kk 2 log r -log 2b + loglog(r log~ r + r log r

+ k 2+ k - kr

=r(log r -k) + o((log r) 4)

r(log r -log( rlog r) + 1) + o((log r) 4
loghb

a s r-*oi
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