
Decidability of Conversion for Type Theory in Type Theory

Downloaded from: https://research.chalmers.se, 2021-12-11 21:23 UTC

Citation for the original published paper (version of record):
Abel, A., Öhman, J., Vezzosi, A. (2018)
Decidability of Conversion for Type Theory in Type Theory
Proceedings of the ACM on Programming Languages, 2(POPL): 23:1-23:29
http://dx.doi.org/10.1145/3158111

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

23

Decidability of Conversion for Type Theory in Type Theory

ANDREAS ABEL, Gothenburg University, Sweden

JOAKIM ÖHMAN, IMDEA Software Institute, Spain

ANDREA VEZZOSI, Chalmers University of Technology, Sweden

Type theory should be able to handle its own meta-theory, both to justify its foundational claims and to obtain
a verified implementation. At the core of a type checker for intensional type theory lies an algorithm to check
equality of types, or in other words, to check whether two types are convertible. We have formalized in Agda
a practical conversion checking algorithm for a dependent type theory with one universe à la Russell, natural
numbers, and η-equality for Π types. We prove the algorithm correct via a Kripke logical relation parameterized
by a suitable notion of equivalence of terms. We then instantiate the parameterized fundamental lemma twice:
once to obtain canonicity and injectivity of type formers, and once again to prove the completeness of the
algorithm. Our proof relies on inductive-recursive definitions, but not on the uniqueness of identity proofs.
Thus, it is valid in variants of intensional Martin-Löf Type Theory as long as they support induction-recursion,
for instance, Extensional, Observational, or Homotopy Type Theory.

CCS Concepts: • Theory of computation→ Type theory; Proof theory;

Additional Key Words and Phrases: Dependent types, Logical relations, Formalization, Agda

ACM Reference Format:

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type
Theory. Proc. ACM Program. Lang. 2, POPL, Article 23 (January 2018), 29 pages. https://doi.org/10.1145/3158111

1 INTRODUCTION

A fundamental component of the implementation of a typed functional programming language is
an algorithm that checks equality of types; even more so for dependently-typed languages where
equality of types is non-trivial, as it depends on the equality of terms. In this paper, we consider
a dependent type theory with one universe à la Russell, natural numbers, and η-equality for Π
types. The algorithm we implement follows the structure of the one used by the dependently-typed
language Agda [2017], and has been discussed and refined before in the literature [Abel et al.
2016; Abel and Scherer 2012; Coquand 1991; Harper and Pfenning 2005]. In short, the algorithm
will reduce the types or terms under comparison to weak head normal form, compare the heads,
and, if they match, recurse on the bodies. Additionally, when comparing terms there is an extra
type-directed phase which takes care of η-equality: at function type, we apply the terms under
comparison to a fresh variable and continue comparing the results. The type-directed phase could
be easily extended to η-equality for other types, by comparing how their elements behave under
their eliminators, like it is done in Agda for records, singleton types and others. The proof that the

Authors’ addresses: Andreas Abel, Department of Computer Science and Engineering, Gothenburg University, Rännvägen
6b, Göteborg, 41296, Sweden, andreas.abel@gu.se; Joakim Öhman, IMDEA Software Institute, Campus Montegancedo
s/n, Madrid, 28223, Spain, joakim.ohman@imdea.org; Andrea Vezzosi, Department of Computer Science and Engineering,
Chalmers University of Technology, Rännvägen 6b, Göteborg, 41296, Sweden, vezzosi@chalmers.se.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/1-ART23
https://doi.org/10.1145/3158111

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111

23:2 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

algorithm correctly implements equality of types is based on a Kripke logical relation and follows
Abel and Scherer [2012] and Abel et al. [2016].

Our novel contribution is a full formalization of the algorithm and its proof of soundness,
completeness, and termination, in Martin-Löf Type Theory [Martin-Löf 1975] with intensional
equality, plus some well-understood extensions such as induction-recursion [Dybjer 2000]. As a
mechanization language, we use Agda itself in its latest version, using the language variant without
Streicher’s Axiom K [1993].1 Consequently, our proof is directly transferable to related foundations
such as Homotopy Type Theory extended by induction-recursion.
The Agda formalization is quite sizeable: around 10.000 lines of code (500.000 characters). Es-

pecially the proof of the fundamental theorem of logical relations is substantial (5.000 lines). The
congruence rule for the recursor for natural numbers alone requires a lemma that stretches over
more than 500 lines. It is not that the proof is mathematically deep, once the right definition of
the logical relation and the right formulation of the fundamental theorem are in placeÐit is just
that a formalization requires us to get all the technicalities right. In research articles with pen
and paper proofs only, the proof of the fundamental theorem is often skipped or reduced to the
single sentence łproof by induction on the typing and equality derivationsž. Yet checking that each
case of the induction goes through would require a reviewer many hours of disciplined technical
reasoning. Written out, the proof would stretch over many pages.
In previous works [Abel et al. 2007; Abel and Scherer 2012; Harper and Pfenning 2005], two

logical relations and two fundamental theorems are needed for the meta theory: one that entails
soundness of the algorithmic equality, and one for completeness. While in pen-and-paper proofs
we could get away with remarks like łproof analogousž, a formalization would require us to do the
proof exercise a second time; in our case, a truly intimidating task. Instead, we have been able to
formulate a more abstract version of the fundamental theorem which we instantiate twice. The
properties of judgemental equality which we obtain for the first instantiation are actually necessary
to establish the preconditions for the second instantiation; a single, most general instantiation of
the fundamental theorem is not possible to the best of our knowledge.
The abstract version of the fundamental theorem requires a logical relation parametrized on

a generic notion of typed equality that is specified by 8 properties (see Section 3.1). We were
able to extract these conditions by evolving the original, specific version of fundamental theorem
and logical relation into the abstract one. Here, we have been harvesting the first fruit of our
formalization: Once a proof is formalized, it can be safely refactored like a piece of software to make
it more general. The mechanical proof checker ensures we are not introducing mistakes during the
factorization. Our abstract formulation of the fundamental lemma is thus not only a necessity, but
also an outcome of the formalization. We have been able to advance the meta-theory of dependent
types by our formalization efforts.

The simpler proof technique of Harper and Pfenning [2005] which considers only the approximate
shape of types by erasing the dependencies is not applicable in our case because our types might be
determined by computations involving those dependencies, e.g., by recursion on natural numbers.
An alternative technique to prove decidability of conversion is Normalization by Evaluation [Abel
et al. 2007], however reducing terms to normal form before comparing them is often wasteful, so
such a proof technique would not directly prove the correctness of a practical conversion checking
algorithm. Highly related is the work of Barras [2010] which formalizes impredicative type theory
in set theory which is in turn formalized in the type-theoretic proof assistent Coq [INRIA 2017].
Barras uses axiomatic inaccessible cardinals to model universes; we try here to cut out the set theory
and formalize type theory directly in type theory. Altenkirch and Kaposi [2016; 2017] formalize type

1agda --without-K implements pattern matching without the K axiom.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.html#natrec-congTerm

Decidability of Conversion for Type Theory in Type Theory 23:3

theory in type theory using intrinsically well-typed object syntax via quotient inductive types in
the meta-language. They prove normalization by evaluation in Agda. However, their formalization
is less comprehensive than ours: their object type theory lacks inductive types, and their universe
lacks function types.

Overview. Logical relations have been used for many purposes and with equally varied definitions,
here we try to give an overview of the design principle used for ours. After specifying the syntax
and rules of our type theory λΠUN, in Section 2 we prove only a minimal amount of properties by
direct induction on typing or equality judgements. In particular, we prove the weakening lemma,
i.e., that all the judgments still hold if we apply well-typed renamings. The remaining properties
are derived from the logical relation later. We believe this makes the proof more extensible and
resilient to changes in the formulation of the typing rules. In Section 2 we also define a typed
weak head reduction relation which we prove deterministic. Using a typed variant of reduction
gives us the soundness of reduction immediately, which is otherwise established by the subject
reduction theorem. Subject reduction relies on the injectivity of the function type constructor which
is difficult to prove for a dependent type theory with universes. In fact, it is only a consequence of
the logical relation argument. Further, typed reduction is more flexible than untyped reduction
and could be equipped with type-directed reduction rules needed in extensions of type theory, for
instance, by singleton types or strict equality.
In Section 3 we define a Kripke logical relation, i.e., for each judgment Γ ⊢ J we define a

corresponding relation Γ⊩ J which exhibits the inductive structure of types and their normalization
properties. Many expected consequences of the judgments are actually non-trivial to derive. The
logical relation rationalizes their meaning by focusing on which observations are supposed to make
sense for each term. So for example Γ⊩ t : T not only tells us that Γ ⊢ t : T but that the same
judgment holds respectively for the weak head normal forms, a and A, of t and T , and that the
possible observations of a also belong to the logical relation. What we mean by observation depends
on the type: ifA is the universe then a has to either be neutral or a type former whose subterms also
belong in the logical relation, if A is the type of natural numbers then a must be neutral or either
zero or suc t for a t in the logical relation, and finally if A is the type of dependent functions, then
applying a to a term in the logical relation must produce another such term. Equality judgments
are similarly refined by comparing how the weak head normal forms of the terms involved react to
observations. In Section 4 we present the conversion algorithm and use the consequences of the
fundamental theorem to prove its termination. We prove the properties necessary to instantiate
the logical relation with the conversion algorithm and use the fundamental theorem to derive its
completeness. With this we can derive the decidability of the conversion judgments, which proves
the conversion algorithm’s correctness.

In summary, our work makes the following contribution to the programming language and type
theory:

• A complete formalization of the decidability of conversion for a dependent type theory with
one inductive type and one universe.
• Meta-theory based on typed weak head reduction.
• A single inductive-recursive Kripke logical relation which can be instantiated twice to first
prove soundness and then completeness of the conversion algorithm. As a condition of the
definition, the logical relation is indexed by a semantic type derivation, but we show proof
irrelevance for these derivations.

We have restricted our investigation to the minimal core of type theory which gives us large
elimination, to expose the structure of the metatheoretical development in its pure form.2 We

2In contrast, the development of Abel and Scherer [2012] is slightly veiled by in addition of an irrelevance modality.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

23:4 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

believe that our development can serve as a model for the justification and meta-theoretical
investigations of extensions of type theory.

This paper is best read in a PDF viewer, because definitions and lemmata in blue are clickable
and will open the corresponding Agda code in a browser, which is available online.3

2 A CORE TYPE THEORYWITH ONE UNIVERSE

In this section, we introduce λΠUN, a dependent type theory with natural numbers and recursion,
dependent function types, and one universe. Using the recursor into the universe, we can define
types whose shape depends on a value, for instance, the type of functions of arity n ∈ N. Such
recursively defined types are sometimes called large eliminations [Werner 1992]; their presence
makes the type theory fully dependent in the sense that value-dependencies cannot be erased from
types when constructing a model.4

2.1 Syntax

The grammar in Fig. 1 describes the raw syntax of λΠUN in de Bruijn style. Expressions t ∈ Expmay
or may not be in weak head normal form (Whnf), which in turn may or may not be neutral (Ne).
An expression inWhnf is an expression that cannot be further reduced by the weak head reduction
rules which we will later present. Expressions which are not in Whnf can all be deterministically
reduced by these rules. Neutral expressions have a variable in head position that blocks further
reductions.

In the formalization,Whnf and neutral are formalized as predicates over expressions. This allows
us to use a simple data structure for expressions and, thanks to Agda’s dependent pattern matching,
it is easy to inspect them.

N ∋ x de Bruijn indices
Exp ∋ t ,u,v,A,B ::= t | t u | natrecAt u v expressions
Whnf ∋ t ::= n | suc t | zero | λt | U | N | ΠAB weak head normal forms
Ne ∋ n,m,N ,M ::= ix | n t | natrecAt u n neutral expressions
Cxt ∋ Γ,∆ ::= ϵ | Γ,A contexts
Wk ∋ ρ ::= id | ↑ρ | ⇑ρ | ρ ◦ ρ ′ weakenings
Subst ∋ σ ::= ρ | ↑σ | ⇑σ | σ ◦ σ ′ | σ , t substitutions

Fig. 1. Grammar of λΠUN.

Expressions consist of the functional expressions: function application t u, abstraction λt , depen-
dent function type ΠAB; as well as the natural number expressions: zero, successor suc t , natural
number type N, natural number recursion natrecAt u v ; and variables ix and universe type U. We
use t ≡ u to denote syntactical equality of terms, which corresponds to propositional equality in
the Agda formalization. For variables, we use de Bruijn [1972] indices ix with x ∈ N. The following
positions bind one de Bruijn index: the sole argument of λ, the second argument of Π and the first
argument of natrec. Note that the formalization does not enforce well-scopedness of expressions,
instead we rely on the typing judgments to implicitly guarantee well-scopedness. In practice this
has allowed for some mistakes when formalizing the typing rules, which we had to go back and
correct, so intrinsically well-scoped syntax might have been a better choice.

3 https://mr-ohman.github.io/logrel-mltt/decofconv/
4An example for a not fully-dependent type theory would be the Calculus of Constructions [Coquand and Huet 1988] which
can be erased to Fω [Geuvers 1994].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Term
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Neutral
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Term
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Term
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Neutral
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Neutral
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Con
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Con
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Wk
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Wk
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Subst
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Subst
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html
https://mr-ohman.github.io/logrel-mltt/decofconv/

Decidability of Conversion for Type Theory in Type Theory 23:5

Expressions encompass values and types. For instance, λ(λi0), which would be λA. λx . x with
variable names, is the polymorphic identity function of typeΠU (Π i0 i1), which isΠ(A:U).Π(x :A).A
with names. Some expressions serve both as an object (term) and a type. For instance, N is the type
of zero but also an inhabitant of universe U.

Contexts Γ are snoc-lists of (type) expressions to record the types of the free variables of a term
or its type. We number the entries in contexts from right to left. For instance, the 3-element context
(ϵ,C,B,A), associates the variables i0 and i1 and i2 with types A and B and C , respectively.
Weakenings ρ, if executed on a term t as t[ρ], can raise free de Bruijn indices of term t . The

identity weakening id does nothing, the shifting of a weakening ↑ρ adds one to all indices, the
lifting of a weakening ⇑ρ is for traversing under binders, and composition ρ ◦ ρ ′ (pronounce: ρ
after ρ ′) lets us execute first weakening ρ ′ and then ρ.
Substitutions σ , executed as t[σ], replace the free de Bruijn indices of term t by new terms.

The substitution action t[σ] is defined by recursion on the term, in Fig. 2 we give the relevant
rewrite rules that follow from that. For instance, substitution (σ , t) would replace variable i0 by t
and the others according to σ . We abbreviate the singleton substitution action t[id,u] by t[u]; it
just replaces i0 by u and leaves the other variables unchanged. Weakenings are implicitly coerced
to substitutions; this defines t[ρ]. Weakenings and substitutions obey the usual laws, for instance,
⇑σ ◦ ↑id = ↑id ◦ σ .

U[σ] =⇒ U
(Π F G)[σ] =⇒ Π F [σ]G[⇑σ]

N[σ] =⇒ N

(λt)[σ] =⇒ λ t[⇑σ]

(t u)[σ] =⇒ t[σ]u[σ]

zero[σ] =⇒ zero
(suc t)[σ] =⇒ suc t[σ]

(natrecAt u a)[σ] =⇒ natrecA[⇑σ] t[σ]u[σ]a[σ]

ix [id] =⇒ ix
ix [↑id] =⇒ ix+1
ix [↑σ] =⇒ (ix [σ])[↑id]
i0 [⇑σ] =⇒ i0
ix+1[⇑σ] =⇒ (ix [σ])[↑id]
i0 [σ , t] =⇒ t

ix+1[σ , t] =⇒ ix [σ]
ix [σ ◦ σ

′] =⇒ (ix [σ
′])[σ]

Fig. 2. Rewrite rules for substitutions.

For non-dependent function types, we introduce the arrow notation. We define it as a Π type
with its second element weakened:

A→ B ≜ ΠAB[↑id]

Observe that (A → B)[σ] = (ΠAB[↑id])[σ] =⇒ ΠA[σ] (B[↑id][⇑σ]) = ΠA[σ] (B[σ][↑id]) =
A[σ] → B[σ] as expected, according to the substitution laws.

The expression natrec UA (λλ(N→ i0))n, with names natrec UA (λm.λB.N→ B)n, codes type
N
n → A which is short for N→ (· · · → (N→ A) . . .) with n occurrences of N. It is an example of

a large elimination of value n into universe U, producing a (small) type.
In the remainder of this paper, we reserve and exclusively use names n,m,N ,M for neutral

expressions, Γ,∆ for contexts, ρ for weakenings and σ for substitutions. Other names, for instance
t ,u,A,B, are used for expressions. Names with a bar, for instance t , are used for expressions in
Whnf. Note that symbols t and t are distinct, and t need not necessarily denote the Whnf of t .
However, we will often use them in that way.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Wk.id
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Wk.step
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Wk.lift
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#_•_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.Properties.html
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#subst
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf

23:6 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

⊢ Γ

⊢ ϵ

⊢ Γ Γ ⊢ A

⊢ Γ,A

Γ ⊢ A

⊢ Γ

Γ ⊢ U

⊢ Γ

Γ ⊢ N

Γ ⊢ F Γ, F ⊢ G

Γ ⊢ Π F G

Γ ⊢ A : U

Γ ⊢ A

i : A ∈ Γ

i0 : A[↑id] ∈ Γ,A

ix : A ∈ Γ

ix+1 : A[↑id] ∈ Γ,B

Γ ⊢ A = B

Γ ⊢ A

Γ ⊢ A = A

Γ ⊢ A = B

Γ ⊢ B = A

Γ ⊢ A = B Γ ⊢ B = C

Γ ⊢ A = C

Γ ⊢ F Γ ⊢ F = H Γ, F ⊢ G = E

Γ ⊢ Π F G = ΠH E

Γ ⊢ A = B : U

Γ ⊢ A = B

Γ ⊢ t : A

⊢ Γ

Γ ⊢ N : U

Γ ⊢ F : U Γ, F ⊢ G : U

Γ ⊢ Π F G : U

⊢ Γ i : A ∈ Γ

Γ ⊢ i : A

Γ ⊢ F Γ, F ⊢ t : G

Γ ⊢ λt : Π F G

Γ ⊢ д : Π F G Γ ⊢ a : F

Γ ⊢ д a : G[a]

⊢ Γ

Γ ⊢ zero : N

Γ ⊢ t : N

Γ ⊢ suc t : N

Γ ⊢ t : A Γ ⊢ A = B

Γ ⊢ t : B

Γ,N ⊢ G Γ ⊢ z : G[zero] Γ ⊢ s : ΠN (G → G[↑id, suc i0]) Γ ⊢ t : N

Γ ⊢ natrecG z s t : G[t]

Γ ⊢ t = u : A

Γ ⊢ t : A

Γ ⊢ t = t : A

Γ ⊢ t = u : A

Γ ⊢ u = t : A

Γ ⊢ t1 = t2 : A Γ ⊢ t2 = t3 : A

Γ ⊢ t1 = t3 : A

Γ ⊢ t = u : A Γ ⊢ A = B

Γ ⊢ t = u : B

Γ ⊢ F Γ ⊢ F = H : U Γ, F ⊢ G = E : U

Γ ⊢ Π F G = ΠH E : U

Γ ⊢ f = д : Π F G Γ ⊢ a = b : F

Γ ⊢ f a = дb : G[a]

Γ ⊢ F Γ ⊢ f : Π F G Γ ⊢ д : Π F G Γ, F ⊢ f [↑id] i0 = д[↑id] i0 : G

Γ ⊢ f = д : Π F G

Γ ⊢ t = u : N

Γ ⊢ suc t = sucu : N

Γ ⊢ F Γ, F ⊢ t : G Γ ⊢ a : F

Γ ⊢ (λt)a = t[a] : G[a]

Γ,N ⊢ F Γ ⊢ z : F [zero] Γ ⊢ s : ΠN (F → F [↑id, suc i0])

Γ ⊢ natrec F z s zero = z : F [zero]

Γ,N ⊢ F Γ ⊢ z : F [zero] Γ ⊢ s : ΠN (F → F [↑id, suc i0]) Γ ⊢ t : N

Γ ⊢ natrec F z s (suc t) = (s t) (natrec F z s t) : F [suc t]

Γ,N ⊢ F = F ′ Γ ⊢ z = z ′ : F [zero] Γ ⊢ s = s ′ : ΠN (F → F [↑id, suc i0]) Γ ⊢ t = t ′ : N

Γ ⊢ natrec F z s t = natrec F ′ z ′ s ′ t ′ : F [t]

Fig. 3. Inference rules of λΠUN.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#⊢_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_∷_∈_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_≡_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_≡_∷_

Decidability of Conversion for Type Theory in Type Theory 23:7

Γ ⊢ A −→ B and Γ ⊢ t −→ u : A

Γ ⊢ F Γ, F ⊢ t : G Γ ⊢ a : F

Γ ⊢ (λt)a −→ t[a] : G[a]

Γ ⊢ f −→ д : Π F G Γ ⊢ a : F

Γ ⊢ f a −→ д a : G[a]

Γ,N ⊢ F Γ ⊢ z : F [zero] Γ ⊢ s : ΠN (F → F [↑id, suc i0])

Γ ⊢ natrec F z s zero −→ z : F [zero]

Γ,N ⊢ F Γ ⊢ z : F [zero] Γ ⊢ s : ΠN (F → F [↑id, suc i0]) Γ ⊢ t : N

Γ ⊢ natrec F z s (suc t) −→ (s t) (natrec F z s t) : F [suc t]

Γ,N ⊢ F Γ ⊢ z : F [zero] Γ ⊢ s : ΠN (F → F [↑id, suc i0]) Γ ⊢ t −→ u : N

Γ ⊢ natrec F z s t −→ natrec F z s u : F [t]

Γ ⊢ A −→ B : U

Γ ⊢ A −→ B

Γ ⊢ t −→ u : A Γ ⊢ A = B

Γ ⊢ t −→ u : B

Γ ⊢ A −→∗ B and Γ ⊢ t −→∗ u : A

Γ ⊢ A

Γ ⊢ A −→∗ A

Γ ⊢ A −→ B Γ ⊢ B −→∗ C

Γ ⊢ A −→∗ C

Γ ⊢ t : A

Γ ⊢ t −→∗ t : A

Γ ⊢ t −→ u : A Γ ⊢ u −→∗ a : A

Γ ⊢ t −→∗ a : A

Fig. 4. Weak head reduction rules.

2.2 Rules and Semantics

In Fig. 3 we define the judgements ⊢ Γ for well-formed contexts, Γ ⊢ A for well-formed types,

Γ ⊢ A = B for conversion of types, Γ ⊢ t : A for type membership and Γ ⊢ t = u : A for conver-
sion of terms. These are all defined simultaneously: If we look at the following rules, we can see
how the judgements depend on each other:

Γ ⊢ A : U

Γ ⊢ A

Γ ⊢ A = B : U

Γ ⊢ A = B

Γ ⊢ t : A Γ ⊢ A = B

Γ ⊢ t : B

Γ ⊢ t = u : A Γ ⊢ A = B

Γ ⊢ t = u : B

The first two rules let us lift a term or a term equality to the type level if it is of type U. This
shows us that the judgements for types, Γ ⊢ A and Γ ⊢ A = B, depend on the judgements for terms
Γ ⊢ t : A and Γ ⊢ t = u : A, respectively. The last two rules are the conversion rules, which let us
take a term or a term equality to another, equivalent type. Here we see that both Γ ⊢ t : A and
Γ ⊢ t = u : A depend on Γ ⊢ A = B. Additionally, with the reflexivity rules, we can see that the
equality judgements refer to the typing judgements, thus, all the judgements depend on each other
and need to be defined simultaneously.

In Fig. 4 we list the reduction rules of λΠUN. Judgement Γ ⊢ t −→ u : A performs a single

weak head reduction step from t to u, and Γ ⊢ t −→∗ u : A is its reflexive-transitive closure. Our
grammar for Whnf captures exactly the well-typed terms that cannot be reduced further with
these judgements. Any well-typed term not inWhnf will in finitely many steps reduce to a term in
Whnf, yet this fact requires proof by logical relation and will appear quite late in our meta-theoretic
development, see the Weak Head Normalization Theorem (3.28). Weak head normalization allows
us to find the canonical head constructor of an expression if there is one.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_⇒_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_⇒_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_⇒*_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_⇒*_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#⊢_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_≡_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_≡_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_⇒_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_⇒*_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Reduction.html#whNorm

23:8 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

Note that the reduction rules are typed, which is one of the main technical innovations of
Abel, Coquand, and Manna [2016]. We immediately get that reduction is included in conversion.
In contrast, with untyped reduction, we would need a type preservation (aka subject reduction)
theorem which requires function type injectivity (aka Π injectivity) which in turn needs proof by a
logical relation [Abel et al. 2007; Abel and Scherer 2012; Goguen 1994].
Below, we prove some key properties of the rules.

Lemma 2.1 (Well-formed context). If Γ ⊢ J then ⊢ Γ for any typing or conversion judgement J .

Proof. By induction on the judgement. □

Lemma 2.2 (Reduction subsumed by eqality).

(1) If either Γ ⊢ A −→ B or Γ ⊢ A −→∗ B then Γ ⊢ A = B.
(2) If either Γ ⊢ t −→ u : A or Γ ⊢ t −→∗ u : A then Γ ⊢ t = u : A.

Proof. By induction on the judgement. □

With typing, we can also show that the first element of a reduction is a well-formed type or term.

Lemma 2.3 (Subject typing).

(1) If Γ ⊢ A −→ B then Γ ⊢ A.
(2) If Γ ⊢ t −→ u : A then Γ ⊢ t : A.

Proof. By induction on the reduction and by the well-formedness of the context (2.1). □

The analogue of this lemma, to derive Γ ⊢ B from Γ ⊢ A −→ B and Γ ⊢ u : A from Γ ⊢ t −→ u : A,
will be proven as a consequence of the fundamental theorem (see Thm. 3.26).

Lemma 2.4 (Whnfs do not reduce). We cannot step from a weak head normal form.

(1) Γ ⊢ A −→ A′ is impossible.
(2) Γ ⊢ t −→ t ′ : B is impossible.

Furthermore, a reduction sequence starting with a Whnf goes nowhere:

(3) If Γ ⊢ A −→∗ A′ then A ≡ A′.
(4) If Γ ⊢ t −→∗ t ′ : C then t ≡ t ′.

Proof. By induction on the reduction. □

Reduction is deterministic; each expression has at most one reduct.

Lemma 2.5 (Reduction is deterministic).

(1) If Γ ⊢ A −→ B and Γ ⊢ A −→ B′ then B ≡ B′.
(2) If Γ ⊢ t −→ u : A and Γ ⊢ t −→ u ′ : A then u ≡ u ′.

(3) If Γ ⊢ A −→∗ A and Γ ⊢ A −→∗ A′ then A ≡ A′.

(4) If Γ ⊢ t −→∗ t : A and Γ ⊢ t −→∗ t ′ : A then t ≡ t ′.

Proof. By induction on the reduction, using the fact that Whnfs do not reduce (2.4). □

We classify the weakenings ρ from Γ to ∆ by judgement ρ : ∆ ≤ Γ , inductively given by the

rules to follow. If we apply a well-formed weakening ρ : ∆ ≤ Γ to a term t in Γ, we obtain a term
t[ρ] in ∆.

id : Γ ≤ Γ

ρ : ∆ ≤ Γ

↑ρ : (∆,A) ≤ Γ

ρ : ∆ ≤ Γ

⇑ρ : (∆,A[ρ]) ≤ (Γ,A)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Properties.html#wfTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Properties.html#subsetTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Properties.html#redFirstTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Properties.html#whnfRedTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Properties.html#whrDetTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Weakening.html#_∷_⊆_

Decidability of Conversion for Type Theory in Type Theory 23:9

The rule for weakening composition is missing, because it is admissible.

Lemma 2.6 (Weakening composition). If ρ : ∆′ ≤ ∆ and ρ ′ : ∆ ≤ Γ then ρ ◦ ρ ′ : ∆′ ≤ Γ.

Proof. By induction on the structure of well-formed weakenings. □

In the remainder of this article, we shall implicitly assume well-formedness of both contexts, ⊢ ∆
and ⊢ Γ, whenever we mention ρ : ∆ ≤ Γ.
To prove the Weakening Lemma (2.7) we strengthened our typing rules slightly, leading to the

hypotheses marked in grey. For instance, in the case of Γ ⊢ λt : Π F G, it is not enough to only have

Γ, F ⊢ t : G since we also need Γ ⊢ F . While we can extract Γ ⊢ F from Γ, F ⊢ t : G via the context
⊢ Γ, F , it does not immediately follow that the extracted derivation of Γ ⊢ F is a smaller than the
original derivation of Γ ⊢ λt : Π F G, which means that the use of the induction hypothesis would
not be justified a priori. Hence, we have strengthened the premises of our rules by an additional
hypothesis Γ ⊢ F whenever the context extension Γ, F appears in a hypothesis. A similar technique
has been applied by Harper and Pfenning [2005].

Alternatively, we could use sized types in the metalanguage [Abel and Pientka 2016; Hughes et al.
1996; Sacchini 2013]. This would involve making our judgments sized, so that when we extract
Γ ⊢ F from Γ, F ⊢ t : G via context ⊢ Γ, F , the sizes would witness that Γ ⊢ F is smaller than ⊢ Γ, F
which is in turn smaller than Γ, F ⊢ t : G . Thus, we could justify the use of the induction hypothesis
on Γ ⊢ F .

Lemma 2.7 (Weakening). Let ρ : ∆ ≤ Γ. If Γ ⊢ J then ∆ ⊢ J [ρ] for any typing, conversion, or
reduction judgement J .

Proof. By induction on the judgement. □

Finally, we define well-formed substitutions and their equality as ∆ ⊢ σ : Γ and ∆ ⊢ σ = σ ′ : Γ ,
inductively by the rules to follow.

∆ ⊢ σ : ϵ

∆ ⊢ σ ◦ ↑id : Γ ∆ ⊢ i0[σ] : A[σ ◦ ↑id]

∆ ⊢ σ : Γ,A

∆ ⊢ σ = σ ′ : ϵ

∆ ⊢ σ ◦ ↑id = σ ′ ◦ ↑id : Γ ∆ ⊢ i0[σ] = i0[σ
′] : A[σ ◦ ↑id]

∆ ⊢ σ = σ ′ : Γ,A

We may consider a non-empty substitution ∆ ⊢ σ : Γ,A as a pair (σ ◦ ↑id, i0[σ]) of a substitution
σ ◦↑id and a term i0[σ], where we call the second component the head of σ and the first component
the tail of σ .

Similarly to well-formed weakenings, we shall henceforth assume that the contexts Γ and ∆ are
well-formed when we mention ∆ ⊢ σ : Γ or ∆ ⊢ σ = σ ′ : Γ. Unlike well-formed weakenings, we
do not need to immediately prove that well-formed substitutions can be applied to well-formed
expressions to create new well-formed expressions. Instead, this will follow from the fundamental
theorem (see Thm. 3.31).

3 KRIPKE LOGICAL RELATIONS

To prove decidability of λΠUN’s judgemental equality, we will show that it is equivalent to a more
structured equality relation, called algorithmic equality Γ ⊢ t ⇐̂⇒ u : A. For one, algorithmic
equality will have no rule for transitivity, because the transitivity rule is very non-deterministic:
If searching for a derivation of Γ ⊢ t = v : A we have to find a u such that Γ ⊢ t = u : A and
Γ ⊢ u = v : A, it is not clear how to guarantee progress. Instead, transitivity for algorithmic

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Weakening.html#_•ₜ_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Weakening.html#wk
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢ˢ_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢ˢ_≡_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.html#_⊢_[conv↑]_∷_

23:10 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

equality will be admissible. Secondly, we will prove that to derive Γ ⊢ t = u : A, it is sufficient
to derive equality Γ ⊢ t = u : A of the weak head normal forms of t and u. This way, we can
exploit the structure of objects during equality check; for instance, injectivity of constructors:
Γ ⊢ suc t = suc t ′ : N holds iff Γ ⊢ t = t ′ : N.
For λΠUN and related type theories, the essential properties like weak head normalization and

injectivity of constructors are not provable directly by induction on the typing and equality
judgements. Instead a logical relation is needed which represents the structure of objects explicitely,
such as

• canonicity: a closed term of type N reduces either to zero or suc t , or
• function type injectivity: if two function types are equal, then their domains and codomains
are equal.

In this section, we will construct a logical relation Γ⊩ℓ t = u : A, pronounced łt and u are
reducibly equal at type A (of level ℓ in context Γ).ž This relation will be Kripke in the sense that
it is closed under weakening. It will expose the inductive structure of objects such that we can
prove desired properties like normalization, canonicity, and injectivity. Analogously, we will define
reducibility predicates and relations for the other main judgements of λΠUN, namely Γ ⊢ A and
Γ ⊢ A = B and Γ ⊢ t : A.
Reducible equality Γ⊩ℓ t = u : A will be a subrelation of judgemental equality Γ ⊢ t = u : A, but

we will later need a similar relation that is a subrelation of algorithmic equality. Thus, we define
it as a subrelation of a generic equality relation Γ ⊢ t � u : A which can be instantiated for both
purposes. To prove that judgemental equality is in turn a subrelation of reducible equality, i.e.,
reducible equality is complete, we have to introduce a third relation, valid equality Γ ⊩v

ℓ
t = u : A.

Fig. 5 summarizes these relations and their connections.

Γ ⊢ t ⇐̂⇒ u : A

Soundness (4.3)

yy
Γ ⊢ t = u : A

Fundamental
Theorem (3.21)

��

Γ ⊢ t � u : A
Subsumption

(Property 1)
oo

Instance 2

ee

Γ ⊩v
ℓ
t = u : A

Identity

substitution (3.17)
// Γ⊩ℓ t = u : A

Escape
Lemma (3.2)

OO

Fig. 5. Proof outline.

3.1 Generic Equality

To prove decidability of conversion, we need to introduce two logical relations, one with the
conversion judgements for equality and another with algorithmic equality (see Section 4.1). The
first logical relation will be used to derive proofs which are necessary to prove the properties of
algorithmic equality, one being decidability, while the second logical relation will be used to prove
completeness of algorithmic equality. The proofs about these logical relations are quite large, and
with the two relations being quite similar, we would like to be able to not duplicate our work. We

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_≡_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet._⊢_≅_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ᵛ⟨_⟩_≡_∷_/_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.html#_⊢_[conv↑]_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_≡_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet._⊢_≅_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ᵛ⟨_⟩_≡_∷_/_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_≡_∷_/_

Decidability of Conversion for Type Theory in Type Theory 23:11

therefore introduce a notion of generic equality which we use to parameterize the definition of our
logical relation, such that it can be instantiated to get the two logical relations we need.
We here give a specification for a set of relations being a generic equality. A generic equality

consists of three relations that satisfy the properties we list below: Γ ⊢ A � B for equality of

types, Γ ⊢ t � u : A for equality of terms of a type and Γ ⊢ t ∼ u : A for equality between neutral
terms. In the formalization, this is implemented as a record type with one field for each of the three
relations and one field for each property.

Property 1 (Subsumption).

(1) If Γ ⊢ t ∼ u : A then Γ ⊢ t � u : A. (Neutral equality is included in generic equality.)
(2) If Γ ⊢ A � B : U then Γ ⊢ A � B. (Small types are included in large types.)

Further, generic equality is a subrelation of judgmental equality.

(3) If Γ ⊢ A � B then Γ ⊢ A = B.
(4) If Γ ⊢ t � u : A then Γ ⊢ t = u : A.

Property 2 (Partial eqivalence relation). The three generic equality relations Γ ⊢ _ � _ and
Γ ⊢ _ � _ : A and Γ ⊢ _ ∼ _ : A are symmetric and transitive.

Property 3 (Conversion). If Γ ⊢ t � u : A and Γ ⊢ A = B then Γ ⊢ t � u : B. (Same for ∼.)

Property 4 (Weakening). Generic equality is closed under weakning, i.e., if ρ : ∆ ≤ Γ and Γ ⊢ J

then ∆ ⊢ J [ρ], where J ranges over the three equality forms.

Property 5 (Weak head expansion). Γ ⊢ _ � _ and Γ ⊢ _ � _ : A are closed under weak head
expansion.

(1) If Γ ⊢ A −→∗ A and Γ ⊢ B −→∗ B and Γ ⊢ A � B then Γ ⊢ A � B.

(2) If Γ ⊢ A −→∗ B and Γ ⊢ a −→∗ a : B and Γ ⊢ b −→∗ b : B and Γ ⊢ a � b : B then
Γ ⊢ a � b : A.

Property 6 (Type constructor congruence). If ⊢ Γ then:

(1) Γ ⊢ U � U.
(2) Γ ⊢ N � N and Γ ⊢ N � N : U.
(3) If Γ ⊢ F � H and Γ, F ⊢ G � E then Γ ⊢ Π F G � ΠH E. (And analogously for Γ ⊢ _ � _ : U.)

Property 7 (Value constructor congruence and η).

(1) If ⊢ Γ then Γ ⊢ zero � zero : N.
(2) If Γ ⊢ t � u : N then Γ ⊢ suc t � sucu : N.
(3) If Γ ⊢ F and Γ ⊢ f : Π F G and Γ ⊢ д : Π F G and Γ, F ⊢ f [↑id] i0 � д[↑id] i0 : G then

Γ ⊢ f � д : Π F G.

Property 8 (Congruence for neutrals).

(1) If Γ ⊢ i : A then Γ ⊢ i ∼ i : A.
(2) If Γ ⊢ f ∼ д : Π F G and Γ ⊢ a � b : F then Γ ⊢ f a ∼ дb : G[a].
(3) If Γ,N ⊢ F � F ′ and Γ ⊢ z � z ′ : F [zero] and Γ ⊢ s � s ′ : ΠN (F → F [↑id, suc i0]) and

Γ ⊢ n ∼ n′ : N then Γ ⊢ natrec F z s n ∼ natrec F ′ z ′ s ′n′ : F [n].

Now that we have defined all the necessary properties, we will introduce our first instance of
generic equality, which is simply judgmental equality.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet._⊢_≅_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet._⊢_≅_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet._⊢_~_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-to-≅ₜ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-to-≅ₜ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-univ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-eq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅ₜ-eq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-sym
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-sym
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-trans
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-conv
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-conv
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-wk
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-red
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-red
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅ₜ-red
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-Urefl
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-Urefl
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-ℕrefl
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-Π-cong
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅ₜ-Π-cong
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅ₜ-zerorefl
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅ₜ-zerorefl
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-suc-cong
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.≅-η-eq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-var
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-var
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-app
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqualityRelation.html#EqRelSet.~-natrec

23:12 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

Instance 1 (Judgmental eqality). The following instantiation of generic equality satisfies all
the required properties:

Γ ⊢ A � B instantiated to Γ ⊢ A = B

Γ ⊢ t � u : A instantiated to Γ ⊢ t = u : A

Γ ⊢ t ∼ u : A instantiated to Γ ⊢ t = u : A

Proof. Subsumption (Prop. 1) is obvious. The weakening property (Prop. 4) is satisfied by the
weakening lemma (2.7) and weak head expansion (Prop. 5) is proven by the fact that reduction
is subsumed by equality (2.2). The remaining properties are fulfilled by the inference rules of
judgmental equality. □

Note that for definitional equality we do not need the distinction between Γ ⊢ t � u : A and
Γ ⊢ t ∼ u : A. However, for the algorithmic equality it is required, therefore it is part of the
specification.

3.2 A Logical Relation for Reducibility

In this section, we define reducibility judgements Γ⊩ℓ J for types, type equality, terms, and term
equality. These judgements take the form of logical predicates and relations [Friedman 1975]. They
entail well-formedness, i.e., if Γ⊩ℓ J then Γ ⊢ J , see the Escape5 Lemma (3.2). The opposite direction,
Γ ⊢ J implies Γ⊩ℓ J will be a consequence of the Fundamental Theorem of Logical Relations (3.21).
A logical relation on well-typed open terms is necessarily Kripke, i.e., closed under weakening: if
ρ : ∆ ≤ Γ and Γ⊩ℓ J then ∆⊩ℓ J . Otherwise, the Fundamental Theorem would fail for binders (λ
and Π).

The index ℓ denotes the type level and ranges over 0, 1.We shall define the reducibility judgements
by induction on ℓ, i.e., first for small types (ℓ = 0) and then for large types (ℓ = 1), using the
judgements for small types. Spelled out, the reducibility judgements are:

Γ⊩ℓ A A is a reducible type of level ℓ in context Γ
Γ⊩ℓ A = B A and B are reducibly equal types of level ℓ in context Γ
Γ⊩ℓ t : A t is a reducible term of level-ℓ type A in context Γ
Γ⊩ℓ t = u : A t and u are reducibly equal terms of level-ℓ type A in context Γ

These judgements will imply that all involved objects are reducible [Girard 1972] (in the sense of
weak normalization), in particular, all involved objects have a weak head normal form. Further, the
judgements do not distinguish between objects that have the same weak head normal form. This is
achieved by defining the judgements on weak head normal forms and closing them under weak
head expansion.
The qualifier łlogicalž means that objects are characterized by their behavior, e.g., non-neutral

objects of type N should reduce to zero or suc t for a reducible t , and functions should yield a
reducible result if applied to a reducible argument. As a first approximation, let us define Γ⊩ℓ t :
Π F G to hold if Γ ⊢ t −→∗ t : Π F G and for all Γ⊩ℓ a : F we have Γ⊩ℓ t a : G[a]. Note that formula
Γ⊩ℓ a : F occurs negatively in this definition, which has dire consequences: First, we will not be
able to inductively prove weakening for this definition, thus, we have to build it into the definition.
Hence, we require instead that for all ρ : ∆ ≤ Γ and ∆⊩ℓ a : F [ρ] we have ∆⊩ℓ t[ρ]a : G[ρ,a].

Secondly, the negative occurrence prevents us to define Γ⊩ℓ t : A as inductive predicate. Instead,
we have to define it by recursion on the type A, but not simply on the size of the type expression A,
since this does not get smaller in the recursive calls, e.g., ∆⊩ℓ t[ρ]a : G[ρ,a]. We define Γ⊩ℓ t : A by
recursion on the derivation Tof Γ⊩ℓ A, written T :: Γ⊩ℓ A, which in turn is an inductive predicate.

5The terminology escaping the logical relation was coined by Schürmann and Sarnat [2008].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.EqRelInstance.html#eqRelInstance
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_≡_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_≡_∷_/_

Decidability of Conversion for Type Theory in Type Theory 23:13

Thus, the term reducibility judgement will depend on Tand we write Γ⊩ℓ t : A/T. In turn, the
rule for Γ⊩ℓ Π F G will have to refer to reducible terms of type F , but we may assume ∆⊩ℓ a : F/U
to be already defined since U :: Γ⊩ℓ F is a subderivation mentioned in the premise of the rule.
This definition scheme of interleaving induction and recursion is called induction-recursion [Dybjer
2000]. While the dependence on derivation is necessary for the well-foundedness of the definition
process, the exact shape of the derivation should be irrelevant for the reducibility judgements. We
prove this a posteriori in Lemma 3.5.

We now to proceed to give the rules for the inductive predicate Γ⊩ℓ A , each rule followed by
the clauses for the judgements that are simultaneously defined by recursion on its derivation T:

Γ⊩ℓ A = B/T and Γ⊩ℓ t : A/T and Γ⊩ℓ t = u : A/T . In the following, we often refer to the

package of these four judgements as the logical relation. The logical relation is implemented under
an external well-founded induction on ℓ, so that definitions for large types can make use of the
relations for small ones. Most rules are identical for both levels, as most of the type formers belong
to both small and large typesÐexcept for the universe U which is necessarily a large type.

Universe. U shall be a large reducible type.

⊢ Γ

Γ⊩ℓ U
ℓ
′
<ℓ

Since we have no reduction on the level of large types, and hence, nothing reduces to U, this rule is
trivially closed under weak head expansion. The side condition ℓ′<ℓ could be written as ℓ = 1. But
since we doing a well-founded induction on ℓ, our formulation is convenient, as it directly gives us
the induction hypothesis for ℓ′.
For derivations Tbuilt with that rule we define:
• Γ⊩ℓ U = B/T iff B ≡ U. This means that only U is reducibly equal to itself.
• Γ⊩ℓ t : U/T (t is a reducible member of U) iff the following hold:
(1) There exists some t such that Γ ⊢ t :−→∗: t : U and Γ ⊢ t � t : U, meaning t has a reflexive

whnf.
(2) Γ⊩ℓ′ t , which means that t is a reducible small type (already defined by induction hypothesis).
• Γ⊩ℓ t = u : U/T (t and u are reducibly equal members of U) iff:
(1) There are t and u such that Γ ⊢ t :−→∗: t : U and Γ ⊢ u :−→∗: u : U and Γ ⊢ t � u : U.

This means that t and u have whnfs related by the generic equality.
(2) U :: Γ⊩ℓ′ t and Γ⊩ℓ′ u and Γ⊩ℓ′ t = u/U, meaning that t and u are reducibly equal small

types.

Neutrals. Any type that has a neutral whnf N shall be reducible. Since generic equality is not
reflexive in general, we also require N to be reflexive.

Γ ⊢ A :−→∗: N Γ ⊢ N ∼ N : U

Γ⊩ℓ A

Here, Γ ⊢ A :−→∗: N is a short-hand for the conjunction of Γ ⊢ A and Γ ⊢ N and Γ ⊢ A −→∗ N .
For any relation ®, we will from now on use Γ ⊢ A :®: B to signify the conjunction of Γ ⊢ A
and Γ ⊢ B and Γ ⊢ A ® B, and use Γ ⊢ t :®: u : A to signify the conjunction of Γ ⊢ t : A and
Γ ⊢ u : A and Γ ⊢ t ® u : A. We introduce the extra well-formedness premises because we cannot
yet prove Γ ⊢ A or Γ ⊢ B from most of our relations, for instance, neither from Γ ⊢ A = B nor from
Γ ⊢ A −→∗ B. The lacking property is known as syntactic validity [Harper and Pfenning 2005] or
presupposition [Goguen 2000]. It is non-trivial to derive because of the asymmetry present in some

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹Π_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_≡_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩⟨_⟩_≡_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹_.U
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹U≡_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹U_∷U/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹U_≡_∷U/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹_.ne
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.html#_⊢_:⇒*:_∷_

23:14 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

of the inference rules, like the congruence rule for application or Π-types. We will obtain syntactic
validity (Thm. 3.26) later as a consequence of the fundamental theorem.

Given a derivation T :: Γ⊩ℓ A built by the rule for neutral types we define:
• Γ⊩ℓ A = B/T iff there is a neutralM such that Γ ⊢ B :−→∗: M and Γ ⊢ N ∼ M : U.
Neutral types are reducibly equal to types that have an equal whnf up to generic neutral equality.
• Γ⊩ℓ t : A/T iff there is a neutral n such that Γ ⊢ t :−→∗: n : N and Γ ⊢ n ∼ n : N .
Neutral types are inhabited by terms that have a neutral whnf.
• Γ⊩ℓ t = u : A/T iff Γ ⊢ t :−→∗: n : N and Γ ⊢ u :−→∗: m : N and Γ ⊢ n ∼ m : N for some
neutrals n,m.
At neutral type, objects are reducibly equal if they have the same whnf up to generic neutral
equality.

Natural Numbers. N and its well-formed weak head expansions are reducible types.

Γ ⊢ A :−→∗: N

Γ⊩ℓ A

For a derivation Tbuilt by that rule we define:
• Γ⊩ℓ A = B/T iff Γ ⊢ B −→∗ N.

• Γ⊩ℓ t : A/T iff Γ ⊩N t which is defined to hold iff there exists a whnf t such that:
(1) Γ ⊢ t :−→∗: t : N
(2) Γ ⊢ t � t : N
(3) Γ ⊩Nw t , which is inductively defined by the rules

Γ ⊩Nw zero

Γ ⊩N t

Γ ⊩Nw suc t

Γ ⊢ n : N Γ ⊢ n ∼ n : N

Γ ⊩Nw n

With that inductive definition, we model the different properties of the possible constructions
of natural numbers. For the suc t case, we require that t is a reducible natural number, so
that we can properly use natural recursion on the number. For the neutral case, we require
that n is well-formed and neutrally reflexive. Finally, for the zero case, we have no additional
requirements.

• Γ⊩ℓ t = u : A/T iff Γ ⊩N t = u which is defined to hold iff there exist whnfs t and u such
that:

(1) Γ ⊢ t :−→∗: t : N
(2) Γ ⊢ u :−→∗: u : N
(3) Γ ⊢ t � u : N
(4) Γ ⊩Nw t = u , which is analogously to Γ ⊩Nw t defined inductively by the rules

Γ ⊩Nw zero = zero

Γ ⊩N t = u

Γ ⊩Nw suc t = sucu

Γ ⊢ n ∼m : N

Γ ⊩Nw n =m

Function Spaces. A type with whnf Π F G is reducible if both F and G are reducible in a way
detailed in the following rule:

Γ ⊢ A :−→∗: Π F G Γ ⊢ F Γ, F ⊢ G

U ::
(

∀ρ : ∆ ≤ Γ. ∆⊩ℓ F [ρ]
)

T ::
(

∀ρ : ∆ ≤ Γ. ∆⊩ℓ a : F [ρ]/U(ρ) =⇒ ∆⊩ℓG[ρ,a]
)

∀ρ : ∆ ≤ Γ, u :: ∆⊩ℓ a : F [ρ]/U(ρ).
∆⊩ℓ b : F [ρ]/U(ρ) =⇒ ∆⊩ℓ a = b : F [ρ]/U(ρ) =⇒ ∆⊩ℓG[ρ,a] = G[ρ,b]/T(ρ,u)

Γ⊩ℓ A

The notation ł::ž denotes the assignment of a type to a variable in the meta-theory. It is the same
as Agda’s elementhood relation ł:ž and can for instance be used in ∀u :: U. T(u) which means

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩ne_≡_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩ne_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩ne_≡_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹_.ℕ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩ℕ_≡_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩ℕ_∷ℕ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#Natural-prop
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#_⊩ℕ_≡_∷ℕ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#[Natural]-prop
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹Π_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹_.Π

Decidability of Conversion for Type Theory in Type Theory 23:15

łfor all u of type U, there is T(u).ž For weakening, we abbreviate (∀ρ :: Wk. ρ : Γ ≤ ∆ =⇒ P) to
(∀ρ : Γ ≤ ∆. P).
For A to be a reducible Π-type, we first require A to reduce to Π F G, where F and G are well-

formed. Secondly, F has to be reducible under any weakening ρ. Thirdly, for any reducible term
a in F [ρ], the type G[ρ,a] has to be reducible. Finally, if a and b are reducibly equal of type F [ρ],
the types G[ρ,a] and G[ρ,b] are reducibly equal as well. The requirement of reducibility under
weakening is needed for proving reducibility under binder cases like λ and Π, and the last two
conditions model that G is a F -indexed family of types.
Given a derivation Tbuilt by the function space rule we define:
• Γ⊩ℓ A = B/T iff there are F ′ and G ′ such that:
(1) Γ ⊢ B −→∗ Π F ′G ′

(2) Γ ⊢ Π F G � Π F ′G ′

(3) ∀ρ : ∆ ≤ Γ. ∆⊩ℓ F [ρ] = F ′[ρ]/T(ρ)
(4) ∀ρ : ∆ ≤ Γ, u :: ∆⊩ℓ a : F [ρ]/T(ρ). ∆⊩ℓG[ρ,a] = G

′[ρ,a]/U(ρ,u)
For B to be reducibly equal to A, the type B has to reduce to Π F ′G ′ which is equal in generic
equality to the Π F G, the type A reduces to. We also require that under weakening ρ, the types
F [ρ] and F ′[ρ] have to be reducibly equal and for a of type F [ρ], G[ρ,a] and G ′[ρ,a] are
reducibly equal.
• Γ⊩ℓ t : A/T iff there is a t such that:
(1) Γ ⊢ t :−→∗: t : Π F G

(2) Γ ⊢ t � t : Π F G

(3) ∀ρ : ∆ ≤ Γ, u :: ∆⊩ℓ a : F [ρ]/T(ρ). ∆⊩ℓ t[ρ]a : G[ρ,a]/U(ρ,u)
(4) ∀ρ : ∆ ≤ Γ, u :: ∆⊩ℓ a : F [ρ]/T(ρ). ∆⊩ℓ b : F [ρ]/T(ρ) =⇒ ∆⊩ℓ a = b : F [ρ]/T(ρ) =⇒

∆⊩ℓ t[ρ]a = t[ρ]b : G[ρ,a]/U(ρ,u)
The requirement 3 effectively says that under weakening ρ, given a term a of type F [ρ], we can
apply a to t[ρ] with type G[ρ,a]. Requirement 4 basically says the same thing, but for equality.
Also note that the reducibility of b is not necessary to complete the definition, but will be helpful
in some of the proofs.
• Γ⊩ℓ t = u : A/T iff there is a t and a u such that:
(1) Γ ⊢ t :−→∗: t : Π F G

(2) Γ ⊢ u :−→∗: u : Π F G

(3) Γ ⊢ t � u : Π F G

(4) Γ⊩ℓ t : A/T
(5) Γ⊩ℓ u : A/T
(6) ∀ρ : ∆ ≤ Γ, u :: ∆⊩ℓ a : F [ρ]/T(ρ). ∆⊩ℓ t[ρ]a = u[ρ]a : G[ρ,a]/U(ρ,u)
In requirement 6, we say that under weakening ρ, given a term a of type F [ρ], t[ρ] and u[ρ] are
equal under application of a. This is necessary to prove congruence of application.

Embedding. Reducible small types can also be viewed as reducible large types.

U :: Γ⊩ℓ′ A

Γ⊩ℓ A
ℓ
′
<ℓ

Given a derivation Tbuilt by that rule:
• Γ⊩ℓ A = B/T iff Γ⊩ℓ′ A = B/U.
• Γ⊩ℓ t : A/T iff Γ⊩ℓ′ t : A/U. This allows type level embedding of reducible terms.
• Γ⊩ℓ t = u : A/T iff Γ⊩ℓ′ t = u : A/U.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Wk
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹Π_≡_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹Π_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹Π_≡_∷_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹_.emb

23:16 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

3.3 Properties of the Logical Relation

In this section, we establish some basic properties of the logical relation. We start by reflexivity,
showing that reducible objects are well-formed, and logically related objects are generically equal.

Lemma 3.1 (Reflexivity). Given T :: Γ⊩ℓ A then:

(1) Γ⊩ℓ A = A/T.
(2) Γ⊩ℓ t : A/T then Γ⊩ℓ t = t : A/T.

Proof. By induction on T. □

Lemma 3.2 (Escape lemma). Given T :: Γ⊩ℓ A then:

(1) Γ ⊢ A.
(2) If Γ⊩ℓ A = B/T then Γ ⊢ A � B.
(3) If Γ⊩ℓ t : A/T then Γ ⊢ t : A.
(4) If Γ⊩ℓ t = u : A/T then Γ ⊢ t � u : A.

Proof. By induction on Tand reduction being subsumed by equality (2.2). □

For much of the following proofs, we will need to use induction on two or more derivations
of type reducibility for types that are reducibly equal. As there are four different cases for typing
derivations (ignoring the embedding case, as one can immediately recurse on its premise), with two
derivations we would have 16 cases and with three derivation we would have 64 cases. However,
it turns out that a lot of cases can be refuted by the reduction properties. We would like to avoid
repeating this refutation process and instead only prove it once.
We introduce what we call the shape view, which is an inductively defined relation on two or

more type reducibility derivations such that an instance of the view is only valid if the derivations
have a compatible inductive structure, i.e. either they are built with the same inference rule or one
of them is an embedding, for which we use the structure of the premise. For example, if we have
two type reducibility derivations Tand U, and T is built using the natural number type rule:

Γ ⊢ A :−→∗: N

Γ⊩ℓ A

Then for U to be related by the view with T, it must be built by the same rule either directly or
inside the embedding case. Pattern matching on proofs of the view then allows us to consider
only the compatible cases and not have to worry everywhere about the ones where e.g. both
A −→∗ Π F G and A −→∗ N.

Lemma 3.3 (Shape view construction). Given T :: Γ⊩ℓ A and T
′ :: Γ⊩ℓ′ B, if Γ⊩ℓ A = B/T

then there is an shape view of Tand T
′.

Proof. By induction on Tand T
′, as Whnfs do not reduce (2.4) and reduction is deterministic

(2.5). □

Corollary 3.4 (Reflexive shape view construction). Given T :: Γ⊩ℓ A and T
′ :: Γ⊩ℓ′ A,

there is an shape view of Tand T
′.

Proof. Directly by reflexivity of reducible equality (3.1) and shape view construction (3.3). □

Lemma 3.5 (Irrelevance). Given T :: Γ⊩ℓ A and T
′ :: Γ⊩ℓ′ A then:

(1) If Γ⊩ℓ A = B/T then Γ⊩ℓ′ A = B/T′ .
(2) If Γ⊩ℓ t : A/T then Γ⊩ℓ′ t : A/T′ .
(3) If Γ⊩ℓ t = u : A/T then Γ⊩ℓ′ t = u : A/T′ .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Reflexivity.html#reflEq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Escape.html#escape
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.ShapeView.html#ShapeView
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.html#LogRel._⊩¹_.ℕ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.ShapeView.html#goodCases
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.ShapeView.html#goodCasesRefl
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Irrelevance.html#irrelevanceEq

Decidability of Conversion for Type Theory in Type Theory 23:17

Proof. By induction on the shape view of Tand T
′ given by reflexive shape view construction

(3.4) and by determinism of reduction (2.5). □

Even if Tand T
′ above can actually differ, e.g. by containing different typing derivations, our

irrelevance lemma shows that for the recursively defined judgements, the specific proof of type
reducibility Tdoes not matter. We can therefore use these judgements more freely as we no longer
need to refer to a specific type reducibility derivation.
Based on this intuition, we will from here on drop the type derivation from the reducibility

judgements and instead implicitly state that there exists such a derivation for a judgement. More

formally, we let Γ⊩ℓ J : A mean that Γ⊩ℓ J : A/T holds for some T :: Γ⊩ℓ A. However, this
definition is not practical in the implementation as often judgements will share the same type,
and thus using only the above definition would introduce extra complications. Therefore, in the
implementation, we use derivations explicitly.

Lemma 3.6 (Weakening). For all judgements J of the logical relation, given ρ : ∆ ≤ Γ and Γ⊩ℓ J

then ∆⊩ℓ J [ρ].

Proof. By induction on the derivation of type A and by weakening of well-formed expressions
(2.7) and irrelevance (3.5). □

Lemma 3.7 (Conversion). Given Γ⊩ℓ A :=: B then:

(1) Γ⊩ℓ t : A iff Γ⊩ℓ t : B.
(2) Γ⊩ℓ t = u : A iff Γ⊩ℓ t = u : B.

Proof. By induction on the shape view (3.3) of equal types A and B, using determinism of
reduction (2.5) and irrelevance 3.5. The two directions of iff are proven simultaneously. □

Lemma 3.8 (Symmetry).

(1) If Γ⊩ℓ A :=: B then Γ⊩ℓ B = A.
(2) If Γ⊩ℓ t = u : A then Γ⊩ℓ u = t : A.

Proof. By induction on the shape view (3.3) of the equal types A and B, using determinism of
reduction (2.5), irrelevance (3.5) and conversion for reducible equality (3.7). □

Lemma 3.9 (Transitivity).

(1) If Γ⊩ℓ A :=: A′ and Γ⊩ℓ A
′ :=: A′′ then Γ⊩ℓ A = A′′.

(2) If Γ⊩ℓ t = t ′ : A and Γ⊩ℓ t
′
= t ′′ : A then Γ⊩ℓ t = t ′′ : A.

Proof. By induction on the shape view (3.3) of typeA,A′ andA′′, using determinism of reduction
(2.5), irrelevance (3.5) and conversion of reducible equality (3.7). □

Lemma 3.10 (Neutrals are reducible). Let Γ⊩ℓ A and Γ ⊢ n : A.

(1) If Γ ⊢ n :∼: n : A then Γ⊩ℓ n : A.
(2) If Γ ⊢ n′ : A and Γ ⊢ n :∼: n′ : A then Γ⊩ℓ n = n

′ : A.

Proof. By induction on the derivation of type A and by well-formed weakening (2.7), reduction
is subsumed by equality (2.2) and escape (3.2). □

Lemma 3.11 (Weak head expansion).

(1) If Γ⊩ℓ B and Γ ⊢ A −→∗ B then Γ⊩ℓ A :=: B.
(2) If Γ⊩ℓ u : B and Γ ⊢ t −→∗ u : B then Γ⊩ℓ t :=: u : B.

Proof. By induction on the reducibility of B, subject typing (2.3) and reflexivity (3.1). □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Weakening.html#wk
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Conversion.html#convTerm₁
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Symmetry.html#symEq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Transitivity.html#transEq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Neutral.html#neuTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Properties.Reduction.html#redSubst*

23:18 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

Lemma 3.12 (Application reducibility). Given Γ⊩ℓ Π F G and Γ⊩ℓ u : F and Γ⊩ℓG[u] then:

(1) If Γ⊩ℓ t : Π F G then Γ⊩ℓ t u : G[u].
(2) If Γ⊩ℓ t = t ′ : Π F G and Γ⊩ℓ u :=: u ′ : F then Γ⊩ℓ t u = t ′u ′ : G[u].

Proof. For case (1): By applying u instead of a in the following premise of the reducible term t :

∀ρ : ∆ ≤ Γ. ∆⊩ℓ a : F [ρ] =⇒ ∆⊩ℓ t[ρ]a : G[ρ,a]

Case (2) is solved similarly. This proof is accomplished with escape (3.2), irrelevance (3.5), conversion
(3.7), symmetry (3.8), transitivity (3.9) and weak head expansion (3.11). □

3.4 Validity Judgements

In Section 3.2, we have introduced reducible objects Γ⊩ℓ t : A, which are guaranteed to be well-
typed, Γ ⊢ t : A, but we cannot prove the converse yet, i.e., that each well-typed term is reducible.
In other words, reducible objects do not directly provide a model of λΠUN, in the sense that the
interpretation function cannot be implemented by a naive induction on the derivation. The simplest
counterexample is the typing rule for λ-abstraction:

Γ, F ⊢ t : G

Γ ⊢ λt : Π F G

By definition of Γ⊩ℓ λt : Π F G, we have to show, amongst others, that for any ρ : ∆ ≤ Γ and any
∆⊩ℓ a : F , we have ∆⊩ℓ(λt)[ρ]a : G[ρ,a]. Using weak head expansion, it is sufficient to show
∆⊩ℓ t[ρ,a] : G[ρ,a]. However, our induction hypothesis Γ, F ⊩ℓ t : G is too weak to prove that.
We would need to substitute with ∆ ⊢ (ρ,a) : (Γ, F), but reducible terms are not closed under
substitution. The way out is by blunt force: we define valid objects Γ ⊩v

ℓ
t : A to be objects that

are reducible under substitution with reducible objects. Those then model our syntax, i.e., we can
prove the fundamental theorem (3.21) which states that Γ ⊢ t : A implies Γ ⊩v

ℓ
t : A. Applying

valid object t to the identity substitution (3.17), we obtain reducibility Γ⊩ℓ t : A and all the good
properties that follow from it.

For each of the reducibility judgments we then define their validity counterparts. We will make
use of judgments for validity of contexts G ::⊩v

Γ, reducible substitutions S :: ∆⊩s σ : Γ/G and
their equality ∆⊩s σ = σ ′ : Γ/G/Swhich we will define just after through induction-recursion.
First we define valid types as those that are reducible under any reducible substitution and

respect their equality. Γ ⊩v
ℓ
A/G iff for all S :: ∆⊩s σ : Γ/G it holds that:

(1) U :: ∆⊩ℓ A[σ]

(2) ∆⊩s σ ′ : Γ/G and ∆⊩s σ = σ ′ : Γ/G/S imply ∆⊩ℓ A[σ] = A[σ ′]/U

Note that we will use the above enumeration indexes as projections, e.g., given T :: Γ ⊩v
ℓ
A/G the

notation T(S).1 stands for the proof of that A[σ] is reducible.
Given Tas above we define valid type equality, valid terms and valid term equality:

Γ ⊩v
ℓ
A = B/G/T iff for all S :: ∆⊩s σ : Γ/Gwe have ∆⊩ℓ A[σ] = B[σ]/T(S).1.

Γ ⊩v
ℓ
t : A/G/T iff for all S :: ∆⊩s σ : Γ/G it holds that:

(1) ∆⊩ℓ t[σ] : A[σ]/T(S).1
(2) ∆⊩s σ ′ : Γ/G and ∆⊩s σ = σ ′ : Γ/G/S imply ∆⊩ℓ t[σ] = t[σ ′] : A[σ]/T(S).1

Γ ⊩v
ℓ
t = u : A/G/T iff for all S :: ∆⊩s σ : Γ/Gwe have ∆⊩ℓ t[σ] = u[σ] : A[σ]/T(S).1.

By induction-recursion, we define ⊩v
Γ inductively by two rules, one for the empty context and

one for context expansion, and simultaneously define ∆⊩s σ : Γ/G and ∆⊩s σ = σ ′ : Γ/G/S by

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Application.html#appTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ᵛ⟨_⟩_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ᵛ⟨_⟩_≡_/_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ᵛ⟨_⟩_∷_/_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ᵛ⟨_⟩_≡_∷_/_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#⊩ᵛ_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ˢ_∷_/_/_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.html#_⊩ˢ_≡_∷_/_/_/_

Decidability of Conversion for Type Theory in Type Theory 23:19

recursion on the derivation G ::⊩v
Γ, the second depending on S :: ∆⊩s σ : Γ/G. For the following

definitions, let ∆ be a well-formed context.

Empty Context.

⊩v ϵ

For derivations Gbuilt with that rule we define that ∆⊩s σ : ϵ/G holds unconditionally and for all
S :: ∆⊩s σ : ϵ/Gwe have ∆⊩s σ = σ ′ : ϵ/G/S.

Extended Context.
G
′ ::⊩v

Γ T :: Γ ⊩v
ℓ
A/G′

⊩v Γ,A

For derivations Gbuilt with that rule we define:
• ∆⊩s σ : Γ,A/G iff
(1) S′ :: ∆⊩s σ ◦ ↑id : Γ/G′ meaning that the tail of σ is reducible.
(2) ∆⊩ℓ i0[σ] : A[σ ◦ ↑id]/T(S′).1 meaning that the head of σ is reducible.
• For all S :: ∆⊩s σ : Γ,A/Gwe have ∆⊩s σ = σ ′ : Γ,A/G/S iff
(1) ∆⊩s σ ◦ ↑id = σ ′ ◦ ↑id : Γ/G′/S.1
(2) ∆⊩ℓ i0[σ] = i0[σ

′] : A[σ ◦ ↑id]/T(S.1)
Note that S.1 stands for the proof that the tail of σ is reducible.

3.5 Properties of the Validity Judgements

In preparation for the fundamental theorem, we prove a few properties about validity and reducible
substitutions.

As the validity judgements are defined using induction-recursion, we willÐsimilarly to the logical
relationÐprove context and typing derivation irrelevance.

Lemma 3.13 (Irrelevance). Let G ::⊩v
Γ and G

′ ::⊩v
Γ.

(1) If S :: ∆⊩s σ : Γ/G then there is a derivation S
′ :: ∆⊩s σ : Γ/G′ .

If further ∆⊩s σ = σ ′ : Γ/G/S then ∆⊩s σ = σ ′ : Γ/G′/S′ .
(2) If T :: Γ ⊩v

ℓ
A/G then there is a derivation T

′ :: Γ ⊩v
ℓ
A/G′ . It also follows that:

(a) If Γ ⊩v
ℓ
A = B/G/T then Γ ⊩v

ℓ
A = B/G′/T′ .

(b) If Γ ⊩v
ℓ
t : A/G/T then Γ ⊩v

ℓ
t : A/G′/T′ .

(c) If Γ ⊩v
ℓ
t = u : A/G/T then Γ ⊩v

ℓ
t = u : A/G′/T′ .

Proof. By induction on Gand G
′, using irrelevance for the reducibility judgements (3.5). □

Derivation irrelevance justifies that we from here on drop the context and type derivation
arguments from the validity judgements, as we do for reducibility. Further, when we state ∆⊩s σ : Γ
or ∆⊩s σ = σ ′ : Γ we presuppose ⊩v

Γ.
The escape lemma extends to reducible substitutions:

Lemma 3.14 (Escape for substitutions).

(1) If ∆⊩s σ : Γ then ∆ ⊢ σ : Γ.
(2) If ∆⊩s σ = σ ′ : Γ then ∆ ⊢ σ = σ ′ : Γ.

Proof. By induction on ⊩v
Γ, using the escape lemma (3.2). □

The following lemma is needed to make the fundamental theorem go through the binder cases
(λ, Π), in particular, to establish the well-formedness and well-typedness conditions there. It relies

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Irrelevance.html#irrelevanceSubst
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Properties.html#wellformedSubst

23:20 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

on weakening for the reducibility judgements, and is the reason why our logical relation is Kripke
in the first place.

Lemma 3.15 (Substitution weakening). Given ρ : ∆′ ≤ ∆ and ∆⊩s σ : Γ then ∆
′⊩s ρ ◦ σ : Γ.

If further ∆⊩s σ = σ ′ : Γ then ∆
′⊩s ρ ◦ σ = ρ ◦ σ ′ : Γ.

Proof. By induction on ⊩v
Γ, using weakening for the reducibility judgements (3.6). □

Lemma 3.16 (Substitution lifting). Given Γ ⊩v
ℓ
A/G and ∆⊩s σ : Γ then ∆,A[σ]⊩s ⇑σ : Γ,A.

If further ∆⊩s σ = σ ′ : Γ then ∆,A[σ]⊩s ⇑σ = ⇑σ ′ : Γ,A.

Proof. By reducibility of neutrals (3.10) and substitution weakening (3.15). □

Lemma 3.17 (Identity substitution). If ⊩v
Γ then ⊢ Γ and Γ⊩s id : Γ.

Proof. By induction on the validity of Γ, escape (3.2), irrelevance (3.5) and substitution lifting
(3.16). □

Lemma 3.18 (Substitution eqivalence). ∆⊩s _ = _ : Γ is an equivalence relation on valid
substitutions.

(1) If ∆⊩s σ : Γ then ∆⊩s σ = σ : Γ.
(2) If ∆⊩s σ :=: σ ′ : Γ then ∆⊩s σ ′ = σ : Γ.
(3) If ∆⊩s σ :=: σ ′ : Γ and ∆⊩s σ ′ :=: σ ′′ : Γ then ∆⊩s σ = σ ′′ : Γ.

Proof. By induction on ⊩v
Γ, using reflexivity (3.1), conversion (3.7), symmetry (3.8) and

transitivity (3.9) of reducible equality. □

Corollary 3.19 (Reducibility of validity). All valid types, terms and equalities are reducible.

Proof. By applying the reducible identity substitution (3.17) to the valid object and using
reducible irrelevance (3.5). □

While we can substitute valid objects with arbitrary reducible substitutions and get reducible
objects, we do not directly get valid objects. This is because reducibility is not closed under
substitution. Thus we will restrict ourselves to proving that substitution of a single term preserves
validity.

Lemma 3.20 (Single substitution). Given Γ ⊩v
ℓ
F :

(1) If Γ ⊩v
ℓ
t : F and either Γ, F ⊩v

ℓ
G or Γ ⊩v

ℓ
Π F G then Γ ⊩v

ℓ
G[t].

(2) If Γ ⊩v
ℓ
F :=: F ′ and Γ ⊩v

ℓ
t :=: t ′ : F with Γ ⊩v

ℓ
t ′ : F ′ and either Γ, F ⊩v

ℓ
G :=: G ′ with

Γ, F ′ ⊩v
ℓ
G ′ or Γ ⊩v

ℓ
Π F G :=: Π F ′G ′ then Γ ⊩v

ℓ
G[t] = G ′[t ′].

(3) If Γ ⊩v
ℓ
t : F and Γ, F ⊩v

ℓ
G and Γ, F ⊩v

ℓ
f : G then Γ ⊩v

ℓ
f [t] : G[t].

(4) If Γ, F ⊩v
ℓ
u : F [↑id] then Γ, F ⊩v

ℓ
G[↑id,u].

(5) If Γ, F ⊩v
ℓ
u :=: u ′ : F [↑id] then Γ, F ⊩v

ℓ
G[↑id,u] = G ′[↑id,u ′].

Proof. We elaborate case (1): If Γ, F ⊩v
ℓ
G, we deconstruct that validity judgement and re-

construct it such that when applying a substitution σ , we instead apply (σ , t[σ]). Otherwise, if
Γ ⊩v

ℓ
Π F G, we deconstruct the reducible object of the validity judgement and replace a with t[σ]

in the following premise of reducible Π:

∀ρ : ∆ ≤ Γ. ∆⊩ℓ a : F [ρ] =⇒ ∆⊩ℓG[ρ,a]

All in all, to prove this lemma we need escape (3.2), irrelevance (3.5), conversion (3.7) and
transitivity (3.9) of reducible equality, and reflexivity of substitution (3.18). □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Properties.html#wkSubstS
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Properties.html#liftSubstS
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Properties.html#soundContext
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Properties.html#reflSubst
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Reducibility.html#reducibleᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.SingleSubst.html#substS

Decidability of Conversion for Type Theory in Type Theory 23:21

With the above lemmas, we can now prove the fundamental theorem:

Theorem 3.21 (Fundamental theorem).

(1) If ⊢ Γ then ⊩v
Γ.

(2) If Γ ⊢ A then Γ ⊩v
ℓ
A.

(3) If Γ ⊢ A = B then Γ ⊩v
ℓ
A :=: B.

(4) If Γ ⊢ t : A then Γ ⊩v
ℓ
A and Γ ⊩v

ℓ
t : A.

(5) If Γ ⊢ t = u : A then Γ ⊩v
ℓ
A and Γ ⊩v

ℓ
t :=: u : A.

Proof. By induction on the well-formed judgements. The most salient cases are, Π and Π-
congruence, variables, λ and η-equality, application and application-congruence, and finally natrec
and natrec-congruence.

This is accomplished with escape (3.2), reducible equality being a equivalence relation (3.1 & 3.8
& 3.9), conversion (3.7), irrelevance of reducibility (3.5) and validity (3.13), reducibility of neutrals
(3.10), weak head expansion (3.11), reducibility of application (3.12), substitution weakening (3.15)
and lifting (3.16), reflexivity of substitutions (3.18) and single substitution (3.20). □

With the fundamental theorem, escape lemma (3.2) and reducibility of validity (3.19) we have
effectively proven Γ ⊢ J iff Γ ⊩v J for the judgements J for types, terms and their respective equality.
From this we can also prove Γ ⊢ J iff Γ⊩ J :

Corollary 3.22 (Reducibility of well-formedness). Any well-formed object is reducible.

Proof. Well-formedness implies validity by the fundamental theorem (3.21) instantiated to
judgemental equality (1). Further, validity implies reducibility (3.19). □

We will also prove a fundamental theorem for substitutions:

Theorem 3.23 (Fundamental theorem for substitutions). If ∆ ⊢ σ : Γ for well-formed
contexts Γ and ∆ then ∆⊩s σ : Γ.

Proof. By induction on Γ and with the judgmental instance (1): by fundamental theorem (3.21)
and reducible irrelevance (3.5), valid irrelevance (3.13) and identity substitution (3.17). □

3.6 Consequences of the Fundamental Theorem

We will here declare and prove some theorems we can now prove using the fundamental theorem
with generic equality instance 1.

Theorem 3.24 (Canonicity). Let suc0 t ≜ t and sucn+1 t ≜ suc (sucn t). Given ϵ ⊢ t : N then
there exists n such that ϵ ⊢ t = sucn zero : N.

Proof. Since well-formed objects are reducible (3.22) we have ϵ ⊩N t , on which we induct. □

Theorem 3.25 (Π-injectivity). If Γ ⊢ Π F G = ΠH E then Γ ⊢ F = H and Γ, F ⊢ G = E.

Proof. By well-formed objects being reducible (3.22) we have Γ⊩ℓ Π F G = ΠH E, from which
injectivity can be retrieved by escape (3.2), irrelevance (3.5) and reducibility of neutrals (3.10). □

Theorem 3.26 (Syntactic validity).

(1) If Γ ⊢ A = B then Γ ⊢ A and Γ ⊢ B.
(2) If Γ ⊢ t : A then Γ ⊢ A.
(3) If Γ ⊢ t = u : A then Γ ⊢ t : A and Γ ⊢ u : A.
(4) If Γ ⊢ A −→∗ B then Γ ⊢ A and Γ ⊢ B.
(5) If Γ ⊢ t −→∗ u : A then Γ ⊢ t : A and Γ ⊢ u : A.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Fundamental.html#valid
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Pi.html#Πᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Pi.html#Π-congᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Pi.html#Π-congᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Fundamental.html#fundamentalVar
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Lambda.html#lamᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Lambda.html#η-eqᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Application.html#appᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Application.html#app-congᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Natrec.html#natrecᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Substitution.Introductions.Natrec.html#natrec-congᵛ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Fundamental.Reducibility.html#reducible
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.LogicalRelation.Fundamental.html#fundamentalSubst
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Canonicity.html#canonicity
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Injectivity.html#injectivity
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Syntactic.html#syntacticEq

23:22 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

Proof. By the fundamental theorem (3.21) and by reductions being subsumed by equality (2.2)
and escape (3.2). □

Corollary 3.27 (Syntactic Pi). If Γ ⊢ Π F G then Γ ⊢ F and Γ, F ⊢ G.

Proof. By lemma Π-injectivity (3.25) and syntactic validity (3.26). □

Theorem 3.28 (Weak head normalization).

(1) If Γ ⊢ A then there exists some A such that Γ ⊢ A −→∗ A.
(2) If Γ ⊢ t : A then there exists some t such that Γ ⊢ t −→∗ t : A.

Proof. By well-formed objects being reducible (3.22) we get a reducible object for which we use
induction and reduction being subsumed by equality (2.2). □

Theorem 3.29 (Syntactic eqality).

(1) If Γ ⊢ U = A then U ≡ A.

(2) If Γ ⊢ N = A then N ≡ A.

(3) If Γ ⊢ N = A then there existsM such thatM ≡ A.

(4) If Γ ⊢ Π F G = A then there exist H and E such that ΠH E ≡ A.

Proof. By well-formed objects being reducible (3.22) and induction on the reducible equality
with reducible irrelevance (3.5). □

Theorem 3.30 (Syntactic ineqality). For A,B ∈ {U,N,N ,Π F G}, if A . B then Γ ⊢ A , B.

Proof. By well-formed objects being reducible (3.22) and showing that there cannot exist an
instance of the shape view of types A and B using escape (3.2), shape view construction (3.3) and
reducible irrelevance (3.5). □

Theorem 3.31 (Substitution).

(1) If ∆ ⊢ σ : Γ and Γ ⊢ A then ∆ ⊢ A[σ].
(2) If ∆ ⊢ σ = σ ′ : Γ and Γ ⊢ A = B then ∆ ⊢ A[σ] = B[σ ′].
(3) If ∆ ⊢ σ : Γ and Γ ⊢ t : A then ∆ ⊢ t[σ] : A[σ].
(4) If ∆ ⊢ σ = σ ′ : Γ and Γ ⊢ t = u : A then ∆ ⊢ t[σ] = u[σ ′] : A[σ].

Proof. By the fundamental theorem (3.21) and fundamental theorem for substitutions (3.23),
escape (3.2) and valid irrelevance (3.13). □

Theorem 3.32 (Substitution composition). Given ∆′ ⊢ σ : ∆ and ∆ ⊢ σ ′ : Γ then ∆′ ⊢ σ ◦σ ′ : Γ

Proof. By induction on the well-formedness of Γ and σ , using the substitution theorem(3.31). □

Theorem 3.33 (Neutral type eqality). If Γ ⊢ n : A and Γ ⊢ n : B then Γ ⊢ A = B.

Proof. By induction on the syntactic structure of n and by Π-injectivity (3.25), syntactic validity
(3.26) and substitution (3.31). □

Theorem 3.34 (Universe membership).

(1) If Γ ⊢ A and A has no occurrence of U then Γ ⊢ A : U.
(2) If Γ ⊢ A = B and A and B has no occurrence of U then Γ ⊢ A = B : U.

Proof. By induction on the judgements and by syntactic validity (3.26). □

Theorem 3.35 (Consistency). Γ ⊢ zero = suc zero : N is impossible.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Syntactic.html#syntacticΠ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Reduction.html#whNorm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Equality.html#U≡A
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Inequality.html#U≢ℕ
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Substitution.html#substitution
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Substitution.html#substComp′
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.NeTypeEq.html#neTypeEq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.InverseUniv.html#inverseUniv
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Consequences.Consistency.html#zero≢one

Decidability of Conversion for Type Theory in Type Theory 23:23

Proof. By well-formed objects being reducible (3.22), using induction on the reducible instance
of the equality and using the fact that Whnf do not reduce (2.4) and reducible irrelevance (3.5). □

4 DECIDABILITY

To prove that our language has decidable conversion, we will now introduce an algorithm for
conversion of types and terms. The algorithm is defined as a relation which we then show decidable
and equivalent to the conversion judgements. In particular completeness is proven by constructing
a generic equality instance for the algorithmic equality, so that we can apply our fundamental
theorem.

4.1 Conversion Algorithm

Our conversion algorithm is defined inductively as seen in Fig. 6, with six different relations defined
simultaneously.
We first have the relations Γ ⊢ n ←→m : A and Γ ⊢ n ←̂→m : A, which is the algorithm that

determines equality between neutral terms, where the former relation enforces the type A to be in
Whnf. Secondly we have the relations Γ ⊢ A⇐⇒ B and Γ ⊢ A ⇐̂⇒ B, which determines equality
between types, where the former of the two relations enforces the types to be in Whnf. Lastly, we
have the relations Γ ⊢ t ⇐⇒ u : A and Γ ⊢ t ⇐̂⇒ u : A, which determines equality between terms.
Similarly to above the former enforces Whnf of the type and the two terms.
Of note is the third rule of these two relations. We do not check that the type N is equal to the

typeM inferred by the neutral algorithm. Since we can derive this equality by Lemma 3.33, we can
be economic and drop this premise, thus simplifying the relation.

4.2 Properties of the Conversion Algorithm

Our next goal is to prove decidability and construct a generic equality instance for the logical
relation. It turns out that some of the properties necessary for instance validity is also necessary
for proving decidability, thus we will begin proving those properties.
To prove these properties, we also need a notion of context equality, which we will denote as

⊢ Γ = ∆ . We define it inductively:

⊢ ϵ = ϵ

⊢ Γ = ∆ Γ ⊢ A = B

⊢ Γ,A = ∆,B

Lemma 4.1 (Context conversion for typing judgements). Given ⊢ Γ = ∆:

(1) ∆ ⊢ id : Γ and contexts Γ and ∆ are well-formed.
(2) If Γ ⊢ J then ∆ ⊢ J for the syntactic judgements J of types, type membership and their respective

equality.

Proof. By induction on the context equality and by substitution (3.31). □

Lemma 4.2 (Context conversion for reduction and algorithmic eqality). If ⊢ Γ = ∆

and Γ ⊢ J then ∆ ⊢ J for the syntactic judgements J of reduction and algorithmic equality.

Proof. By induction on the judgements and context conversion for typing judgements (4.1). □

Lemma 4.3 (Soundness).

(1) If either Γ ⊢ A ⇐̂⇒ B or Γ ⊢ A⇐⇒ B then Γ ⊢ A = B.
(2) If either Γ ⊢ t ←̂→ u : A or Γ ⊢ t ←→ u : A or Γ ⊢ t ⇐̂⇒ u : A or Γ ⊢ t ⇐⇒ u : A then

Γ ⊢ t = u : A.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Untyped.html#Whnf
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Stability.html#⊢_≡_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Stability.html#stability
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Stability.html#stabilityRedTerm
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Soundness.html#soundness~↑

23:24 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

Γ ⊢ n ←→m : A

Γ ⊢ ix : A x ≡ y

Γ ⊢ ix ←̂→ iy : A

Γ ⊢ n ←→m : Π F G Γ ⊢ t ⇐̂⇒ u : F

Γ ⊢ n t ←̂→mu : G[t]

Γ,N ⊢ F ⇐̂⇒ G Γ ⊢ z ⇐̂⇒ z ′ : F [zero]
Γ ⊢ s ⇐̂⇒ s ′ : ΠN (F → F [↑id, suc i0]) Γ ⊢ n ←→m : N

Γ ⊢ natrec F z s n ←̂→ natrecG z ′ s ′m : F [n]

Γ ⊢ A −→∗ A Γ ⊢ n ←̂→m : A

Γ ⊢ n ←→m : A

Γ ⊢ A⇐⇒ B

Γ ⊢ A −→∗ A Γ ⊢ B −→∗ B Γ ⊢ A⇐⇒ B

Γ ⊢ A ⇐̂⇒ B

Γ ⊢ N ←→ M : U

Γ ⊢ N ⇐⇒ M

⊢ Γ

Γ ⊢ U⇐⇒ U

⊢ Γ

Γ ⊢ N⇐⇒ N

Γ ⊢ F Γ ⊢ F ⇐̂⇒ H Γ, F ⊢ G ⇐̂⇒ E

Γ ⊢ Π F G ⇐⇒ ΠH E

Γ ⊢ t ⇐⇒ u : A

Γ ⊢ A −→∗ A Γ ⊢ t −→∗ t : A Γ ⊢ u −→∗ u : A Γ ⊢ t ⇐⇒ u : A

Γ ⊢ t ⇐̂⇒ u : A

Γ ⊢ n ←→m : N

Γ ⊢ n ⇐⇒m : N

Γ ⊢ n : N Γ ⊢m : N Γ ⊢ n ←→m : M

Γ ⊢ n ⇐⇒m : N

Γ ⊢ A : U Γ ⊢ B : U Γ ⊢ A⇐⇒ B

Γ ⊢ A⇐⇒ B : U

⊢ Γ

Γ ⊢ zero⇐⇒ zero : N

Γ ⊢ t ⇐̂⇒ u : N

Γ ⊢ suc t ⇐⇒ sucu : N

Γ ⊢ F Γ ⊢ f : F Γ ⊢ д : F Γ ⊢ f [↑id] i0 ⇐̂⇒ д[↑id] i0 : G

Γ ⊢ f ⇐⇒ д : Π F G

Fig. 6. Algorithm for conversion of neutrals, types and terms.

Proof. By induction on the judgements and by syntactic validity (3.26), universe membership
(3.34), neutral type equality (3.33), and reduction being subsumed by equality (2.2). □

Lemma 4.4 (Conversion).

Given ⊢ Γ = ∆ and Γ ⊢ A = B and Γ ⊢ t ⇐̂⇒ u : A then ∆ ⊢ t ⇐̂⇒ u : B.

Proof. By induction on the judgements and by Π-injectivity (3.25), syntactic validity (3.26),
weak head normalization (3.28), reduction being subsumed by equality (2.2) and context conversion
(4.1 and 4.2). □

We can now prove decidability for the algorithm.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.html#_⊢_~_↑_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.html#_⊢_[conv↑]_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.html#_⊢_[conv↑]_∷_
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Conversion.html#convConv↑Term

Decidability of Conversion for Type Theory in Type Theory 23:25

Theorem 4.5 (Decidability of algorithmic eqality). Given ⊢ Γ = ∆:

(1) If Γ ⊢ t ←̂→ t : A and ∆ ⊢ u ←̂→ u : B then it is decidable that there exists C such that
Γ ⊢ t ←̂→ u : C .

(2) If Γ ⊢ A ⇐̂⇒ A and ∆ ⊢ B ⇐̂⇒ B then Γ ⊢ A ⇐̂⇒ B is decidable.
(3) If Γ ⊢ t ⇐̂⇒ t : A and ∆ ⊢ u ⇐̂⇒ u : A then Γ ⊢ t ⇐̂⇒ u : A is decidable.

Proof. By induction on the judgements and by Π-injectivity (3.25), syntactic validity (3.26),
weak head normalization (3.28), strong equality (3.29), syntactic inequality (3.30), substitution (3.31),
neutral type equality (3.33), determinism of reduction (2.5), soundness (4.3), context conversion for
typing judgements (4.1) and conversion of algorithmic equality (4.4). □

Lemma 4.6 (Symmetry). Given ⊢ Γ = ∆:

(1) If Γ ⊢ t ←̂→ u : A then there exists B such that Γ ⊢ A = B and ∆ ⊢ u ←̂→ t : B.
(2) If Γ ⊢ A ⇐̂⇒ B then ∆ ⊢ B ⇐̂⇒ A.
(3) If Γ ⊢ t ⇐̂⇒ u : A then ∆ ⊢ u ⇐̂⇒ t : A.

Proof. By induction on the judgements and by Π-injectivity (3.25), syntactic validity (3.26),
weak head normalization (3.28), strong equality (3.29), substitution (3.31), context conversion (4.1
and 4.2), soundness (4.3) and conversion of algorithmic equality (4.4). □

Lemma 4.7 (Transitivity). Given ⊢ Γ = ∆:

(1) If Γ ⊢ t ←̂→ u : A and ∆ ⊢ u ←̂→ v : A then there exists B such that Γ ⊢ A = B and
Γ ⊢ t ←̂→ v : B.

(2) If Γ ⊢ A ⇐̂⇒ B and ∆ ⊢ B ⇐̂⇒ C then Γ ⊢ A ⇐̂⇒ C .
(3) If Γ ⊢ t ⇐̂⇒ u : A and ∆ ⊢ u ⇐̂⇒ v : A then ∆ ⊢ t ⇐̂⇒ v : A.

Proof. By induction on the judgements and by Π-injectivity (3.25), syntactic inequality (3.30),
substitution (3.31), neutral type equality (3.33), reduction being subsumed by equality 2.2, deter-
minism of reduction 2.5, context conversion (4.1 and 4.2) and soundness (4.3). □

Lemma 4.8 (Weakening). For all algorithmic equality judgements J , given ρ : ∆ ≤ Γ and Γ ⊢ J

then ∆ ⊢ J [ρ].

Proof. By induction on the judgements and well-formed weakening (2.7). □

Lemma 4.9 (Whnf Lifting).

(1) If Γ ⊢ A⇐⇒ B then Γ ⊢ A ⇐̂⇒ B.
(2) If Γ ⊢ t ⇐⇒ u : A then Γ ⊢ t ⇐̂⇒ u : A.

Proof. By syntactic validity (3.26) and soundness (4.3). □

Lemma 4.10 (Neutral lifting). If Γ ⊢ t ←̂→ u : A then Γ ⊢ t ⇐̂⇒ u : A.

Proof. By well-formed objects being reducible (3.22), induction on the reducible type and then
by syntactic validity (3.26), weak head normalization (3.28), reduction being subsumed by equality
(2.2), determinism of reduction (2.5), reducible neutrals (3.10), and soundness (4.3). □

We can now construct our instance.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Decidable.html#dec~↑
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Symmetry.html#sym~↑
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Transitivity.html#trans~↑
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Weakening.html#wk~↑
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Lift.html#liftConv
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Lift.html#lift~toConv↓

23:26 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

Instance 2 (Algorithmic eqality instance). The following instantiation of generic equality
satisfies all the required properties for the logical relation:

Γ ⊢ A � B instantiated to Γ ⊢ A ⇐̂⇒ B

Γ ⊢ t � u : A instantiated to Γ ⊢ t ⇐̂⇒ u : A

Γ ⊢ t ∼ u : A instantiated to the pair Γ ⊢ A = B and Γ ⊢ t ←̂→ u : B

Proof. We get the necessary properties from the definition of the algorithm and soundness (4.3),
conversion (4.4), symmetry (4.6), transitivity (4.7), weakening (4.8), lifting (4.9) and neutral lifting
(4.10) of algorithmic equality. □

With the instance of generic equality, we can now use the logical relation and the fundamental
theorem to prove the completeness of algorithmic equality and finally decidability of conversion:

Theorem 4.11 (Completeness of algorithmic eqality).

(1) If Γ ⊢ A = B then Γ ⊢ A ⇐̂⇒ B.
(2) If Γ ⊢ t = u : A then Γ ⊢ t ⇐̂⇒ u : A.

Proof. By the fundamental theorem (3.21) with algorithmic equality (2) and escape (3.2). □

Theorem 4.12 (Decidability of conversion).

(1) If Γ ⊢ A and Γ ⊢ B then Γ ⊢ A = B is decidable.
(2) If Γ ⊢ t : A and Γ ⊢ u : A then Γ ⊢ t = u : A is decidable.

Proof. By completeness (4.11), soundness (4.3) and decidability of algorithmic equality (4.5). □

5 CONCLUSION

We have fully formalized a substantial part of the meta-theory of a fragment of Martin-Löf type
theory, using a limited set of features of Agda. Our formalization should be implementable in other
type theories that support dependent types, universes, and induction-recursion.
However, the gap between expressive power of the formalized type theory (the object type

theory) and the host type theory (the meta type theory) is fairly large: we require induction-
recursion on the meta level to formalize just one inductive type and one universe on the object
level. Yet the grand goal is boot-strapping type theory, meaning the implementation of type theory
in a small extension of itself. (An extension in proof-theoretical strength is needed due to Gödel’s
incompleteness theorem.) A small extension would be, e.g., one more universe or one additional
axiom. To advance towards the grand goal, we have to bring object and meta type theory closer
together. Obviously, there are two directions: we can make the meta theory weaker, or the object
theory stronger.

The main strength of the meta theory comes from induction-recursion [Dybjer 2000; Dybjer and
Setzer 2001, 2003], which is a very powerful principle, proof-theoretically. Using iterated inductive-
recursive definitions in the meta-theory with just one universe, we can model a countable hierarchy
of universes of an object theory that lacks induction-recursion. Allowing more universes in the
meta-theory, it is likely possible to encode our inductive-recursive logical relation using iterated
inductive definitions only, placing the inductive definition of object-level universe n in meta-level
universe n. Similar techniques have been used for the semantic modeling and auto-validation
of impredicative type theories [Barras 2010; Werner 1994], using inaccessible cardinals which
are analogous to universes. Eliminating induction-recursion would require reworking the central
definition of the logical relation in our development, but could lead to a formalized boot-strapping
of intensional predicative Martin-Löf Type Theory in itself (plus an extra universe and/or axiom).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.EqRelInstance.html#eqRelInstance
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Conversion.Consequences.Completeness.html#completeEq
https://mr-ohman.github.io/logrel-mltt/decofconv/Definition.Typed.Decidable.html#dec

Decidability of Conversion for Type Theory in Type Theory 23:27

Concerning the other direction, making the object theory stronger, this would amount to ex-
tending our logical relation to model induction-recursion. This is interesting future work, as it will
enhance our understanding of induction-recursion from a syntactic perspective. Recent advances
in understanding induction-recursion might aid this research [Ghani et al. 2015].
It remains interesting to investigate the relationship between the constructions in our proof

and standard notions of models of type theory like Categories with Families (CwFs) by Dybjer
[1995]. By contrast, Altenkirch and Kaposi [2016; 2017] directly define the syntax of type theory as
an internal formulation of the initial CwF, i.e., quotienting terms by judgmental equality. In our
case, however, we want to discuss reduction, which is only meaningful on terms that are not yet
quotiented. A way to bridge this gap could be to formulate a weaker notion of CwFs, where some
equations only have to hold up to some equivalence, and use it to restructure our proof, with the
intent of providing a more abstract and generalizable presentation.
As for our contributions to proof methods, we have used proof-relevant induction-recursion

to define a parameterized logical relation, which allows us to derive important properties like
consistency, normalization, and Π-injectivity. We have managed to show that the a priori proof-
relevant definitions are proof-irrelevant a posteriori, in the sense that the structure of the inductive
derivations we recurse on does not matter in the end, only the judgement it derives (Lemma 3.5).
Informally, this aspect is often glossed over; proof irrelevance is often assumed without officially
being present in the meta-theory.

We have also parameterized this logical relation such that we only need to prove the fundamental
theorem once, even though we have two slightly different instances. For the formalization, this
means that we have saved a lot of work, as the parameterization does not add much code considering
the size of the logical relation and the proof of the fundamental theorem, which add up to roughly
5000 lines of Agda code.
Our formalization comprises roughly 10.000 lines of Agda code (totaling 500.000 characters).

It took 10 man-months of development work and type-checks on a contemporary laptop (16 GB
memory, CPU speed 3.3GHz) in around 90 seconds. From this code we could extract the core
of a type checker for fully-elaborated terms of a small fragment of the Agda language. It would
neither be efficient nor could it do any type reconstruction, however, it could serve as a conceptual
double checker of elaborated terms. In contrast, Agda itself consists roughly of 100.000 lines of
Haskell code and features printer, parser, elaborator, termination and positivity analysis, pattern
matcher and coverage checker, and many other components that are needed for a practically usable
implementation of type theory. Verifying all these components with the same rigor as applied to
our formalization seems clearly out of reach for an academic institution. However, a verified double
checker for the full type theory behind Agda remains as a pursuable, grand challenge.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers, whose comments greatly helped to improve the
presentation of our research in this article. The idea of basing the Kripke logical relation on a typed
version of weak head reduction came from our colleagues Thierry Coquand and Bassel Mannaa.
We also thank Paolo Capriotti for stimulating conversations on the relationship between notions of
models and normalization. The first author acknowledges support by the Swedish Research Council
(Vetenskapsrådet) under Grant No. 621-2014-4864 Termination Certificates for Dependently-Typed
Programs and Proofs via Refinement Types. Our research groups are part of the EU Cost Action
CA15123 The European research network on types for programming and verification (EUTypes).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

23:28 Andreas Abel, Joakim Öhman, and Andrea Vezzosi

REFERENCES

Andreas Abel, Thierry Coquand, and Peter Dybjer. 2007. Normalization by Evaluation for Martin-Löf Type Theory with
Typed Equality Judgements. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw,

Poland, Proceedings. IEEE Computer Society Press, 3ś12. https://doi.org/10.1109/LICS.2007.33
Andreas Abel, Thierry Coquand, and Bassel Mannaa. 2016. On Decidability of Conversion in Type Theory. In 22nd

International Conference on Types for Proofs and Programs, TYPES 2016, Novi Sad, Serbia, May 23-26, 2016, Book of Abstracts,
Silvia Ghilezan and Jelena Ivetic (Eds.). EasyChair.

Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional
Programming 26 (2016), 61. https://doi.org/10.1017/S0956796816000022 ICFP 2013 special issue.

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical
Methods in Computer Science 8, 1:29 (2012), 1ś36. https://doi.org/10.2168/LMCS-8(1:29)2012 TYPES’10 special issue.

AgdaTeam. 2017. The Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php
Thorsten Altenkirch and Ambrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In Proceedings of

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,

FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM Press, 18ś29. https://doi.org/10.1145/
2837614.2837638

Thorsten Altenkirch and Ambrus Kaposi. 2017. Normalisation by Evaluation for Type Theory, in Type Theory. Logical
Methods in Computer Science 13(4:1) (2017), 1ś26. https://doi.org/10.23638/LMCS-13(4:1)2017

Bruno Barras. 2010. Sets in Coq, Coq in Sets. Journal of Formalized Reasoning 3, 1 (2010), 29ś48. https://doi.org/10.6092/issn.
1972-5787/1695

Thierry Coquand. 1991. An Algorithm for Testing Conversion in Type Theory. In Logical Frameworks, Gérard Huet and
Gordon Plotkin (Eds.). Cambridge University Press, 255ś279. http://dl.acm.org/citation.cfm?id=120477.120486

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Information and Computation 76, 2/3 (1988),
95ś120. https://doi.org/10.1016/0890-5401(88)90005-3

N. G. de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. Indagationes Mathematicae 75, 5 (1972), 381ś392. https://doi.org/10.1016/
1385-7258(72)90034-0

Peter Dybjer. 1995. Internal Type Theory. In Types for Proofs and Programs, International Workshop TYPES’95, Torino, Italy,

June 5-8, 1995, Selected Papers (Lecture Notes in Computer Science), Stefano Berardi and Mario Coppo (Eds.), Vol. 1158.
Springer, 120ś134. https://doi.org/10.1007/3-540-61780-9_66

Peter Dybjer. 2000. A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory. The Journal of
Symbolic Logic 65, 2 (2000), 525ś549. https://doi.org/10.2307/2586554

Peter Dybjer and Anton Setzer. 2001. Indexed Induction-Recursion. In Proof Theory in Computer Science, International Seminar,

PTCS 2001, Dagstuhl Castle, Germany, October 7-12, 2001, Proceedings (Lecture Notes in Computer Science), Reinhard Kahle,
Peter Schroeder-Heister, and Robert F. Stärk (Eds.), Vol. 2183. Springer, 93ś113. https://doi.org/10.1007/3-540-45504-3_7

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and initial algebras. Annals of Pure and Applied Logic 124, 1-3
(2003), 1ś47. https://doi.org/10.1016/S0168-0072(02)00096-9

Harvey Friedman. 1975. Equality between functionals. In Logic Colloquium (Lecture Notes in Mathematics), R. Parikh (Ed.),
Vol. 453. Springer, 22ś37. https://doi.org/10.1007/BFb0064870

Herman Geuvers. 1994. A short and flexible proof of Strong Normalization for the Calculus of Constructions. In Types

for Proofs and Programs, International Workshop TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected Papers (Lecture

Notes in Computer Science), Peter Dybjer, Bengt Nordström, and Jan M. Smith (Eds.), Vol. 996. Springer, 14ś38. https:
//doi.org/10.1007/3-540-60579-7_2

Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. 2015. Positive Inductive-Recursive Definitions. 11, 1 (2015).
https://doi.org/10.2168/LMCS-11(1:13)2015

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur. Thèse de
Doctorat d’État. Université de Paris VII.

Healfdene Goguen. 1994. A Typed Operational Semantics for Type Theory. Ph.D. Dissertation. University of Edinburgh.
Available as LFCS Report ECS-LFCS-94-304.

Healfdene Goguen. 2000. A Kripke-Style Model for the Admissibility of Structural Rules. In Types for Proofs and Programs,

International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Selected Papers (Lecture Notes in Computer

Science), Paul Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack (Eds.), Vol. 2277. Springer, 112ś124. https:
//doi.org/10.1007/3-540-45842-5_8

Robert Harper and Frank Pfenning. 2005. On Equivalence and Canonical Forms in the LF Type Theory. ACM Trans. Comput.

Logic 6, 1 (Jan. 2005), 61ś101. https://doi.org/10.1145/1042038.1042041
John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In

Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://doi.org/10.1109/LICS.2007.33
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.2168/LMCS-8(1:29)2012
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.6092/issn.1972-5787/1695
https://doi.org/10.6092/issn.1972-5787/1695
http://dl.acm.org/citation.cfm?id=120477.120486
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.2307/2586554
https://doi.org/10.1007/3-540-45504-3_7
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1007/BFb0064870
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.2168/LMCS-11(1:13)2015
https://doi.org/10.1007/3-540-45842-5_8
https://doi.org/10.1007/3-540-45842-5_8
https://doi.org/10.1145/1042038.1042041

Decidability of Conversion for Type Theory in Type Theory 23:29

Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and
Guy L. Steele Jr. (Eds.). ACM Press, 410ś423. https://doi.org/10.1145/237721.240882

INRIA. 2017. The Coq Proof Assistant Reference Manual (version 8.7 ed.). INRIA. http://coq.inria.fr/
Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ‘73, H. E. Rose and J. C.

Shepherdson (Eds.). North-Holland, 73ś118.
Jorge Luis Sacchini. 2013. Type-Based Productivity of Stream Definitions in the Calculus of Constructions. In 28th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE Computer
Society Press, 233ś242. https://doi.org/10.1109/LICS.2013.29

Carsten Schürmann and Jeffrey Sarnat. 2008. Structural Logical Relations. In Proceedings of the Twenty-Third Annual IEEE

Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, Frank Pfenning (Ed.). IEEE
Computer Society Press, 69ś80. https://doi.org/10.1109/LICS.2008.44

Thomas Streicher. 1993. Investigations into Intensional Type Theory. Habilitation thesis, Ludwig-Maximilians-University
Munich.

Benjamin Werner. 1992. A Normalization Proof for an Impredicative Type System with Large Eliminations over Integers. In
Proceedings of the 1992 Workshop on Types for Proofs and Programs, Båstad, Sweden, June 1992, Bengt Nordström, Kent
Petersson, and Gordon Plotkin (Eds.). 341ś357. http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps

Benjamin Werner. 1994. Une Théorie des Constructiones Inductives. Ph.D. Dissertation. Universite Paris 7.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 23. Publication date: January 2018.

https://doi.org/10.1145/237721.240882
http://coq.inria.fr/
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1109/LICS.2008.44
http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps

	Abstract
	1 Introduction
	2 A Core Type Theory with One Universe
	2.1 Syntax
	2.2 Rules and Semantics

	3 Kripke Logical Relations
	3.1 Generic Equality
	3.2 A Logical Relation for Reducibility
	3.3 Properties of the Logical Relation
	3.4 Validity Judgements
	3.5 Properties of the Validity Judgements
	3.6 Consequences of the Fundamental Theorem

	4 Decidability
	4.1 Conversion Algorithm
	4.2 Properties of the Conversion Algorithm

	5 Conclusion
	Acknowledgments
	References

