
Do Judge a Test by its Cover: Combining Combinatorial and
Property-Based Testing

Downloaded from: https://research.chalmers.se, 2021-12-11 21:24 UTC

Citation for the original published paper (version of record):
Goldstein, H., Hughes, J., Lampropoulos, L. et al (2021)
Do Judge a Test by its Cover: Combining Combinatorial and Property-Based Testing
Programming Languages and Systems
http://dx.doi.org/10.1007/978-3-030-72019-3_10

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Do Judge a Test by its Cover
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Abstract. Property-based testing uses randomly generated inputs to
validate high-level program specifications. It can be shockingly effective
at finding bugs, but it often requires generating a very large number of
inputs to do so. In this paper, we apply ideas from combinatorial testing,
a powerful and widely studied testing methodology, to modify the dis-
tributions of our random generators so as to find bugs with fewer tests.
The key concept is combinatorial coverage, which measures the degree
to which a given set of tests exercises every possible choice of values for
every small combination of input features.

In its “classical” form, combinatorial coverage only applies to programs
whose inputs have a very particular shape—essentially, a Cartesian prod-
uct of finite sets. We generalize combinatorial coverage to the richer world
of algebraic data types by formalizing a class of sparse test descriptions
based on regular tree expressions. This new definition of coverage inspires
a novel combinatorial thinning algorithm for improving the coverage of
random test generators, requiring many fewer tests to catch bugs. We
evaluate this algorithm on two case studies, a typed evaluator for Sys-
tem F terms and a Haskell compiler, showing significant improvements
in both.

Keywords: Combinatorial testing, Combinatorial coverage, QuickCheck,
Property-based testing, Regular tree expressions, Algebraic data types

1 Introduction

Property-based testing, popularized by tools like QuickCheck [7], is a principled
way of testing software that focuses on functional specifications rather than
suites of input-output examples. A property is a formula like

∀x. P (x, f(x)),
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where f is the function under test and P is some executable logical relation-
ship between an input x and the output f(x). The test harness generates ran-
dom values for x, hoping to either uncover a counterexample—an x for which
¬P (x, f(x))), indicating a bug—or else provide confidence that f is correct with
respect to P .

With a well-designed random test case generator, property-based testing has
a non-zero probability of generating every valid test case (up to a given size limit);
property-based testing is thus guaranteed to find any bug that can be provoked
by an input below the size limit... eventually. Unfortunately, since each input is
generated independently, random testing may end up repeating the same or sim-
ilar tests many times before happening across the specific input which provokes
a bug. This poses a particular problem in settings like continuous integration,
where feedback is needed quickly—it would be nice to have an automatic way to
guide the generator to a more interesting and diverse set of inputs, “thinning”
the distribution to find bugs with fewer tests.

Combinatorial testing, an elegant approach to testing from the software en-
gineering literature [2,16,17], offers an attractive metric for judging which tests
are most interesting. In its classical presentation, combinatorial testing advocates
choosing tests to maximize t-way coverage of a program’s input space—i.e., to
exercise all possible choices of concrete values for every combination of t input
parameters. For example, suppose a program p takes Boolean parameters w, x,
y, and z, and suppose we want to test that p behaves well for every choice of
values for every pair of these four parameters. If we choose carefully, we can
check all such choices—all 2-way interactions—with just five test cases:

1. w = False x = False y = False z = False

2. w = False x = True y = True z = True

3. w = True x = False y = True z = True

4. w = True x = True y = False z = True

5. w = True x = True y = True z = False

You can check for yourself: for any two parameters, every combination of values
for these parameters is covered by some test. For example, “w = False and x

= False” is covered by #1, while both “w = True and x = True” and “w =

True and y = True” are covered by #5. Any other test case we could come
up with would check a redundant set of 2-way interactions. Thus, we get 100%
pairwise coverage with just five out of the 24 = 16 possible inputs. This advantage
improves exponentially with the number of parameters.

Why is this interesting? Because surveys of real-world systems have shown
that bugs are often provoked by specific choices of just a few parameters [16].
Indeed, one study involving a distributed database at NASA found that, out
of 100 known failures, 93 were caused by 2-way parameter interactions; the
remaining 7 failures were each caused by no more than 6 parameters interacting
together [14]. This suggests that combinatorial testing is an effective way to
choose test cases for real systems.

If combinatorial coverage can be used to concentrate bug-finding power into
small sets of tests, it is natural to wonder whether it could also be used to thin the
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distribution of a random generator. So far, combinatorial testing has mostly been
applied in settings where the input to a program is just a vector of parameters,
each drawn from a small finite set. Could we take it further? In particular, could
we transfer ideas from combinatorial testing to the richer setting addressed by
QuickCheck—i.e., functional programs whose inputs are drawn from structured,
potentially infinite data types like lists and trees?

Our first contribution is showing how to generalize the definition of combi-
natorial coverage to work with regular tree expressions, which themselves gen-
eralize the algebraic data types found in most functional languages. Instead of
covering combinations of parameter choices, we measure coverage of test de-
scriptions—concise representations of sets of tests, encoding potentially inter-
esting interactions between data constructors. For example, the test description
cons(true, /false) describes the set of Boolean lists that have true as their first
element, followed by at least one false somewhere in the tail.

Our second contribution is a method for enhancing property-based testing
using combinatorial coverage. We propose an algorithm that uses combinato-
rial coverage information to thin an existing random generator, leading it to
more interesting test suites that find bugs more often. A concrete realization
of this algorithm in a tool called QuickCover was able, in our experiments, to
guide random generation to find bugs using an average of 10× fewer tests than
QuickCheck. While generating test suites is (considerably) slower, running the
tests can be much faster. As such, QuickCover excels in settings where tests are
particularly costly to run, as well as in situations like continuous-integration,
when the cost of test generation is amortized over many runs of the test suite.

In summary, we offer these contributions:

– We generalize the notion of combinatorial coverage to work over a set of
test descriptions and show how this new definition generalizes to algebraic
data types with the help of regular tree expressions (Section 3). Section 4
describes the technical details behind the specific way we choose to represent
these descriptions.

– We propose a process for guiding the test distribution of an existing random
generator based on our generalized notion of combinatorial coverage (Section
5).

– Finally, we demonstrate, with two case studies, that QuickCover can find
bugs using significantly fewer tests (Section 6) than pure random testing.

We conclude with an overview of related work (Section 7), and ideas for future
work (Section 8).

2 Classical Combinatorial Testing

To set the stage, we begin with a brief review of “classical” combinatorial testing.

Combinatorial testing measures the “combinatorial coverage” of test suites,
aiming to find more bugs with fewer tests. Standard presentations [16] are
phrased in terms of a number of separate input parameters. Here, for notational
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consistency with the rest of the paper, we will instead assume that a program
takes a single input consisting of a tuple of values.

Assume we are given some finite set C of constructors, and consider the set
of n-tuples over C:

{tuplen(C1, . . . , Cn) | C1, . . . , Cn ∈ C}

(The “constructor” tuplek is not strictly needed in this section, but it makes
the generalization to constructor trees and tree regular expressions in Section 3
smoother.) We can use these tuples to represent test inputs to systems. For
example a web application might be tested under configurations

tuple4(Safari, MySQL, Admin, English)

in order to verify some end-to-end property of the system.
A specification of a set of tuples is written informally using notation like:

tuple4(Safari+Chrome, Postgres+MySQL, Admin+User, French+English)

This specification restricts the set of valid tests to those that have valid browsers
in the first position, valid databases in the second, and so on. Specifications are
thus a lot like types—they pick out a set of valid tests from some larger set. We
define this notation precisely in Section 3.

To define combinatorial coverage, we introduce the notion of partial tuples—
i.e., tuples where some elements are left indeterminate (written �). For example:

tuple4(Chrome, �, Admin, �).

A description is compatible with a specification if its concrete (non-�) construc-
tors are valid in the positions where they appear. Thus, the description above is
compatible with our web-app configuration specification, while this one is not:

tuple4(MySQL, MySQL, French, �)

We say a test covers a description—which, conversely, describes the test—
when the tuple matches the description in every position that does not contain
�. For example, the description

tuple4(Chrome, �, Admin, �)

describes these tests:

tuple4(Chrome, MySQL, Admin, English)

tuple4(Chrome, MySQL, Admin, French)

tuple4(Chrome, Postgres, Admin, English)

tuple4(Chrome, Postgres, Admin, French)

Finally, we call a description t-way if it fixes exactly t constructors, leaving the
rest as �.
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Now, suppose a system under test takes a tuple of configuration values as
input. Given some correctness property (e.g., the system does not crash), a test
for the system is simply a particular tuple, while a test suite is a set of tuples.
We can then define combinatorial coverage as follows:

Definition 1. The t-way combinatorial coverage of a test suite is the proportion
of t-way descriptions, compatible with a given specification, that are covered by
some test in the suite.

We say that t is the strength of the coverage.

A test suite with 100% 2-way coverage for the present example can be quite
small. For example,

tuple4(Chrome, Postgres, Admin, English)

tuple4(Chrome, MySQL, User, French)

tuple4(Safari, Postgres, User, French)

tuple4(Safari, MySQL, Admin, French)

tuple4(Safari, MySQL, User, English)

achieves 100% coverage with just five tests. The fact that a single test covers
many different descriptions is what makes combinatorial testing work: while the
number of descriptions that must be covered is combinatorially large, a single
test can cover combinatorially many descriptions. In general, for a tuple of size n,
the number of descriptions is given by

(
n
t

)
ways to choose t parameters multiplied

by the number of distinct values each parameter can take on.

3 Generalizing Coverage

Of course, inputs to programs are often more complex than just tuples of enu-
merated values, especially in the world of functional programming. To apply the
ideas of combinatorial coverage in this richer world, we generalize tuples to con-
structor trees and tuple specifications to regular tree expressions. We can then
give a generalized definition of test descriptions that makes sense for algebraic
data types, setting up for a more powerful definition of combinatorial coverage.

A ranked alphabet Σ is a finite set of atomic data constructors, each with a
specified arity. For example, the ranked alphabet

Σlist(bool) � {(cons, 2), (nil, 0), (true, 0), (false, 0)}

defines the constructors needed to represent lists of Booleans. Given a ranked
alphabet Σ, the set of trees over Σ is the least set TΣ that satisfies the equation

TΣ = {C(t1, . . . , tn) | (C, n) ∈ Σ ∧ t1, . . . , tn ∈ TΣ}.
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Regular tree expressions are a compact and powerful tool for specifying sets
of trees [9, 10]. They are generated by the following syntax:

e � �
| e1 + e2
| μX. e
| X
| C(e1, . . . , en) for (C, n) ∈ Σ

Each of these operations has an analog in standard regular expressions over
strings: + corresponds to disjunction of regular expressions, μ corresponds to
iteration, and the parent-child relationship corresponds to concatenation. These
expressions give us a rich language for describing tree structures.

The denotation function �·� mapping regular tree expressions to sets of trees
is the least function satisfying the equations:

��� = TΣ
�C(e1, . . . , en)� = {C(t1, . . . , tn) | ti ∈ �ei�}

�e1 + e2� = �e1� ∪ �e2�
�μX. e� = �e[μX. e/X]�

Regular tree expressions subsume standard first-order algebraic data type
definitions. For example, the Haskell definition

data BoolList = Cons Bool BoolList | Nil

is equivalent to the regular tree expression

μX. cons(true+ false, X) + nil.

Crucially for our purposes, regular tree expressions can also be used to define sets
of trees that cannot be described with plain ADTs. For example, the expression

cons(true+ false, nil)

denotes all single-element Boolean lists, while

μX. cons(true, X) + nil

describes the set of lists that only contain true. Regular tree expressions can even
express constraints like “true appears at some point in the list”:

μX. cons(�, X) + cons(true, μY. cons(�, Y ) + nil)

This machinery smoothly generalizes the structures we saw in Section 3.
Tuples are just a special form of trees, while specifications and test descriptions
can be written as regular tree expressions. This gives us most of what we need
to define algebraic data types.
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Recall the definition of t-way combinatorial coverage: “the proportion of (1)
t-way descriptions, (2) compatible with a given specification, that (3) are covered
by some test in the suite.” What does this mean in the context of regular tree
expressions and trees?

Condition (3) is easy: a test (i.e., a tree) t covers a test description (a regular
tree expression) d if t ∈ �d�.

For (2), consider some regular tree expression τ representing an algebraic
data type that we would like to cover. We say that a description d is compatible
with τ if �τ� ∩ �d� �= ∅. As with string regular expressions, this can be checked
efficiently.

The only remaining question is (1): which set of t-way descriptions to use.
We argue in the next section that the set of all regular tree expressions is too
broad, and we offer a simple and natural alternative.

4 Sparse Test Descriptions

A näıve way to generalize the definition of t-way descriptions to regular tree
expressions would be to first define the size of a regular tree expression as the
number of operators (constructors, +, or μ) in it and then define a t-way de-
scription to be any regular tree expression of size t. However, this approach does
not specialize nicely to the classical case; for example the description

tuple4(Safari+ Chrome, �, �, �)

would be counted as “4-way” (3 constructors and 1 “+” operator), even though it
is covered by every well-formed test. Worse, “interesting” descriptions are often
quite large. For example, the smallest possible description of lists in which true
is followed by false,

μX. cons(�, X)+cons(true, μY. cons(�, Y )+cons(false, μZ. cons(�, Z)+nil))

has size t = 14. We want a representation that packs as much information as
possible into small descriptions, making t-way coverage meaningful for small
values of t and increasing the complexity of the interactions captured by our
definition of coverage.

In sum, we want a definition of coverage that straightforwardly specializes
to the tuples-of-constructors case and that captures interesting structure with
small descriptions.

Our proposed solution, described next, takes inspiration from temporal logic.
We first encode an “eventually” (/) operator that allows us to write the expres-
sion from above much more compactly as /cons(true, /false). This can be read
as “somewhere in the tree, there is a cons node with a true node to its left and a
false node somewhere in the tree to its right.” Then we define a restricted form
of sparse test descriptions using just /, �, and constructors.
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4.1 Encoding “Eventually”

The “eventually” operator can actually be encoded using the regular tree ex-
pression operators we have already defined—i.e., we can add it without adding
any formal power. First, define the set of templates for the ranked alphabet Σ:

T � {C(�1, . . . , �i−1, [ ], �i+1 . . . , �n) | (C, n) ∈ Σ, 1 ≤ i ≤ n}

That is, for each constructor C in Σ, the set of templates T contains
C([ ], �, . . . , �), C(�, [ ], �, . . . , �), etc., all the way to C(�, . . . , �, [ ]),
enumerating every way to place one hole in the constructor and fill every other
argument slot with �. (Nullary constructors are ignored.) Then we define “next”
(◦e) and “eventually” (/e) as

◦e �
∑
T∈T

T [e]

/e � μX. e+ ◦X

where T [e] is the replacement of [ ] in T with e.3 Intuitively, ◦e describes any
tree C(t1, . . . , tn) in which e describes some direct child (i.e., t1, t2, and so
on), while /e describes anything described by e, plus (unrolling the μ) anything
described by ◦e, ◦◦e, and so on.

This is not the only way to design a compact, expressive subset of regular
tree expressions, but our evaluation shows that this has useful properties. In
addition, the / notation gives an elegant way to write descriptions like the one
from the previous section (/cons(true, /false),), neatly capturing “somewhere in
the tree” constraints that would require many more symbols in the bare language
of regular tree expressions.

4.2 Defining Coverage

Even in the language with just /, �, and constructors, there is still a fair amount
of freedom in how we define the set of t-way descriptions. In this section we
present one possibility that we have found to be useful in practice; in Section 8
we discuss another interesting option.

The set of sparse test descriptions for a given Σ is the trees generated by

d � �
| /C(d1, . . . , dn) for (C, n) ∈ Σ,

that is, trees consisting of constructors prefixed by / and�. We call these descrip-
tions “sparse” because they match specific ancestor-descendant arrangements of

3 This construction is why we choose to deal with finite ranked alphabets: if Σ were
infinite, T would be infinite, and ◦e would be an infinite term that is not expressible
as a standard regular tree expression.
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constructors but place no restriction on the constructors in between, due to the
“eventually” before each constructor.

Sparse test descriptions are designed to be compact, useful in practice, and
compatible with the classical definition of coverage. For that reason we aim
to keep them as information-dense as possible. First, we do not include the μ
operator directly, instead relying on /: indeed, / captures a pattern of recursion
that is general enough to express interesting non-local constraints while keeping
description complexity low. Similarly, we do not need to include the + operator:
any test that covers any test that covers either C(d1, . . . , dn) or D(d1, . . . , dm)
will also necessarily cover C(d1, . . . , dn) +D(d1, . . . , dm).

Removing explicit uses of μ and + does limit the expressive power of sparse
test descriptions a little—for example it rules out complex mutually recursive
definitions. However, we do not intend to use descriptions to specify entire lan-
guages, only fragments of languages that we hope to cover with testing. Natu-
rally, there are many other possible formats for test descriptions that would be
interesting to explore—we leave that for future work. In this paper, we chose to
make descriptions very compact while preserving most of their expressive power,
and the case studies in Section 6 demonstrate that such a choice works well in
at least two challenging domains that are relevant to programming languages as
a whole.

Finally, we define the size of a description based on the number of construc-
tors it contains. Intuitively, a t-way description is one with t constructors; how-
ever, in order to be consistent with the classical definition, we omit constructors
whose types permit no alternatives. For example, all of the tuple constructors
(e.g. tuple4 in our running example) are left out of the size calculation. This
makes t-way sparse test description coverage specialize to exactly classical t-
way parameter interaction coverage for the case of tuples of sums of nullary
constructors.

Sparse descriptions work as expected for types like

tuple4(Safari+Chrome, Postgres+MySQL, Admin+User, French+English).

Despite some stray occurrences of /, as in

/tuple4(/Chrome, /MySQL, �, �),

the descriptions still describe the same sets of tests as the standard tuple descrip-
tions without the uses of /. Thus, our new definition of combinatorial coverage
generalizes the classical one.

These descriptions capture a rich set of test constraints in a compact form.
The real proof of this is in our evaluation results—see Section 6 for those—but
a few more examples may help illustrate.

Boolean Lists As a first example, consider the type of Boolean lists:

τlist(bool) � μX. cons(true+ false, X) + nil.
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The set of all 2-way descriptions that are compatible with τlist(bool) is:

/cons(/true, �) /cons(/false, �) /cons(�, /nil)
/cons(�, /cons(�, �)) /cons(�, /true) /cons(�, /false)

Unpacking the notation, /cons(/true, �) describes the set of trees where “at
some point in the tree there is a cons node with a true node somewhere in its
left child.”

Arithmetic Expressions Consider the type of simple arithmetic expressions over
the constants 0, 1, and 2:

τexpr � μX. add(X, X) +mul(X, X) + 0+ 1+ 2.

This type has 2-way descriptions like

/add(/mul(�, �), �) and /mul(�, /add(�, �)),

which capture different nestings of addition and multiplication.

System F For a more involved example, let’s look at some 2-way sparse descrip-
tions for a much more complex data structure: terms of the polymorphic lambda
calculus, System F.

τ � U | τ1 → τ2 | n | ∀.τ
e � () | n | λτ. e | (e1 e2) | Λ. e | (e τ)

(We use de Bruijn indices for variable binding, meaning that each variable oc-
currence in the syntax tree is represented by a natural number indicating which
enclosing abstraction it was bound by.)

System F syntax can be represented using a regular tree expression like

μX. unit+ var(Var)+ abs(Type, X)+ app(X, X)+ tabs(X)+ tapp(X, Type),

where Type is defined in a similar way and Var represents natural-number
de Bruijn indices.

This already admits useful 2-way descriptions like

/app(/abs(�, �), �) and /app(/app(�, �), �),

which capture relationships between lambda abstractions and applications. In
Section 6.1, we use descriptions like these to find bugs in an evaluator for System
F expressions; they ensure that our test suite adequately covers different nestings
of abstractions and applications that might provoke bugs.

With a little domain-specific knowledge, we can make the descriptions cap-
ture even more. When setting up our case study in Section 6.2, which searches
for bugs in GHC’s strictness analyzer, we found that it was often useful to track
coverage of the seq function, which takes two functions as arguments, executes
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the first for any side-effects (e.g., exceptions), and then executes the second.
Modifying our regular expression type to include seq as a first-class constructor
results in 2-way descriptions now include interactions like

/seq(/app(�, �), �)

that encode interactions of seq with other System F constructors. These in-
teractions are crucial for finding bugs in a strictness analyzer, since seq gives
fine-grained control over the evaluation order within a Haskell expression.

5 Thinning Generators with QuickCover

Having generalized the definition of combinatorial coverage to structured data
types, the next step is to explore ways of using coverage to improve property-
based testing.

When we first approached this problem, we planned to follow the conventional
combinatorial testing methodology of generating covering arrays [38], i.e., test
suites with 100% t-way coverage for a given t. Rather than use an unbounded
stream of random tests—the standard methodology in property-based testing—
we would test properties using just the tests in some pre-generated covering
array. However, we encountered two major problems with this approach. First,
as t grows, covering arrays become frighteningly expensive to generate. While
there are efficient methods for generating covering arrays in special cases like
2-way coverage [8], general algorithms for generating compact covering arrays
are complex and often slow [23]. Second, we found that covering arrays for sets
of test descriptors in the format described above did not do particularly well
at finding bugs! In a series of preliminary experiments with one of our case
studies, we found that with 4-way coverage (the highest we could generate in
reasonable time), our covering arrays did not reliably catch all of the bugs in our
test system. Fortunately, after some more head scratching and experimenting, we
discovered an alternate approach that works quite well. The trick is to embrace
the randomness that makes property-based testing so effective.

In the remainder of this section, we first present an algorithm that uses com-
binatorial coverage to “thin” a random generator, guiding it to more interesting
inputs. Rather than generating a fixed set of tests in the style of covering arrays,
this approach produces an unbounded stream of interesting test inputs. Then we
discuss some concrete details behind QuickCover, the Haskell implementation of
our algorithm that we used to obtain the experimental results in Section 6.

5.1 Online Generator Thinning

The core of our algorithm is QuickCheck’s standard generate-and-test loop.
Given a test generator gen and a property p, QuickCheck generates inputs re-
peatedly until either (1) the property fails, or (2) a time limit is reached.
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QuickCheck(gen , p):

repeat LIMIT times:

# Generate 1 new input

x = gen()

# Check the property

if !p(x), return False

return True

LIMIT is chosen based on the user’s specific testing budget, and it can vary
significantly in practice. In the experiments below, we know a priori that a bug
exists in the program, so we set LIMIT to infinity and just run tests until the
property fails.

Our algorithm modifies this basic one to use combinatorial coverage infor-
mation when choosing the next test to run.

QuickCover(strength , fanout , gen , p):

coverage = initCoverage ()

repeat LIMIT times:

# Generate fanout potential inputs

xs = listOf(gen(), fanout)

# Find the input with the best improved coverage

x = argmax[x in xs](

coverageImprovement(x, coverage , strength) )

# Check the property

if !p(x), return False

# Update the coverage information

coverage = updateCoverage(x, coverage , strength)

return True

The key idea is that, instead of generating a single input at each iteration, we
generate several (controlled by the parameter fanout) and select the one that
increases combinatorial coverage the most. We test the property on that input
and, if it does not fail, update the coverage information based on the test we ran
and keep going.

This algorithm is generic with respect to the representation for coverage in-
formation, but the particular choice of data structure and interpretation makes a
significant difference in both efficiency and effectiveness. In our implementation,
coverage information is represented by a multi-set of descriptions:
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initCoverage ():

return emptyMultiset ()

coverageImprovement(x, coverage , strength ):

ds = descriptions(x, strength)

return sum([ 1 / (count(d, coverage) + 1)

for d in ds ])

updateCoverage(x, coverage , strength ):

return union(descriptions(x, strength), coverage)

At the beginning, the multi-set is empty; as testing progresses, each test
is evaluated based on coverageImprovement. If a description d had previously
been covered n times, it contributes 1

n+1 to the score. For example, if a test
input covers d1 and d2, where previously d1 was not covered and d2 was covered
3 times, the total score for the test input would be 1 + 0.25 = 1.25.

At first glance, one might think of a simpler approach based on sets instead of
multi-sets. Indeed, this was the first thing we tried, but it turned out to perform
substantially worse than the multiset-based one in our experiments. The reason
is that just covering each description once turns out not to be sufficient to find all
bugs, and, once most descriptions have been covered, this approach essentially
degenerates to normal random testing. By contrast, the multi-set representation
continues to be useful over time; after each description has been covered once,
the algorithm begins to favor inputs that cover descriptions a second time, then
a third time, and so on. This allows QuickCover to generate arbitrarily large test
suites that continue to benefit from combinatorial coverage.

Keeping track of coverage information like this does create some overhead.4

For each test that QuickCover considers (including those that are never run), it
needs to analyze which descriptions the test covers and check those against the
current multi-set. This overhead means that QuickCover is often much slower
than QuickCheck with respect to to generating tests. In the next section, we
explore use cases for QuickCover that overcome this overhead by running fewer
tests.

6 Evaluation

Since QuickCover adds some overhead to generating tests, one might expect
that it will be particularly well suited to situations where each test may be run
many times. The primary goal of our experimental evaluation was to test this
hypothesis.

4 The overhead introduced is highly variable and based largely on the exact implemen-
tation of the underlying test generator. Appendix A goes into slightly more detail
on the asymptotics, but broadly speaking the time it QuickCover to generate a test
is linear in the fan-out and exponential in the coverage strength.

https://harrisongoldste.in/papers/quick-cover.pdf
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Of course, running the same test repeatedly on the same code is pointless: if
it were ever going to fail, it would do so on the first run (ignoring the thorny
possibility of “flaky tests” due to nondeterminism [25]). However, running the
same test on successive versions of the code is not only useful; it is standard
practice in two common settings: regression testing, i.e., checking that code is still
working after changes, and especially continuous integration, where regression
tests are run automatically every time a developer checks in a new version of the
code. In these settings, the overhead introduced by generating many tests and
discarding some without running them can be amortized, since the same tests
may be reused very many times, so that the cost of generating the test suite
becomes less important than the cost of running it.

In order to validate this theory, we designed two experiments using Quick-
Cover. The primary goal of these experiments was to answer the question: Does
QuickCover actually reduce the number of tests needed to find bugs in a real
system?

Both case studies answer this question in the affirmative. The first case study,
in particular, demonstrates a situation where QuickCover needs an average 10×
fewer tests to find bugs, compared to pure random testing. We choose an evalu-
ator for System F terms as our example because it allows us to test how Quick-
Cover behaves in a small but realistic scenario that requires a fairly complex
random testing setup. Our second case study expands on results from Pa�lka et
al. [32], scaling up and applying QuickCover to find bugs in the Glasgow Haskell
Compiler (GHC) [27].

A secondary goal of our evaluation was to understand whether the generator
thinning overhead is always too high to make QuickCover useful for real-time
property-based testing, or if there are any cases where using QuickCover would
yield a wall-clock improvement even if tests are only run once. Our second case
study answers this question in the affirmative.

6.1 Case Study: Normalization Bugs in System F

Our first case study uses combinatorial coverage to thin a highly tuned and
optimized test generator for System F [12, 35] terms. The generator produces
well-typed System F terms by construction (no mean feat on its own) and is
tuned to produce a highly varied distribution of different terms. Despite all the
care put into the base generator, we found that modifying the test distribution
using QuickCover results in a test suite that finds bugs with many fewer inputs.

Generating “interesting” programs (for finding compiler bugs, for example)
is an active research area. For instance, a generator for well-typed simply typed
lambda-terms has been used to reveal bugs in GHC [6,20,32], while a generator
for C programs that avoid “undefined behaviors” has been used to find many
bugs in production compilers [24, 34, 41] The cited studies are all examples of
differential testing, where different compilers (or different versions of the same
compiler) were run against each other on the same inputs to reveal discrepancies.
Similarly, for the present case study we tested different evaluation strategies
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for System F, comparing the behavior of various buggy versions to a reference
implementation.

Recall the definition of System F from Section 4.2. Let e[v/n] stand for
substituting v for variable n in e, and e ↑n for “lifting”—incrementing the indices
of all variables above n in e. Then, for example, the standard rule for substituting
a type τ for variable n inside a type abstraction Λ. e requires lifting τ and
incrementing the de Bruijn index of the variable being substituted by one:

(Λ. e)[τ/n] = Λ. e[τ ↑0 /n+ 1]

Here are two ways to get this wrong: forget to lift the variables, or forget to
increment the index. Those bugs would lead to the following erroneous definitions
(the missing operation is shown in red):

(Λ. e)[τ/n] = Λ. e[τ ↑0 /n+ 1] and (Λ. e)[τ/n] = Λ. e[τ ↑0 /n + 1].

Inspired by errors like these (specifically in the substitution and variable lifting
functions), we inserted bugs by hand to create 19 “mutated” versions of two
different evaluation relations. (The bugs are described in detail in Appendix C.)
The two evaluation relations simplify terms in slightly different ways: the first
implements standard big-step evaluation (eval), and the second uses a parallel
evaluation relation to fully normalize terms (peval). (We chose to check both
evaluation orders, since some mutations only cause a bug in one implementation
or the other.) Since we were interested in bugs in either evaluation order, we
tested a joint property:

eval e == eval mutated e && peval e == peval mutated e

Starting with a highly tuned generator for System F terms as our baseline, we
used both QuickCheck and QuickCover to generate a stream of test values for
e and measured the average number of tests required to find a bug (i.e., Mean-
Tests-To-Failure, or MTTF) for each approach.

Surprisingly, we found little or no difference in MTTF between 2-way, 3-way,
and 4-way testing, but changing the fan-out did make a large impact. Figure 1
shows both absolute MTTF for various choices of fan-out (log10 scale) and the
performance improvement as a ratio of un-thinned MTTF to thinned MTTF. All
choices of fan-out produced better MTTF results than the baseline, but higher
values of fan-out tended to be more effective on average. In our best experiment,
a fan-out of 30 found a bug in an average of 15× fewer tests than the baseline;
the overall average was about 10× better. Figure 2 shows the total MTTF im-
provement across 19 bugs, compared to the maximum theoretical improvement.
If our algorithm were able to perfectly pick the best test input every time, the
improvement would be proportional to the fan-out (i.e., it is impossible for our
algorithm be more than 10× better with a fan-out of 10). On the other hand,
if combinatorial coverage were irrelevant to test failure, then we would expect
the QuickCover test suites to have the same MTTF as QuickCheck. It is clear
from the figure that QuickCover is really quite effective in this setting: for small

https://harrisongoldste.in/papers/quick-cover.pdf
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Fig. 1. Top: System F MTTF, log10 scale, plotted in order of MTTF for un-thinned
random tests, t = 2. Bottom: System F MTTF ratio of MTTF for un-thinned random
tests to MTTF for QuickCover, t = 2.

fan-outs, it is very close to the theoretical optimum, and with a fan-out of 30 it
achieves about 1

3 of the potential improvement—that is, three QuickCover test
cases are more likely to provoke a bug than thirty QuickCheck ones.

6.2 Case Study: Strictness Analysis Bugs in GHC

To evaluate how our approach scales, and to investigate whether QuickCover can
be used not only to reduce the number of tests required but also to speed up bug-
finding, we replicated the case study of Pa�lka et al. [32], which found bugs in the
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Fig. 2. System F, proportional reduction in total number of tests needed to find all
bugs.

strictness analyzer of GHC 6.12 using a hand-crafted generator for well-typed
lambda terms; we replicated their experimental setup, but used QuickCover to
thin their generator and produce better tests.

Two attributes of this case study make it an excellent test of the capabilities
of our combinatorial thinning approach. First, it found bugs in a real compiler
by generating random well-typed lambda terms, and therefore we can evaluate
whether the reduction in number of tests observed in the System F case study
scales to a production setting. Second, running a test involves invoking the GHC
compiler, a heavyweight external process. As a result, reducing the number of
tests required to provoke a failure should (and does) lead to an observable im-
provement in terms of wall-clock performance.

Concretely, Pa�lka et al. generate a list of functions that manipulate lists of
integers and compare the behavior of these functions on partial lists (lists with
undefined elements or tails) when compiled with and without optimizations,
another example of differential testing. They uncover errors in the strictness
analyzer component of GHC’s optimizer that lead to inconsistencies where the
un-optimized version of the compiled code correctly fails with an error while the
optimized version prints something to the screen before failing:

Input −O0 Output −O2 Output

[undefined] Exception [Exception]

[1,undefined] Exception [1,Exception]

[1,2,undefined] Exception [1,2,Exception]

Finally, to balance the costly compiler invocation with the similarly costly
smart generation process, Pa�lka et al. group 1000 generated functions together
in a single module to be compiled; this number was chosen to strike a precise
50-50 balance between generation time and compilation/execution time for each
generated module. Since our thinning approach itself introduces approximately
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a 25% overhead in generation time, we increased the number of tests per module
to 1250 to maintain the same balance and make a fair comparison.

We ran our experiments in a Virtual Box running Ubuntu 12.04 (a version old
enough to allow for executing GHC 6.12.1), with 4GB RAM in a host machine
running i7-8700 @ 3.2GHz. We performed 100 runs of the original case study
and 100 runs of our variant that adds combinatorial thinning, using a fan-out
of 2 and a strength of 2. We found that our approach reduces the mean number
of tests required from 21268 ± 1349 to 14895 ± 1056, a 42% improvement, and
reduces the mean time to failure from 193 ± 13 seconds to 149 ± 12, a 30%
improvement.

7 Related Work

A detailed survey of the (vast) combinatorial testing literature can be found
in [30]. Here we discuss just the most closely related work, in particular, other
attempts to generalize combinatorial testing to structured and infinite domains.
We also discuss other approaches to property based testing with similar goals to
to ours, such as adaptive random testing and coverage-guided fuzzing.

7.1 Generalizations of Combinatorial Testing

Salecker and Glesner [37] extend combinatorial testing to sets of terms generated
by a context-free grammar. Their approach cleverly maps context-free grammar
derivations up to some depth k to sets of parameter choices; then it uses standard
full-coverage test suite generation algorithms to pick a subset of derivations to
test. The main limitation of this approach is the parameter k. By limiting the
derivation depth, this approach only defines coverage over a finite subset of the
input type. By contrast, our definition of coverage works over infinite types by
exploiting the recursive nature of the / operator. We focus on description size
rather than term size, which provides more flexibility for “packing” multiple
descriptions into a single test.

Another approach to combinatorial testing of context-free inputs is due to
Lämmel and Schulte [19]. Their system also uses a depth bound, but it provides
the user finer-grained control. At each node in the grammar, the user is free to
limit the coverage requirements and prune unnecessary tests. This is an elegant
solution for situations where the desired interactions are known a priori. Unfor-
tunately, this approach needs to be re-tuned manually to every specific type and
use-case, so it is not the general solution we were after.

Finally, Kuhn et al. [15] present a notion of sequence covering arrays to de-
scribe combinatorial coverage of sequences of events. We believe that t-way se-
quence covering arrays in their system are equivalent to (2t−1)-way full-coverage
test suites of the appropriate list type in ours. They also have a reasonably effi-
cient algorithm for generating covering arrays in this specialized case.

Our idea to use regular tree expressions for coverage is partly inspired by
Usaola et al. [40] and Mariani et al. [26]. Rather than generate a set of terms to
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cover an ADT, these works generate strings to cover (i.e. match in every possible
way) a particular regular expression. This turns out to be quite a different prob-
lem, but these explorations led us to consider coverage in context of of formal
languages.

7.2 Comparison with Enumerative Property-Based Testing

Another approach to property-based testing research is based on enumeration of
small test cases, rather than random generation. Tools like SmallCheck [36] offer
guarantees that there is no counterexample smaller than a certain limit, and
moreover always report the smallest counterexample when it exists. To compare
our approach with this type of tool, we repeated our System F evaluation with
a variety of enumerative testing tools.

We first tried SmallCheck, which enumerates all test cases up to a given
depth. Unfortunately, the number of System F terms rises very rapidly with the
depth: SmallCheck quickly enumerated 708 terms of depth up to three, but could
not enumerate all terms of depth four within 20 minutes of CPU time.5 Only
one of the 19 bugs we planted was provoked by any of those 708 terms.

However, SmallCheck wastes effort generating syntactically correct terms
that are not type correct; only 140 of the 708 were well-typed. Lazy Small-
Check [36] exploits laziness in property preconditions to discard many test cases
in a group—in this case, all those terms that fail a type-check in the same way
are discarded together. Because well-typedness is such a strong precondition,
Lazy SmallCheck is able to dramatically reduce the number of terms needed at
each depth, enabling us to increase the depth limit to 4, and generate over five
million terms. The result was a much more comprehensive test suite than normal
SmallCheck, but it still only found 8 out of our 19 bugs.

The problem here is that the smallest counterexamples we are searching for
are quite small terms, but may nevertheless have a few fairly deep nodes in their
syntax trees. More recent enumerative tools, such as LeanCheck [3], enumerate
test cases in size order, instead of in depth order, thus reaching terms with just a
few deeper nodes much earlier in the enumeration. For this example, LeanCheck
runs out of memory after about 11 million tests. but this was enough to find all
but four of the planted bugs.

However, LeanCheck does not use the Lazy SmallCheck optimization, and
so is mostly testing ill-typed terms, for which our property holds vacuously.
SciFe [18] enumerates in size order and uses the Lazy SmallCheck optimization,
with good results. It is hard to apply SciFe, which is designed to test Scala, to our
Haskell code, so instead we created a Lazy SmallCheck variant that enumerates
in size order. With this variant, we could find all of the planted bugs, with
counterexample sizes varying from 5 to 14. Lazy SmallCheck does not report the
number of tests needed to find a counterexample, just the size at which it was
found, together with the number of test cases of each size. We can therefore only

5 Compiled with ghc -O2, on an Intel i7-6700k with 32GB of RAM under Windows
10.
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give a lower bound for the number of tests needed to find each bug. Figure 3 plots
this lower bound against the average number of tests needed by QuickCheck and
by QuickCover. For these bugs, it is clear that the enumerative approach is not
competitive with QuickCheck, let alone with QuickCover. The improvement in
the numbers of tests needed ranges from 1.7 to 5.5 orders of magnitude, with a
mean across all the bugs of 3.3 orders of magnitude.

Fig. 3. System F MTTF for QuickCheck and QuickCover, and the lower bound on the
number of tests run by our Lazy SmallCheck variant, log10 scale.

7.3 Comparison with Fuzzing Techniques

Coverage-guided fuzzing tools like AFL [22] can be viewed as a way of using a
different form of feedback (branch instead of combinatorial coverage) to improve
the generation of random inputs by finding more “interesting” tests. Fuzzing
is a huge topic [43] that has exploded in popularity recently, with researchers
evaluating the benefits of using more forms of feedback [13, 31], incorporating
learning [28,33] or symbolic [39,42] techniques, and bringing the benefits of these
methods to functional programming [11, 21]. One fundamental difference, how-
ever, is that all of these techniques are online and grey-box: they instrument and
execute the program on various inputs in order to obtain feedback. In contrast,
combinatorial coverage can be computed without any knowledge of the code it-
self, therefore providing a convenient black-box alternative that can be valuable
when the same test suite is to be used for many versions of the code (such as
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in regression testing) or when executing the code is costly (such as when testing
production compilers).

Chen et al.’s adaptive random testing (ART) [4] uses an algorithm that, like
QuickCover’s, generates a set of random tests and selects the most interesting to
run. Rather than using combinatorial coverage, ART requires a distance metric
on test cases—at each step, the candidate which is farthest from the already-run
tests is selected. Chen et al. show that this approach finds bugs after fewer tests,
on average, in the programs they study. ART was first proposed for programs
with numerical inputs, but Ciupa et al. [5] showed how to define a suitable metric
on objects in an object-oriented language and used it to obtain a reduction of
up to two orders of magnitude in the number of tests needed to find a bug. Like
combinatorial testing, ART is a black-box approach that depends only on the
test cases themselves, not on the code under test.

However, Arcuri and Briand [1] question ART’s value in practice, because
of the quadratic number of distance computations it requires, from each new
test to every previously executed test; in a large empirical study, they found
that the cost of these computations made ART uncompetitive with ordinary
random testing. While our approach also has significant computational overhead,
the time and space complexity grow with the number of possible descriptions
(derived from the data type definition and the choice of strength) and not with
the total number of tests run—i.e., testing will not slow down over time. In
addition, our approach works in situations where a distance metric between
inputs does not make sense.

8 Conclusion and Future Work

We have presented a generalized definition of combinatorial coverage and an
effective way to use that definition for property-based testing, generalizing the
definition of combinatorial coverage to work in the realm of algebraic data types
with the help of regular tree expressions. Our sparse test descriptions provide
a robust way to look at combinatorial testing, which specializes to the classical
approach. We use these sparse descriptions as a basis for QuickCover—a tool that
thins a random generator to increase combinatorial coverage. Two case studies
show that QuickCover is useful in practice, finding bugs using an average of 10×
fewer tests.

The rest of this section sketches a number of potential directions for further
research.

8.1 Variations

Our experiments show that sparse test descriptions are a good way to define
combinatorial coverage for algebraic data types, but they are certainly not the
the only way. Here we discuss some variations and why they might be interesting
to explore.



Do Judge a Test by its Cover 285

Representative Samples of Large Types Perhaps it is possible to do combinatorial
testing with ADTs by having humans decide exactly which trees to cover. This
approach is already widely used in combinatorial testing to deal with types like
machine integers that, though technically finite, are much too large for testing to
efficiently cover all their “constructors.” For example, if a human tester knows
(by reading the code, or because they wrote it) that it contains an if-statement
guarded by x < 5, they might choose to cover

x ∈ {−2147483648, 0, 4, 5, 6, 2147483647}.

The tester might choose values around 5 because those are important to the
specific use case and boundary values and 0 to check for common edge-cases.
Concretely, this practice means that instead of trying to cover tuple3(Int, true+
false, true+ false), the tester covers the specification

tuple3(−2147483648 + 0 + 4 + 5 + 6 + 2147483647, true+ false, true+ false).

In our setting, this might mean choosing a representative set of constructor
trees to cover, and then treating them like a finite set. In much the same way as
with integers, rather than cover

tuple3(τlist(bool), true+ false, true+ false),

we could treat a selection of lists as atomic constructors, and cover the specifi-
cation

tuple3( [] + [true, false] + [false, false, false] , true+ false, true+ false)

which has 2-way descriptions like

tuple3( [] , �, false) and tuple3( [true, false] , true, �).

Just as testers choose representative sets of integers, they could choose sets of
trees that they think are interesting and only cover those trees. Of course, the
set of all trees for a type is usually much larger and more complex than the set
of integers, so this approach may not be as practical for structured types as for
integers. Still, it is possible that small amounts of human intervention could help
guide the choice of descriptions to cover.

Type-Tagged Constructors Another variation to our approach would change the
way that ADTs are translated into constructor trees. In Appendix B we show
a simple example of a Translation for lists of Booleans, but an interesting
problem arises if we consider lists of lists of Booleans. The most basic approach
would be to use the same constructors (LCNil and LCCons) for both “levels” of
list. For example, [[True]] would become (with a small abuse of notation)

LCCons (LCCons LCTrue LCNil) LCNil.

https://harrisongoldste.in/papers/quick-cover.pdf
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Depending on the application, it might actually make more sense to use different
constructors for the different list types ([Bool] vs. [[Bool]]). For example,
[[True]] could instead be translated as

LCOuterCons (LCInnerCons LCTrue LCInnerNil) LCInnerNil

(with a slight abuse of notation), allowing for a broader range of potential test
descriptions. This observation can be generalized to any polymorphic ADT: any
time a single constructor is used at multiple types, it is likely beneficial to dif-
ferentiate between them by translating to constructor tree nodes tagged with a
monomorphized type.

Pattern Descriptions A third potential variation is a modification to make test
descriptions a bit less sparse. Recall that sparse test descriptions are defined as

d � � | /C(d1, . . . , dn).

What if we chose this instead?

d � /d′

d′ � C(d′1, . . . , d′n)

In the former case, every relationship is “eventual”: there is never a requirement
that a particular constructor appear directly beneath another. In the latter case,
the descriptions enforce a direct parent-child relationship, and we simply allow
the expression to match anywhere in the term. We might call this class “pattern”
test descriptions.

We chose sparse descriptions for this work because putting / before every
constructor leaves more opportunities for nodes matching different descriptions
to be “interleaved” within a term, leading to smaller test suites in general. In
some small experiments, this alternative proposal seemed to perform similarly
across the board but worse in a few cases. Even so, experimenting with the use
of eventually in descriptions might lead to interesting new ideas.

8.2 Combinatorial Coverage of More Types

Our sparse tree description definition of combinatorial coverage is focused on
inductive algebraic types. While these encompass a wide range of the types that
functional programmers use, it is far from everything. One interesting extension
would generalize descriptions to co-inductive types. We actually think that the
current definition might almost suffice—regular tree expressions can denote infi-
nite structures, so this generalization would likely only affect our algorithms and
the implementation of QuickCover. We also should be able to include Generalized
Algebraic Data Types (GADTs) without too much hassle. The biggest unknown
is function types, which seem to require something more powerful than regular
tree expressions to describe; indeed, it is not clear that combinatorial testing
even makes sense for higher-order values.



Do Judge a Test by its Cover 287

8.3 Regular Tree Expressions for Directed Generation

As we have shown, regular tree expressions are a powerful language for picking
out subsets of types. In this paper, we mostly focused on automatically generat-
ing small descriptions, but it might be possible to apply this idea more broadly
for specifying sets of tests. One straightforward extension would be to use the
same machinery that we use for QuickCover but, instead of covering an automat-
ically generated set of descriptions, ensure that, at a minimum, some manually
specified set of expressions is covered. For example, we could use a modified
version of our algorithm to generate a test set where

nil, cons(�, nil), and μX. cons(true, X) + nil

are all covered. (Concretely, this would be a test suite containing, at a minimum,
the empty list, a singleton list, and a list containing only true.) This might be
useful for cases where the testers know a priori that certain shapes of inputs
are important to test, but they still want to explore random inputs with those
shapes.

A different approach would be to create a tool that synthesizes QuickCheck
generators that only generate terms matching a particular regular tree expres-
sion. This idea, related to work on adapting branching processes to control test
distributions [29], would make it easy to write highly customized generators and
meticulously control the generated test suites.
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