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RIS-Enabled Semi-Passive Multi-User 3D
Localization and Doppler Estimation

Kamran Keykhosravi, Member, IEEE, Musa Furkan Keskin, Member, IEEE, Satyam Dwivedi, Member, IEEE,
Gonzalo Seco-Granados, Senior Member, IEEE, and Henk Wymeersch, Member, IEEE.

Abstract—Reconfigurable intelligent surface (RIS), operating
as a lens or a reflector, is set to be a revolutionary technology
in the 6th generation of wireless systems. With most works
that consider RISs as reflectors, the RIS provides a non line-
of-sight (NLOS) path between the base station and the user.
In this letter, we study the application of RIS in a multi-user
passive localization scenario, where RIS is mounted on the user
side, providing NOLS paths between a transmitter and multiple
asynchronous receivers. We show that user’s 3D position can be
estimated with submeter accuracy in a large area around the
transmitter, using LOS and NLOS time-of-arrival measurements
at the receivers. We do so, by developing the signal model,
deriving the Cramér-Rao bounds, and devising an estimator that
attains the bounds. Furthermore, by properly adjusting the RIS
phase profiles, we circumvent inter-path interference.

Index Terms—Reconfigurable intelligent surfaces, passive lo-
calization, Cramér-Rao lower bounds

I. INTRODUCTION

Realization of smart radio environments empowered by
reconfigurable intelligent surfaces (RISs), which enables wide-
ranging communication and radio sensing with high energy
and spectrum efficiency, is one of the foremost ambitions of
the sixth generation of wireless systems [1]. RIS consists of
a multitude of unit cells, whose response to the impinging
electromagnetic wave can be controlled, and thereby can
improve the quality and coverage of wireless communication
and also enable or improve radio localization [2], [3]. In
addition to these benefits, RISs are semi-passive devices with
low cost, which make them ideal to be mounted on vehicles.

Radio localization has attracted increasing attention in re-
cent years as technologies such as millimeter wave, multiple-
input multiple-output (MIMO), and RIS enable high-accuracy
positioning of users, based on the time-of-arrival (ToA) and
angles of arrival and departure measurements. Considering the
nature of the user, localization techniques can be categorized
into active and passive methods. While with the former case
the user transmits or receives signals, in the latter one, the user
only reflects the signals from transmitter (Tx). Many studies
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have been conducted on passive localization based on a variety
of approaches such as radio-frequency identification (RFID)
[4], [5], signal eigenvector [6], received signal strength (RSS)
[7], and ToA-based passive positioning. With the latter case,
which is the focus of this letter, the user location is estimated
based on the received signal ToA at multiple receivers (Rxs).
This topic has been studied in two-dimensional space under
the assumption of synchronous [8], quasi-synchronous [9], and
asynchronous networks [10]. In [11], the authors study the 2D
localization performance of a joint radar and RFID system.
Moreover, bistatic ToA estimation has been investigated in
passive sensing systems that employ the signals transmitted
by illuminators of opportunity (IO) [12]. To the best our
knowledge, this is the first paper on RIS-enabled passive
localization.

In this letter, we investigate the multi-user 3D positioning
problem, employing a single-antenna Tx and multiple single-
antenna Rxs, where each user is equipped with a RIS (see
Fig. 1). We propose a low-complexity positioning algorithm,
which utilizes orthogonal sequences in the design of RIS phase
profiles. By employing the orthogonality property of the re-
ceived signal, the algorithm can resolve multipath interference
and data association problem. In other words it can decompose
the received signal at each Rx to the line-of-sight (LOS)
component and signals reflected from each user equipment
(UE). Thereafter, the ToA can be readily estimated at each
Rx for each of the multipath components, which enables
localization of the UEs. Finally, we evaluate the localization
error for the proposed method and show that it reaches the
theoretical Cramér-Rao lower bounds (CRB).

A. Notation

Vectors, which are columns, are shown by bold lower-case
letters and matrices by bold upper-case ones. The element at
the ith row and the jth column of the matrix A is shown as
[A]i,j . The set C and T represents the set of complex numbers
and all the complex numbers with unit magnitude, respectively.

II. SYSTEM MODEL

A. Signal Model

We consider one Tx (a base station (BS)) with location p0

and M Rxs with locations p1, . . . ,pM , as well as N UEs
with locations x1, . . . ,xN . Each of the UEs is equipped with
a RIS, while the Tx and Rxs have a single antenna. The
Rxs are not synchronized with the BS and have clock biases
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Fig. 1. A schematic of the system model for two UEs (N = 2) and three
Rxs (M = 3).

B1, . . . , BM . We assume transmission of T OFDM symbols
with K subcarriers during each localization occasion.

The signal received at the mth Rx can be represented by the
matrix Ym ∈ CK×T . Assuming constant transmission over all
subcarriers, we have

Ym =
√
Es

N∑
n=0

d(τn,m)α>n,m +Wm, (1)

where Es is the symbol’s energy and

d(τ) = [1, e2π∆fτ , . . . , e2π(K−1)∆fτ ]> (2)

is a steering vector across subcarriers, where ∆f is the
subcarrier spacing. For the LOS path (n = 0), the delay is
τ0,m = ‖p0−pm‖/c+Bm/c, in which the distance ‖p0−pm‖
is known and c is the speed of light. For the reflected paths
(n > 0), the delay is

τn,m =
‖p0 − xn‖+ ‖xn − pm‖+Bm

c
. (3)

The vector αn,m ∈ CT×1 represents the complex gain of
different paths. For n = 0 (LOS) α0,m = α0,m1T , where
α0,m indicates the LOS gain. For n 6= 0, we have

[αn,m]t = γn,0γn,ma(θn,m)HΩn[t]a(φn,0), (4)

in which γn,0 is the complex channel gain from the transmitter
to UE n and γn,m is the complex channel gain from UE n
to receiver m. The noise matrix is represented by Wm ∈
CK×T , which has iid circularly-symmetric Gaussian elements
and variance N0.

Moreover, a(θn,m) is the steering vector of the RIS of
nth UE at angle-of-departure (AoD) θn,m, measured in the
unknown frame of reference of UE n. Let Rn indicate the un-
known rotation matrix mapping the global frame of reference
to the coordinate system associated with the nth RIS. Then
AoD θn,m represents the 3D angle in the direction of vector
wn,m = Rn(pm − xn), i.e., θaz = atan2([wn,m]2, [wn,m]1)
and θel = acos([wn,m]3/‖wn,m‖. Similarly, φ0,n indicates
the nth RIS steering vector at angle-of-arrival (AoA) φ0,n,

which is the 3D angle associated with the vector vn,0 =
Rn(xn−p0). The steering vector at angle ψ for an Wr×Wc

RIS with distance d between adjacent elements is a(ψ) =
ar(ψ)⊗ ac(ψ), where

ar(ψ) = eβr [1, ed[k(ψ)]1 , . . . , e(Wr)d[k(ψ)]1 ]> (5)

ac(ψ) = eβr [1, ed[k(ψ)]2 , . . . , e(Wr)d[k(ψ)]2 ]> (6)

where βr = −(Wr − 1)d[k(ψ)]1/2 and βc = −(Wc −
1)d[k(ψ)]2/2 and

k(ψ) =
2π

λ
[sinψel cosψaz, sinψel sinψaz, cosψel]

> (7)

is the wavenumber vector. Finally, Ωm[t] ∈ TW×W , where
W = WrWc, is a diagonal matrix that represents the phase
profile of RIS n as a function of time t.

B. Problem Formulation

Our goal in this letter is to estimate the locations of the
N UEs, x1, . . . ,xN . To do this, we formulate the following
objectives:
• To estimate at Rx m, the N ToAs τn,m. For this, we use

the design freedom of the RIS in terms of Ωn[t] to avoid
interference from different paths.

• To compute time-difference-of-arrival (TDoA) measure-
ments at each of the M Rxs and process them jointly to
localize all users.

III. METHODOLOGY

In this section, we address the two steps mentioned in
Section II-B. We first introduce a special RIS phase profile
design in Section III-A that allows us to decouple the received
signals at each Rx. Then based on the received signals we
estimate ToAs in Section III-B. Finally, in Section III-C we
use the ToAs to estimate the position of the UEs.

A. RIS phase profile design

In this section, we design the phase profile of each RIS to
avoid the interference between different signal paths. To do so,
for UE n, we set the RIS profile Ωn[t] to be a multiplication
of a static diagonal matrix Ωn ∈ TW×W and a dynamic
scalar [ωn]t ∈ T, i.e., Ωn[t] = [ωn]tΩn. We also define
ω0 = 1T . As shown in Section III-B, we can avoid inter-path
interference if the vectors ωn ∈ TT×1 for n = 0, 1, . . . , N
form an orthonormal set, i.e.,

ωHn ωn′ =

{
T if n = n′.

0 otherwise
(8)

Therefore, one should set the the number of transmission T
higher than N , to be able to select N +1 orthonormal vectors
{ωn}Nn=0. In this letter we choose the vector ωn to be the nth
column of the T ×T discrete Fourier transform (DFT) matrix
F with elements

[F ]`,m = e−2π`m/T . (9)

Since FFH = I , the condition (8) holds.
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In terms of the static part Ωn, since in this letter we do not
assume any prior knowledge of the user location, we set this
part randomly. However, if it is assumed that an estimation of
the user location and orientation is available, one can design
Ωn to obtain a higher signal-to-noise ratio (SNR) at the Rxs.

B. ToA estimation at BS m

In order to estimate τn,m at Rx m and for n = 0 . . . N , we
make use of (8) by computing

rn,m =
1

T
Ymω

∗
n (10)

=
√
Esβn,md(τn,m) +wn,m (11)

where E{w0,mw
H
0,m} = N0/TI and

βn,m =

{
α0,m if n = 0

γ0,nγm,na(θm,n)HΩna(φ0,n) otherwise
(12)

From this observation, we can easily determine τn,m using
standard methods. In this letter we use fast Fourier transform
(FFT) with a refinement step based on quasi-Newton method
[13]. In what follows we explain this method in brief for
completeness. We let r(δ) = r ◦ d(δ) be a delayed version
of r. Also let b(δ) be the F -point FFT of the vector r(δ),
where F is a design parameter. Then we estimate τn,m as
τ̂n,m = k̃/F∆f − δ̃, where [δ̃, k̃] = arg maxk,δ |[b(δ)]k|. This
2D optimizations can be divided to two 1D ones [13].

C. Estimating the position of user n

We compute the TDoA measurements

∆n,m = c(τ̂n,m − τ̂0,m) + ‖p0 − pm‖ (13)
= ‖p0 − xn‖+ ‖xn − pm‖+ wn,m, (14)

which defines an ellipse in 2D and an ellipsoid 3D, with
foci p0 and pm. For each UE n, we aggregate all the
measurements in ∆n = [∆n,1, . . . ,∆n,M ]> across different
Rxs and the corresponding noises in wn, where we model
wn ∼ N (0,Σn). Note that Σn is a diagonal matrix, since
the noises at different Rxs are uncorrelated. The elements of
Σn can be estimated using the CRB bounds for τn,m (see
Section B). Hence, we can write

∆n = h(xn) + nn, (15)

where

[h(x)]m = ‖p0 − x‖+ ‖x− pm‖. (16)

We thus find the UE location estimate as

x̂n = arg min
xn

(∆n − h(xn))>Σ−1(∆n − h(xn)), (17)

which can be solved via gradient descent algorithm, starting
from an initial guess. We next propose a method to find such
an initial guess.

Without loss of generality, we set p0 = 0. In the absence
of noise and based on (14), we have that

(∆n,m − ‖xn‖)2 = ‖xn − pm‖2 (18)

TABLE I
PARAMETERS USED IN THE SIMULATION.

Parameter Symbol Value
Wavelength λ 1 cm
RIS element distance d 0.5 cm
Light speed c 3 × 108 m/s
Number of subcarriers Nsc 100
Subcarrier bandwidth ∆f 120 kHz
Number of transmissions T 32
Transmission Power NscEs∆f 20 dBm
Noise PSD N0 −174 dBm/Hz
UE’s Noise figure nf 8 dB
FFT dimensions F 1024

which leads to

p>mx−∆n,m‖xn‖ =
1

2
(‖pm‖2 −∆2

n,m). (19)

We can rewrite (19) in the matrix form as

Pxn = zn + ∆n‖xn‖ (20)

where P = [p1,p2, . . . ,pM ]>, z = 0.5[‖p1‖2 −
∆2
n,1, . . . , ‖pM‖2 −∆2

n,M ]>. Then the nth user position can
be estimated as [14]

x̂n = an + bn‖x̂n‖ (21)

where

an = (P>P )−1P>zn (22)

bn = (P>P )−1P>∆ (23)

‖x̂n‖ =
−a>n bn ±

√
(a>n bn)2 − ‖an‖2(‖bn‖2 − 1)

‖bn‖2 − 1
. (24)

If (24) yields two viable solutions, on can insert both solutions
to the negative log-likelihood function, which is the objective
function in (17). If the outcome for one of the solutions is
much smaller than the other one, then it should be used as
the initial guess for the nth user position. However, if both
outcomes are small, this indicates that the M ellipsoids in
(14) intersects in two distinct points. In such a case some prior
knowledge (e.g., the user is located below the Rxs) should be
used to localize the user.

IV. SIMULATION RESULTS

In this section we evaluate the estimation error of the user
position and compare it to the theoretical position error bound
(PEB) (see Appendix). We let RIS to be a 64 × 64 uniform
planar array (UPA). The clock biases Bm are selected uni-
formly in the interval [0, 1/∆f). Since there is no interference
between the LOS path and the non line-of-sight (NLOS) paths
from different users, the performance of the estimator for each
user is independent of the number of users N (as long as
T > N ) and therefore, we set N = 1. For the LOS path,
the channel gain α0,m is calculated based on Friis’ formula
assuming unit directivity for Tx and Rxs. For the NLOS path
the channel gain is calculated as [15, Eq. (21)–(22)]

γn,0γn,m =
λ2(cos(θn,m) cos(φn,0))0.285

16‖p0 − xn‖‖pm − xn‖
. (25)
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Fig. 2. PEB in meters for a system with Tx at the origin (marked by a black
circle), three Rxs (marked by red triangles) uniformly located on a circle with
radius 3 on the plane z = 1, and a user located on z = −3.

All the rotational angles corresponding to the user orientation
is set to zero (Rn = I3, ∀n). The elements of Ωn are drawn
randomly and independently from the unit circle. The pre-
sented results are obtained by averaging over 50 000 random
realization of RIS phase profiles (500) and noise (100 for
each RIS phase profile). The rest of the system parameters
are represented in Table I.

Fig. 2 illustrates the PEB for a system with three Rxs,
located on the plane z = 1, while the user is on z = −3. As
can be seen, submeter localization accuracy can be attained in
a large area around the Tx. It is also evident that PEB increases
with the distance from the user to Tx almost symmetrically in
all directions. In Fig. 3 the PEB is calculated as a function of
the number of receivers (M ), where the receivers are located
on a circle with radius R ∈ {2, 4, 6, 8, 10} one meter above
the Tx. and the user is at x1 = [0, 0,−3]. Naturally, PEB
increases with R due to a decrease in SNR and decreases
with M . It can be seen that in the logarithmic scale, there is
a linear dependence between M and the position error (based
on the numerical results in Fig. 3, the error is proportional to
M−0.7).

Fig. 4 compares the positioning error of the estimator pre-
sented in Section III-C with the CRB bounds, where the user
is moved along the x direction (we omit 1% of the RIS phase
profiles as outliers). To assess the robustness of our algorithm
to interference from the scatterers, we examine its performance
in the presence of a number of scatterers. We place multiple
scattered randomly one meter below the UEs and within
10 m reduce of the point [0, 0,−4]>. The channel gain for
the scattered signal is calculated based on the radar range
equation by assuming radar cross section of 0.1 m2 (almost
equal to the considered RIS surface area). The scatterers
induce interference to the received signal at every Rxs. Such
interference will deteriorate our estimation accuracy of the
LOS delay τ̂0,m, however, it does not effect that of the NLOS
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Fig. 3. PEB for a system with Tx at the origin, M Rxs located uniformly
in a circle of radius R on the z = 1 plane, and a user located at [0, 0,−3].
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Fig. 4. PEB (solid line) for a system with Tx at the origin, three Rxs (located
similarly as in Fig. 2), and a user located at [x, 0,−3]. The estimation error
is also shown by markers in the presence of 0, 20, and 50 scatterers.

delay τ̂n,m (n > 0). This is because the interference from
scatterers cancels out upon calculating rn,m = (1/T )Ymω

∗
n

since we have 1>Tω
∗
n = 0,∀n > 0. In the absence of scatterers,

it can be seen that the estimator is able to reach the theoretical
bound. We use the prior knowledge that the UE is below the
Rxs to resolve the sign ambiguity in (24). Furthermore, it can
be seen that the estimator can function properly even in the
presence of a large number of scatterers and obtain submeter
localization accuracy. When the user is close to the transmitter
and SNR is high, the interference becomes the limiting factor
and the effects of scatterers are more pronounced. On the other
hand, the effect of interference becomes minimal in the low-
SNR regime where the noise limits the performance the the
estimator.

V. CONCLUSION

We considered a multi-user RIS-enabled localization prob-
lem, where the users’ position in 3D was estimated by cal-
culating the ToA of the LOS and NLOS paths at multiple
receivers. The considered scenario can be categorized as a
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passive localization problem since the users do not transmit or
receive signals and their positions are obtained based on the
reflected signal from them. Nonetheless, it should be noted
that RISs are not completely passive as they require some
source of energy to reconfigure. We showed that by dividing
the RIS phase profile to dynamic and static parts and selecting
the dynamic one based on orthonormal sequences, the inter-
path interference can be avoided. In future work we aim to
optimize the static part of the RIS phase profile to improve
the SNR of the NLOS path and achieve better localization
accuracy.

APPENDIX
CRB CALCULATIONS

A. Calculating CRB for τn,m
The CRB for τn,m is a lower bound on the estimation error

of the ToA, i.e.,√
E[|τn,m − τ̂n,m|2] ≥

√
[J−1
n,m]1,1 (26)

where Jn,m is the Fisher information matrix (FIM) for the
channel parameters

ζn,m = [τn,m,<(βn,m),=(βn,m)] (27)

The FIM can be calculated as

Jn,m =
2T

N0

∑
k

<

(
∂[rn,m]k
ζn,m

(
∂[rn,m]k
ζn,m

)H
)

(28)

Then, we can calculate the elements of Jn,m as

[Jn,m]1,1 =
2KTEs

N0
|2π∆fβn,m|2

(K − 1)(2K − 1)

6
(29)

[Jn,m]1,2 = −2KTEs

N0
2π∆f=(βn,m)

K − 1

2
(30)

[Jn,m]1,3 =
2KTEs

N0
2π∆f<(βn,m)

K − 1

2
(31)

[Jn,m]2,3 = 0 (32)

[Jn,m]2,2 =
2KTEs

N0
(33)

[Jn,m]3,3 =
2KTEs

N0
(34)

Base on (28)–(34), we have

[J−1
n,m]1,1 =

N0

2KTEs
|2π∆fβn,m|−2 12

K2 − 1
(35)

B. Calculating Σn

Based on (13), the covariance matrix Σn can be calculated
using (35) as

[Σn]m,m = c2
(
[J−1
n,m]1,1 + [J−1

0,m]1,1
)

(36)

where in order to calculate (35) we estimate |βn,m| based on
(11) as

|βn,m| =
∣∣∣∣ d(τ̂n,m)>rn,m√
Esd(τ̂n,m)>d(τ̂n,m)

∣∣∣∣ (37)

C. Calculating PEB

Based on [16, Eq.(3.31)] and (14) we have

PEBn =
√

tr
(
J−1
n

)
(38)

where

Jn =
∂µ

∂xn
Σ−1

(
∂µ

∂xn

)>
, (39)

∂µ

∂xn
=
[ xn − p0

‖xn − p0‖
+

xn − p1

‖xn − p1‖
, (40)

. . . ,
xn − p0

‖xn − p0‖
+

xn − pM
‖xn − pM‖

]
.

REFERENCES

[1] D. Dardari, “Communicating with large intelligent surfaces: Fundamen-
tal limits and models,” IEEE J. Select. Areas Commun., vol. 38, no. 11,
pp. 2526–2537, Nov. 2020.

[2] A. Bourdoux, A. N. Barreto, B. van Liempd, C. de Lima, D. Dardari,
D. Belot, E.-S. Lohan, G. Seco-Granados, H. Sarieddeen, H. Wymeersch
et al., “6G white paper on localization and sensing,” arXiv preprint
arXiv:2006.01779, Jun. 2020.

[3] H. Wymeersch, J. He, B. Denis, A. Clemente, and M. Juntti, “Ra-
dio localization and mapping with reconfigurable intelligent surfaces:
Challenges, opportunities, and research directions,” IEEE Vehicular
Technology Magazine, vol. 15, no. 4, pp. 52–61, Dec. 2020.

[4] L. M. Ni, D. Zhang, and M. R. Souryal, “RFID-based localization and
tracking technologies,” IEEE Wireless Commun., vol. 18, no. 2, pp. 45–
51, Apr. 2011.

[5] H. Qin, Y. Peng, and W. Zhang, “Vehicles on RFID: Error-cognitive
vehicle localization in GPS-less environments,” IEEE Trans. Vehicular
Tech., vol. 66, no. 11, pp. 9943–9957, Nov. 2017.

[6] J. Hong and T. Ohtsuki, “Signal eigenvector-based device-free passive
localization using array sensor,” IEEE Trans. Vehicular Tech., vol. 64,
no. 4, pp. 1354–1363, Apr. 2015.

[7] W. Ruan, L. Yao, Q. Z. Sheng, N. J. Falkner, and X. Li, “Tagtrack:
Device-free localization and tracking using passive RFID tags,” in
Proceedings of the 11th Int. Conf. on Mobile and Ubiquitous System,
London, UK, Dec. 2014, pp. 80–89.

[8] J. Shen, A. F. Molisch, and J. Salmi, “Accurate passive location
estimation using TOA measurements,” IEEE Trans. Wireless Commun.,
vol. 11, no. 6, pp. 2182–2192, Jun. 2012.

[9] Y. Wang, S. Ma, and C. P. Chen, “TOA-based passive localization in
quasi-synchronous networks,” IEEE Commun. Lett., vol. 18, no. 4, pp.
592–595, Feb. 2014.

[10] W. Yuan, N. Wu, B. Etzlinger, Y. Li, C. Yan, and L. Hanzo,
“Expectation–maximization-based passive localization relying on asyn-
chronous receivers: Centralized versus distributed implementations,”
IEEE Trans. Commun., vol. 67, no. 1, pp. 668–681, Jan. 2019.

[11] N. Decarli, F. Guidi, and D. Dardari, “A novel joint RFID and radar sen-
sor network for passive localization: Design and performance bounds,”
IEEE J. Select. Areas Commun., vol. 8, no. 1, pp. 80–95, Feb. 2014.

[12] X. Zhang, H. Li, J. Liu, and B. Himed, “Joint delay and Doppler
estimation for passive sensing with direct-path interference,” IEEE
Transactions on Signal Processing, vol. 64, no. 3, pp. 630–640, 2016.

[13] K. Keykhosravi, M. F. Keskin, G. Seco-Granados, and H. Wymeersch,
“SISO RIS-enabled joint 3D downlink localization and synchronization,”
arXiv preprint arXiv:2011.02391, 2020.

[14] M. Malanowski, “An algorithm for 3D target localization from passive
radar measurements,” in Photon. Appl. in Astron., Commun., Industry,
and High-Energy Phys. Exp., Wilga, Poland, May 2009.

[15] S. W. Ellingson, “Path loss in reconfigurable intelligent surface-enabled
channels,” arXiv preprint arXiv:1912.06759, 2019.

[16] S. M. Kay, Fundamentals of statistical signal processing: Estimation
Theory. Prentice Hall PTR, 1993.


	Introduction
	Notation

	System Model
	Signal Model
	Problem Formulation

	Methodology
	RIS phase profile design
	ToA estimation at BS m
	Estimating the position of user n

	Simulation Results
	Conclusion
	Appendix: CRB calculations
	Calculating CRB for n,m
	Calculating n
	Calculating PEB

	References

