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Abstract
We provide a constructive version of the notion of sheaf models of univalent type theory. We start by
relativizing existing constructive models of univalent type theory to presheaves over a base category. Any
Grothendieck topology of the base category then gives rise to a family of left-exact modalities, and we
recover a model of type theory by localizing the presheaf model with respect to this family of left-exact
modalities. We provide then some examples.
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1. Introduction
Despite being relatively recent, the notion of (pre-)sheaf model has a rich and intricate history
which mixes different intuitions coming from topology, logic, and algebra. Eilenberg and Zilber
(1950) used a presheaf model (simplicial sets) to represent geometrical objects, and the intuition
is geometrical: we think of the objects I, J, . . . of the base category as basic “shapes”; a presheaf A
is then given by a family of sets A(I) of objects of each shape I, which are related by the restriction
maps A(I)→A(J). A little later, but independently, Beth (1956) and Kripke (1965) used a sheaf
and a presheaf model over trees, respectively, to provide a formal semantics for intuitionistic logic.
Their motivations were logical, and the intuition is of a temporal nature instead: we think of the
nodes of the tree as “stages of knowledge” and of the tree ordering as “increase in knowledge.”
Scott (1980) described a presheaf model of higher-order logic and pointed out the potential inter-
est for the semantics of λ-calculus. This was refined by Hofmann (1997) who presented a presheaf
model of dependent type theory with universes. Hofmann’s presheaf model was subsequently used
in an essential way in works on constructive semantics of type theory with univalent universes (see
Cohen et al. 2015; Coquand et al. 2018; Orton and Pitts 2016).

The generalization of such presheaf models of dependent type theory, and especially of uni-
verses, to a sheaf model semantics is however non-trivial. The problem in generalizing this
semantics for universes comes essentially from the fact that the collection of sheaves does not form
a sheaf in any natural way: if we are given locally sheaves that are compatible, one can patch them
together but not in a uniqueway, only unique up to isomorphism. This problemwas themotivation
for the introduction of stacks and a more subtle notion of patching of sheaves (cf. Grothendieck
1960, Section 3.3), and in general patching of mathematical structures. The generalization of this
to patching of higher structures was the content of the first part of Joyal’s letter to Grothendieck
(see Joyal 1984). One contribution of the present paper is to provide a constructive version of this
notion1 by describing a sheaf model semantics of type theory with univalence (see, e.g., Voevodsky
2015 and Univalent Foundations Program 2013). This uses in a crucial way the fact that we have a
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constructive interpretation of univalence as in Cohen et al. (2015), Orton and Pitts (2016), which
can be relativized to any presheaf model. The main point is then that the operation sending an
object to its object of descent data (a compatible collection of elements of its restrictions) defines
a left-exact modality (see Quirin 2016; Rijke et al. 2020; Univalent Foundations Program 2013),
which can then be used to build internally models of univalent type theory, as shown in Quirin
(2016).

This work opens the possibility of generalizing the rich collection of results about sheaf mod-
els of intuitionistic logic as in Troelstra and van Dalen (1988) to sheaf models of univalent type
theory. It extends the previous work in Coquand et al. (2017) to a complete model of univalence,
and has no restrictions for representing (higher) data types. We give here only two applications
(independence of countable choice, and a model of the algebraic closure of a field), but we expect
also that this can be used to build constructive account of works such as in Shulman (2018) and
Wellen (2017). The present semantics (in a preliminary version) has already been used byWeaver
and Licata (2020) for building a constructive model of directed univalence.

This paper is organized as follows. We first introduce the notion of lex operation as an opera-
tion acting on types and families of types. A descent data operation is then a lex operation which
defines a left-exact modality (cf. Quirin 2016; Rijke et al. 2020; Univalent Foundations Program
2013). These two notions are formulated purely syntactically in the framework of type theory.
We show next how to instantiate these operations for cubical presheaves. In this setting, we can
understand the notion of being modal for a descent data operation as a generalization of the sheaf
condition, where the compatibility requirements are expressed up to path equality instead of being
expressed as strict equalities. We then provide some examples and the applications to the unprov-
ability of countable choice and to the model of the algebraic closure of a field. In an appendix, we
explain how some of our results about descent data operations can be generalized to accessible
left-exact modalities.

2. Abstract Notion of Descent Data
We use the following notations. We write 1 for the unit type and () : 1 for its unique element. If
a :A, we write εa the associated function 1→A. Given a type A and a family B of types over A, we
write

∑
AB for their sum type and

∏
AB for their product type. The pairing operation is denoted

by (a, b) : ∑AB for a :A and b : B a. The projection maps are denoted by π1 and π2. We write KB
for the constant family B over a type A. As usual, function space A→ B is defined to be

∏
AKB

and product A× B is defined to be
∑

AKB. We write idA for the identity function on A and g ◦ f
for the composition of f : A→ B and g : B→ C. If B is a family of types over A and f : A′ →A,
we also write B ◦ f for the family of types over A′ obtained from B by reindexing along f , and we
write B a for the instantiation of the family B at the element a of type A.

In this section, equality (denoted by the symbol =) refers to the strict equality (as opposed to
identity or path types), and isomorphisms refer to strictly invertible maps.

2.1 Lex operation
The concept of lex operations is defined for a dependent type theory with only unit type, depen-
dent sums, dependent product, and universes. In particular, path types are not needed. Intuitively,
a lex operation is an endofunctor on the category of types and functions (compatible with
substitution) which preserves the unit type and dependent projections of sum types up to isomor-
phism. It is defined as an extension of type theory with some constants satisfying some (strict)
equalities.

Definition 1. A lex operation D2 is given by the following constants:
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Figure 1. Equations for lex operations.

(1) an operation D on types and functions with a function ηA :A→DA
(2) an operation D̃ on families of types: D̃B is a family of types over DA if B is a family of types

over A, with an operation D̃s : ∏DAD̃B on sections s : ∏AB
(3) an element 〈〉 in D1 and a pairing operation 〈u, v〉 :D(∑AB) for elements u :DA and v :

(D̃B) u

satisfying the (strict) equations of Figure 1 and such that that universes reflect3 these
operations.

These constants and equations express that D forms a strict pointed endofunctor on types
which preserves the unit type 1 up to isomorphism and dependent projections of sum types up to
isomorphism.

The canonical example of a lex operation is exponentiation with a fixed type R (assumed
to be in all universes). We define DA=AR, (D̃B) u= ∏

x : R B(u x), and (D̃s) u= λx : R s(u x).
The pairing is given by 〈u, v〉 = λx : R (u x, v x) and 〈〉 is the constant function λx : R () and ηA is
λa :A λx : R a.
Remark 2. Let U be a universe. The action of the operation D̃ on U -small families is uniquely
determined by the universal case L= D̃ idU :DU → U : we have (and can define) D̃B= L ◦DB
withDB :DA→DU for B :A→ U . This corresponds to the “escaping” function in Section 2.5 of
Schreiber and Shulman (2012). We can describe the action of D̃ on U -small families and associ-
ated operations by requiring thatD applied to the “universalU -small fibration”

∑
X : U X → U is

isomorphic to a “U -small fibration” (a projection of a type in U ), and that D preserves pullbacks
of this map.

Remark 3. Any strict endofunctorD on types which preserves the unit type 1 up to isomorphism
is uniquely pointed4 since we should have η1 ()= 〈〉 and so ηA a= ηA(εa ())= (Dεa)(η1 ())=
(Dεa) 〈〉. It follows that the map η in Definition 1 (with associated laws) can be recovered from the
other operations and laws.

It also follows that we have D̃B (ηA a)= D̃B (Dεa 〈〉)= D̃(KB a) 〈〉 =KD(B a) 〈〉 =D(B a).

Remark 4. If we present type theory as a generalized algebraic theory, for instance as in Dybjer
(1995), with sorts of contexts and substitutions �→ � and types Type(�) and elements, then a
lex operation can be seen as an extension of this generalized algebraic theory, since it is defined by
constants and equations. We then have DA in Type(�) for A in Type(�) and D̃B in Type(�.DA)
for B in Type(�.A).5 As usual, we have to add that these constants commute with substitutions:
for instance, (DA)σ =D(Aσ ) and (D̃B)σ+ = D̃(Bσ+) if σ :�→ �.

We get in this way a notion of model of type theory together with a lex operation.

Remark 5. A lex operation can be defined from a pseudomorphism of cwfs with universes Kaposi
et al. (2019) from the cwf to itself that is pointed as an endofunctor.
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2.2 D-modal types
The notion of lex operation is defined at the level of “pure” dependent type theory, without
assuming any notion of path types. In the presence of path types with function extensionality,
we automatically have the following preservation property.

Theorem. Let D be a lex operation. Then D preserves equivalences.

Proof. Note that if f0 and f1 are path equal then so are Df0 and Df1 by path induction. It follows
that if f and g are inverses, then so are Df and Dg.

Avigad et al. (2015) explain how to build a fibration category from a model of dependent type
theory. Theorem 2.2 implies that any lex operation defines an endomorphism of the associated
fibration category. A lex operation preserves all finite homotopy limits (e.g., contractible types,
homotopy pullbacks, homotopy equalizers, homotopy fibers, etc.).

In the presence of path types, we can also define the following important notion of modal types.

Definition 6. A type A is called D-modal if the unit map ηA :A→DA is an equivalence.

Proposition 7. If A is D-modal and B is a family of types over A, then B is a family of D-modal
types over A if and only if T = ∑

A B is D-modal.

Proof. Let f be the map T → ∑
DA D̃B, (a, b) 	→ (ηA a, ηB a b). Since ηA is an equivalence, each

map ηB a is an equivalence if and only if the map f is an equivalence (Univalent Foundations
Program 2013). But f is an equivalence if and only if ηT is an equivalence.

Lemma 8. If B is D-modal and we have f and g maps DA→ B such that f ◦ ηA and g ◦ ηA are path
equal, and DηA is an equivalence then f and g are path equal.

Proof. Since D(f ◦ ηA)=Df ◦DηA and D(g ◦ ηA)=Dg ◦DηA and DηA is an equivalence we get
that Df and Dg are path equal. Hence, Df ◦ ηDA = ηB ◦ f and Dg ◦ ηDA = ηB ◦ g are path equal,
which implies that f and g are path equal since ηB is an equivalence.

2.3 Abstract notion of descent data

Theorem. The following conditions are equivalent, for a lex operation D

(1) D defines a modality as axiomatized in Quirin (2016) and Rijke et al. (2020)
(2) the map DηA is an equivalence, and DηA and ηDA are path equal
(3) both maps DηA and ηDA are equivalences

Proof. The first condition implies the second using the results in Quirin (2016) and Rijke et al.
(2020) and the second condition clearly implies the third.

Conversely, assume that the mapDηA is an equivalence, andDηA and ηDA are path equal. Then
ηDA is an equivalence as well and each type DA is D-modal. Proposition 7 shows that D-modal
types are closed under dependent sums. We thus only have to prove that the map

F : (DA→ B)−→ (A→ B) f 	−→ f ◦ ηA
is an equivalence if B is D-modal (Quirin 2016).

Let pB be a map DB→ B such that pB ◦ ηB is path equal to idB. We define a map

G : (A→ B)−→ (DA→ B) u 	−→ pB ◦Du
We then have F(Gu)= pB ◦Du ◦ ηA = pB ◦ ηB ◦ uwhich is path equal to u andG(Ff )= pB ◦D(f ◦
ηA)= pB ◦Df ◦DηA which is path equal to pB ◦Df ◦ ηDA = pB ◦ ηB ◦ f which is path equal to f .
Hence, G is an inverse to F and F is an equivalence.
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Finally, we show that the third condition implies the second condition. We want to show that
DηA and ηDA are path equal. By the previous lemma, it is enough to check that DηA ◦ ηA and
ηDA ◦ ηA are path equal, but they are even strictly equal since D is a lex operation.

Definition 9. A descent data operation is a lex operation D satisfying the equivalent conditions of
Theorem 2.3. It is then automatically a lex modality, as defined in Quirin (2016), Rijke et al. (2020)
since it preserves homotopy pullbacks.6

Note that the first and third conditions of Theorem 2.3 are (homotopy) propositions. The
second condition is the one which will be convenient to verify for the main example.

We write isModD(A) for the type (proposition) expressing that A is D-modal.
In particular, it follows from the general properties of lex modalities that we have.

Lemma 10. Let D be a descent data operation. For A to be D-modal, it is enough to have a patch
function pA :DA→A such that pA ◦ ηA is path equal to the identity of A. More precisely, the type
of such patch functions is a proposition equivalent to the proposition isModD(A).

2.4 Example
If R is a proposition, then for the lex operation defined by DA=AR the two maps DηA and ηDA
are path equal equivalences and hence exponentiation defines a descent data operation in that
case.

In Section 4, we define a new kind of descent data operation for any presheaf model.

3. Lex Modalities and Universes
The following results were suggested by the proof that the universe of sheaves is a stack in
Coquand et al. (2017). They can be stated and proved at the level of lex modalities and will
be crucial for building the sheaf model of univalent type theory in the next sections. The
appendix presents amore general version and connections with the notion of accessible modalities
introduced in Rijke et al. (2020).

3.1 Universe of modal types
Let D be a lex modality, such that that DA : U if A : U .

Proposition 11. If D respects U -small families, then UD = ∑
U isModD is D-modal.

Proof. The hypothesis implies Schreiber and Shulman (2012) that we have an “escaping” function
L :DU → U such that L ◦ ηU is path equal to D : U → U and L defines a family of D-modal
types over DU . We can then define α :DU → UD such that π1 ◦ α = L, and then π1 ◦ α ◦ ηU is
path equal to D. We claim that α ◦Dπ1 is a left inverse of ηUD . This implies that UD is D-modal,
since D is a lex modality.

By univalence(!), the map D ◦ π1 : UD → U is path equal to π1 : UD → U . It follows that π1 ◦
α ◦ ηU ◦ π1 is path equal to π1. Since π1 : UD → U is an embedding, idUD is path equal to α ◦
ηU ◦ π1. But ηU ◦ π1 : UD →DU is path equal to Dπ1 ◦ ηUD , since D is a modality, and so α ◦
Dπ1 is a left inverse of ηUD .

3.2 Generalization to a family of descent data operations
More generally, if we have a family of lex modalities DS indexed by a given type S : C, with corre-
spondingmaps ηSA :A→DSA, we can consider isModC(A) to be the proposition

∏
S:C isModDS(A)
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and UC which is
∑

U isModC. We use the slightly shorter notation US to denote the previously
defined type UDS = ∑

U isModDS
We assume a preorder relation ≤ on C such that S′ ≤ S implies that any DS′-modal type is

DS-modal. We say that C is filtered if we have ∃S:C. S≤ S1 ∧ S≤ S2 for any S1, S2 : C.7
We assume that DSA : U if A : U and each DS preserves U -small maps.

Theorem. If C is filtered, then UC satisfies isModC.

Proof.We write LS :DSU → U the “escape” map for DS such that LS ◦ ηS is path equal to DS. For
any S′ ≤ S in C,US′ isDS′-modal by Proposition 11 and soDS-modal, and hence ηS : US′ →DSUS′
is an equivalence. The following diagram (commuting up to path equality)

and the fact that ηS : US′ →DSUS′ is an equivalence show that for any A :DSUS′ , the type
LS(DSπ1 A) is DS′-modal. It follows that, for any A :DSUC, the type LS(DSπ1 A) is DS′-modal.

If C is filtered, this implies that the type LS(DSπ1 A) is DS′-modal for any S′ in C. Hence, the
map LS ◦DSπ1 :DSUC → U factorizes through UC → U by a map p :DSUC → UC and we have
a (homotopy) commuting diagram

which, together with the fact that π1 : UC → U is an embedding, and thatDS ◦ π1 is path equal to
π1 by univalence, shows that p is a left inverse of UC →DSUC. Hence, UC is DS-modal for any S
in C, since DS is a lex modality.

4. Cubical Presheaf Models
4.1 Cubical models
Cubical models are presheaf models of univalent type theory specified by two parameters, an
interval object I and a cofibration classifier 
. Formally, we say that a cubical model is a presheaf
category with the following structure, as in Orton and Pitts (2016).

• The interval object I is connected and has distinct points 0 and 1. Product with I preserves
representable presheaves. We also assume that I has the structure of a bounded distributive
lattice.8

• The universal cofibration : 1→
 is a levelwise decidable inclusion. In the internal lan-
guage of presheaves, we will work with 
 as a universe of certain propositions and leave
the decoding function (given by equality with  :
) implicit. Isomorphic cofibrations are
equal.9 The interval endpoint inclusions 0, 1 : 1→ I are cofibrations. Cofibrations are closed
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under finite union (finite disjunction), composition (dependent conjunction), and universal
quantification over I.

It is then known, following the work in Cohen et al. (2015), Orton and Pitts (2016), Coquand
et al. (2018), how to define a model of univalent type theory with higher inductive types.

4.2 Presheaves in cubical models
For the remainder of this subsection, we fix a cubical model given by presheaves over a small
category B. We refer to this as the base model (e.g., it can be cubical sets). We write I, J,K, . . . for
the objects of B. We have the interval object IB and the cofibration classifier
B .

Let C be another small category. We write X, Y , Z, . . . for its objects. We describe possibilities
for turning presheaves over C × B into a cubical model. For the interval object I, we simply take
I(X, I)= IB(I). For the cofibration classifier, we have two reasonable options:

(1) The first example is simply to take
(X, I)=
B(I).
(2) The second example is to define an element ψ of 
lw(X, I) to be a family ψf in 
B(I)

for f : Y → X such that ψf ≤ψfg if furthermore g : Z → Y . We then define the restriction
operationψ(f , l) to be the familyψ(f , l)g =ψfg l for f : Y → X and g : Z → Y and l : J → I.

The motivation for the second example is that if
B(I) is the collection of (decidable) sieves on I,
then
lw(X, I) becomes the collection of (decidable) sieves on (X,I).10

The interval object I and any of the choices 
 and 
lw fit all the requirements listed in
Subsection 4.1. This turns presheaves over C × B into a cubical model. In particular, we get a
model of univalent type theory (and higher inductive types). We are going to analyze the model
obtained using the choice 
 for the cofibration classifier and then indicate how to adapt these
results for
lw.

In this model, a context � is interpreted by a presheaf over C × B so a family of sets �(X, I)
with suitable restriction maps ρ 	→ ρ(f , l) with f : Y → X in C and l : J → I in B.

A dependent type A over � is then given by a presheaf over the category of elements of �:
for any ρ in �(X, I) we have a set Aρ with suitable restriction maps Aρ→Aρ(f , l) denoted by
u 	→ u(f , l) together with a filling operation (see Cohen et al. 2015; Orton and Pitts 2016).Wewrite
Type(�) for the collection of all types with a composition operation over �. For A in Type(�) the
extension �.A is defined by taking (�.A)(X, I) to be the set of pairs ρ, u with ρ in �(X, I), u in Aρ,
and (ρ, u)(f , l)= ρ(f , l), u(f , l). The set Elem(�,A) is then the set of sections: a family aρ in Aρ
such that (aρ)(f , l)= a(ρ(f , l)) for any ρ in �(X, I) and map f,l of codomain X,I.

Given a constructive Grothendieck universe U (see Aczel 1998) containing B and C , we write
TypeU(�) for the set of U-small types. The presheaf TypeU is then represented by a fibrant type
U , which is univalent as shown in Cohen et al. (2015).

4.3 Internal language description
This was an external description of the presheaf model. It is also possible to describe this model
using the internal logic of the presheaf topos over C × B as in Orton and Pitts (2016), Coquand
et al. (2018) but also using the internal logic of the presheaf topos over B. We will use both
descriptions.

In the internal logic of the presheaf topos over B, a context of the presheaf model over C is
interpreted as a family of “spaces” �(X) with restriction maps ρ 	→ ρf for f : Y → X. (Each space
�(X) is itself a presheaf over B with �(X)(I)= �(X, I).) A dependent type A over � is given by a
family of spaces Aρ for ρ in �(X) with restriction maps u 	→ uf . The presheaf
 of cofibrations is
the constant presheaf
(X)=
B . The interval I is the constant interval I(X)= IB .
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It will be convenient to introduce the following notation: if γ is an element of �(X)I and f :
Y → X, we write γ f+ in �(Y)I for λi γ (i)f . Similarly, if u(i) is a section in Aγ (i), we write uf+ for
λi u(i)f .

A filling operation (see Coquand et al. 2018; Orton and Pitts 2016) forA is given by an operation
cA which takes as argument γ in �(X)IB and ψ in 
(X)=
B and a family of elements u(i)
in Aγ (i) on the extent ψ ∨ i= 0. (There is a dual operation with i= 1 instead.) It produces an
element cA(X, γ ,ψ , u)(i) in Aγ (i) such that

(1) cA(X, γ ,ψ , u)(i)= u(i) on ψ ∨ i= 0,
(2) cA(X, γ ,ψ , u)(i)f = cA(Y , γ f+,ψ , uf+)(i) for f : Y → X.

Given such an operation, we also call A fibrant (note this is structure rather than property).
If we only have the first condition, we say that A is levelwise fibrant, and cA a levelwise filling
operation.

If A is a type over �, we get a family of dependent types A(X) over �(X), each of them having
a filling operation, but furthermore these filling operations commute with the restriction maps.

Similarly, an extension operation for A, witnessing that A is contractible (see Cohen et al. 2015),
is given by an operation eA which takes as argument ρ in �(X) and a partial element u on the
extent ψ and produces an element eA(X, ρ,ψ , u) in Aρ such that

(1) eA(X, ρ,ψ , u)= u on ψ ,
(2) eA(X, ρ,ψ , u)f = eA(Y , ρf ,ψ , uf ) for f : Y → X.

If we only have the first condition, we say that A is levelwise contractible.
IfA is contractible, each A(X) is a contractible family of types over �(X). But conversely, it may

be that each A(X) has an extension operation eA(X) which does not commute with restriction (see
Subsection 4.4). Similarly, a map σ :A→ B which is an equivalence defines a family of equiva-
lences σX : A(X)→ B(X) but it may be that each map σX is an equivalence, without σ being an
equivalence.

Remark 12. We have a canonical map from 
 to 
lw sending ψ :
(X) to the constant family
on ψ . This map commutes (up to isomorphism) with the decoding to propositions. It follows
that there is a natural map from extension operations for 
 to extension operations for 
lw, and
the same holds for filling operations. It follows that a (contractible) type for the cubical presheaf
model for
 is naturally also a (contractible) type for the cubical presheaf model for
lw.

Remark 13. Let C be a groupoid. Then for ψ :
lw(X) and f : Y → X, we have ψidX ≤ψf ≤
ψff−1 =ψidX . It follows that ψ is the constant family on ψidX . Thus, the map 
→
lw from
Remark 12 is invertible. It follows that the cubical presheaf models for
 and
lw are the same.11

4.4 Examples
Let B be a concrete cube category, for instance the Cartesian, distributive lattice, or de Morgan
one (as defined in Angiuli et al. 2017; Cohen et al. 2015; Orton and Pitts 2016). Then we have a
nerve functor from groupoids to cubical sets in the sense of presheaves over B. In this way, we
can see any groupoid as a cubical set with a canonical filling operation.

For the first example, let C be the group Z/(2). Let τ be the non-trivial element of this group.
A context is a space with an involutive action ρ 	→ ρτ . A dependent type A over � has also
an involutive action Aρ→Aρτ denoted by u 	→ uτ with a filling operation which is equivari-
ant, meaning cA(γ ,ψ , u)(i)τ = cA(γ τ+,ψ , uτ+)(i). Let A be the groupoid with two isomorphic
objects swapped by τ . Then A is levelwise contractible, but is not contractible in the presheaf
model, since it has no global point. Another way to describe this example is that the unique map
A→ 1 is a levelwise equivalence, but is not an equivalence.
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For the second example, letC be the poset on objects⊥, 0, 1 with⊥< 0 and⊥< 1.We define a
global type A as follows. We take A(0) andA(1) to consist of a single object a0 and a1, respectively.
We take A(⊥) to consist of an isomorphism between the restrictions of a0 and a1. Then A is
levelwise contractible (i.e., A(⊥),A(0),A(1) are contractible), but A is not contractible since it has
no global point.

We note that the second example is fixed by working with the cofibration classifier 
lw.
However, as explained by Remark 13, this does not apply to the first example.

5. Homotopy Descent Data in the Presheaf Model
5.1 A lex operation
In this subsection, we work in the internal language of the presheaf topos over B. We first define
a lex operation on presheaf types, and then show that this lex operation extends to types with a
filling operation.

For any presheaf A over �, we define a presheaf EA over �. For ρ in �(X), we define

(EA)ρ = ∏
Y ,f :Y→X Aρf

so that an element u of (EA)ρ by a family of elements u(f ) in Aρf for f : Y → X. We define the
restriction uf in (EA)ρf by uf (g)= u(fg) if f : Y → X and g : Z → Y .

If B is a presheaf over �.A, then we define a presheaf Ẽ(B) over �.EA. If ρ is in �(X) and u is in
(EA)ρ, then we define Ẽ(B)(ρ, u) as the space of families v(f ) in B(ρf , u(f )).

We define a natural transformation α :A→ EA by (αa)(f )= af .
Next, we extend the action of E to types with a filling operation. Actually, we define a filling

operation E(cA) on EA assuming only that cA is a levelwise filling operation on A.

Proposition 14. Given a levelwise filling operation cA on A over �, we have a filling operation E(cA)
on EA. Given a levelwise filling operation cB on B over �.A, we have a filling operation Ẽ(cB) on ẼB.
These constructions commute with substitution in �.

Proof.We assume that A has a levelwise filling operation cA(X). We define then, for f : Y → X

E(cA)(X, γ ,ψ , u)(i)(f )= cA(Y)(γ f+,ψ , uf+)(i)

We can then check for f : Y → X and g : Z → Y

cEA(X, γ ,ψ , u)(i)f (g)= cA(Z)(γ (fg)+,ψ , u(fg)+)(i)= cEA(Y , γ f+,ψ , uf+)(i)(g)

and hence cEA is natural in X.
The construction of Ẽ(cB) is similar.

Corollary 15. E defines a lex operation.

Proof. We define 〈〉 in E1 by 〈〉(f )= () and 〈u, v〉 : E(∑AB)ρ by 〈u, v〉(f )= (u(f ), v(f )) for u in
(EA)ρ and v in (ẼB)(ρ, u). Any universeU reflects the operations E and Ẽ since the Grothendieck
universe U used to construct U was assumed to contain C . We then check that all conditions for
a lex operation are satisfied.

Proposition 16. If A is levelwise contractible over �, then EA is contractible. If B is levelwise con-
tractible on �.A, then ẼB is contractible on �.EA. These constructions commute with substitution
in �.

Proof.We assume that A has a levelwise extension operation eA(X). We define then, for f : Y → X

eEA(X, ρ,ψ , u)(f )= eA(Y)(ρf ,ψ , uf )

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000359
Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Högskola, on 19 Jan 2022 at 10:03:52, subject to the Cambridge Core terms of use, available at
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We can then check for f : Y → X and g : Z → Y

eEA(X, ρ,ψ , u)f (g)= eA(Z)(ρfg,ψ , ufg)= eEA(Y , ρf ,ψ , uf )(g)

and hence eEA is an extension operation for EA natural in X.
The proof for ẼB is similar.

In general, E may not be a descent data operation, since EA does not need to be E-modal. The
next subsection will use the lex operation E to define a descent data operation.

5.2 Homotopy descent data
In this subsection, unless explicitly stated, we work in the internal language of the presheaf
model over C × B. Starting from the lex operation E, we define a new lex operation D. As
before, we first define D on presheaves, and then show that it extends to a lex operation on
presheaves with a filling operation. On presheaves with a filling operation,Dwill be a descent data
operation.

We let Pn be the subpresheaf of In+1 of elements (i0, i1, . . . , in) satisfying i0 = 1∨ · · · ∨ in = 1.
Let sk : In+1 → In be the map which omits the kth component, for k= 0, . . . , n. Note that sk�i is

in Pn−1 if �i is in Pn and ik = 0.

Definition 17. An element of DA is given by a family u(�i) in En+1A defined on Pn and satisfying
the compatibility conditions12 u(�i)= Ek(α)u(sk�i) on ik = 0.

For instance, we have

u(0, i1, i2)= αu(i1, i2) u(i0, 0, i2)= E(α)u(i0, i2) u(i0, i1, 0)= E2(α)u(i0, i1)

We have an element u(�1) in each En+1A. We have a path u(i,1) between α u(1) and u(1,1) and a
path u(1,i) between E(α) u(1) and u(1,1) in E2A. But, in general, we need further higher coherence
conditions.

We define ηA :A→DA by (ηA a)(i0, i1, . . . , in)= αn+1a.
If B is a family of types over A, we define D̃B u as the type of families v(�i) in Ẽn+1B u(�i) such

that u(�i), v(�i)= Ek(α)(u(sk�i), v(sk�i)) on ik = 0.
If A is a family of types over �, we define DA family of types over � by (DA)ρ =D(Aρ).

Proposition 18. If A is a family of types over � with a levelwise filling operation, then DA has a
filling operation. If B is a family of types over �.A with a levelwise filling operation, then D̃B has a
filling operation. These constructions commute with substitution in �.

Proof.Weuse that each En+1A has a (uniform) filling operation by Proposition 14 hence is a family
of types in the model over C × B. We assume given γ in �I and ψ in 
 and a partial element
uj in (DA)γ (j) defined over ψ ∨ j= 0. We explain how to define a total extension vj in (DA)γ (j).
For this we define vj(�i) in En+1A by induction on n. Since En+1A has a filling operation, we apply
this filling operation to the partial element equal to uj(�i) on ψ ∨ j= 0 and equal to Ek(α) vj(sk(�i))
if ik = 0.

The construction for D̃B is similar.

Corollary 19. D defines a lex operation.

One way to understand the definition of D from E is the following. Being a pointed endofunc-
tor, E defines a cosemisimplicial diagram starting from EA, and DA is a strict way to realize the
homotopy limit of this diagram using a P-weighted limit. We can think of P as a cofibrant resolu-
tion of the constant diagram on 1. A remark is that E, and hence each El, preserves the P-weighted
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limit defining D. In particular, an element of El(DA) is determined by a family u(�i) in El+n+1A
satisfying u(�i)= El+k(α) u(sk�i) on ik = 0.

Proposition 20. Let A be a fibrant family of types over �. We can build a path between ηDA and
DηA.

Proof. An element of (D2A)ρ is given by a family v(�i)(�j) in En+m+2A satisfying the conditions

(1) v(�i)(�j)= Ek(α) v(sk�i)(�j) on ik = 0
(2) v(�i)(�j)= En+1+l(α) v(�i)(sl�j) on jl = 0

Given u in (DA)ρ, we define an element ũ in (D2A)ρ by ũ(�i)(�j)= u(�i,�j).
We compute, for u in (DA)ρ

(ηDA u)(�i)(�j)= αn+1 u(�j)= u(�0,�j)
and we have a homotopy13 connecting this map to ũ by defining

vk(�i)(�j)= u(�i∧ k,�j).
We also have

(DηA u)(�i)(�j)= En+1(αm+1) u(�i)= u(�i, �0)
and we have a homotopy connecting this map to ũ by defining

wk(�i)(�j)= u(�i, k∧�j)
By composition, we have a path between DηA and ηDA.

Proposition 21. If A is a levelwise contractible family of types over �, then DA is contractible. If B
is a levelwise contractible family of types over a family of types A over �, then D̃B is contractible over
DA.

Proof. Let u be a partial element of (DA)ρ of extent ψ . We use that each En+1A has an exten-
sion operation by Proposition 16. We define v(�i) extending u(�i) by induction on n. We apply the
extension operation of (En+1A)ρ to find an element equal to u(�i) on ψ and equal to Ek(α)v(�i) on
ik = 0.

The proof of the second part is similar.

Corollary 22. Let σ :A→ B be map between fibrant families of types over �. If σ is levelwise an
equivalence, then Dσ is an equivalence.

Proof. The fiber fib(σ ) defines a levelwise contractible family of types over B. Hence, D̃fib(σ ) is
contractible over DB. Since D is a lex operation, fib(Dσ ) is contractible over DB and Dσ is an
equivalence.

Proposition 23. Let A be a fibrant family of types over �. Then ηA is levelwise an equivalence and
DηA is an equivalence.

Proof. For this proposition, we work in the presheaf model over B. If �f is a composable chain of
arrows, we write 〈�f 〉 for its composition.

Let A be a type over �. For ρ in �(X), an element u of (DA)ρ is a family of elements u(�i)(�f )
in Aρ〈�f 〉 satisfying the compatibility conditions. For a in Aρ, the element ηA a is the family of
elements

(ηA a)(�i)(�f )= a〈�f 〉

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000359
Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Högskola, on 19 Jan 2022 at 10:03:52, subject to the Cambridge Core terms of use, available at
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We define an inverse G : (DA)(X)→A(X) of ηA(X) by taking Gu to be the element u(1)(idX). We
then have G(ηA a)= a. The element ηA (G u) satisfies

(ηA (G u))(�i)(�f )= (G u)〈�f 〉 = u(1)(id)〈�f 〉 = u(1, �0)(id, �f )
Define the element ũ in (DA)ρ by ũ(�i)(�f )= u(1,�i)(id, �f ). We can define a homotopy

uk(�i)(�f )= u(1, k∧�i)(id, �f )
between ηA (G u) and ũ and we can define a homotopy

vk(�i)(�f )= u(k,�i)(id, �f )
between u and ũ. By composition, there is a path between u and ηA (G u) and G is an inverse of
ηA(X).

This shows that ηA is levelwise an equivalence. ThenDηA is an equivalence by Corollary 22.

Corollary 24. D defines a descent data operation.

Proof. By Propositions 20 and 23.

Note that a direct consequence of Corollary 22 is the following strictification result.

Theorem. Let A and B be fibrant families of types over � that are D-modal. Then any levelwise
equivalence σ :A→ B is an equivalence.

5.3 Coherently constant functions
The way from which we get D from E can also be applied to the lex operation EA=AR, where
R is an arbitrary type. This amounts to give a map which is coherently constant as defined by
Rezk (2010), Kraus (2015). It is there shown that a coherently constant function R→A can be
factorized through a map ‖R‖ →A from the propositional truncation of R to A.

Our development actually provides a way to recover this result in the cubical setting.

Lemma 25. There is a path between DηA and ηDA. Hence, ηA is an equivalence as soon as it has a
left inverse.

Proof. The first part is proved exactly as in Proposition 20. If p ◦ ηA is path equal to id, we also have
Dp ◦DηA path equal to Did= id and hence Dp ◦ ηDA is path equal to id. But we have Dp ◦ ηDA =
ηA ◦ p and hence p is also a right inverse of ηA, and ηA is an equivalence.

Theorem. If u :DA, then the coherently constant function u(1) : R→A can be factorized through
a map ‖R‖ →A.

Proof. An element of DA is a sequence of elements u(�i)(�x) in A for �i in Pn and �x in Rn+1 with
u(�i)(�x)= u(sk�i)(sk�x) on ik = 0. Given an element x in R, we can build a left inverse p of ηA :A→
DA by taking pu= u(1)(x). By the previous lemma, we thus get an element of R→ isEquiv(ηA),
and so of ‖R‖ → isEquiv(ηA) which provides a factorization of a coherently constant map R→A
through R→ ‖R‖.

5.4 Case of a monoid
We consider the special case where the base category is a monoid M . If �x is a sequence
(x0, . . . , xn), we write tk�x for the sequence where we omit xk and replace xk+1 by xkxk+1 for k< n
and tn�x is the sequence where we omit xn. A type in the presheaf model is a type A with an M -
action, and an element of DA is then a family of elements u(�i)(�x) in A with �i in Pn and �x in M n+1

satisfying the compatibility conditions
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(1) u(�i)(�x)= u(sk�i)(tk�x) on ik = 0 for k< n and
(2) u(�i)(�x)= u(sn�i)(tn�x)xn on in = 0

We define the M -action on DA by ux(�i)(x0, . . . , xn)= u(�i)(xx0, . . . , xn).
As a special case, let M be the walking idempotent. Let e2 = e be the non-trivial idempotent

element of M . Here is an example of a non-modal type which is levelwise contractible, but not
contractible. Let � be the set with elements ρ1, ρ2, and ρ with ρ1e= ρ2e= ρ. We let A be the
following type. We let Aρ1 be the point a1 and Aρ2 be the point a2 and Aρ be the groupoid with
two isomorphic objects u1, u2 with aie= ui for i= 1, 2. The type A is then levelwise contractible,
but it has no global point.14

5.5 Generalization to a Grothendieck topology
AGrothendieck topology J on the category C defines a set C(X, I)= J(X) and we have a family ES
indexed by S : C defined as follows.

Let ρ be in �(X) and S in �→ C so that Sρ is in C(X), which is the set J(X) of sieves on X seen
as a discrete space. We now define

(ESA)ρ = ∏
f∈Sρ Aρf

In this way, we get a family of lex operations ES and an associated family of descent data operations
DS indexed by S : C.

All previous results about E and D adapt to this generalization. For instance, Proposition 16
becomes the following.

Proposition 26. Let S be in �→ C. If A in Type(�) is such that we have an extension operation
e(ρ, f ) for each ρ in �(X) and f in Sρ which extends any partial element of Aρf to a total element,
then ESA and DSA are contractible.

Proof. We show that ESA is contractible by defining a uniform extension operation
eESA(X, ρ,ψ , u)(f )= e(ρ, f )(ψ , uf ) like in Proposition 16. It follows that each EnSA is contractible.
Like in Proposition 21, we can then show that DSA is contractible.

Note that if S1ρ is a subset of S2ρ for all ρ, then we have a canonical projection map DS2A→
DS1A that coheres with the pointings. If A is DS1 -modal, then a left inverse of ηS1A composed with
this projection map is a left inverse of ηS2A . Hence, a DS1 -modal type is also DS2 -modal and we
haveDS1 ≤DS2 for the preorder defined in Subsection 3.2. Since J is a Grothendieck topology, the
family DS over S : C is filtered. Thus, we can apply Theorem 3.2.

We also note the following.

Proposition 27. For any (ordinary) sheaf A for the topology J, the associated presheaf CA(X, I)=
A(X) is DS-modal for all S in J.

Proof. We reason in the presheaf model over B. The map A(X)→A(X)I is an isomorphism,
since I is tiny. If S is a sieve on X, then DSCA(X) is isomorphic to the set of families uf in A(Y)
for f : Y → X in S such that uf g = ufg if g : Z → Y and ηCA(a) for a in A(X) corresponds to the
family uf = af through this isomorphism. Since A is a sheaf, ηCA is a (strict) isomorphism and an
equivalence.

Each S : C defines a strict proposition, and hence a lex modality by exponentiation. An element
of v of (AS)ρ is a family v(f ) in Aρf , for f in the sieve Sρ, and such that v(fg)= v(f )g. We also
define vh in (AS)ρh by vh(g)= v(hg).
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Proposition 28. There is a strict isomorphism between DSA and (DA)S. Through this isomorphism,
the unit map A→DSA can be seen as the composition of the canonical map A→AS and (ηA)S :
AS → (DA)S. It follows that if A is D-modal, then A is modal for DS if and only if it is modal for the
lex modality defined by exponentiation with S.

Proof. An element of (DA)ρ for ρ in �(X) is given by a sequence u(�i)(�f ) in Aρ〈�f 〉 with�i in Pn, and�f a sequence of composable maps ending in X and satisfying some compatibility conditions. We
have defined uf by uf (�i)(f0, �f )= u(�i)(ff0, �f ).

For v in (DA)Sρ, we define ϕv :DSA by taking ϕv(�i)(f0, �f )= v(f0)(�i)(id, �f ).
For u in (DSA)ρ, we define ψu : (DA)Sρ by taking (ψu)(f )(�i)(f0, �f )= u(�i)(ff0, �f ).
We can then check that ϕ and ψ are strict inverses.

6. Sheaf Model
We can now define an internal translation which provides a new model of univalent type theory
for the descent data operation D, following the work in Quirin (2016). A type A,p of the new
model is a type A together with a proof p that this type is D-modal, while an element of a pair A,p
is an element ofA. We go further than the interpretation in Quirin (2016) by interpreting (higher)
inductive types as well in this model.

For this, it is convenient to introduce the type of patch structures on a type A as the type
of (homotopy) left inverses of ηA, that is, the type of pairs pA, lA with pA :DA→A and lA
a proof that pA is a (homotopy) left inverse of ηA. Since D is a lex modality, this type is a
proposition equivalent to the type isModD(A). If pA, lA is a patch structure on A, and B a fam-
ily of types over A, we let the type of dependent patch structures on B over pA, lA be the type
of operations pB : ∏u:DA (D̃B)u→ B (pA u) together with lB : ∏a :A,b:B a pB (ηA a) (ηB a b)=lA a b,
where u=lA a v denotes the type of paths over the path lA a connecting u : B (pA(ηAa)) and
v : B a.

Lemma 29. Given a patch structure pA, lA on a type A and B a family of types over A, the type of
dependent patch structures on B over pA, lA is a proposition equivalent to the product over a :A of
the type of patch structures over B a.

Proof. Since ηA is an equivalence, this type of dependent patch structures is equiva-
lent to the type of operations f : ∏a :A D(B a)→ B(pA(ηAa)) together with an element of∏

a :A,b:B a f a (ηB ab)=lA a b. By the type-theoretic axiom of choice, this type is equivalent to
∏

a :A
∑

g :D(B a)→B(pA(ηAa))
∏

b : B a g (ηB ab)=lA a b

which is equivalent to
∏

a :A
∑

g :D(B a)→B a
∏

b : B a g b=B a b

which is exactly the product over a :A of the type of patch structures over B a.

In order to interpret the type of natural numbers with the desired computation rules, we use
the following higher inductive type,15 which “forces” the type Nat to have a patch structure:

zero : Nat
succ : Nat→Nat
patch : DNat→ Nat
linv : ∏

x:Nat patch(ηNat x)=Nat x
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In order to build this type in the model, we can follow the method explained in Coquand et al.
(2018), which is presented in Appendix B. This type Nat satisfies the following induction princi-
ple. Given a family of types P over Nat with operations a : P zero and f : ∏n:Nat P n→ P (succ n)
and a dependent patch structure p, l for P over patch, linv, we have rec : ∏Nat P such
that

rec zero= a rec (succ n)= f n (rec n) rec (patch u)= p u (D̃rec u) rec (linv n r)= l n (rec n) r

Lemma 29 shows then that Nat interprets the type of natural numbers in the model of D-modal
types.

The same idea applies to the interpretation of other inductive types such as W-types,
and also works for higher inductive types. For instance, the suspension of a type A will be
defined as

north, south : T
merid : A→ north=T south
patch : DT → T
linv : ∏

z:T patch(ηT z)=T z

This interpretation of type theory with univalence and higher inductive types generalizes to the
case where we have a Grothendieck topology J on the base category defining a filtered family of
descent data operations DS, S : C (see Subsection 5.5). Types that are modal for all DS form then a
model of univalent type theory, and we can interpret inductive types as well. For instance, for the
type of natural numbers, we consider

zero : Nat
succ : Nat→Nat
patch : ∏

S:C DS Nat→Nat
linv : ∏

S:C,x:Nat patchS(ηSNat x)=Nat x

We get in this way a model of higher sheaves over J.

6.1 Amodel with the negation of countable choice
As a first example of an application of sheaf models, we build a model of univalent type
theory with higher inductive types with a countable family of sets En such that each of
the homotopy propositional truncation ‖En‖ is inhabited, but

∥
∥∏

n:N En
∥
∥ is not globally

inhabited.
We consider the following space, corresponding to the lattice generated by formal elements Xn

and Ln with the relations X0 = 1, Xn = Ln ∨ Xn+1 and Ln+1 = Ln ∧ Xn+1.

We can then consider the following family of strict sheaves E0, E1, E2, . . .
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Using Proposition 26, one can show the following result.

Proposition 30. The types ‖En‖ are all contractible, while
∏

n:N En is a strict proposition which
does not hold globally.

Proof.
∏

n :N En is isomorphic to the following proposition:

and the fact that ‖En‖ is contractible follows from Proposition 26.

Corollary 31. There exists a model of univalent type theory with higher inductive types where
countable choice does not hold.

As stressed in Swan and Uemura (2019), it is yet unknown how to build a model of univalent
type theory and higher inductive types satisfying countable choice in a constructive metatheory.
(Countable choice holds in a classical metatheory in the simplicial set model.)

6.2 Amodel of the algebraic closure of a field
Let F be a field that we suppose of characteristic 0 to simplify the discussion. In Mannaa and
Coquand (2013), we present a sheaf model where we can build the algebraic closure of F in a
constructive way. The objects of the base category are triangular F-algebras, and the two basic
coverings are

(1) the two projections A→A1 and A→A2 if A=A1 ×A2

(2) the map A→A[X]/(P) if P is a monic separable polynomial

We can then show, as in Mannaa and Coquand (2013), that the presheaf L(A)= hom (F[X],A)
is actually a sheaf and it can be seen as the algebraic closure of F. Similarly, the presheaf
Gm(A)= hom (F[X, 1/X],A) is a sheaf. As explained in Mannaa and Coquand (2013), there
is no operation in the model which associates a root as a function of the coefficients of the
polynomial.

In the type-theoretic sheaf model over this site, we can consider the presheaf CL(A, I)=
L(A), which is a type-theoretic sheaf by Proposition 27. We can then show using
Proposition 26.

Proposition 32. We have
∏

a1,...,an:CL

∥
∥∑

x : CL x
n + a1xn−1 + · · · + an =CL 0

∥
∥.
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It would be interesting to explore further this model, for instance computing the cohomology
groups of Gm, but we leave this for future work.

7. Variation with Another Notion of Cofibration
We explain how to modify the definition of filling operation if we work with the other notion of
cofibration classified by 
lw. Recall that an element of 
lw(X) is no longer constant, but is given
by a family of elements ψf in
B for f : Y → X and satisfying ψf ≤ψfg if g : Z → Y .

All the main results above still hold for this new notion of cofibration, suitably modified. The
notion of filling operation for A is given by an operation cA which takes as argument γ in �(X)IB
and ψ in 
lw(X) and a family of elements uf (i) in Aγ (i)f for f : Y → X on the extent ψf ∨ i= 0
such that uf (i)g = ufg(i) for g : Z → Y on the extent ψf ∨ i= 0. (There is a dual operation with
i= 1 instead.) It produces an element cA(X, γ ,ψ , u)(i) in Aγ (i) such that

(1) cA(X, γ ,ψ , u)(i)f = uf (i) on ψf ∨ i= 0,
(2) cA(X, γ ,ψ , u)(i)f = cA(Y , γ ′,ψ f , u′)(i) with γ ′(i)= γ (i)f and u′g(i)= ufg(i) on the extent

ψfg ∨ i= 0 for g : Z → Y .

For instance, Proposition 14 becomes the following result.

Lemma 33. If A has a levelwise filling operation cA(X), then EA has a filling operation.

Proof. We take γ in �(X)IB and uf (i) in (EA)γ (i)f on the extent ψf ∨ i= 0 and we define v(i)=
cEA(X, γ ,ψ , u)(i) in (EA)γ (i). For f : Y → X, we take (filling at level Y)

v(i)(f )= cA(Y)(γ ′,ψ ′, u′)

where γ ′(i)= γ (i)f and ψ ′ =ψf and u′(i)= uf (i)(idY ) in Aγ (i)f on the extent ψf ∨ i= 0.
Let us give some examples.
The first example is when C is the poset 0≤ 1. In this case, a global type A is given by two

spaces with a map A(1)→A(0). An element of 
lw(0) is an element of 
B while an element of

lw(1) is a pair ψ1,ψ0 of elements of
B with ψ1 ≤ψ0. One can check that A is fibrant exactly if
A(0) is fibrant and A(1)→A(0) is a fibration, and a similar characterization holds in the relative
situation (for a type A over �) and for trivial fibrations.

Let us note the following consequence of Proposition 23.

Proposition 34. The following conditions are equivalent:

(1) all fibrant families of types are D-modal,
(2) all levelwise equivalences between fibrant families of types are equivalences,
(3) all fibrant families of types that are levelwise contractible are contractible.

Proof. The fact that the first condition implies the second one is Theorem 5.2. In the reverse direc-
tion, given a fibrant family of types A, recall that ηA is a levelwise equivalence by Proposition 23.
Then ηA is an equivalence and hence D-modal. The third condition is a special case of the sec-
ond. The reverse direction holds since a (levelwise) equivalence can be described as a map with
(levelwise) contractible fibers.

Using this proposition, one sees that every type in the model is D-modal. The model coincides
with the Reedy presheaf model described in Shulman (2015b) over the direct category C in the
model of univalent type theory given by the base model. More generally, this will be the case for an
arbitrary direct category C for which the inclusion of objects into morphisms given by identities
is decidable.
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The second example is the walking retract C generated by maps f : 0→ 1 and g : 1→ 0 sat-
isfying gf = id0. Note that C is the idempotent splitting of the walking idempotent monoid M
considered in Subsection 5.4. This makes the cubical presheaf models (for both 
 and 
lw) over
C and M equivalent. Level 0 in the model over C corresponds to the fixpoints of the action of
e in the model over M . Taking 
lw as the cofibration classifier, the model of modal types gives
a model for pointed families in a cubical model. It is homotopically correct in the sense that the
equivalences are levelwise.

One might ask if types in the above model are already D-modal, similar to what happens for
the poset 0≤ 1. More generally, one might attempt to generalize from a direct category C to a
Reedy category C that is elegant (cf. Bergner and Rezk 2013); the walking retract is an example
of an elegant Reedy category, with coface map f and codegeneracy map g. Taking
lw as the cofi-
bration classifier, one might ask if the (trivial) fibrations are given by the (trivial) Reedy fibrations;
as before, this would imply that every type in the model is D-modal. An equivalent condition is
that the levelwise cofibrations (classified by
lw) are also the Reedy cofibrations. This holds true in
classical situations where cofibrations andmonomorphisms coincide and gives rise to the classical
model (Shulman 2015a) over an elegant Reedy category. This does not hold in our constructive
setting. Ultimately, this is because the inclusions A(X)→A(Y) are not generally cofibrations for
a global type A and a codegeneracy map Y → X in C . For the case of the walking retract, this is
the inclusion A(0)→A(1). In terms of a global type A in the model over the walking idempo-
tent monoid M , it is the inclusion of fixpoints of the action of e on A. For a counterexample, let
S be a discrete space with undecidable equality in one of the concrete cubical models listed in
subsection 4.4. Take A= S× S with the action of e given by swapping. Because of this, we
conjecture that there should be fibrant types in this model that are not D-modal.

8. Related and Future Work
Shulman (2019) shows that all (∞, 1)-toposes have strict univalent universes, using a classical
metatheory. This work does not cover however (yet) higher inductive types and cumulativity
of universes. There are close connections between Shulman’s work and ours, which we plan to
explore in future work. His work inspired some results about levelwise weak equivalences in
Section 5.2, in particular Corollary 22.

Once we have a presheaf model of univalence with homotopical features such as ours, it is now
understood (see, e.g., Boulier 2018; Sattler 2017) how to define a Quillen model structure whose
(trivial) fibrations coincide with the (contractible) types. For the model of D-modal types, we
expect that, similar to Shulman (2019), the weak equivalences are the levelwise weak equivalences
and the fibrations are a variation16 of the injective fibrations. If we use 
lw, and we start with a
model of type theory which has a corresponding Quillen model structure equivalent classically to
the one of spaces, we expect to get exactly the injective Quillen model structure of sheaves. Thus,
we should get an elementary17 description of the classical∞-sheaf toposes. We leave this to future
work.

Instead of parameterizing our construction over an external category C , we could start from
a internal category C in presheaves over B. Note that the category of presheaves over an inter-
nal category in presheaves is still a presheaf category. Compared to the construction of Shulman
(2019) (which instantiates at this level of generality), we seem to need less fibrancy assumptions
on this internal category. We leave this generalization to future work.
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Notes
1 Joyal’s argument was using non-constructive reasoning in simplicial sets and then Barr’s theorem (see Barr 1974). The
present paper can be developed directly in the constructive framework of CZF with universes introduced by Aczel (1998).
2 The notion of lex operation appears implicitly in a natural way when describing the rules of inductive data types (Coquand
and Paulin 1988). If we have a family Da of lex operations indexed over a :A, we can consider the inductive type T with con-
structor sup : ∏a :A (DaT → T) and elimination rule rec f : ∏T P for f : ∏a :A

∏
u:DaT (D̃aP u→ P(supa u)). We can then

write the computation rule
rec f (supa u)= fa u (D̃a(rec f ) u)

For justifying the use of such inductive definitions, we need some “accessibility” assumption on the functors Da, which will
be satisfied in the examples. In the special case where DaX is XB a for B a family of types over A we recover theW-typeWAB.
3 This means we have DA : U if A : U , and D̃B :DA→ U if B :A→ U and A a type (crucially, A need not be in U here).
4 We owe this observation to Dan Licata.
5 Here �.A denotes the extension of the context � by the type A and we have an extension map σ+ :�.Aσ → �.A if
σ :�→ �.
6 This is one characterization of lex modalities in Rijke et al. (2020), Theorem 3.1.
7 Existence is defined as the propositional truncation of the dependent sum type.
8 This assumption simplifies two of our arguments, namely Propositions 20 and 23. However, our results should apply to the
Cartesian variation of cubical models of Angiuli et al. (2017). There, one removes this hypothesis and instead adds that the
diagonal I→ I× I is a cofibration.
9 This assumption is not strictly speaking necessary, but simplifies the theory.
10 Classically, this corresponds to having all monomorphisms as cofibrations.
11 We thank Emily Riehl for this observation.
12 It is suggestive to think of the elements of DA as choice sequences extended in a spatial rather than temporal dimension.
13 At this point that we use that the object I in B has lattice operations but one could however instead define a homotopy in
a more complex way by induction on the dimension for Cartesian cubes. The same remark applies for the proof of the next
Proposition 23.
14 If a is such a point, we should have aρi = ai and then (aρi)e= ui and a(ρ1e)= a(ρ2e)= aρ which is not possible since
u1, u2 are distinct.
15 This is equivalent to the type DN where N is the usual inductive type with constructors zero and succ, but the type DN
does not satisfy the required computation rules.
16 We define a family of types to be injectively fibrant if it lifts against cofibrations that are levelwise trivial cofibrations.
17 Our development can be done in a weak predicative metatheory such as the one described in Aczel (1998).
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A. General Results for Lex Modalities
Some of our results hold for modalities in the sense of Rijke et al. (2020) that are not necessarily
presented in a strict manner by a lex operation. The main example is the case of accessible modal-
ities, which are implemented using higher inductive types that rarely give rise to a lex operation.
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The purpose of this section is to prove these more general statements. We work in the homotopy
type theory setting of Rijke et al. (2020). Universes are assumed univalent and closed under depen-
dent sums, dependent products, and identity types. For statements involving accessiblemodalities,
we also assume closure under higher inductive types.

In this section, we take terminology with potentially both strict and homotopical meaning to
have the homotopical meaning by default. For example, equality refers to the identity type, and
pullbacks refer to homotopy pullbacks (expressed using the identity type).

We write Modality(U ) for the type of modalities on a universe U . Recall from Rijke et al.
(2020) that M :Modality(U ) has an underlying subuniverse18 of U , the M-modal types UM .
Subuniverses of U carry an evident poset structure. Following Rijke et al. (2020, Subsection 3.2),
we obtain a poset structure also on Modality(U ).

Definition 35. Let U be a universe contained in a universe U ′. A modality M′ on U ′ is an exten-
sion of a modality M on U if every M-modal type in U is M′-modal in U ′ and for X : U , the
canonical map M′X →MX is invertible.

The above conditions mean that a U -small type is M-modal exactly if it is M′-modal and M-
connected exactly if it is M′-connected. In terms of the stable factorization systems (L ,R) and
(L ′,R′) corresponding toM andM′, this means that L and R are the restrictions of L ′ and R′
to maps betweenU -small types. For this, recall Rijke et al. (2020, Subsection 1.2), that the left and
right classes of the stable factorization system corresponding to a modality are the connected and
modal maps, which are defined by having connected and modal fibers, respectively.

We write Modality(U <U ′) for the type of pairs (M,M′) withM a modality on U andM′ an
extension ofM to U ′. The poset structures on Modality(U ) and Modality(U ′) extend to a poset
structure on Modality(U <U ′).

The following statement makes precise that up to (essential) size issues, a modality is lex exactly
if the universe of modal types is modal. In particular, a “size-polymorphic” modality (acting
compatibly on all universes) whose action on maps preserves smallness of fibers is lex exactly
if universes of modal types are modal. This generalizes Proposition 11 to modalities; the small-
ness condition on fibers mirrors the dependent action D̃ on U -small types we require for a lex
operation D. ForM :Modality(U ), we denote by UM the subuniverse of U ofM-modal types.

Proposition 36. For (M,M′) :Modality(U <U ′):

(1) if M′ is lex and preserves maps with U -small fibers, then UM is M′-modal;
(2) if UM is M′-modal, then M is lex and M′ preserves maps with U -small fibers.

Proof. For the first part of the statement, letM′ be lex and preserve maps with U -small fibers. To
show that UM isM′-modal, it suffices to construct a left inverse to ηM

′
UM

(Rijke et al. 2020, Lemma
1.20). By univalence of UM , this means to find an extension

We use the naturality square of ηM
′
at the left map. The square is a pullback becauseM′ is lex.

The right map has U -small fibers by assumption and hasM-modal fibers because it isM′-modal
as it goes betweenM′-modal types.

For the second part, assume that UM is M′-modal. Then UM is right orthogonal
against M′-connected types, in particular M-connected types. This verifies condition (xiii) of
Rijke et al. (2020, Theorem 3.1), making M lex. It remains to show that M′ preserves maps with
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U -small fibers. Given such a map, we factor it using M as an M′-connected map followed by a
map with fibers in UM . Since M′ sends M′-connected maps to equivalences, it remains to show,
given Y : X → UM , thatM′(

∑
X Y)→M′X has U -small fibers. Since UM isM′-modal, it is right

orthogonal against X →M′X. Thus, Y : X → UM extends uniquely to a map Y ′ :M′X → UM .
Looking at the classified maps, we obtain the following commuting diagram:

Since the right map hasM-modal (hence alsoM′-modal) fibers, it isM′-modal. The top map is
a pullback of ηM

′
X , henceM′-connected. Since

∑
X Y −→ ∑

z:M′X Y ′(z)−→M′X
and

∑
X Y −→M′(

∑
X Y)−→M′X

are (M′-connected,M′-modal)-factorizations of the same map, they coincide. This shows that the
mapM′(

∑
X Y)→M′X is equal to

∑
z:M′X Y ′(z)→M′X, hence has U -small fibers.

Recall from Rijke et al. (2020, Subsection 2.3), that accessible modalities admit canonical exten-
sions to larger universes. If the accessible modality is lex, we observe that it satisfies the technical
condition on smallness of fibers of Proposition 36. This means that the first part of that statement
can also be regarded as a generalization of the direction from condition (i) to condition (iii) in
Rijke et al. (2020, Theorem 3.11).

Corollary 37. Let M be an accessible lex modality on a universe U . Let M′ be its extension to a
universe U ′ containing U . Then M′ preserves maps with U -small fibers.

Proof. This follows from the second part of Proposition 36 since UM is M′-modal by Rijke et al.
(2020, Theorem 3.11).

LetM : I →Modality(U ) be a family of modalities. We write

U (M)= ∑
X:U

∏
i:I X isMi-modal. (1)

for the meet of the subuniverses of modal types of Mi over i : I. We call a given meet
∧

M of M
structural if it is preserved under the forgetful functor to the poset of subuniverses. This means
that its subuniverse of modal types isU (M). By Rijke et al. (2020, Theorem 3.11), part (i),M has a
structural meet exactly if UM admits a reflection in U . In that case,

∧
M is given by the reflection

operation.
Given a family (M,M′) : I →Modality(U <U ′), we say that a given meet of (M,M′) is struc-

tural if it is sent to structural meets ofM andM′ by the forgetful functors. Note that (M,M′) has a
structural meet exactly ifM andM′ have structural meets

∧
M and

∧
M′, respectively, and

∧
M′

is an extension of
∧

M to U ′. This unfolds to the following conditions:

• the subuniverse UM of U admits a reflection L,
• the subuniverse U ′

M′ of U ′ admits a reflection L′,
• for X : U , the canonical map L′X → LX is invertible.

When considering diagrams in a poset, we will restrict our attention to shapes that are them-
selves posets. Note that in any poset, the limit of a (poset-indexed) diagram coincides with the
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meet over the object components of the diagram. Nonetheless, it is useful to speak about limits of
diagrams because this allows us to constrain the relations between the inputs objects.

A poset I is filtered if it is merely inhabited and for any two elements x0, x1 : I, there merely
exists y : I with x0, x1 ≤ y. It is cofiltered if Iop is filtered. The following statement generalizes
Theorem 3.2 to modalities.

Proposition 38. Let (M,M′) : I →Modality(U <U ′) be a U -small cofiltered diagram. If UMi is
M′i-modal for all i : I, then U (M) : U ′ belongs to U ′(M′).
Proof. Given i : I, we have to show that U (M) isM′i-modal. Because I is cofiltered, we have

U (M)= U ((Mj)j≤i),

so it suffices to show that U ((Mj)j≤i) is M′i-modal. By assumption, UMj is M′j-modal, hence M′i-
modal for j≤ i. We now use that a type X over UMi (M′i-modal) is M′i-modal exactly if the map
X → UMi is M′i-modal. Given that UMj → UMi is M′i-modal for j≤ i, it suffices to show that
U ((Mj)j≤i)→ UMi is M′i-modal. Observe that the fibers of the latter embedding are products
of the fibers of the former embeddings. So the claim holds since modal types are closed under
product (Rijke et al. 2020, Lemma 1.26).

Corollary 39. Let (M,M′) : I →Modality(U <U ′) be a U -small cofiltered diagram with a
structural meet (

∧
M,

∧
M′). If UMi is M′i-modal for all i : I, then U∧

M is
∧

M′-modal.

Proof. This is a direct consequence of Proposition 38 and the definition of structural meet.

The following statement says that, up to the same size issues of Proposition 36, lex modalities
are closed under structural cofiltered limits of modalities. In particular, structural cofiltered limits
of “size-polymorphic” modalities whose actions on maps preserve smallness of fibers preserve left
exactness.

Corollary 40. In the situation of Corollary 39, if M′i is lex for i : I and preserves maps with U -small
fibers, then

∧
M is lex and

∧
M′ preserves maps with U -small fibers.

Proof. This is the combination of Proposition 36 and Corollary 39.

Finally, we specialize to the important case of accessible modalities.

Corollary 41. LetM : I →Modality(U ) be aU -small cofiltered diagram. If Mi is lex and accessible
for all i : I, then the meet

∧
M exists and also has these properties.

Proof. Let U ′ be a universe containing U . Let (M,M′) : I →Modality(U <U ′) be the extension
of M given by Rijke et al. (2020, Theorem 3.36). By Rijke et al. (2020, Theorem 3.29), the meet
of (M,M′) exists, is structural, and

∧
M is again accessible. By Rijke et al. (2020, Theorem 3.11),

UMi is M′i-modal for i : I. Applying Corollary 39, U∧
M is

∧
M′-modal. By the second part of

Proposition 36, this makes
∧

M lex.

B Justification of the Type Nat
As in Coquand et al. (2018), to simplify the presentation, we assume that I also has a reverse
operation.

We first build an “upper approximation” of the type Nat by defining a family of sets A(X,I)
together with maps A(X, I)→A(Y , J) for f : Y → X and l : J → I. An element of A(X,I) is of the
form

• zero or
• succ a with a in A(X,I) or
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• patch u where u is a family u(l, �r)(�f ) in A(Xn+1, J) with l : J → I and �r in Pn(J) and �f a
sequence f0, . . . , fn of composable maps f0 : X1 → X, . . . , fn : Xn+1 → Xn

• linv a r for a in A(X, I) and r in I(I) with r �= 0, 1
• hcomp [ψ 	→ a] a0 with ψ �= 1 in 
(I) and a0 in A(X,I) and a a family af ,l,r in A(Y , J) for
l : J → I and f : Y → X such that ψ l= 1 and r in I(J)

In this way, an element ofA(X,I) can be seen as a well-founded tree. As in Coquand et al. (2018),
we can then define A(X, I)→A(Y , J), a 	→ a(f , l) for f : Y → X and l : J → I by well-founded
induction on a

• zero(f , l)= zero
• (succ a)(f , l)= succ (a(f , l))
• (patch u)(f , l)= patch (u(f , l)) where u(f ,l) is a family u(f , l)(m, �r)(�f )= u(ml, �r, (f , �f )) for l :
J → I andm :K → J

• (linv a r)(f , l)= linv a(f , l) rl if rl �= 0, 1 and (linv a r)(f , l)= a(f , l) if rl= 1 and
(linv a r)(f , l)= patch u if rl= 0 with19 u(�r, �f )= a〈f , �f 〉

• (hcomp [ψ 	→ a] a0)(f , l)= af ,l,1 if ψ l= 1 and (hcomp [ψ 	→ a] a0)(f , l)= (hcomp [ψ 	→
a(f , l+)] a0(f , l) if ψ l �= 1 where a(f , l+) is the family a(f , l+)g,m,r = afg,lm,r

Note that, as in Coquand et al. (2018), A(X, I) together with these maps may not define a
presheaf. However, we can now define a subset of “good” elements inductively

• zero is good
• succ a is good if a is good
• linv a r is good if a is good
• patch u is good if u(l, �r, �f ) is a family of good elements satisfying the equations20

u(l, �r, �f )= u(l, sk�r, tk�f ) on rk = 0 for k< n and u(l, �r, �f )= u(l, sn�r, tn�f )(fn, id) on rn = 0, and
u(l, �r, �f )(id,m)= u(lm, �rm, �f ) and finally

• hcomp [ψ 	→ a] a0 is good of a0 is good and af ,l,r is a family of good elements such that
a0(f , l)= af ,l,0 and af ,l,r(g,m)= afg,lm,rm for f : Y → X, g : Z → Y and l : J → I, m :K → J

If we now defineNat(X, I) to be the subset of good elements ofA(X, I), we obtain a presheaf, which
is also a sheaf satisfying the induction principle presented in Section 6.

Cite this article: Coquand T, Ruch F and Sattler C(2021). Constructive sheaf models of type theory.Mathematical Structures
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