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A B S T R A C T

Dynamic routing of electric commercial vehicles can be a challenging problem since besides
the uncertainty of energy consumption there are also random customer requests. This paper
introduces the Dynamic Stochastic Electric Vehicle Routing Problem (DS-EVRP). A Safe Rein-
forcement Learning method is proposed for solving the problem. The objective is to minimize
expected energy consumption in a safe way, which means also minimizing the risk of battery
depletion while en route by planning charging whenever necessary. The key idea is to learn
offline about the stochastic customer requests and energy consumption using Monte Carlo
simulations, to be able to plan the route predictively and safely online. The method is evaluated
using simulations based on energy consumption data from a realistic traffic model for the city
of Luxembourg and a high-fidelity vehicle model. The results indicate that it is possible to
save energy at the same time maintaining reliability by planning the routes and charging in an
anticipative way. The proposed method has the potential to improve transport operations with
electric commercial vehicles capitalizing on their environmental benefits.

. Introduction

With increasingly more interest in electric commercial vehicles, in part due to legislation, which drives vehicle manufacturers
o develop such vehicles, but also due to public awareness and more transport companies investing in green transportation, it
s important to properly integrate them into the current operations. These vehicles have several advantages compared with their
CE counterparts and can contribute to reduce local pollution and noise (Jochem et al., 2016). But despite the latest technology
evelopments, electric vehicles are still limited by their battery capacities. Their batteries are heavy, big and expensive, which
sually translates into a limited driving range. Furthermore, energy consumption depends on several uncertain factors, such as
riving behavior and traffic conditions. Therefore, safe route planning becomes essential to ensure that the vehicle will not run out
f energy along the route.

When considering more dynamic transport operations with customer requests that can arrive while the vehicle is already driving,
nd taking into account the uncertainty of energy consumption, the routing problem becomes even more challenging. This has been
particularly relevant issue recently, with the on-demand economy seen a rapid development during the pandemic and putting

xtra pressure on transport operators who now have to fulfill more requests and faster, often same day deliveries, while at the same
ime aiming at fulfilling emission reduction goals. One common example of such a scenario is dynamic pick-up, when the vehicle is
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supposed to collect packets during a day, but the requests arrive during the same day. In that case, every time a new request arrives
the previously planned route is no longer valid. A new route needs to be planned in real-time taking into account the remaining
battery capacity and the remaining customers to be visited, planning additional charging stops if necessary. To solve this problem it
is necessary to predict future customer requests but also energy consumption. With historical data about customer requests it could
be possible to predict dynamic customer requests. Energy consumption could be predicted using models available in the literature.
Then these two predictive aspects need to be integrated into a single model to decide the best route.

In this paper we propose an anticipative method for dynamically routing a single electric commercial vehicle with reliable charge
lanning, considering stochastic energy consumption and dynamic customer requests. The safety aspect is also taken into account
n order to avoid battery depletion while the vehicle is driving.

The method provides a reliable way to adopt electric commercial vehicles in transport operations with high levels of dynamism
nd stochasticity. To the best of our knowledge there is no published paper dealing with this problem. By using the proposed
ethod it is possible to anticipate dynamic customer requests and predict energy consumption, therefore supporting the dispatcher

nd driver when planning their routes and charging. Additionally, the method can be used to react in real-time to unexpected events
uch as accidents and congestion by re-routing or planning extra charging stops. As a result, it could be possible to have vehicles
ith less battery capacity, making them cheaper, lighter and with higher payload. Consequently it does not only benefit the driver
nd transport company, but also has the potential to contribute to achieving environmental goals such as the ones proposed by the
uropean Union (EC, 2011).

.1. Literature review

The Vehicle Routing Problem (VRP) aims at finding the optimal set of routes for a number of vehicles to visit a number of
ustomers. The problem has been studied since the fifties in many variations and several solution methods have been developed.
or an overview we refer to Toth and Vigo (2014). The objective has been traditionally to find the shortest routes in terms of
istance or travel time, starting at a depot, visiting all customers and returning to the same depot.

During recent years there has been some effort to add environmental aspects into the problem, such as the Pollution Routing
roblem (PRP) (Bektaş and Laporte, 2011). Minimization of emissions, minimization of fuel consumption and minimization of energy
onsumption of electric vehicles (e.g. Erdoğan and Miller-Hooks, 2012; Schneider et al., 2014; Felipe et al., 2014; Tahami et al.,
020) have been studied. Recent reviews can be found in Lin et al. (2014), Demir et al. (2014), Pelletier et al. (2016), Bektaş
t al. (2016) and Bektaş et al. (2019). Several different models for estimating energy/fuel/emissions have been investigated (Demir
t al., 2011; Cuma and Koroglu, 2015), including some specific for electric vehicles such as Genikomsakis and Mitrentsis (2017),
i et al. (2018) and Fiori and Marzano (2018). In Basso et al. (2019, 2021), an energy estimation model for electric vehicles is
eveloped based on Bayesian machine learning. With that model it is possible to estimate link-level probabilistic energy consumption
oefficients that can be used in routing problems. One of its advantages is that it is possible to estimate the probability distribution
f energy consumption, not only the expected value. The model was validated with simulations and the results will be used in this
aper.

Real-life traffic environments often present a series of uncertain factors such as traffic conditions and driving behavior.
dditionally, some transport operations may include a certain degree of dynamism, with new customer requests arriving while the
ehicles are already driving. These two elements make routing problems even more challenging. In Laporte et al. (1992) the VRP
ith stochastic travel and service times is introduced for the first time. A chance-constraint and two recourse models are presented.
ater most problem formulations consider stochastic customer locations, stochastic demands or stochastic times (i.e. service and
ravel times). For an overview we refer to Toth and Vigo (2014) and Gendreau et al. (1996). Only a few publications consider
he case of stochastic energy consumption, such as Basso et al. (2021) and Pelletier et al. (2019). Dynamic routing has also been
xamined over time, with surveys provided by Ritzinger et al. (2015), Gendreau et al. (2016), Psaraftis et al. (2016) and Oyola et al.
2018). In Asamer et al. (2016) the authors present a sensitivity analysis of energy demand for electric vehicles and quantify the
mpact of parameter uncertainty. In Sweda et al. (2017) heuristics are presented to adaptively find the route for an electric vehicle
ith uncertain charging station availability and waiting time. In Jafari and Boyles (2017) the authors consider stochastic travel times
nd availability of charging stations to find the shortest path for an electric vehicle. In Liao (2017) an online method is presented to
olve the routing problem with stochastic travel times and customer requests, targeting minimization of emissions. In Eshtehadi et al.
2017) robust optimization is used to solve the PRP with uncertain travel time and customer demand. In Masmoudi et al. (2018)
he authors solve the Dial-a-Ride Problem for electric vehicles with battery-swap stations using Evolutionary Variable Neighborhood
earch algorithms. In Tang et al. (2019) a method for scheduling electric buses is proposed taking into account stochastic traffic
onditions.

Reinforcement Learning (RL) (Sutton and Barto, 2018) and Approximate Dynamic Programming (ADP) (Powell, 2007) consist
f a vast collection of techniques that can be used to solve many different kinds of problems. The key idea is that an agent, as
t is called in the literature of the field, learns about the environment and is able to take successively better decisions. The agent
an learn online or offline with simulations. The environment is usually modeled as a Markov Decision Process (MDP), since many
lgorithms use dynamic programming techniques by learning the cumulative reward or cost from a certain state until the end of the
rocess. This is usually done in an approximate way, using Value Function Approximation methods, either learning post-decision
tates or state–action pairs. RL and ADP methods do not assume full knowledge of the model so they can be used in more complex
DPs and even model free. They have been successfully applied for solving dynamic and stochastic routing problems (Powell et al.,
2

012; Ulmer, 2017). In Secomandi (2000, 2001) a few different algorithms of ADP are developed and evaluated for the VRP with
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stochastic demands. Those algorithms are further improved in Novoa and Storer (2009). In Adler and Mirchandani (2014) an ADP
method is developed to solve online routing of electric vehicles and make battery reservations minimizing time. In Çimen and Soysal
(2017) the authors propose a time-dependent PRP variant with stochastic speed and solve it using ADP. In Mao and Shen (2018)
two variants of Q-Learning are used for solving routing problems in stochastic time-dependent road networks. In He et al. (2018)
ADP is used for scheduling buses with stochastic trip times. In Ulmer et al. (2019) an offline–online ADP method is presented to
solve the dynamic VRP with stochastic requests. In Liu et al. (2020) integrate Dijkstra’s algorithm with inverse RL to plan routes
for food delivery. RL with Neural Networks is not very commonly used for VRPs. In Nazari et al. (2018) RL is used with neural
networks to solve the capacitated VRP. In Shi et al. (2019) the authors introduce an RL method with neural networks to solve
the ride-hailing problem for electric vehicles. As can be seen in the reviews by Ritzinger et al. (2015) and Psaraftis et al. (2016),
there is a strong focus on single-vehicle problems when using ADP/RL methods and modeling the dynamic problem as an MDP.
In Fan et al. (2006) and Goodson et al. (2013) multiple vehicles are considered using decomposition schemes to assign customers to
vehicles beforehand. Both solve the dynamic VRP with stochastic demands but with known customer locations. In Shi et al. (2019)
and Liang et al. (2021) the authors use neural networks as approximators for the state values of each vehicle while formulating
the fleet dispatch as a linear assignment problem. In Jin et al. (2019) the authors present a ride-hailing problem with two layers
represented by Neural Networks. In Turan et al. (2020) a Deep RL method is proposed to minimize the total cost of a fleet of electric
autonomous vehicles for ride hailing services, where the complete system state is approximated using neural networks. In Chen et al.
(2021) the authors propose a Deep Q-Learning method to assign customers to vehicles and drones for same-day delivery.

One of the branches of the field is Safe Reinforcement Learning, which aims at minimizing cost or maximizing expected reward
hile keeping safety constraints when learning or after deployment. These methods are relevant for environments where failures

an have a significant impact (e.g. accidents). These methods are also useful when the environment can potentially deviate from
he training scenarios. An overview of the methods and review of recent literature is provided in Garcıa and Fernández (2015). In
he context of electric vehicles, battery depletion is a risk with potentially high consequences such as extra costs for towing, delays,
ongestion and even traffic accidents. Therefore a safe approach can be used to minimize that risk.

To the best of our knowledge there is no published paper solving the electric vehicle routing with stochastic energy, dynamic
ustomer requests and charge planning. It is also novel the use of Safe Reinforcement Learning as a solution method to plan the
oute predictively and ensure that the vehicle will not run out of energy while driving.

.2. Contributions

The main contributions presented in this paper are:

• A model of the DS-EVRP as a Markov Decision Process;
• A Safe Reinforcement Learning solution method including:

– A tailored Value Function Approximation;
– A safe policy;
– A training strategy;

• Realistic computational experiments to evaluate the proposed approach.

The Dynamic Stochastic Electric Vehicle Routing Problem is modeled as a Markov Decision Process (MDP). We propose a state
representation, a set of valid actions and a state transition function. It considers stochastic customer requests and stochastic energy
consumption. Like most related methods found in the literature, this paper focuses on a single vehicle.

The solution method for the problem is a Safe Reinforcement Learning approach based on Q-Learning but with some modifica-
tions. It aims at learning the cumulative energy cost and risk of failure (i.e. battery depletion) from a certain state when taking a
certain action, and following the process until terminated (e.g. reaching back to the terminal). The first contribution of this article
is a Value Function Approximation based on look-up tables indexed by a tailored reduced state representation to learn the value
of state–action pairs. The second contribution is a chance-constrained policy with two layers of safety to ensure that the battery
will not be depleted while en route. The third contribution is a training approach with a rollout heuristics to guide the learning to
focus on the most promising actions directly when a state is first visited. Since to the best of our knowledge there are no solution
methods for this problem in the literature, we present a deterministic online reoptimization method that is used as a benchmark in
the experiments. Both the reoptimization method and the rollout for training the agent use a tabu-search heuristics that is shown
to find routes very close to the optimal.

In order to evaluate the proposed method, a set of experiments is presented. A probabilistic energy consumption model is used
based on Basso et al. (2021). In that paper a series of simulations are performed with a realistic traffic model for the city of
Luxembourg (Codeca et al., 2015) and a high-fidelity vehicle model. Then machine learning is used to estimate the link-level
energy consumption probability distributions for the city center. In this paper the energy consumption is sampled from those
probability distributions. Customer requests are sampled from probabilities for each test instance. The reinforcement learning method
is compared with the reoptimization benchmark in terms of reliability and energy consumption. Different levels of dynamism are
investigated by allowing late new requests and by knowing less customers at the start. Results are also shown for scenarios with
stochastic customer demand (i.e. payload weight). Runtime and memory usage are not in focus but an initial analysis is shown
nonetheless. Finally, a discussion about the hyper-parameters and algorithm is presented.

The structure of the paper is as follows: Section 2 presents the problem formulation and MDP model; Section 3 presents the
solution method; Section 4 describes the experiments and results; Section 5 presents conclusions and proposes potential future
3

work. Appendix A describes the test instances provided in the supplementary material.
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2. Problem formulation

The goal of the Dynamic Stochastic Electric Vehicle Routing Problem (DS-EVRP) is to dynamically find a route for a single electric
ehicle to service customer requests that can arrive randomly during a certain period (e.g. a full or half working day). The vehicle
eparts from and returns to the same depot. There are two types of customer requests, (i) deterministic requests that are known
efore the vehicle leaves the depot and (ii) stochastic requests that are received after leaving the depot with a known probability.
ll customer locations are known. It is assumed that all requests are accepted and can be served by the vehicle. The amount of
nergy needed to drive a certain stretch of road is random with a known probability distribution. Since the vehicle is electric, the
attery capacity is assumed to be limited and therefore there might be a need to dynamically plan for charging along the route.

The DS-EVRP is modeled as a Markov Decision Process (MDP). The problem can be visualized in a complete and directed graph,
epresented by 𝐺 = ( ,) with  = {0} ∪  ∪  = {0, 1, 2,… , 𝐶 + 𝐹 } as the set of nodes and  as the set of paths connecting each

pair of nodes. The total number of customers is given by 𝐶 and the total number of charging stations is given by 𝐹 . The customer
nodes are defined by  = {1,… , 𝐶}, the charging stations are  = {𝐶 + 1,… , 𝐶 + 𝐹 } and the depot is represented by node 0.

Each customer 𝑐 ∈  has a demanded cargo weight 𝑢𝑐 (kg). The total probability of sending a request is 𝑝𝑐 and follows a binomial
istribution with 𝐾 trials, so the probability of a new request for epoch 𝑘 ≤ 𝐾 is given by 𝑝𝑐𝑘 = 1− 𝐾

√

1 − 𝑝𝑐 . The maximum payload
(kg) for the vehicle is 𝑈 and the empty vehicle (curb) weight (kg) is 𝑊 . The vehicle has batteries with total capacity 𝐵 (Wh) and

inimum accepted battery level 𝐿 (e.g. 𝐿 = 0.2𝐵, minimum 20% of the total capacity).
The state of the system at epoch 𝑘 is given by 𝑠𝑘 = (𝑖𝑘, 𝑏𝑘, 𝑢𝑘, ̄𝑘, ̃𝑘), where:

• 𝑖𝑘 is the vehicle node position, where 𝑖𝑘 ∈  ;
• 𝑏𝑘 is the battery level, where 𝑏𝑘 ≤ 𝐵;
• 𝑢𝑘 is the current payload, where 𝑢𝑘 ≤ 𝑈 ;
• ̄𝑘 is the set of active requests, where ̄𝑘 ⊆  ⧵ ̃𝑘;
• ̃𝑘 is the set of visited customers, where ̃𝑘 ⊆ .

A decision epoch 𝑘 is delimited by the time when the vehicle leaves the node 𝑖𝑘. In the initial state 𝑠0 = (0, 𝐵, 𝑈0, ̄𝑒𝑎𝑟𝑙𝑦,∅) the
vehicle is at the depot fully charged and with initial payload 𝑈0 (e.g. zero for the pick-up case). The set of known (i.e. deterministic)
requests before the vehicle departs is given by ̄𝑒𝑎𝑟𝑙𝑦 ⊆ . It is assumed that the requested demands throughout the route will not
exceed the total payload capacity 𝑈 . Furthermore, new requests will only be received until epoch 𝐾 and a visited customer cannot
send a new request.

When the process is in state 𝑠𝑘 at epoch 𝑘, the decision to be taken is which node will be visited next. The set of feasible actions
is:

̄(𝑠𝑘) ={𝑗𝑘 ∶ 𝑗𝑘 ∈ }, (1)

𝑗𝑘 ∈ ̄𝑘 ∪  if ̄𝑘 ≠ ∅, (2)

𝑗𝑘 ∈ {0} ∪  if ̄𝑘 = ∅. (3)

Eq. (1) requires that 𝑗𝑘, the next node to be visited, is in the graph 𝐺. Constraint (2) requires a customer to be visited while
there are still active requests. Constraint (3) makes the vehicle return to the depot when all requests have been served. Charging
stops are allowed at any time.

When the process is in state 𝑠𝑘 and decision 𝑗𝑘 has been taken, a cost is accumulated 𝑒𝑖𝑘 ,𝑗𝑘 , which is the total energy consumed to
drive from node 𝑖𝑘 to node 𝑗𝑘. The energy consumption framework used in this paper is based on Basso et al. (2021). The probability
distribution for the energy consumption to drive from node 𝑖 to node 𝑗 is known and given by:

𝑒𝑖𝑗 =
[

𝑚 1
]

𝐳𝑖𝑗 (4)

𝜎2𝑖𝑗 =
[

𝑚 1
]

𝐟𝑖𝑗 . (5)

where 𝑒𝑖𝑗 is the expected energy and 𝜎2𝑖𝑗 is the variance, following a Normal distribution. The total mass of the vehicle (curb weight
+ payload) is given by 𝑚 = 𝑊 + 𝑢. Coefficients 𝐳𝑖𝑗 and 𝐟𝑖𝑗 are calculated using the method described in Basso et al. (2021), where
𝐳𝑖𝑗 =

[

𝛼𝑖𝑗 𝛽𝑖𝑗
]

is an array with coefficients for the expected energy and 𝐟𝑖𝑗 is an array with coefficients for the variance. These
energy coefficients embed information about topography, speed, traffic and the vehicle. For simplification, the expected energy
consumption can be re-written as:

𝑒𝑖𝑗 = 𝛼𝑖𝑗 (𝑊 + 𝑢) + 𝛽𝑖𝑗

which is the same as Eq. (4). Therefore 𝑒𝑖𝑘 ,𝑗𝑘 is the notation for a sample from probability distribution N(𝑒𝑖𝑗 , 𝜎2𝑖𝑗 ) at epoch 𝑘.

From epoch 𝑘 to epoch 𝑘 + 1 there might be new customer requests represented by the set 𝑘+1. Each customer has a total
robability 𝑝𝑐 of requesting a visit during the allowed period (i.e. 0 < 𝑘 ≤ 𝐾). The state transition from 𝑠𝑘 to 𝑠𝑘+1 is then given by:

𝑖𝑘+1 = 𝑗𝑘 (6)

𝑏𝑘+1 = 𝑏𝑘 − 𝑒𝑖𝑘 ,𝑗𝑘 (7)

𝑢 = 𝑢 + 𝑢 (8)
4
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̄𝑘+1 = ̄𝑘 ∩ {𝑗𝑘} ∪ 𝑘+1 (9)

̃𝑘+1 = ̃𝑘 ∪ {𝑗𝑘}. (10)

Eq. (6) assigns the new node location. Eq. (7) calculates the remaining battery level after arriving at node 𝑗𝑘. Eq. (8) increases
the vehicle payload. If 𝑗𝑘 is a charging station or the depot, then 𝑢𝑗 = 0. Eq. (9) removes node 𝑗𝑘 from the current requests, if 𝑗𝑘 is
a customer, and adds any new requests 𝑘+1 that might have arrived while driving from 𝑖𝑘 to 𝑗𝑘. Eq. (10) adds node 𝑗𝑘 to the list
of visited customers, if 𝑗𝑘 is a customer. If node 𝑗𝑘 is a charging station, the battery is fully charged before leaving (i.e. 𝑏𝑘+1 = 𝐵).

The MDP is terminated if all customers have been visited and the depot is reached, or if the battery is completely depleted
(i.e. 𝑏𝑘+1 ≤ 0). An overview of the model is shown in Fig. 1.

Fig. 1. MDP for the DS-EVRP.
As shown above, parts of the model are deterministic and parts are stochastic. In Fig. 1 the dashed lines represent stochastic

transitions. Because the policy is deterministic, the actions are deterministic as well, since when the next node is decided it is assumed
that the vehicle will drive there unless the battery is depleted on the way. On the other hand, the state transitions are stochastic
with unknown probability distribution, since new requests are random. The rewards are stochastic since the energy consumption
is random, but the probability distribution is assumed to be known. Furthermore, it is important to notice that this MDP has an
infinite state space, since there are continuous variables in the state representation (i.e. battery level and payload). It is assumed
that the current state is fully observable.

The objective of the problem is to minimize expected energy consumption and guarantee that the vehicle will be able to complete
the route by planning charging when necessary. It is important to observe that these two objectives are somewhat conflicting. To
increase safety it is usually necessary to add more charging stops, which in turn can increase energy consumption. Conversely,
reducing the number of charging stops might reduce energy consumption but can potentially decrease safety. The objective function
can be formulated as:

min
𝑒

E
∑

𝑘
𝑒𝑖𝑘 ,𝑗𝑘 (11)

subject to

̄𝑒𝑛𝑑 = ∅ (12)

̃𝑒𝑛𝑑 =
⋃

𝑘
𝑘 ∪ ̄𝑒𝑎𝑟𝑙𝑦 (13)

𝑃𝑟(𝑏𝑘 ≤ 𝐿) ≤ 𝑅 (14)

Eq. (11) minimizes the expected energy consumption for the complete route. Constraints (12) and (13) force the vehicle to visit
all early requests in ̄𝑒𝑎𝑟𝑙𝑦 and all dynamic requests in 𝑘 from all epochs 𝑘 until the process is finished (i.e. 𝑘 = 𝑒𝑛𝑑). The set of
feasible actions given by ̄(𝑠𝑘) also constrain the problem to visit all customers with active requests before returning to the depot.
Since 𝑒 is stochastic, the battery level 𝑏 is also stochastic, therefore the problem is chance-constrained. Eq. (14) implies that the risk
of the battery being below the minimum 𝐿 is less or equal to 𝑅 (e.g. 5%) for the complete route.

The next section presents methods to try to achieve this objective.

3. Solution method

In order to find solutions for the problem described above, we present two different approaches. The first one is a reoptimization
method. The second is a Reinforcement Learning method.
5
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3.1. Deterministic reoptimization

In this section a deterministic online reoptimization method is presented to solve the MDP shown above. This approach adapts
a tabu-search heuristics for the static EVRP to find the routes dynamically, and will be used as a benchmark for the comparisons in
the computational experiments. It uses only the deterministic information known from state 𝑠𝑘 at decision epoch 𝑘 to take a decision
𝑗𝑘, considering only the current requests ̄𝑘 to decide the route. To plan for charging and estimate the total energy consumption it
uses the expected value of energy 𝑒 as shown in Eq. (4).

At every epoch 𝑘, the decision of the best action 𝑗𝑘 is made by running a tabu-search heuristics considering the current requests.
First a route is constructed using a greedy policy from node 𝑖𝑘 to visit all customer requests in ̄𝑘 and back to the depot, choosing
the nearest neighbors in terms of expected energy. Secondly, this initial route is improved using tabu-search with 2-opt moves. If
the route is energy unfeasible (i.e. not enough battery capacity to drive all the way), then a charging station is inserted and the
route is improved again. The best charging station is chosen. Since energy is stochastic, the method tries to keep the battery above
the minimum limit 𝐿 in order to increase reliability. The heuristics are described in details in Section 4.2. The solutions generated
are shown to be very close to the optimal.

3.2. Reinforcement learning

This section introduces a reinforcement learning method to solve the MDP presented in Section 2. The approach is to try to
anticipate future requests and predict energy consumption in order to take better decisions. As described, some aspects of the problem
are known, some are unknown with known probabilities and some are unknown with unknown probabilities. Learning about all the
unknowns can be difficult considering the curse of dimensionality (Powell, 2007). Furthermore, vehicle routing problems are well
known for growing exponentially in size with increasing number of nodes (i.e. customers and charging stations).

The proposed method is based on Q-learning (Sutton and Barto, 2018), which is an algorithm that learns the value of taking
an action from a certain state. This value is usually expressed as a reward and the most common approach is to maximize the
reward from the current state until the process is terminated. There are similarities with Dynamic Programming and with extensive
training the policy converges to a near-optimal solution. However, one of the advantages of Q-learning is that a complete MDP is
not necessary and the algorithm can even run model free. One of the variants of Q-learning keeps a table with the reward for each
state–action pair, called the Q-value. It is an off-policy algorithm, which means that it learns about the optimal policy by following
an exploration policy (e.g. 𝜖-greedy with some actions selected randomly). Fig. 2 shows an overview of how the agent interact with
the environment, with some aspects that will be discussed in the following subsections.

Fig. 2. Reinforcement Learning method overview.
For the problem discussed in this article, the MDP accumulates a cost (i.e. energy consumed) instead of a reward, which should

therefore be minimized (i.e. instead of reward maximization). But it is also important to keep safety constraints, not letting the
vehicle run out of energy while driving. Thus a Safe Reinforcement Learning approach will be used, by learning the expected
cumulative energy cost and the risk from state 𝑠 until the end of the route if action 𝑗𝑘 is taken. These will be stored in two Q-tables, 𝑄𝑒
for expected energy and 𝑄𝑟 for the probability of failure (i.e. battery depletion). Following a certain policy 𝜋, they can be defined as:

𝑄𝑒(𝑠𝑘, 𝑗𝑘) = E(𝑒𝑖𝑘 ,𝑗𝑘 ) +𝑄𝑒(𝑠𝑘+1, 𝑗𝑘+1) (15)

𝑄𝑟(𝑠𝑘, 𝑗𝑘) =

{

𝑄𝑟(𝑠𝑘+1, 𝑗𝑘+1) if 𝑠𝑘+1 not terminal;
P(𝑏𝑘+1 ≤ 0) otherwise.

(16)

By selecting the next node to visit using 𝑄𝑒 and 𝑄𝑟, it is possible to plan robust routes and keep safety constraints. The method
will be presented in details in the following sections, focusing on its three main components: a value function approximation, a safe
policy and a training strategy.

3.2.1. Value function approximation
The MDP presented in Section 2 has an infinite number of states, since both the battery 𝑏 and the payload 𝑢 are continuous

variables. Furthermore, the number of combinations of ̄𝑘 and ̃𝑘 grows very fast when increasing the number of customers.
Therefore, in order to use Q-learning in an efficient way, the state needs to be discretized. With that it is possible to reduce
storage space of the Q-tables and improve exploration. Hence, a value function approximation is presented, based on a reduced
state representation.
6
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To find a suitable reduced state representation 𝑠̂, it is necessary to select which variables from 𝑠 will be included and eventually
iscretize the continuous ones. A number of alternatives were evaluated. Since knowing the battery level is crucial for taking
ecisions (e.g. whether to charge or not), 𝑏 is discretized into 𝑏̂. The experiments will use 10 levels, from above 90% to 0% (i.e. 9 to
). Furthermore, the current requests are necessary in order to know which actions are valid. Thus the reduced state representation
s given by 𝑠̂ = (𝑖, 𝑏̂, ̄). The payload weight 𝑢 and the previously visited customers ̃𝑘 were removed since they are less important
or the solution method to work properly.

As a result any state 𝑠 (infinite cardinality) in the MDP has a corresponding representation 𝑠̂ (finite cardinality) that is used to
ndex 𝑄𝑒 and 𝑄𝑟. Therefore it is possible to get an approximation of the cumulative energy cost and risk, from state 𝑠 if an action
is taken by reading 𝑄𝑒(𝑠̂, 𝑗) and 𝑄𝑟(𝑠̂, 𝑗) respectively. With that approximation the size of the 𝑄𝑒 and 𝑄𝑟 tables is significantly

educed and is finite. Despite the total number of reduced states still being quite large, the number of actual state–action pairs
isited is significantly lower, as many are invalid or unreachable states (e.g. less than 100% battery at the start). This will be
iscussed in Section 4. Another advantage of this approximation is that similar states (e.g. small differences in battery level) will be
erged, improving exploration. The complete state representation is used during the simulations to keep track of the system state

nd calculate energy consumption.

.2.2. Policy
As the method is based on Q-learning, the target policy depends on 𝑄𝑒 and 𝑄𝑟. The objective of the problem is to minimize

energy consumption for the complete route, but also minimize the risk of running out of battery while on the road. As energy
consumption has the same value over time, the problem does not include any discount factor. The value of 𝑄𝑟(𝑠̂, 𝑗) estimates the
probability of failure (i.e. battery depletion) from state 𝑠 until the end of the route if action 𝑗 is taken. Therefore we propose a policy
𝜋∗ that is greedy with respect to 𝑄𝑒 and chance-constrained with respect to 𝑄𝑟, with a maximum accepted risk 𝑅 (e.g. 5%). Taking
into account the feasible actions from state 𝑠, the actions that satisfy the risk criteria are:

 (𝑠) = {𝑗 ∶ 𝑗 ∈ ̄(𝑠), 𝑄𝑟(𝑠̂, 𝑗) ≤ 𝑅}, (17)

The optimal action from state 𝑠 is then decided using the policy:

𝑗∗ =

⎧

⎪

⎨

⎪

⎩

arg min
𝑗∈ (𝑠)

𝑄𝑒(𝑠̂, 𝑗) if  (𝑠) ≠ ∅;

arg min
𝑗∈̄(𝑠)

𝑄𝑟(𝑠̂, 𝑗) if  (𝑠) = ∅.
(18)

If there are actions that satisfy the risk criteria, then the action with less expected energy consumption is chosen from  (𝑠). If
here are no actions that satisfy the risk criteria (i.e. 𝑄𝑟(𝑠̂, 𝑗) > 𝑅 ∀𝑗 ∈ ̄(𝑠)), then the action with less expected risk is chosen from
ll feasible actions ̄(𝑠).

As this is a probabilistic approach, there is still a risk of 𝑅 for the vehicle running out of battery. Although it is possible to
educe the accepted risk 𝑅 (e.g. 𝑅 = 1%), it might still happen that some tours will fail. That might not be acceptable for transport
ompanies since it can incur high expenses (e.g. towing the vehicle, customer compensations, reputation, risk of accidents). Therefore
e propose a second layer of safety with policy 𝜋∗∗.

This second layer of safety tries to keep it always feasible to visit a charging station from any node. It uses a two-step look-
head to predict energy cost. The first step evaluates the energy cost from the current node 𝑖 to the chosen destination 𝑗, as shown
n Eq. (19). The second step evaluates the cost from node 𝑗 to its nearest charging station (i.e. in terms of energy cost), as shown
n Eq. (20).

𝑒𝑖𝑗 = 𝛼𝑖𝑗 (𝑊 + 𝑢) + 𝛽𝑖𝑗 (19)

𝑒𝑗𝑓 = min
𝑓∈

𝛼𝑗𝑓 (𝑊 + 𝑢 + 𝑢𝑗 ) + 𝛽𝑗𝑓 (20)

If the sum of those two costs is larger than the current battery level then the policy overrides the previous decision and chooses
o charge the battery at the nearest charging station from the current node.

𝑗∗∗ =

⎧

⎪

⎨

⎪

⎩

𝑗∗ if 𝑒𝑖𝑗 + 𝑒𝑗𝑓 ≤ 𝑏;
arg min

𝑓∈
𝛼𝑖𝑓 (𝑊 + 𝑢) + 𝛽𝑖𝑓 otherwise. (21)

In Section 4 a discussion about the implications of adding this second layer of safety to the policy will be presented, in terms of
ncreased safety and increased energy cost.

.2.3. Training
One of the biggest challenges of combinatorial optimization problems is that the number of possible solutions grows very quickly

ith the number of elements. For VRPs it can be computationally hard to find the optimal solution for problems with many customers
o visit and even harder for problems which incorporate stochasticity. This becomes even more critical for the MDP presented in
ection 2, since it has an infinite number of states due to the continuous values of battery and payload. As a consequence it is hard
o train a Reinforcement Learning agent by visiting all feasible states many times. Even considering the reduced state representation,
he total number of combinations grows very quickly with the number of customers. Therefore we propose a focused strategy to
rain the agent by finding good candidate actions directly on the first time a state is visited.
7
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The training method is offline off-policy learning using 𝜖-greedy as the exploration policy and the target policy 𝜋∗∗. Every episode
simulated is a complete route from the depot, servicing all requests and returning to the depot, with charging stops if necessary.
The episode is also terminated if the battery is depleted. The method is shown in Algorithm 1.

The basic idea is to simulate a complete episode (from Line 3 to 25) then update the cost and risk tables, 𝑄𝑒 and 𝑄𝑟 respectively
from Line 27 to 43). The number of times a state–action pair is visited is stored in 𝑁(𝑠̂, 𝑗). The Q-table for expected energy is
pdated in line 36 and the Q-table for risk is updated in line 37, based on the average of all visits to the state–action pair. To keep
rack of the risk, the updates are done backwards, from the end of the route to the beginning.

The next action is decided from Line 8 to Line 14. If a state 𝑠̂ has never been visited before, the action is decided using the same
ollout heuristics as described in 3.1 and 4.2. Otherwise an 𝜖-greedy policy is followed, but the random actions are chosen only

from the set of feasible actions ̄(𝑠𝑘).
Function step, in Line 15, computes the transition from state 𝑠𝑘 to the next state 𝑠𝑘+1. In that function a realization for the energy

consumption 𝑒𝑖𝑘 ,𝑗𝑘 is sampled from the probability distribution given by Eqs. (4) and Eq. (5). Furthermore, new requests 𝑘+1 are
sampled based on the probability 𝑝𝑐𝑘 for each customer 𝑐 and added to the current requests in ̄𝑘+1.

After the agent is trained offline, it can be used online to take decisions using policy 𝜋∗∗ and the learned tables 𝑄𝑒 and 𝑄𝑟. Since
the method is based on look-up tables, very little computation is needed to take decisions online. Re-training may only be required
if the set of customers or charging stations change, or if the probabilities for energy and customer requests change significantly.

4. Experiments

In order to evaluate the solution method, several numerical experiments are presented. The main objective is to demonstrate
the energy savings and reliability comparing the reinforcement learning method with the reoptimization approach. Computational
cost, runtime and memory usage are not the focus, but a simple assessment is shown nevertheless. An analysis of the impact of
different levels of dynamism to the results is presented as well as a discussion about hyperparameter selection and the structure of
the algorithm.

First the setup of the experiments is described. Secondly, an evaluation of the reliability of the reoptimization method is shown.
Lastly, a detailed analysis of the reinforcement learning is presented.

4.1. Test environment

To evaluate the methods, 50 test instances were generated, half of them with 20 customers and half with 10 customers each.
All customers are randomly located in the city center of Luxembourg with the same depot and two charging stations for all test
instances, as shown in Fig. 3. The energy prediction model and the link-level energy coefficients are derived from the experiments
in Basso et al. (2021).

The test instances were generated to reflect real scenarios for urban distribution of goods with trucks. The number of customers
depends on the type of goods and the city as described in Holguín-Veras et al. (2013). Therefore, data from a company in Gothenburg
was used to set those parameters based on Sanchez-Diaz et al. (2020). In those scenarios one vehicle typically delivers or picks-up
between 10 and 20 packages, due to time and capacity constraints, of which around half can be dynamic.

To find the paths between all pairs of nodes, the Bellman–Ford algorithm was used in the same way as in Basso et al. (2021),
then producing the energy coefficients 𝐳𝑖𝑗 and 𝐟𝑖𝑗 for each path (𝑖, 𝑗). During the simulations both for training and evaluation, the
energy is sampled from the probability distributions given by Eqs. (4) and (5). The test instances are provided in the supplementary
material which is described in Appendix A.

Every customer has a weight demand, but the total payload for each instance does not exceed the maximum payload of the
truck. The experiments focus on the pick-up case, so the payload weight is increased at every customer visit. Each customer has a
certain probability of requesting a visit during an episode. They can send a new request up to epoch 𝐾 = 5 or 𝐾 = 10, for 10 and 20
customers instances respectively. About half the customer requests are known before the vehicle leaves the depot (i.e. 𝑝𝑐 = 1), so
there is a fixed ̄𝑒𝑎𝑟𝑙𝑦 for each test instance, with |̄𝑒𝑎𝑟𝑙𝑦| ≈ 5 for 10 customers and |̄𝑒𝑎𝑟𝑙𝑦| ≈ 10 for 20 customers. The vehicle leaves
the depot with the battery fully charged and recharges the battery completely when it stops at charging stations.

The vehicle model is an all-electric medium duty truck with two gears, similar to current truck models in the market (e.g. Volvo
FL electric). Curb weight is 10 700 kg, including the battery and maximum payload is 16000 kg. The battery capacity and minimum
battery are different for each experiment, therefore they are given in the descriptions below. For the value function approximation
(i.e. 𝑄𝑒 and 𝑄𝑟 tables), the battery is discretized into ten levels, as described in Section 3.2.1 to produce the reduced state
representation 𝑠̂.

Each episode simulates a complete route for a single vehicle, starting at the depot with initial customer requests, new random
requests while driving, finishing back at the depot after visiting all requests, unless the battery is depleted. The method to choose the
route is either the reoptimization from Section 3.1 or the reinforcement learning from Section 3.2. The training for the reinforcement
learning method is done by simulating 500 000 episodes, if not stated otherwise, and 𝜖 = 0.05 without decay. Maximum risk accepted
is 𝑅 = 0.1 (i.e. 10% chance of failure). A discussion about these hyperparameters is presented later.

In order to acquire statistically significant data, the evaluation is done by simulating 20 000 episodes, both for the reoptimization
and reinforcement learning. For the reoptimization approach, this adds runtime requirements, since for each episode there might
be up to 10 events with new customer requests (for the case of 20 customers), which means that the route needs to be re-planned
up to 10 times per episode. As shown in Section 4.2, for 20 customer requests with charging, on average it takes 0.69 s to find a
8
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Algorithm 1 Reinforcement Learning
1: 𝑄𝑒(𝑠̂, 𝑗) = 0, 𝑄𝑟(𝑠̂, 𝑗) = 0, 𝑁(𝑠̂, 𝑗) = 0 ∀𝑠̂ ∈ 𝑆̂, 𝑗 ∈ 
2: for all episodes do
3: 𝑘 = 0
4: 𝑠𝑘 = (0, 𝐵, 0, ̄𝑒𝑎𝑟𝑙𝑦,∅)
5: 𝑙𝑖𝑠𝑡𝐸(𝑘) = 0, 𝑙𝑖𝑠𝑡𝐽 (𝑘) = 0 ∀𝑘
6: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 0
7: while 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 == 0 do
8: if ∑𝑗 𝑁(𝑠̂, 𝑗) == 0 then
9: 𝑗𝑘 =rollout(𝑠𝑘)

10: else if 𝜖 >rand then
11: 𝑗𝑘 =random(̄(𝑠𝑘))
12: else
13: 𝑗𝑘 = 𝑗∗∗

14: end if
15: (𝑠𝑘+1, 𝑒𝑖𝑘 ,𝑗𝑘 ) =step(𝑠𝑘, 𝑗𝑘)
16: 𝑙𝑖𝑠𝑡𝐸(𝑘) = 𝑒𝑖𝑘 ,𝑗𝑘
17: 𝑙𝑖𝑠𝑡𝐽 (𝑘) = 𝑗𝑘
18: 𝑠𝑘 = 𝑠𝑘+1
19: 𝑘 = 𝑘 + 1
20: if ̄𝑘 == ∅ and 𝑖𝑘 == 0 then
21: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 1
22: else if 𝑏𝑘 ≤ 0 then
23: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 1
24: end if
25: end while
26: 𝑘 = 𝑘 − 1
27: 𝑒 = 0
28: if 𝑏𝑘+1 ≤ 0 then
29: 𝑟 = 1
30: else
31: 𝑟 = 0
32: end if
33: while 𝑘 ≥ 0 do
34: 𝑒 = 𝑒 + 𝑙𝑖𝑠𝑡𝐸(𝑘)
35: 𝑗 = 𝑙𝑖𝑠𝑡𝐽 (𝑘)
36: 𝑄𝑒(𝑠̂, 𝑗) = (𝑁(𝑠̂, 𝑗) ∗ 𝑄𝑒(𝑠̂, 𝑗) + 𝑒)∕(𝑁(𝑠̂, 𝑗) + 1)
37: 𝑄𝑟(𝑠̂, 𝑗) = (𝑁(𝑠̂, 𝑗) ∗ 𝑄𝑟(𝑠̂, 𝑗) + 𝑟)∕(𝑁(𝑠̂, 𝑗) + 1)
38: 𝑁(𝑠̂, 𝑗) = 𝑁(𝑠̂, 𝑗) + 1
39: if 𝑗 ≠ 𝑗∗∗ then
40: 𝑘 = 0
41: end if
42: 𝑘 = 𝑘 − 1
43: end while
44: end for

route with the heuristics and 1087 s with a MILP solver. It took more than 21 h to run the reoptimization experiments for the 25
test instances with 20 customers and charging, 51 min per instance on average as discussed in Section 4.4.2. Therefore, using a
MILP solver instead of the heuristics in the reoptimization approach would make the solution time impractical. Furthermore, the
solutions computed by the heuristics are very close to optimal, as shown below.

4.2. Rollout heuristics

The algorithm shown below, based on tabu-search, tries to find a route to service a set of requests, considering the already visited
ustomers in the route and a starting node.

First it builds an initial route with function BuildRoute from the current node visiting all customers with active requests. That
first route is constructed using a greedy algorithm (i.e. nearest neighbor) with respect to energy consumption.

Next it tries to improve the initial route with 2-opt moves in function ImproveRoute. The function routeCost calculates the total
9

energy cost for the route and checks if there is any battery violation (i.e. battery below minimum level 𝐿). If no improvement can
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Fig. 3. Section of the map of Luxembourg with location of depot, customer area and charging stations.

be found, the algorithm tries again using a move generated by TSMove. That function uses the principle of tabu-search, generating
a random 2-opt move that has not been performed before.

If the improved route violates the battery constraints, the algorithm tries to find the best charger.
In function BetterRoute, the battery constraints are prioritized over energy. A route with no battery violations is always preferred.
Below we present the comparison of the heuristics with an optimal solution, considering the test instances deterministic (i.e. all

customers are visited). The CPLEX 12.9 mixed integer linear programming solver was used to solve the problem to optimality. The
code was developed using Matlab 2017b and run in a computer with a 3.1 GHz dual-core i5 processor and 16 Gb RAM. Tables 1
and 2 show the results for 10 and 20 customers with battery 𝐵 = 200 000. Tables 3 and 4 show the results for 10 and 20 customers
with battery 𝐵 = 20 000 and 𝐵 = 30 000, which means that at least one charge stop is needed. Columns Energy show the amount
of energy required to complete the route in Wh. Columns Runtime show the total time needed to compute the solution with the
different methods in seconds. Column Diff show the optimality gap in percentage for the heuristics. The solution time for CPLEX
was limited to 30 min, therefore some instances have slightly better solutions by the heuristics.

As the results indicate, the gap from the heuristics to the optimal solution is small. At most it is 3.61% for an instance with 20
customers and charging. On average, for the 10 customers instances the gap is close to zero while for the 20 customers instances
it is still quite small. The runtime difference however is significant. While the optimal solution reached to limit of half an hour for
many instances, the longest time to solve with the heuristics was 1.1 s.

4.3. Deterministic reoptimization

In this section the goal is to evaluate how reliable the deterministic online reoptimization is. Since energy consumption is
stochastic, but the method uses the expected energy to find the route, it is necessary to keep a certain margin with regards to
the battery level. Therefore, in this set of experiments we evaluate the minimum level 𝐿 by running the reoptimization method
with the 20 customers instances. The battery capacity is 𝐵 = 30 kWh, which means that in most cases at least one charging stop
will be necessary to complete the route. Three different minimum levels are evaluated: 𝐿 = 0, 𝐿 = 3000 Wh and 𝐿 = 6000 Wh.

Table 5 shows the results for simulating the deterministic online reoptimization method with minimum battery level of 20%
(𝐿 = 6000 Wh), 10% (𝐿 = 3000 Wh) and 0 (𝐿 = 0 kWh). Column Cost shows the average energy cost (Wh) for each test instance
for 20 000 simulated episodes. Column Fail shows how many times the battery got completely depleted while driving.

These results indicate that the only safe margin is 20%, which did not produce any battery depletion for any test instance.
Therefore, the results for 𝐿 = 6000 will be used as a benchmark for comparing with the reinforcement learning method below.

4.4. Reinforcement learning

In this section the goal is to evaluate how much energy can be saved keeping reliability using the reinforcement learning method
compared with the deterministic online reoptimization approach. For the instances with 10 customers the battery is 𝐵 = 20 kWh
and for the instances with 20 customers the battery is 𝐵 = 30 kWh. The minimum battery for the reoptimization is 𝐿 = 4 kWh and
𝐿 = 6 kWh for 10 and 20 customers respectively. For the reinforcement learning method 𝐿 = 0. This means that in most episodes
10
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Algorithm 2 Heuristics to find route
1: function Rollout(𝑟𝑜𝑢𝑡𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)
2: 𝑟𝑜𝑢𝑡𝑒 = BuildRoute(𝑟𝑜𝑢𝑡𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)
3: [𝑟𝑜𝑢𝑡𝑒, 𝑐𝑜𝑠𝑡, 𝑣𝑖𝑜] = ImproveRoute(𝑟𝑜𝑢𝑡𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
4: if 𝑣𝑖𝑜 then
5: for all chargers do
6: 𝑡𝑅𝑜𝑢𝑡𝑒 = InsertCharger(𝑟𝑜𝑢𝑡𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑐ℎ𝑎𝑟𝑔𝑒𝑟)
7: [𝑡𝑅𝑜𝑢𝑡𝑒, 𝑡𝐶𝑜𝑠𝑡, 𝑡𝑉 𝑖𝑜] = ImproveRoute(𝑡𝑅𝑜𝑢𝑡𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
8: if betterRoute(𝑐𝑜𝑠𝑡, 𝑣𝑖𝑜, 𝑡𝐶𝑜𝑠𝑡, 𝑡𝑉 𝑖𝑜) then
9: 𝑣𝑖𝑜 = 𝑡𝑉 𝑖𝑜

10: 𝑐𝑜𝑠𝑡 = 𝑡𝐶𝑜𝑠𝑡
11: 𝑟𝑜𝑢𝑡𝑒 = 𝑡𝑅𝑜𝑢𝑡𝑒
12: end if
13: end for
14: end if
15: return 𝑟𝑜𝑢𝑡𝑒, 𝑐𝑜𝑠𝑡, 𝑣𝑖𝑜
16: end function
17: function ImproveRoute(𝑟𝑜𝑢𝑡𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
18: [𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝑚𝑖𝑛𝑉 𝑖𝑜] = routeCost(𝑟𝑜𝑢𝑡𝑒)
19: 𝑚𝑖𝑛𝑅𝑜𝑢𝑡𝑒 = 𝑟𝑜𝑢𝑡𝑒
20: 𝑛 = length(𝑟𝑜𝑢𝑡𝑒)
21: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 1
22: while 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 do
23: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 0
24: for 𝑖 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1 ∶ 𝑖 < 𝑛 − 1 do
25: for 𝑗 = 𝑖 + 1 ∶ 𝑗 < 𝑛 do
26: 𝑡𝑅𝑜𝑢𝑡𝑒 = 2Opt(𝑟𝑜𝑢𝑡𝑒, 𝑖, 𝑗)
27: [𝑡𝐶𝑜𝑠𝑡, 𝑡𝑉 𝑖𝑜] = routeCost(𝑡𝑅𝑜𝑢𝑡𝑒)
28: if betterRoute(𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝑚𝑖𝑛𝑉 𝑖𝑜, 𝑡𝐶𝑜𝑠𝑡, 𝑡𝑉 𝑖𝑜) then
29: 𝑚𝑖𝑛𝑉 𝑖𝑜 = 𝑡𝑉 𝑖𝑜
30: 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝑡𝐶𝑜𝑠𝑡
31: 𝑚𝑖𝑛𝑅𝑜𝑢𝑡𝑒 = 𝑡𝑅𝑜𝑢𝑡𝑒
32: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 1
33: end if
34: end for
35: end for
36: if 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 then
37: 𝑟𝑜𝑢𝑡𝑒 = 𝑚𝑖𝑛𝑅𝑜𝑢𝑡𝑒
38: 𝑡𝑠𝐶𝑜𝑢𝑛𝑡 = 0
39: 𝑏𝑒𝑠𝑡𝑉 𝑖𝑜 = 𝑚𝑖𝑛𝑉 𝑖𝑜
40: 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛𝐶𝑜𝑠𝑡
41: 𝑏𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒 = 𝑚𝑖𝑛𝑅𝑜𝑢𝑡𝑒
42: else
43: if 𝑡𝑠𝐶𝑜𝑢𝑛𝑡 < 𝑇𝑆𝑀𝐴𝑋 then
44: 𝑟𝑜𝑢𝑡𝑒 = TSMove(𝑏𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒)
45: 𝑡𝑠𝐶𝑜𝑢𝑛𝑡 = 𝑡𝑠𝐶𝑜𝑢𝑛𝑡 + 1
46: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 1
47: end if
48: end if
49: end while
50: return 𝑏𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒, 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡, 𝑏𝑒𝑠𝑡𝑉 𝑖𝑜
51: end function
52: function betterRoute(𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝑚𝑖𝑛𝑉 𝑖𝑜, 𝑡𝐶𝑜𝑠𝑡, 𝑡𝑉 𝑖𝑜)
53: 𝑏𝑒𝑡𝑡𝑒𝑟 = 0
54: if 𝑡𝑉 𝑖𝑜 > 0 then
55: if 𝑚𝑖𝑛𝑉 𝑖𝑜 > 0 and 𝑡𝑉 𝑖𝑜 < 𝑚𝑖𝑛𝑉 𝑖𝑜 then
56: 𝑏𝑒𝑡𝑡𝑒𝑟 = 1
57: end if
11
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58: else
59: if 𝑚𝑖𝑛𝑉 𝑖𝑜 > 0 or 𝑡𝐶𝑜𝑠𝑡 < 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 then
60: 𝑏𝑒𝑡𝑡𝑒𝑟 = 1
61: end if
62: end if
63: return 𝑏𝑒𝑡𝑡𝑒𝑟
64: end function

Table 1
Optimality gap for 10 customers without charging.

Optimal Heuristics

Energy Runtime Energy Runtime Diff

1 23 573 0.468 23 573 0.020 0.00%
2 28 304 1.393 28 304 0.017 0.00%
3 23 100 0.379 23 100 0.013 0.00%
4 26 737 0.506 26 737 0.010 0.00%
5 22 756 0.461 22 756 0.019 0.00%
6 26 067 3.502 26 067 0.008 0.00%
7 30 247 1.352 30 247 0.014 0.00%
8 24 124 1.113 24 124 0.015 0.00%
9 25 470 2.524 25 470 0.023 0.00%
10 28 187 1.941 28 187 0.032 0.00%
11 28 475 0.948 28 475 0.032 0.00%
12 22 918 2.643 23 266 0.012 1.52%
13 26 696 3.101 26 696 0.022 0.00%
14 26 761 0.304 26 761 0.011 0.00%
15 26 705 2.366 26 705 0.013 0.00%
16 25 394 1.184 25 394 0.012 0.00%
17 26 178 1.509 26 178 0.020 0.00%
18 25 726 1.617 25 726 0.025 0.00%
19 30 719 0.775 30 904 0.012 0.60%
20 27 326 1.713 27 326 0.027 0.00%
21 26 036 0.872 26 036 0.022 0.00%
22 26 526 0.204 26 526 0.023 0.00%
23 24 152 0.486 24 152 0.013 0.00%
24 26 555 0.415 26 831 0.017 1.04%
25 24 124 0.190 24 124 0.030 0.00%

Avg 26 114 1.279 26 147 0.019 0.13%
Min 22 756 0.190 22 756 0.008 0.00%
Max 30 719 3.502 30 904 0.032 1.52%

at least one charging stop will have to be planned. For the tests without charging, the battery is 𝐵 = 200 kWh, which is enough for
any route.

Tables 6 and 7 show the results of the experiments with 10 and 20 customers test instances respectively. Column Reopt shows the
average energy cost (Wh) using the reoptimization method evaluated with 20 000 simulated episodes. Column RL shows the average
energy consumption cost (Wh) using the reinforcement learning method evaluated with 20 000 simulated episodes, after training
with 500 000 episodes. Column Diff shows the percentage difference, with a negative number indicating that the reinforcement
learning method needs less energy on average. Additionally, although not shown in the tables, the average number of charging
stops was slightly smaller for the reinforcement learning method.

As can be seen in the tables, it is possible to save energy for all instances. Using the reinforcement learning method there was
not a single episode during evaluation where the battery was completely depleted. In summary, keeping reliability it was possible
to save up to 12% energy. Another advantage is that after training offline, the method could be very fast to run online. These are
very important results, since transport companies could benefit from better routing instead of investing in more expensive vehicles
with larger batteries.

In order to analyze how well the method anticipates customer requests and predicts energy consumption, the Expected Value
of Perfect Information (EVPI) is calculated for the instances with 20 customers and charging. After an episode is simulated and all
dynamic and stochastic information was revealed (i.e. customer requests and energy consumption), the a posteriori route is computed
with the heuristics presented in Section 4.2. Table 8 shows the results of the experiments. Columns Cost show the average energy
cost for the a posteriori routes. Columns Diff show the average of the difference between the route generated by the reoptimization
or RL method compared with the a posteriori route for each episode. As it can be seen, if the problem was deterministic with
all information known a priori, it would be possible to save an additional 7% energy on average using the RL method. However,
12
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Table 2
Optimality gap for 20 customers without charging.

Optimal Heuristics

Energy Runtime Energy Runtime Diff

1 34 710 1 804.091 35 144 0.282 1.25%
2 38 963 1 800.141 39 417 0.384 1.17%
3 34 087 167.636 34 432 0.293 1.01%
4 34 581 726.187 35 787 0.391 3.49%
5 32 871 1 295.417 33 268 0.154 1.21%
6 36 607 457.107 36 607 0.463 0.00%
7 31 360 66.037 32 158 0.370 2.55%
8 29 492 111.356 30 288 0.344 2.70%
9 31 580 184.494 31 776 0.292 0.62%
10 36 941 314.138 36 946 0.147 0.01%
11 32 152 1 800.071 32 487 0.194 1.04%
12 33 678 1 800.154 33 785 0.259 0.32%
13 32 095 39.121 33 145 0.191 3.27%
14 31 844 103.143 31 844 0.314 0.00%
15 35 146 1 800.098 35 174 0.173 0.08%
16 32 049 878.403 32 845 0.414 2.48%
17 30 490 1 800.000 30 689 0.178 0.65%
18 33 054 806.150 33 414 0.190 1.09%
19 32 368 353.039 33 053 0.360 2.12%
20 31 577 1 800.085 31 622 0.330 0.14%
21 36 252 323.001 36 563 0.224 0.86%
22 33 284 388.136 34 276 0.108 2.98%
23 29 370 492.257 29 736 0.220 1.25%
24 32 916 226.454 33 236 0.353 0.97%
25 30 113 10.038 30 113 0.293 0.00%

Avg 33 103 781.870 33 512 0.277 1.25%
Min 29 370 10.038 29 736 0.108 0.00%
Max 38 963 1 804.091 39 417 0.463 3.49%

Table 3
Optimality gap for 10 customers with charging.

Optimal Heuristics

Energy Runtime Energy Runtime Diff

1 23 573 1.126 23 573 0.051 0.00%
2 28 988 3.767 29 347 0.108 1.24%
3 23 100 1.056 23 100 0.046 0.00%
4 26 963 0.654 26 984 0.050 0.08%
5 22 992 0.833 22 992 0.060 0.00%
6 26 067 2.959 26 067 0.065 0.00%
7 30 598 1.915 30 598 0.083 0.00%
8 24 406 1.714 24 406 0.055 0.00%
9 25 796 1.773 25 796 0.059 0.00%
10 28 187 1.346 28 187 0.072 0.00%
11 29 371 1.506 30 429 0.066 3.60%
12 23 155 4.122 23 764 0.087 2.63%
13 27 083 2.087 27 083 0.062 0.00%
14 27 117 0.738 27 117 0.082 0.00%
15 26 705 3.464 26 705 0.055 0.00%
16 25 394 0.267 25 394 0.069 0.00%
17 26 762 2.281 26 762 0.061 0.00%
18 26 101 1.808 26 101 0.076 0.00%
19 30 719 1.950 30 719 0.107 0.00%
20 27 326 2.844 27 326 0.263 0.00%
21 26 422 4.071 26 422 0.059 0.00%
22 27 255 1.853 27 255 0.074 0.00%
23 24 496 1.132 24 496 0.058 0.00%
24 27 107 3.901 27 446 0.065 1.25%
25 24 863 0.940 24 862 0.085 0.00%

Avg 26 422 2.004 26 517 0.077 0.35%
Min 22 992 0.267 22 992 0.046 0.00%
Max 30 719 4.122 30 719 0.263 3.60%
13
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Table 4
Optimality gap for 20 customers with charging.

Optimal Heuristics

Energy Runtime Energy Runtime Diff

1 34 811 1 800.297 35 333 0.912 1.50%
2 39 667 1 800.112 39 895 0.767 0.58%
3 34 785 1 686.601 35 779 0.457 2.86%
4 35 530 1 800.104 35 798 1.015 0.75%
5 33 244 1 538.557 33 530 0.431 0.86%
6 36 607 326.296 36 645 0.675 0.10%
7 31 672 271.001 32 101 0.550 1.36%
8 29 492 149.716 30 272 0.709 2.65%
9 31 580 139.269 31 699 0.724 0.38%
10 36 994 599.560 38 253 0.918 3.40%
11 32 196 1 800.099 32 334 0.494 0.43%
12 33 519 1 800.121 33 833 0.741 0.94%
13 32 448 98.022 33 190 0.921 2.29%
14 32 149 480.661 32 371 0.662 0.69%
15 35 578 1 800.105 35 528 0.609 −0.14%
16 32 719 1 800.108 32 922 1.103 0.62%
17 30 103 1 800.085 30 092 0.577 −0.04%
18 33 285 948.279 34 394 0.552 3.33%
19 32 368 419.321 32 985 0.485 1.91%
20 31 847 1 800.080 32 309 0.757 1.45%
21 36 362 381.956 37 461 0.712 3.02%
22 33 284 334.312 34 227 0.532 2.84%
23 29 697 1 800.070 30 084 0.543 1.30%
24 33 537 1 800.088 34 229 0.631 2.06%
25 30 113 7.720 31 200 0.698 3.61%

Avg 33 343 1 087.302 33 859 0.687 1.55%
Min 29 492 7.720 30 084 0.431 −0.14%
Max 39 667 1 800.297 39 895 1.103 3.61%

Table 5
Deterministic online reoptimization.

L=6000 L=3000 L=0

Cost Fails Cost Fails Cost Fails

1 36 327 0 36 316 8 36 295 622
2 33 319 0 33 354 3 33 412 1 265
3 31 137 0 31 096 10 30 699 2 583
4 28 699 0 28 737 7 28 324 1 895
5 31 667 0 31 574 8 31 494 937
6 31 273 0 31 585 7 31 568 935
7 26 999 0 26 937 14 26 643 919
8 28 003 0 28 062 5 27 724 1 629
9 32 213 0 32 817 12 32 998 958
10 31 131 0 31 226 6 31 171 1 927
11 29 230 0 30 128 9 29 773 3 340
12 30 733 0 30 643 3 30 344 1 560
13 32 918 0 32 957 3 33 031 1 178
14 29 967 0 29 947 14 29 758 1 552
15 31 307 0 31 076 7 31 028 2 820
16 32 076 0 32 319 12 32 360 1 268
17 30 739 0 31 007 10 31 058 2 173
18 30 241 0 30 529 8 30 491 2 108
19 32 510 0 32 404 3 32 603 896
20 32 549 0 32 660 3 32 873 1 396
21 31 259 0 31 336 9 31 539 1 028
22 29 678 0 29 885 5 29 997 1 975
23 24 961 0 24 837 3 24 821 131
24 32 396 0 32 417 9 32 591 1 809
25 31 475 0 31 620 0 31 833 2 036

Avg 30 912 0 31 019 7 30 977 1 558
Max 36 327 0 36 316 14 36 295 3 340
Min 24 961 0 24 837 0 24 821 131
14
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Table 6
Reinforcement learning for 10 customers test instances.

Without charging With charging

Reopt RL Diff Reopt RL Diff

1 22 782 22 197 −2.57% 22 693 22 032 −2.91%
2 26 939 25 901 −3.85% 30 409 27 080 −10.95%
3 16 510 16 128 −2.32% 16 630 16 123 −3.05%
4 19 735 18 491 −6.30% 19 954 18 783 −5.87%
5 21 397 19 604 −8.38% 21 073 19 741 −6.32%
6 20 594 19 515 −5.24% 20 708 19 602 −5.34%
7 27 419 25 851 −5.72% 27 102 25 700 −5.17%
8 22 343 21 194 −5.14% 23 055 21 657 −6.06%
9 18 415 17 785 −3.42% 18 786 18 080 −3.76%
10 25 885 24 108 −6.87% 26 775 24 334 −9.12%
11 24 864 23 857 −4.05% 26 623 24 711 −7.18%
12 22 307 21 938 −1.65% 23 150 22 531 −2.68%
13 26 112 25 309 −3.07% 25 904 25 695 −0.81%
14 24 267 23 387 −3.62% 24 623 23 389 −5.01%
15 25 184 24 502 −2.71% 25 419 24 467 −3.75%
16 21 655 21 152 −2.32% 21 511 20 947 −2.62%
17 22 521 21 786 −3.26% 23 166 22 476 −2.98%
18 23 474 22 931 −2.31% 24 073 23 382 −2.87%
19 28 665 28 051 −2.14% 30 231 28 295 −6.41%
20 23 346 21 515 −7.84% 23 221 22 176 −4.50%
21 22 121 21 323 −3.61% 22 641 21 754 −3.92%
22 24 730 24 066 −2.69% 25 599 24 982 −2.41%
23 23 053 21 980 −4.66% 23 263 21 888 −5.91%
24 20 151 19 102 −5.21% 20 407 19 618 −3.86%
25 24 754 23 652 −4.45% 26 212 24 760 −5.54%

Avg 23 169 22 213 −4.14% 23 729 22 568 −4.76%
Max 28 665 28 051 −8.38% 30 409 28 295 −10.95%
Min 16 510 16 128 −1.65% 16 630 16 123 −0.81%

Table 7
Reinforcement learning for 20 customers test instances.

Without charging With charging

Reopt RL Diff Reopt RL Diff

1 36 239 32 338 −10.77% 36 284 31 922 −12.02%
2 33 000 31 054 −5.90% 33 389 31 303 −6.25%
3 30 412 29 689 −2.38% 31 161 29 481 −5.39%
4 28 479 27 361 −3.93% 28 741 27 210 −5.33%
5 31 214 28 134 −9.87% 31 641 28 741 −9.16%
6 31 463 29 570 −6.02% 31 257 29 724 −4.90%
7 26 839 26 036 −2.99% 27 008 25 831 −4.35%
8 27 991 26 079 −6.83% 28 041 26 464 −5.62%
9 32 821 30 375 −7.45% 32 242 30 499 −5.41%
10 31 125 29 426 −5.46% 31 177 29 619 −5.00%
11 29 853 28 421 −4.80% 29 238 28 016 −4.18%
12 30 039 28 907 −3.77% 30 732 29 586 −3.73%
13 32 898 30 993 −5.79% 32 931 31 291 −4.98%
14 29 738 28 285 −4.89% 30 006 28 765 −4.13%
15 30 861 30 131 −2.36% 31 360 30 475 −2.82%
16 32 566 31 102 −4.50% 32 069 31 144 −2.88%
17 30 920 29 007 −6.19% 30 795 29 015 −5.78%
18 30 283 29 338 −3.12% 30 243 29 171 −3.54%
19 32 955 31 626 −4.03% 32 479 31 388 −3.36%
20 32 578 30 058 −7.73% 32 580 30 364 −6.80%
21 31 386 30 050 −4.26% 31 252 29 962 −4.13%
22 30 134 28 710 −4.72% 29 711 28 834 −2.95%
23 24 826 24 073 −3.03% 24 968 24 107 −3.45%
24 31 887 31 323 −1.77% 32 375 31 014 −4.20%
25 31 785 29 549 −7.03% 31 476 29 587 −6.00%

Avg 30 892 29 265 −5.18% 30 926 29 341 −5.06%
Max 36 239 32 338 −10.77% 36 284 31 922 −12.02%
Min 24 826 24 073 −1.77% 24 968 24 107 −2.82%
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Table 8
Expected value of perfect information for 20 customers with
charging.

Reopt RL

Cost Diff Cost Diff

1 30 119 −16.11% 29 744 −7.22%
2 28 472 −14.38% 27 718 −11.63%
3 27 371 −11.86% 27 091 −7.87%
4 25 506 −10.73% 25 193 −7.09%
5 26 505 −15.65% 26 077 −8.97%
6 27 523 −11.06% 27 415 −7.48%
7 24 102 −10.44% 23 855 −7.72%
8 24 942 −10.73% 25 051 −5.08%
9 27 840 −13.12% 27 715 −8.76%
10 29 115 −6.16% 28 630 −3.59%
11 26 248 −9.82% 26 073 −6.75%
12 27 878 −8.98% 27 017 −8.46%
13 29 183 −10.80% 28 707 −7.97%
14 26 348 −11.63% 26 014 −9.89%
15 28 881 −7.62% 28 447 −6.49%
16 30 034 −6.16% 29 612 −5.14%
17 26 405 −13.67% 26 252 −9.28%
18 27 389 −9.08% 27 010 −7.05%
19 30 696 −5.17% 30 355 −3.02%
20 29 129 −10.08% 28 786 −5.14%
21 29 293 −6.02% 28 938 −5.78%
22 27 650 −6.64% 27 544 −5.48%
23 22 281 −10.50% 22 016 −8.44%
24 29 269 −9.31% 28 821 −8.04%
25 28 150 −10.28% 28 130 −4.81%

Avg 27 613 −10.24% 27 289 −7.09%
Max 30 696 −16.11% 30 355 −11.63%
Min 22 281 −5.17% 22 016 −3.02%

4.4.1. Dynamism analysis

In this subsection an analysis of how different levels of dynamism affect the results is presented. To do that, the test instances
ith 20 customers and battery 𝐵 = 30 kWh are re-run with different settings. The first test is to change the time limit for receiving

new customer requests, allowing only early requests with 𝐾 = 5 or allowing late requests with 𝐾 = 15, which means that new
equests can be received until visiting 𝐾 nodes. The second test is with a different number of requests known from the beginning,
ith |̄𝑒𝑎𝑟𝑙𝑦| ≈ 5 or |̄𝑒𝑎𝑟𝑙𝑦| ≈ 15. The exact number of initial requests vary for different test instances. The other parameters are the

ame as before.
Table 9
Different levels of dynamism.
|̄𝑒𝑎𝑟𝑙𝑦| 10 10 10 5 15

K 10 5 15 10 10

Avg −5.06% −5.64% −3.26% −4.08% −3.30%
Max −12.02% −10.14% −10.82% −9.54% −5.97%
Min −2.82% −1.30% −0.99% −1.83% −0.87%

Table 9 presents the results of the comparison between the reoptimization and reinforcement learning methods. When varying
he amount of known customer requests from the beginning (i.e. |̄𝑒𝑎𝑟𝑙𝑦|), the results are slightly less favorable for both scenarios.

ith less known requests (i.e. |̄𝑒𝑎𝑟𝑙𝑦| ≈ 5) the environment is more dynamic and it is also harder to predict ahead. With more known
ustomers (i.e. |̄𝑒𝑎𝑟𝑙𝑦| ≈ 15) the environment loses dynamism and it gets closer to the static version of the problem. When varying
he time limit for new requests, the results move in either direction. With a more dynamic environment (i.e. 𝐾 = 15) the results are
lightly less favorable. One of the main reasons is that it is more difficult to find better actions and predict ahead when there can
e changes so late during the route. It should be noticed that 𝐾 = 15 is a quite late decision epoch. Considering that many routes
ill not have 15 total requests, they might receive new requests when there are just a few customers left to visit, which reduces the
ossibilities of improving the route.

The last test was performed to evaluate the impact of random weight for the customer requests. It was assumed that each
ustomer has a demanded weight that follows a normal distribution with expected value 𝑢𝑐 and standard deviation 0.1𝑢𝑐 (i.e. 10%
f the mean). Table 10 shows the results for the experiments. As it is shown, the average savings is quite similar to the results shown
n Table 7, where the requested demand is deterministic.
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Table 10
Reinforcement learning for 20 customers with
charging and random weight.

Reopt RL Diff

1 53 840 31 754 −12.36%
2 48 324 31 266 −6.23%
3 42 880 29 555 −5.10%
4 40 077 27 237 −5.31%
5 46 274 28 722 −9.36%
6 47 127 30 003 −3.96%
7 40 082 25 777 −4.51%
8 40 137 26 326 −6.06%
9 47 299 30 758 −4.45%
10 48 192 29 668 −4.76%
11 38 891 28 043 −4.13%
12 42 181 29 637 −3.40%
13 46 166 31 263 −4.90%
14 43 054 28 946 −3.60%
15 44 703 30 420 −2.90%
16 42 832 31 349 −2.23%
17 45 774 29 472 −4.24%
18 42 115 29 726 −1.74%
19 41 841 31 777 −2.11%
20 45 331 30 415 −6.57%
21 43 837 29 792 −4.67%
22 41 885 28 861 −2.74%
23 35 583 24 429 −2.01%
24 42 731 31 408 −2.95%
25 40 792 29 600 −5.91%

Avg 43 678 29 448 −4.65%
Max 53 840 31 777 −12.36%
Min 35 583 24 429 −1.74%

4.4.2. Algorithm and hyper-parameters discussion
Different values for the hyper-parameters and different variations of the algorithm were tested. However, since the main focus

f the paper is to show the reliability and energy savings of the algorithm, an extensive report of these experiments is refrained
rom. But a short discussion about the choice of hyper-parameters and algorithm is presented in this subsection.

Since combinatorial optimization problems can have a very large number of combinations even for a small set of inputs, using
einforcement learning can be challenging because the state–action space can be extensive. Therefore our solution method includes
rollout function to be used every time a state is visited for the first time. With that it is possible to get a good action to be taken

rom a state directly when that state is first visited. Consequently it is not necessary to evaluate all the possible actions from a state
o find a good candidate. As a result, it is possible to use a small epsilon for exploration. The choices of 𝜖 = 0.05 and 𝜖 = 0.1 for

20 and 10 customers respectively, is because in this way on average one action will be random per episode, exploring around the
regions with good candidate solutions initially found with the rollout heuristics. Another consequence is that it is not necessary to
decay epsilon. With a larger epsilon with decay, the algorithm will explore outside the regions with good candidates, which could
eventually produce even better results, but will also take considerably longer time.

For the instances with 20 customers and 2 charging stations, the total number of states, using the reduced state representation
presented in 3.2.1 is slightly over 241 million. The number of state–action pairs is then a bit over 5.5 billion. However, on average,
only around 890 thousand state–action pairs are visited during training with 500 thousand episodes. Table 11 shows the results for
every instance. That means that on average only 0.3% of the states are actually visited and only about 0.02% of the state–actions are
evaluated. That is mainly due to two reasons: the first is because there are many unreachable or invalid states; the second because
the algorithm focuses on good solution candidates from the beginning.

Different variations of Algorithm 1 were also tried. The updates of 𝑄𝑒 and 𝑄𝑟 tables are done by averaging over time for a
state–action pair. A few other approaches were tested, including Temporal Difference learning with different values of alpha and a
moving average with different window lengths.

The risk of failure is managed by the policy with two layers as shown in Section 3.2.2. The first layer tries to keep the risk of
battery depletion within a maximum 𝑅. The second layer tries to keep the nearest charging station reachable from any customer
ocation. They are complementary, since the first helps during exploration to find good candidate actions by chance-constraining the
isk, while the second can override the preferred action in order to guarantee safety. Removing the second layer produces slightly
igher energy savings but there are some failures. If the first layer is removed there are no failures but the energy savings are
educed. Different levels of risk were tested but the best results were achieved by keeping it between 5% ≤ 𝑅 ≤ 10% to maintain a

good balance between the two layers of safety in the policy. A larger accepted risk increases the chance of the second layer being
triggered, which increases the average energy cost. A smaller accepted risk becomes too restrictive and also increases the average
energy cost.
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Table 11
States and state–action pairs visited during
training with 500 000 episodes.

States State–actions

1 916 905 1 185 262
2 570 438 752 203
3 520 798 680 771
4 385 481 531 307
5 788 581 1 023 170
6 540 408 722 163
7 560 552 750 294
8 538 015 713 170
9 1 192 212 1 508 462
10 691 211 912 817
11 458 616 639 037
12 827 253 1 085 228
13 809 451 1 074 588
14 738 704 997 174
15 612 099 826 111
16 792 716 1 047 321
17 861 451 1 111 264
18 387 920 537 679
19 731 495 999 865
20 912 723 1 154 258
21 404 824 554 731
22 784 143 1 028 691
23 528 140 697 421
24 640 545 848 024
25 630 087 865 354

Avg 672 991 889 855
Max 1 192 212 1 508 462
Min 385 481 531 307

As mentioned before, runtime performance was not the focus of the paper, but a short discussion is presented, although
convergence to optimality is not included. The algorithm was implemented in Matlab 2017b. An ordinary computer with a 3.1 GHz
dual-core i5 processor and 16 Gb RAM was used for the experiments. Training runtime for 500 thousand episodes was 126 min on
average for the test instances with 20 customers and charging (i.e. 𝐵 = 30 000). For the validation of those instances, the average time
for running 20 thousand episodes for the reoptimization method was 51 min while for the trained RL agent it was 33 s. However,
training runtime for 100 thousand episodes was 45 min producing good savings in energy and keeping reliability. Therefore, by
lowering the number of training episodes it was possible to still get good results and keep reliability but reducing considerably the
amount of time required for training. Total runtime and energy savings for 50, 100, 250 and 500 thousand episodes are shown in
Table 12. Fig. 4 illustrates how reducing the number of episodes reduces the total time without reducing much the energy savings.
It is important to emphasize that the implementation was not focusing on speed and that there are several ways to make it faster.
Therefore, with proper implementation it should be possible to use it in real transport operations. Furthermore, the online runtime
difference between the reoptimization and the trained RL agent are substantial.

Fig. 4. Number of training episodes with average savings and runtime for the instances with 20 customers and charging.
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Table 12
Number of training episodes with savings (%) and runtime (minutes) for the instances with 20
customers and charging.

500k 250k 100k 50k

Savings Time Savings Time Savings Time Savings Time

Avg −5.06% 126 −4.16% 79 −3.82% 45 −2.91% 25
Max −12.02% 377 −11.24% 234 −10.50% 131 −8.76% 62
Min −2.82% 20 −1.72% 12 −1.03% 10 −0.27% 6

5. Conclusion

This paper introduces the Dynamic Stochastic Electric Vehicle Routing Problem (DS-EVRP) and models it as a Markov Decision
rocess. A solution method is proposed based on Safe Reinforcement Learning with the following contributions: (i) a Value Function
pproximation with a reduced state representation to decrease the size of the Q-tables and improve exploration; (ii) a chance-
onstrained policy with two layers of safety to minimize energy consumption and avoid failures (i.e. battery depletion while in
ransit); (iii) a training approach with a rollout heuristics based on tabu-search in order to focus the exploration on the most relevant
arts of the state–action space. Lastly, the paper presents a set of computational experiments to evaluate the solution method and
nalyze its properties. The main results can be summarized as follows:

• The reinforcement learning method could save on average 4.8% (up to 12%) energy by planning the route and charging
anticipatively, compared with the deterministic online reoptimization approach;

• Although the reoptimization method can solve the problem, it is not as reliable as the reinforcement learning and can produce
some failures (i.e. battery depletion) even when keeping a certain margin for the battery level;

• By using the two layer policy, the reinforcement learning method demonstrated more reliability than the reoptimization
method, avoiding failures altogether;

• The method performed well for different levels of dynamism. The reinforcement learning algorithm performed better than the
reoptimization method even when allowing late requests, knowing only a few customer requests before leaving the depot or
with random customer demands (i.e. payload weight);

• The proposed training process can produce satisfactory results even with a low number of episodes, due to the rollout function
and the Value Function Approximation. Therefore it could be tailored to be deployed in current transport operations;

• The online computation and memory usage could be suitable for onboard implementation, since the training is done offline
and the reduced state representation decreases the used memory for the Q-tables. Furthermore, the trained RL agent has a
significantly lower online runtime than the reoptimization method.

To the best of our knowledge there is no published paper considering the presented problem. With the proposed method it
s possible to reliably integrate electric commercial vehicles into dynamic and stochastic transport operations. By anticipating
ynamic customer requests and predicting energy consumption, this approach can help drivers and dispatchers to plan their routes
n real-time, including charge planning. Additionally, it has the potential to support achieving environmental goals. Therefore,
mplementing this method opens an avenue for fulfilling the high demand on service levels from the on-demand economy while
ransitioning to a fossil free economy.

Possible future work includes adapting the method for large instances (e.g. 100 customers and above) with multiple vehicles.
t would be interesting to investigate the use of Neural Networks either by using Deep Q-Learning or policy optimization methods.
ince energy consumption is just one aspect in the total cost of transport operations, it could be interesting to analyze different
bjective functions for the problem, aiming at operational cost minimization, for instance by including time aspects and partial
echarging. The same method could also be applied for time-windows, by estimating the risk of not meeting them. Additionally, it
ould be possible to integrate other sources of stochasticity, such as waiting times at charging stations or service times at customers.
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Appendix A. Supplementary data

The supplementary material provided with this article contains all test instances used in the experiments. Each test instance is
tored in a folder named instance_10_1 to instance_10_25 for the instances with 10 customers and instance_20_1 to instance_20_25 for

the instances with 20 customers. Each folder contains 7 CSV files:

• customers.csv
• matrixAlpha.csv
• matrixBeta.csv
• matrixDistance.csv
• matrixSigma1.csv
• matrixSigma2.csv
• matrixTime.csv
The file customers.csv is a table with the first column being the weight demand (kg) for each customer and the second being the

robability (%) of each customer sending a request during an episode.
The other files are matrices representing the graph 𝐺 = ( ,), as described in Section 2. Each line and column represents a node

in the graph. The first one is the depot, the following are the customers and the last two are the charging stations.
Files matrixAlpha.csv and matrixBeta.csv contain the coefficients for the expected energy for Eq. (4). Files matrixSigma1.csv

and matrixSigma2.csv contain the coefficients for the energy variance for Eq. (5). Those coefficients are used to get the energy
consumption (Wh) probability distribution for each path, as a function of total mass (i.e. curb weight + payload).

Files matrixDistance.csv and matrixTime.csv represent the distance (m) and time (seconds) for driving each path. They are not
actually used in the experiments but are provided for a better visualization of the test instances.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.tre.2021.102496.
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