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Abstract

A random graph on n vertices is a random subgraph of the complete graph
on n vertices. By analogy with this, the present paper studies the
asymptotic properties of a random submatroid wr of the projective geometry
PG(r-1,q). The main result concerns Kr’ the rank of the largest projective
geometry occurring as a submatroid of o We show that with probability
one, for sufficiently large r, Kr takes one of at most two values depending
on r. This theorem is analogous to a result of Bollobés and Erdos on the
clique number of a random graph. However, whereas from the matroid theorem
one can essentially determine the critical exponent of o the graph theorem

gives only a lower bound on the chromatic number of a random graph.
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A.___lntroduction

A random submatroid of a matroid M 1is obtained from M by performing
a set of independent trials, one for each element of ', at which the element
is deleted with probability 1-p and retained with probability p. In the
study of random graphssuch a process is used starting with the complete graph
on n vertices: every simnle graph on n vertices is a possible outcome of
the experiment. There are no matroids which are analogous to complete graphs
in this sense and so we choose to bepgin with projective geometries, the random
submatroids of which can be thought of as random simple matroids representable
over a given finite field., A more complicated model for generating random
matroids was proposed by Knuth [7] and implemented by Cravetz [4}. However,
this approach does not seem casily amenable to probabilistic analysis.

The theorems of this paper may be informally summarized as follows. Fix
a prime power q and for r = 1,2,..., let Hr denote PG(r-1,q), the pro-
jective geometry of rank r over CF(q). Our analysis is unaffected by
whe:her we assume the matroids Mr to be nested or disjoint. Let wl,wz,...

be the random submatroids of obtained by performing sets of inde-

MM,
pendent trials as described above, p being the fixed probability of retention
of an element. We shall assume that 0 < p - 1. For any sequence kl’ 22 s
we derive the expected values in o of the numbers of circuits of size kr’
independent sets of size kr’ flats of rank kr, and bases (Proposition 1 and
Section D). 1In the cases of the numbers of circuits and independent sets, we
show that with probability one these random variables are asymptotic to their
expected values (Theorem 3). A consequence of this is Theorem 4 which implies "’!__
that with probability one there is r, such that each W for r > r, has a

circuit of size r + 1, and therefore has rank r and is connected. In the e

last section we consider the random variable Lr’ the rank of the largest




subspace of Mr all of whose elements are deleted. We show that with prob-

ability one, for all sufficiently large r, Lr takes its value in a set Vr
which contains either a single integer or a pair of consccutive integers. Since
the critical exponent c. of W, is just r - Lr, a similar statement can be
made about c. (Theorem 7). Curiously, the asymptotic value of ¢ is
r - logqr + o(logqr), and only lower-order terms in the asymptotic expansion
involve tle value of p.

The proofs in the last section parallel those of Grimmett and McDiarmid
[6], Matula [8,9],and Bollobas and Erdos [3] for analogous results on random
graphs. A summary of many of these graph-theoretic results appears in Bollobas's
book [2]. It should be noted that in the area of random graphs the t .minology
used in limiting results is not uniform. In particular, if Al,AZ,... is a
sequence of events, some authors use the term ”An occurs almost surely" to mean
merely that 1 - P(An) approaches zero as n approaches infinity. We have
stated our theorems using the term "with probability one': such theorems are
true strong laws in the probabilistic sense,

In general we shall follow Welsh [11] for all matroid terminology which
is otherwise unexplained. Some notation and a few simple inequalities will

be useful. Remembering that q is fixed, we define

= .

h }Mr} To1
-1 -k+1

), =@ =D - Do T =D k=12,
frlg =13 Irl =0 if k<0 or k>r:
[r] = E:lh

k (k1

Evidently, hr = [;]

We will be concerned with the asymptotic growth of the above quantities as r

increases, for various choices of k depending on r. The obvious
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inequalities

j i i
G cq -1 q for j = 1,2,...

and

nLl m-n
q"-1

implv that

- k(r-k+1
; qk(r k) - [;] T q (r-ktD) (2)
|
i We also have
‘ K k
qkr—(?) > lT]k 5 qkr-(?_)—k (3)

y To sharpen these bounds we notice that

n ke (5)
(r], =« Hex
|
i where
L
- -r+l ~r+k-1
l Ho o= (1-a5Ha-q""hoa-qh
r,k
e
’ Obviously Hr K < 1. For lower bounds we observe first that
: . -r+k, k
i “r’k_(]-‘q )

-r+
which approaches 1 as r tends to infinitv if kq r+k approaches 0.
Regardless of the growth of k, we can obtain a lower bound bv using the

inequality [[(1 - an) > 1~ }nn (for 0 < a - 1):

v _ Lo _ 9
Hr K I (1 - q n) > 1 - J)9q n . ﬂ__ I
* n=1 n=1 q
. ; q-2 . _ PO
Even though the simpler bound d — s zero for gq = 2, the infinite

product is never zero.
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Combining the above for later reference:

k k k
kr-(.) kr-(,) = _ _, kr=(,)
¢ oot ra S TTa-qMH2e 7, (4)
q
n=1
and
k

kr-(,) |
[r]k ~q 2 as r >« if kq~r+k >0 . (5) )

We will use two standard theorems from probability:

Chebyshev's Inequality. If X 1s a random variable with finite

variance VX and expected value EX, then for any ¢ > O,

2
1 1, EX
P(|x ~ EX| > <]EX|) < v =5 (- D

£ (EX)2 € (EX)

The First Borel-Cantelli Lemma. If {Al,Az,..J is a sequence of

events and 5 P(An) is a convergent series, then with probability 1 there
n=1

exists n0 such that none of the An with n > nO occurs. (That is,

P(

i
] 2
[

>

S50

~

1]

-

As easy consequence of these theorems we have the following lemmas, which

we will use repeatedly.

Lemma A. Let (Xl,Xz,...) be a sequence of random variables, and suppose

w VX X
) is a convergent series. Then lim 8 =1 with probability 1.

L
n=1 (EXn) néﬂ‘EXn

If 1lim inf EXn is positive, then with probability 1 there is n, such that
N >

3 it iti f 1 > .
Xn is positive for al n > nO

Proof: For k = 1,2,..., let Ak be the event that there exists nk
X
such that Eﬁ* -1« i— for n My By Chebyshev's Inequality, the
n

Borel-Cantelli Lemma, and the hypothesis, PAk = 1. Therefore
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1=p( ) A) =
k=1

that if EX
n

Lemma B, If

Finally,

Lemma C. I[f

P(X # 0) < EX.

X
P(lim E{g = 1). To prove the second assertion we note
“n

e
is positive, then P(X < 0) - P(|X - EX ! > l!EX I) .1
> n - - n n' — 2 n

2
SL7. SN > S N

VX is finite, then P(X = Q) < 7 >
(EX) (EX)

the definition of expectation obviously implies

X is a nonnegative integer-valued random variable, then

(]




It is well-known (see, for example, [5]) that [r

k] equals the number

of rank-k subspaces of Mr' In this section we shall determine the other
numerical invariants of Mr that will be used in the remainder of the paper.

We shall need the following

r-1
Lemma D. If B 1is a basis of Mr’ then there are precisely (q-1)

elements x of Mr such that B U x 1is a circuit.

Proof: We view the projective space Mr as the submatroid of the vector
space V(r,q) consisting of those non-zero vectors whose first non-zero
coordinate is one. Then, by symmetry, we may assume that B 1is the natural
basis of V(r,q). It is clear that B u x 1is a circuit of Mr if and only
if the vector x has no zero coordinates. Hence if B  x 1is a circuit,
the first coordinate of x 1is 1, while each of the remaining r - 1
coordinates can be chosen in q -1 ways from among the non-zero elements of

CF(q). ']

We now count the members of [ and Pr which are respectively the

r,k Wk

collections of k-element independent sets and k-element circuits of Mr.

A k-element independent set 1 of Mr lies in precisely one flat of

rank k, namelv its closure, 1. Therefore
= i
Lol = BT
But Yk K is th- set of hases of Mk and it is not difficult to show (see,

for example, [11, Exercise 16.1.4]) that

- L - - -
‘Ik,k = (hk ho)(hk hl)"'(h h ) . (6)

k k-1

;
!

sk : . . atadhac i
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It follows that

k
TR R S (7)
= -~ r .
LN P k
To determine |C {, we note first that {C =0 for k < 3.
r,k r,k
Thus suppose k > 3. Then
0 r
= |
€= G G !

Now, in Mk—l' consider the set of ordered pairs (B,C) where B is a basis
and C is a circuit containing B. By counting the number of such
pairs in two different ways, first over circuits and then over bases, we get,

using Lemma D, that

k-2
! = (q- !
kIO, = @D |Ik—l,k—l'
Thus, by (6),
- -L - - _ o k=2
eCk_l,k! - k'(hk"l ho) (hk—l hl)---(hk_l hk_z)(q l)
and so ko1
le 1=LL(2) for k > 3 (8)
i l’,k q-l k! q [r]k—l or 2 .
Now suppose that D equals C or 1 . Then for i in

r,k r,k
{0,1,2,...,k} and D 1in 0D, the number of members of 0 which meet D
in exactly i elements does not depend on the choice of D. We shall call
this number ~, when D = C and R, when D =1 . These numbers
1 r,k 1 r)k

arise in second moment calculations in the next section and the following

result bounds them above.

Lemma E.

k-1 i
1 ky (,)-0) -l . i i
Gopt (Pa 2720 @ D i) s A 07 S k=1,

IN

1, if i

1}
=




and

k i
RO LGS T
. T S Z . _ . . It
o< (-1) 1 (i) q o1 Ir i]k_i for all 1 in {0,1,2,.
(g-1)

Proof: Clearly e 1. We now assume that i < k and let X be a
fixed k-element circuit of Hr. Tt is clear that Y is equal to the
product of the number of ways to choose an i-element subset Y of X and
the number of ways to add a (k-i)-element set Z to Y wso that Y u 2 is
a k-element circuit meeting X din Y. Now Y can be chosen in (?) ways.
Moreover, if Nl is the number of cholces for 7, then

MT D N
where N2 is the number of (k-i)-tuples (pl,pz,. "pk—i) such that
(i) for all j in {1,2,...,k-i-1}, the element P is not in
Y u {pl,pz,...,pj}; and
(i1) Y u {Plypz,- "pk—i—l} v {pk_i} is a circuit.
On using Lemma D, we obtain that
N, = (h = h)(h - b e (h - b ) (-1 T
2T LA TS EER A S M
Therefore
1 k-2
Nl < =1y (hr - hi)(hr - hi+l)' .(hr - hk—Z)(q 1)
and thus
1 k k-2
o - - - - -1
fay (k—i)!(i)(hr hi)(hr hi+l) (hr hk—Z)(q )
k-1 i
o1k (T27)-(9) i-1, .
= Gt (CRIDREENE S e

The last expression is the stated bound on Yy




To obtain the hound on £, we use an argument similar to the above
i
to get

. ok - -
f T Gmn T Gy - ) =y

l+l)...(hr - h ),

and rewriting the right-hand side of this, we obtain the required bound.

The last result of this section specifies one further quantity which
will be needed in a second moment calculation. Define Ty to he the number
of rank-k subspaces of M which meet a fixed rank-k subspace in a subspace

r

of rank i. Then it is not difficult to show (see, for example, (I, p. 225])

that
k ( 2
r-k k-1)

Y, = 9

o= I (9)
C. Existence of circuits and independent sets

Let {kr} be an arbitrary sequence of positive integers which we
will regard as fixed. For simplicity we denote the families Cr " and
Ty

I by C_ and T . We also define the random variables C and 1 to be
r,kr r r r r

the numbers of kr-element circuits and kr—element independent sets in

Notice that a kr-set J is a circuit (resp. independent set) in « .
if and only if J 1is a circuit (resp. independent set) in Mr and none of

the elements of 1} is deleted. S0 if we define, for each kr—set J

in M,
r

1, if none of the elements of J 1is deleted,

0, otherwise,




then

Morecover, EX Therefore we have by (8) and (7)

1]
—

1~}
~
>

—

n
~

1

J

Proposition 1. k -1
rroposition L k o
k 1 ro ()
G o=p Tic e e Pl <] provided k- 3
r r g-1 k! k r -
r
and
I
k
k ro (0
El_=p "1 = R q © )
r r kr kr! kr
(g-1)
The central result of this section is
©ove o VI
Proposition 2. 7 “*’J'; and } 'vvjxg' are convergent series.
r=>2 (Ecr)“ r=1 (E1 )~

The proof is given below. As a corollarv of Proposition 2 we get, using Lemma A,

Theorem 3. For every choice of the sequence {1,

.
C
i3k cr+ 1 for all r, then,with probability one, lim f%, =
[T
ir 0 kr < r for all r, then,with probability one, lim f?, = 1.
> r

Proposition 1 together with (4) and (5) provide asvmptotic expressions for
ECr and E[r, which are almost-sure asymptotic values of Cr and Ir
Since ECr and Elr are hounded awayv from zero, we also have from

l.emma A:

Theorem 4. For everv choice of the sequence {krl‘

if 3 k < r+ 1 for all y, then with probabilitv 1 there exists
LR

r such that . has a k -circuit for all v > r_
0 r r - 0

(1)

(12)
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if 1<~k < r for all r, then with probability 1 there exists

-or
r such that o has a k -independent set for all r : r_..
0 r r 0
In particular, if we choose kr =r + 1 for circuits we see that with
probability 1 there exists r, such that for all r > £y w, has a
circuit of size r + 1 and thus is connected and has rank r.
Proof of Proposition 2.
2k=1J.0d,!
2 T - . - - 1 '
EC_= ) ) P(xJ A'] =1) = /D r 2
IlcCr I_rCr 1 2 JleCr JZrCr
2k -1J.nJ ]
Y r 1 2 .
= {Cr{ b op (for any fixed SI Cr)
JZFLr
k
Zkr L
= ICr!p 2 p “11 4
i=0

where «, is the number of kr—circuits intersecting a fixed kr—circuit in
i
i points.

Therefore,by Lemma E and (8),

k -1 i N
2 - -
EC2 EC kr 1 -i k ( ) (2) . -k
= - ;4 ) ‘—L“’( r)q 2 (-1 r-1] +p T
2 2k e b e, (k -i)t M k_-i-1
(EC) r 12 r ji=0 ‘v
r p ,Cr‘ l
J
k -1 i . k -1
Lo k ! k () i k! -|'r )
=1+zpl(kfi)_'(ir)‘12 '[(SE_ILJ'{' q(2 T(i"__l)‘
i=1 r Ty r Tl a1
-1 i p r
“r -1 r' kr —(2) <gj '
<1+ ) p — ()1 - + A —
51 (kr i) i 1r-(2)—i r (kr 1Kr-1)
q
q
where the last step follows by (3). Therefore
k -1 ( k -1
ve_ ; ak, |k r
U S— t. + — ,
(Ecr)z - i=‘] 1 P pqr 1

S i f.bT




where

Now

and thus 1i+1/ti < 1 for sufficiently large r. So for sufficiently large r,

Ve qk [« r 3 2
—L <k 4 _EE |_r . (r+l) + q(r+l) { r+1 )

- feh r-1 < r-2 r-11
(EC) Pq Pq P Pq

cs th . .
This is the r term in a convergent series.

Turning now to independent sets, we proceed almost exactly as for circuits,

2k

a3
o~y =&

t

-

2
EL_ = !Irlp

where Bi is the number of kr—independent sets intersecting a fixed

kr—independent set in i points.

Therefore,by Lemma E and (7),

k .
EL’ £ ook D)
r - r o4 ; p q r)q 2 2 1 [r=i]
2 2ky 2 — |1 | JLn (k~1)! i k -1 k-1
(BT ) p ]Ir} r' i=0 “'r (¢-1) T
k i
k ! -
=1+ zr p_i L g (2) iﬂ:lli
-
i=1 (=) [r1;
ec
This differs only slightly from the upper bound obtained on — in the argument
(EC)
above. A straightforward modification of that argument shows r
VIr th
that — 2 is the r term in a convergent series. [J
(ET )
r

D. Expected numbers of bases and flats.

Again we consider as fixed a given sequence {kr} of positive integers;

e e - ' E
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and we define the families R and F of bases and k -flats (flats ot
r r r
rank k ) in M, and the random variables B and  F , the numbers of
r r r r
bases and k _-flats in .
r r
Notice that the results of the previous section imply the existence

with probability 1 of an r such that b has full rank for all r - r

0 0’

and therefore Br almost surely equals ,Ir r' for large r. in this seco-
E

tion we find the ecxpected values of Br and Fr in terms of the Tutte

polynomials (sce [11, Chapter 15])of the underlying projective peonmctries Mi'

We do not obtain asymptotic results. The expected values are given in (16)

and (17).

Bases.

EB_ =

W~

E(B_ | rank(w ) = )P(rank(.) = 1) ,

i=0

and

E(Br ! rank(wr) = i)

= } E(B_ | rank(e ) =1i and «_ cJ)P(. -0 rank(. ) = i)
£ r r r — r - r

(where Mi is the family of rank-i subspaces of Nr)

E(Br ] rank(wr) =1 and O JO)

for any fixed rank-i subspace JO of Mr. Now such a JO is isomorphic to Mi'

so an argument similar to that used for Proposition 1 shows that this last

. i . . . .
quantitv equals p times the number of i-independent sets in Mi: that is,

i b
E(B { rank(w ) = i) = g%-q R ; . (13)
r r it i
(q-1)
To find P(rank(wr) = i) we use the following theorem of Oxlev and

Welsh [10]. If M 1is a matroid of rank i on h elements and . is
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a random submatroid of M, then

h-1

P(rank(u) = i) - pi(] -p) T(M;l,(lnp)—l) , (14)

where T(M;x,y) 1is the Tutte polvonomial of M. Using this theorem:

P(rank(.r) = i) = ? P(all elements of Hr - 1 are deleted and
i M.
! has full rank in 1)

= ‘Mi!P(Mr - JO is deleted)P(~ random submatroid of 52 has
full rank)
Here JO can be any fixed member of Mi . It follows that

r hr~hi i hi—i -1
[i](l—p) p (1-p) T(Mi;l,(l—p) )

P(rank(gr) = 1)

r i hr-i -1
= {i] p (1-p) T(Ni;l,(l—p) ) . (15)
Combining (13) and (15) g¢ives
r 2i hr—i (:) [r]. 1
EB_= 5 F-p q ° —— T(M.;1,(1-p) ). (16)
r ! it i i
i=0 (q-1)

Notice "~ that the term corresponding to i = r dominates this sum because w

almost surely has rank r for sufficiently large r.

Flats. EFr equals the number of kr—flats in Mr times
the probability that a given such flat has full rank in W, - By (14),

hk —kr K

-1
EF = [; J(a-p) T p TTOML i1, (l-p) ). 17)
r r kr
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E. Largest full subspace.

For r =1,2,..., let Kr be the rank of the largest full subspace of
ur: that is, the largest subspace of Mr with no deleted elements. Our main
result in this section is Theorem 6, which implies that with probability 1
there is Ty such that for all r > Ty the random variable Kr has at most
two possible values. Symmetry gives a similar result (Theorem 7) for the rank
of the largest subspace of Mr with no retained elements, and hence for the
critical exponent of w . (1t is merely for convenience of notation that our
results are proved for full rather than empty subspaces.)

For an arbitrary integer k, let Fr,k be the family of rank-k subspaces
of M ; then

r

lFr,kl - [k}
Let Nr K be the number of full rank-k subspaces of S As with circuits and
independent sets,
Nr,k = J Fz XJ
€ r,k
where XJ is defined by (10). Therefore, for any J in Fr K’
h

BN, < IFr,kIP(XJ =1 = [ Ip

Moreover, K < k 1if and only if N =0
r r,k

In this section "log" will denote base-q logarithms and "In" natural
s q

logarithms. We also let

so that i

b >1 and p = b
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For any : > 0, define
og r
d = |log f--28. T
r,t L o8 log b
Notice that if 0 < - « 1, then either dr 0 and dr - are equal or they differ
’ [
by 1. Tt can also be checked that if +  is a given positive number and j and k denote
d and d then f sufficie 7 Dy »>1>E .
r,0 nd _— wen for sufficiently large r, rlr,j - Nr,k+1
Proposition 5. TFor any - - O, v P(K >d ) and ) P(K_ < d ) are
- ——— r=1 r r,: =1 r r,0

convergent series.

The proof is given below. As a corollary we pet from the Borel-Cantelli Lemma.

Theorem 6. Suppose 0O < ¢ < 1. Then with probability 1 there exists T, such

that for every r > o Kr has its value in the set {dr 0 dr .} (which may be
- ) -

a singleton or a pair).

This theorem translates immediately by symmetry to a result on the rank
Lr of the largest subspace of Mr with no retained elements and on the critical

* exponent ¢ of ., where ¢ =r -L . For ¢ > 0 let
r r r r -

' - r log r ;
dr,f L}og Tog b’ + ,J

where 1

A

b' = )q—l

1

Theorem 7. Suppose 0O < & < 1, Then withprobability 1 there exists ry such

that for every r > r Lr and c. have their values in the sets {d; O,d' }
)

0’ X,0

and {r - d; T - d' }, respectively.

r,0

SERIERT A el e
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Ve note two more consequences of the above before proving Proposition 5.
Firstlv, the asymptotic expressions for K , 1, , and ¢ have high-order terms
r r r
that are independent of  p:
K ~1L ~d ~log r + oflog r), and ¢ _~r - log r + o(log r)
r r r,0 r

This is in contrast to the growth of the size of the largest clique in a random
graph as fou-~d in [6,9,2]. Secondly, with probability one, Kr is eventually
greater than two and hence for sufficiently large r, w is representable only

over fields containing GF(q).

Proof of Proposition 5. We prove that

rZP(K > d +1) >0 as r = » (18)
r o,

b4

and

b}
r P(Kr - dr.O) ~0 as r » o, (19)

and the proposition follows.

To prove (18) we notice that for any k, by Lemma C,

K
PR = K) = PN £ 0) C BN = (Fyp™@ +

Wk - r,k k

’

and so,by (2),

k
. k(r—k+l)1—q +1

P(K_ > k)
A S
Now if k = dr » + 1, then
rlogr o k_rlogr I+
log b 4 29 7 Tlop b

and

qk . qr(]op_ r)q _ rq




{
2 2. r log r 1+ r—dr rq} }
< , > Il . 2 ' ) -
rP(K > d Lt ) ( {og b 9 ) r b 5
. {
‘ - . i
I U SERS T L R s
. ' £
-1 ’
(rq log b 9 dr,x
r
which tends to 0 as r -~ - Thus (18) is proved. ?
Next we prove (19). For any k, bv Lemma B, :
2 {
EN K ’
PR« k) = PN = 0) - -1+ - T
r r,k DR
("r,k f
Now &
2h = J " ;
2 - - - ST '
ENr LT ; ) l"()(I XI = 1) = / / P K ! 4
’ c J. eF Tl 72 J..F J.F :
1P T2 Fe ! Fee e ;
gv
' i
2h -1J PJ2|
= ’ ‘ A F; i .
‘Fr,k‘ ’ P (for any fixed Jl ¢ Fr,k)
T F
r,k
2t k -h
= C ]k 5 i
= lk]P L \i p
i=0
where is the number of rank-k subspaces intersecting a fixed rank-k sub-

Yy

space in a rank-i subspace. Now hecause of (9),

I".NZ,k k
~1 +-—r~~»2 -1+ ) T
(F,Nr k) i=0
where [k][r_k] ) .
T,o= kel (D) pan-l
! (]
k
Now, by (1), TO < 1; and (2) implies that
L) kei(r-2k41)
T, <pd g (=1,
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Therefore

where
i L k~i(r-2k+i)
= pd q i(r 1

Now we show that if k =d then for sufficiently large r the function

r,0’

X
f(x) = pa -1 qk~x(r—2k+x)

first decreases and then increases and has exactlv one critical point in the

interval 1 < x < k. It will follow that

k
. X + g = 5 fe i . . r. i
P(Kr < k) i—2(sl sk) for k dr,O and sufficiently larpe r 20
We use the fact that if k = d , then
r,0
r log r k r log r qk r
P & - gl
q log b — - log b and BT Tr <D

We can rewrite f(x) as

k (qx—])log b - X{(r-2k+x)
q 9
and it suffices to show that the nonconstant part of the exponent,

g(x) = qxlog b - x2 - (r - 2k)x ,

has the properties claimed above for f(x). But

' = X - 2 - .
g'(x) q In b 2x r + Zdr,O ;

S0

g' (1) glnb - 2 - r + 2dr
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which is obviously negative for large

r. Moreover,
g' (k) = qklnb -r 3~%§%“r Inb - r
= r(log r)tng - 1
which is positive for large r. Thus g(x) first decreases and then increases

for 1 < x < k, and so g'(x), be.ng continuous, has an odd numbcr of zeros in

{1,k]. But g'(x)

has at most two zeros, since it is the difference
between the convex function qxlnb and the linear function 2x + (r - 2k). So
g'(x) has exactly one zero in [1,k], the assertion about f(x) is
proved, and (20) follows. We get
k ,.q-1 k-r+2k-1 qk~l k-k(r-k)
P(Kr < k) 3 (b q + b q )
q k 2
_ b’ 3k-r 1 . q k+k-kr
7bq <9 HETI
But we can use (21) to show that each of these terms is o(r_z):
q . 5 .4
2 b, 3k-r Z b r log r 1
T Zbg M ©T 7bq °8iog b ) 3K PO as 1>,
and
2 1 qk kz+k--kr r log r
log(r h kb ) 7 2 log r - log 2b + loglog( Tog b ) +rlogr

+ k2 + k - kr

r(log ¥ - k) + o((log r)A)

it

LA

r(log r - log(EiéigFE) + 1) + o((log r)é)

> - as >

r o,
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