
c© 2008 Mircea-Radu Teodorescu

MULTILAYER TECHNIQUES TO ADDRESS PARAMETER VARIATION

BY

MIRCEA-RADU TEODORESCU

Dipl. Eng., Technical University of Cluj-Napoca, 2002

M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Josep Torrellas, Chair

Professor Marc Snir

Professor Sarita Adve

Assistant Professor Deming Chen

Professor Todd Mowry, Carnegie Mellon University

Chris Wilkerson, Intel Corp.

ABSTRACT

As integrated-circuit technology continues to scale, process variation is becoming an is-

sue that cannot be ignored at the microarchitecture and system levels. Process variation is

particularly detrimental to a processor’s frequency and leakage power. To solve this grow-

ing problem, solutions at different levels of the computing stack are needed. This thesis

presents a couple of such solutions.

The first solution, is a circuits technique that has important implications on the microar-

chitecture. It is based on the previously-proposed Fine-Grain Body Biasing (FGBB), where

different parts of the processor chip are given a voltage bias that changes the speed and leak-

age properties of their transistors. Previous work proposed determining the optimal body

bias voltages at manufacturing time and setting them permanently for the lifetime of the

chip. In this thesis, I propose a new technique (called Dynamic FGBB - D-FGBB), which

allows the continuous re-evaluation of the bias voltages to adapt to dynamic conditions.

Within-die process variation causes individual cores in a Chip Multiprocessor (CMP) to

differ substantially in both static power consumed and maximum frequency supported. In

this environment, ignoring variation effects when scheduling applications or when manag-

ing power with Dynamic Voltage and Frequency Scaling (DVFS) is suboptimal. This thesis

presents a set of variation-aware algorithms for application scheduling and power manage-

ment. One such power management algorithm, uses linear programming to find the best

voltage and frequency levels for each of the cores in the CMP — maximizing throughput

at a given power budget.

ii

To Magdalena, for her love.

iii

ACKNOWLEDGMENTS

First and foremost I would like to thank my adviser, Josep Torrellas for his moral and

financial support during my Ph.D, for teaching me how to do quality research and inspiring

me to pursue an academic career. I am particularly grateful to him for believing in me from

the beginning and for teaching me the value of perseverance in the face of rejection.

I would like to thank the members of my Ph.D. committee Prof. Marc Snir, Prof. Sarita

Adve, Prof. Deming Chen, Prof. Todd Mowry and Chris Wilkerson for their feedback on

my research and my thesis.

I was very fortunate to be part of the outstanding IACOMA research group and I believe

that every one of its past and present members has contributed in some way to the successful

completion of my Ph.D. With some of them I worked directly and we co-authored papers. I

would like to thank Jun Nakano who pioneered the research on variation in our group — a

path that many of us followed after his graduation. I was impressed my his analytical skills,

his whiteboard-art skills and his unique humor. I would also like to thank Brian Greskamp

for the great discussions and invaluable feedback on my research. I also owe him a lot

for his willingness to proofread my papers and job application and for always providing

great feedback. I also enjoyed working with Abhishek Tiwari and Smruti Sarangi and have

benefited a lot from their insights on my research.

Even though I did not work directly with other members of our research group, I bene-

fited a lot from interactions will all of them. I would like to thank Pablo Montesinos for his

friendship and for orchestrating my successful conversion to world of Apple computers. I

would like to thank Luis Ceze and Karin Strauss for their help and advice on my job appli-

iv

cation process, for the outstanding meals I had at their house and for their friendship. I owe

my addiction to great coffee to Paul Sack with whom I shared many enjoyable lunches and

discussions about data races and Vespa scooters. He has also patiently read some of my

papers with a critical look, for which I am very grateful. I would also like to thank James

Tuck for his help and encouragement with my academic application and Wonsun Ahn for

proofreading my application package. I am also very grateful to the younger generation

of iacomers: Ulya Karpuzcu, Abdullah Muzahid, Sandy Qi and Xuehai Qian for putting

up with my endless practice talks and providing feedback on my work. Special thanks to

Sandy for helping make my latest trip to China very enjoyable and memorable. I would

also like to thank our former postdoctoral researcher Wei Liu for his help and feedback.

Other IACOMA alumni have left a significant mark on my career. In particular, I would

like to thank José Renau for writing the world’s best multiprocessor simulator and José

Martı́nez and Milos Prvulovic for helpful career advice.

At University of Illinois I benefited from working in a great environment and with a

lot of incredibly talented faculty and students. I would like to thank Yuanyuan Zhou for

working with me on a publication. Other faculty that have shaped my career at UIUC

include Deming Chen, Sarita Adve, Craig Zilles, Vikram Adve, Sanjay Patel and many

others. I also worked with students from other groups at UIUC. In particular, I would

like to thank Pin Zhou for our successful collaboration on a research project that led to us

co-authoring a great paper. Other students I have interacted with include James Roberts,

Naveen Neelakantam, Pierre Salverda, Man-Lap Li, Pradeep Ramachandran and so many

more.

I am very grateful to Intel Corporation for their support during my Ph.D. I was very

fortunate to do an internship at Intel Pittsburgh in 2006 and I discovered the most amazing

group of people there. In particular I would like to thank Mike Kozuch and Phil Gibbons,

my mentors at Intel Pittsburgh, for a great collaboration. I would also like to thank Todd

Mowry who was the lab director at the time and Shimin Chen. Intel also grated me a

v

fellowship for the final year of my Ph.D, which in addition to the generous financial support,

allowed me to present my work in front of Intel researchers and to make new professional

contacts there. In particular, I would like to thank Chris Wilkerson, my fellowship mentor,

for his feedback on my research and his support of my job application.

I would not have made it to this point without the support of friends and family. I would

like to thank my dear friends Nancy and Gerald Yaxley for their support and for being my

second family away from home. I would also like to thank my long time friend Sergiu

Nedevschi for his continued help and moral support.

I would like to thank my parents, Iuliana and Emil Teodorescu for everything they have

done for me. First of all they set a great example by always emphasizing education in our

family’s life. They did their best to make sure that my brother Gabi and I always made

learning a priority and always found ways to make it easier for us, even in the face of

hardship. My parents also bought my first computer — back in the day when they used to

cost a small fortune — because they strongly believed it would further my education and

they were certain that the sacrifice was worth it. They have always supported my choices

even when those choices meant I would have to move thousands of kilometers away from

them. For all they have done I can never hope to thank them enough. I can only hope to

have learned from them enough to do the same for my children.

Finally, I would like to thank my wonderful wife Magdalena. Without her I wouldn’t

have made it to this point. She has been more supportive of me than any husband can ask.

She has a contagious optimism and positive outlook that got us through the most difficult

situations. She stood by me when I decided to leave my country and pursue a Ph.D, even

though that meant we would live apart for three long years. Her love gives me strength and

balance every day and for that I will forever be grateful.

vi

TABLE OF CONTENTS

LIST OF FIGURES . x

CHAPTER 1 Introduction and Motivation . 1

CHAPTER 2 A Model for Parameter Variation 3

2.1 Introduction and Background . 3

2.2 Modeling Variation . 4

2.2.1 Systematic Variation . 5

2.2.2 Random Variation . 8

2.2.3 Combining Variations . 8

2.2.4 Values for μ, σ and φ . 9

2.3 Impact on Chip-Level Behavior . 9

2.3.1 Leakage Power . 9

2.3.2 Chip Frequency . 11

CHAPTER 3 Dynamic Fine-Grain Body Biasing 15

3.1 Introduction . 15

3.2 Body Biasing . 16

3.2.1 Uses of BB and FGBB . 16

3.2.2 Overhead of BB and FGBB . 17

3.3 Dynamic Fine-Grain Body Biasing . 18

3.3.1 A Mechanism to Apply D-FGBB 19

3.3.2 Static Calibration of FGBB . 22

3.3.3 Using D-FGBB to Save Leakage Power 23

3.3.4 Using D-FGBB to Improve Performance 25

3.3.5 D-FGBB and Dynamic Voltage Scaling 26

3.4 Selecting the BB Cells . 27

3.4.1 Temperature Effects . 27

3.4.2 Critical Paths in Logic and Memories 28

3.5 Evaluation Methodology . 28

3.5.1 Processor Chip Architecture . 28

3.5.2 Power and Temperature Model . 29

3.5.3 Critical Path Model . 30

3.5.4 Variation Model Parameters . 31

3.5.5 BB Environments Evaluated . 32

vii

3.6 Evaluation . 33

3.6.1 Characterizing Variation . 33

3.6.2 Normal Operation: D-FGBB Improves a Chip’s Operating Point . . 34

3.6.3 Impact of S-FGBB . 36

3.6.4 Leakage Reduction with D-FGBB 38

3.6.5 High Performance: D-FGBB Improves Frequency 39

3.6.6 Low Power: D-FGBB Reduces Leakage 41

3.6.7 Dynamic Voltage and Frequency Scaling (DVFS) 43

3.6.8 Estimated Area Overhead of D-FGBB 45

CHAPTER 4 Variation-Aware Application Scheduling and Power Management

for Chip Multiprocessors . 46

4.1 Introduction . 46

4.2 Application Scheduling and Power Management under Process Variation . . 47

4.2.1 UniFreq: Uniform Frequency & No DVFS 48

4.2.2 NUniFreq: Non-Uniform Frequency & No DVFS 49

4.2.3 NUniFreq+DVFS: Non-Uniform Frequency & DVFS 50

4.2.4 LinOpt: Power Management Using Linear Programming 51

4.2.5 Other Global Optimization Solutions 54

4.3 System Implementation . 55

4.3.1 Frequency, Voltage and Power Control 55

4.3.2 Profiling Support . 56

4.4 Evaluation Methodology . 59

4.4.1 Variation Model Parameters . 60

4.4.2 Power and Temperature Model . 61

4.4.3 Critical Path Model . 61

4.4.4 Workloads . 62

4.4.5 Optimization Algorithms . 62

4.4.6 Metrics . 63

4.5 Evaluation . 63

4.5.1 Variation Effects on Power and Frequency 64

4.5.2 Application Power and IPC . 67

4.5.3 UniFreq: Uniform Frequency & No DVFS 67

4.5.4 NUniFreq: Non-Uniform Frequency & No DVFS 68

4.5.5 NUniFreq+DVFS: Non-Uniform Frequency & DVFS 71

4.5.6 LinOpt Granularity . 73

4.5.7 LinOpt Execution Time . 74

CHAPTER 5 Related Work . 75

5.1 Variation Measurement and Modeling . 75

5.2 Body Bias and Adaptive Supply Voltage 76

5.3 Handling Core-To-Core Process Variation 77

5.4 Scheduling for Heterogeneous Architectures 77

5.5 Power Management in Chip Multiprocessors 78

viii

5.6 DVFS Granularity and Implementation . 79

5.7 Other Dynamic Power Management Algorithms 79

CHAPTER 6 Conclusions and Future Work . 81

REFERENCES . 84

AUTHOR’S BIOGRAPHY . 91

ix

LIST OF FIGURES

2.1 Spherical function. 6

2.2 Systematic Vth variation map for a chip with φ = 0.5. 7

2.3 Systematic Vth variation map for a chip with φ = 0.1. 7

2.4 Relative leakage power in the chip as a function of Vth’s σ. Vth0 is

0.150V at 100 oC. 11

2.5 Relative leakage power versus temperature for different threshold volt-

ages at 100 oC. We use Vth0=0.150V at 100 oC. 12

2.6 Relative switching frequency versus temperature for different threshold

voltages at 100 oC. We use Vth0=0.150V at 100 oC. 14

2.7 Probability distribution of the relative chip frequency as a function of

Vth’s σ. We use Vth0=0.150V at 100 oC, 12 FO4s in the critical path,

and 10,000 critical paths. 14

3.1 Proposed circuit to support D-FGBB in a cell. 19

3.2 Tmax and Tavg in different units of a processor running a sequence of

SPECint and SPECfp codes. 23

3.3 Changing the BB voltage with D-FGBB. 24

3.4 CMP floor-plan used (a) and the partitioning of one processor and its

share of the bus into BB cells (b–d). Chart (b) shows the five critical

path replicas in one cell. 29

3.5 Impact of Vth variation on the chip’s frequency (a) and leakage power (b). . 34

3.6 Frequency versus leakage power for a batch of 200 chips at Tcal and full

load under various schemes. 35

3.7 Impact of S-FGBB and D-FGBB on a chip’s operating point. 36

3.8 Frequency binning obtained by S-FGBB with different numbers of BB

cells, for σ/μ = 0.12 (a) and σ/μ = 0.09 (b). 37

3.9 Leakage (a) and total power (b) of the chips for different FGBB schemes

in normal operation. 39

3.10 Average frequency of the chips for different FGBB schemes. 40

3.11 Execution time of the applications for different FGBB schemes. 40

3.12 Total power of the chips for different FGBB schemes. 41

3.13 Frequency versus leakage power for a batch of 200 chips at usual T and

load conditions. 42

x

3.14 Leakage (a) and total power (b) of the chips for different FGBB schemes

at constant frequency. 43

3.15 Leakage (a) and total power (b) at different voltage-frequency pairs,

without and with D-FGBB. 44

3.16 Area overhead of D-FGBB as a fraction of the chip area. 45

4.1 Linear approximation of the power dependence on voltage. 54

4.2 Execution timeline for application scheduling and LinOpt invocation. . . . 56

4.3 Floorplan of the 20-core CMP and superimposition of a Vth variation map. . 59

4.4 Histograms of the ratio between the powers consumed by the most and

least power-consuming cores in the die (a) and between the frequencies

of the fastest and slowest cores in the die (b). 64

4.5 Average ratio between the maximum and minimum core power (a) and

core frequency (b) for different values of Vth σ/μ, for 200 dies. 65

4.6 Core power as a function of frequency for the highest- and lowest-

frequency cores in a sample die. 66

4.7 Total power consumption (a) and ED2 (b) relative to Random in UniFreq. . 68

4.8 Total power consumption (a) and ED2 (b) relative to Random in NUniFreq. 69

4.9 Average frequency (a) and average throughput (b) relative to Random
in NUniFreq. 70

4.10 ED2 relative to Random in NUniFreq. 70

4.11 Average throughput (a) and ED2 (b) for different algorithms relative to

Random+Foxton* in the Cost-Performance Power Environment. 71

4.12 Average throughput for different algorithms relative to Random+Foxton*
in the three Power Environments. All experiments are for 20-thread runs. . 72

4.13 Average weighted throughput (a) and weighted ED2 (b) for different al-

gorithms relative to Random+Foxton* in the Cost-Performance Power

Environment. 73

4.14 Average deviation of power consumption from Ptarget for different in-

tervals between LinOpt runs. 73

4.15 Execution time of the LinOpt algorithm for different numbers of threads

in the three Power Environments. 74

xi

CHAPTER 1

Introduction and Motivation

Parameter variation — the divergence of process parameters from their nominal specifica-

tions — is a challenge that has been recognized in the circuits community for many years.

Its detrimental effects on microprocessor frequency and power consumption have been

well documented. However, as integrated-circuit technology continues to scale and varia-

tion worsens, it is becoming an issue that cannot be ignored at the microarchitecture and

system levels. To solve this growing problem, solutions at different levels of the computing

stack are needed.

The work presented in this thesis makes several contributions in this space. First, we

developed a parametrized model of process variation (presented in Chapter 2). The model

was used throughout this work to estimate the effects of variation on current and future chip

multiprocessors and to test the effectiveness of our solutions for mitigating and tolerating

the effects of parameter variation. This thesis presents two such techniques.

The first one, presented in Chapter 3, is a circuits technique that has important impli-

cations on the microarchitecture. It is based on the previously-proposed Fine-Grain Body

Biasing (FGBB), where different parts of the processor chip are given a voltage bias that

changes the speed and leakage properties of their transistors. Previous work proposed

determining the optimal body bias voltages at manufacturing time and setting them per-

manently for the lifetime of the chip. In this thesis, a new technique is presented (called

Dynamic FGBB - D-FGBB), which allows the continuous re-evaluation of the bias volt-

ages to adapt to dynamic conditions. Our results show that D-FGBB is very versatile and

effective. Specifically, with the processor working in normal mode at fixed frequency, D-

1

FGBB reduces the leakage power of the chip by an average of 28-42% compared to static

FGBB. Alternatively, with the processor working in a high-performance mode, D-FGBB

increases the processor frequency by an average of 7-9% compared to static FGBB, or

7-16% compared to no body biasing.

Within-die process variation causes individual cores in a Chip Multiprocessor (CMP)

to differ substantially in both static power consumed and maximum frequency supported.

In this environment, ignoring variation effects when scheduling applications or when man-

aging power with Dynamic Voltage and Frequency Scaling (DVFS) is suboptimal. In the

second part of this thesis (Chapter 4), I present a set of variation-aware algorithms for appli-

cation scheduling and power management. One such power management algorithm, called

LinOpt, uses linear programming to find the best voltage and frequency levels for each of

the cores in the CMP — maximizing throughput at a given power budget. In a 20-core

CMP, the combination of variation-aware application scheduling and LinOpt increases the

average throughput by 12–17% and reduces the average ED2 by 30–38% — all relative to

using variation-aware scheduling together with a simple extension to Intel’s Foxton power

management algorithm.

The final chapters of this thesis present some relevant related work (Chapter 5) and

conclusions (Chapter 6).

2

CHAPTER 2

A Model for Parameter Variation

2.1 Introduction and Background

Parameter variation encompasses several effects including process, voltage and temperature

variation. Process variation is caused by the inability to precisely control the fabrication

process at small-feature technologies. It is a combination of systematic effects [25, 60, 75]

(e.g., lithographic lens aberrations) and random effects [5] (e.g., dopant density fluctua-

tions). Voltage variations can be caused by IR drops in the supply distribution network or

by L dI/dt noise under changing load. Temperature variation is caused by spatially- and

temporally-varying factors. All of these variations are becoming more severe and harder to

tolerate as technology scales to minute feature sizes.

Two key process parameters subject to variation are the transistor threshold voltage,

Vth, and the effective length, Leff. Vth is especially important because its variation has a

substantial impact on two major properties of the processor, namely the frequency it attains

and the leakage power it dissipates. Moreover, Vth is also a strong function of temperature,

which increases its variability [78].

One of the most harmful effects of variation is that some sections of the chip are slower

than others — either because their transistors are intrinsically slower or because high tem-

perature or low supply voltage renders them so. As a result, circuits in these sections may

be unable to propagate signals fast enough and may suffer timing errors. To avoid these

errors, designers in upcoming technology generations may slow down the frequency of the

processor or create overly conservative designs. It has been suggested that parameter vari-

3

ation may wipe out most of the potential gains provided by one technology generation [7].

To examine the impact of variation, we need an efficient way to accurately model its

effects on microprocessor chips. Existing models of parameter variation are generally too

low-level to be suited for microarchitectural studies. This is the main reason we developed

our own model that is at the right level of abstraction to model variation impact on mi-

croarchitectural units. Our model is parametrized allowing a range of variation levels to

be modeled, it considers both random and systematic effects and also models the spatial

correlation of the systematic component.

2.2 Modeling Variation

Parameter variation can be broken down into two major components, namely die-to-die

(D2D) and within-die (WID). Furthermore, WID variation can be divided into random

and systematic components. Thus, variation in any parameter P , like Vth or Leff, can be

represented as follows:

ΔP = ΔPD2D + ΔPWID = ΔPD2D + ΔPrand + ΔPsys

In this work, we focus on WID variation, but D2D variation is easily modeled: One

needs only add a chip-wide offset to the Vth and Leff parameters of every transistor on the

die. For simplicity, we model the two components of WID process variation with normal

distributions. This is an accepted approach that has been used elsewhere [73].

From a microarchitectural perspective, Vth and Leff variation are of key importance:

they directly affect a chip’s leakage and frequency. The WID variation of these parame-

ters is impacted by both systematic and random effects [5]. Limitations of the lithogra-

phy and other manufacturing processes introduce systematic variations. Typically, such

variations exhibit a spatial structure with a certain scale of parameter changes over the

two-dimensional space [25, 60, 75]. On the other hand, a variety of materials effects, such

4

as changes in the dopant density of the channel [5] and lithographic phenomena like line

edge roughness [85], introduce random variations. Such random variations have a different

profile for each transistor and are in effect noise superimposed on the systematic variation.

We treat random and systematic variation separately, since they arise from different

physical phenomena. As described in [73], we assume that their effects are additive.

2.2.1 Systematic Variation

Systematic variation is characterized by a spatial correlation, meaning that adjacent areas

on a chip have roughly the same systematic components. Such correlation can be charac-

terized using different models. For example, [52,73] use a quad tree model that recursively

partitions the die into four parts. In this work, we use a different method that models sys-

tematic variation using a multivariate [62] normal distribution with a specific correlation

structure.

We divide a chip into N small rectangular cells. The value of the systematic compo-

nent of Vth is assumed to be constant within one small cell. This is consistent with other

work [73]. We also assume that the value of Vth for all the cells has a normal distribution

with mean μ and standard deviation σ. Along with this, the values of Vth are spatially

correlated.

To determine the spatial correlation, we make the following assumptions. First, we

treat the distribution of Vth as isotropic and position-independent. This means that given

two points �x and �y in the grid, the correlation between them depends only on the distance

between �x and �y, and not on the direction of the segment that goes from �x to �y, or the po-

sition of �x and �y in the grid. We verify these assumptions by analyzing the empirical data

obtained by Friedberg et al. [25] and using results from [73]. Nevertheless, we acknowl-

edge the fact that in reality there are some anisotropic effects — for example in defects due

to misalignment of the masks.

5

Given the assumptions of position independence and isotropy, the correlation function

of Vth(�x) and Vth(�y) is expressible as ρ(r), where r = |�x − �y|. By definition, ρ(0) = 1 (i.e.,

totally correlated). We also set ρ(∞) = 0 (i.e., totally uncorrelated) because two infinitely

separated points have independent Vth when we only consider WID variation.

To determine how ρ(r) changes from ρ(0) = 1 to ρ(∞) = 0 as r increases, we use the

Spherical model [16, 38], which has the following form:

ρ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 − (3r/2φ) + (r/φ)3/2 if (r ≤ φ)

0 if (r > φ)

(2.1)

This model is very similar to the correlation function experimentally measured by

Friedberg et al. [25] for the WID variation of gate length. Our rationale for using this

model is that gate length variation is the main determinant of systematic Vth variation.

 0

1

 0 φ
r

(r)ρ

Figure 2.1: Spherical function.

Figure 2.1 shows the function ρ(r). At a finite distance φ that we call range, the function

converges to zero. Intuitively, this assumption implies that the Vth of a transistor is highly

correlated to the Vth of those in its immediate vicinity. The correlation decreases linearly

with distance at small distances. Then, it decreases more slowly. At distance φ, there is no

longer any correlation between two transistors’ Vth.

6

Figure 2.2: Systematic Vth variation map for a chip with φ = 0.5.

In this work, we express φ as a fraction of the chip’s width. A large φ implies that large

sections of the chip are correlated with each other; the opposite is true for small φ. As

an illustration, Figures 2.2 and 2.3 show example systematic Vth variation maps for chips

with φ = 0.1 and φ = 0.5. Both maps were generated by the geoR statistical package [66]

of R [64]. In the φ = 0.5 case, we discern large spatial features, whereas in the φ = 0.1

one, the features are small. A distribution without any correlation (φ = 0) appears as white

noise.

Figure 2.3: Systematic Vth variation map for a chip with φ = 0.1.

7

Finally, to estimate the systematic component of Leff, we proceed as follows. The ITRS

report [36] tells us that the total σ/μ of Leff is roughly half of that of Vth. Moreover, ac-

cording to [9], the systematic component of Leff is strongly correlated with the systematic

component of Vth. Hence, we use the following equation to generate a value of the system-

atic component of Leff given the value of the systematic component of Vth. Let Leff0 be

the nominal value of the effective length and let Vth0 be the nominal value of the threshold

voltage. We use:

Leff = Leff0

(
1 +

1

2
(Vth − Vth0)/Vth0

)
(2.2)

2.2.2 Random Variation

The random variation occurs at a much finer granularity than the systematic variation; it

occurs at the level of individual transistors, rather than at the level of millions of transistors.

Hence, it is not possible to model random variation in the same explicit way as systematic

variation — by simulating a grid where each cell has its own parameter values. Instead,

random variation appears in the model analytically. Random components of Vth and Leff

are normally distributed with a σrand and a zero mean.

2.2.3 Combining Variations

Finally, since the random and systematic components of Vth and Leff are normally dis-

tributed and independent, the total variation is normal with zero mean and a standard devi-

ation of:

σ =
√

σ2
rand + σ2

sys (2.3)

where Vth and Leff have a different σ.

8

2.2.4 Values for μ, σ and φ

For Vth, we set σ/μ = 9%. This is consistent with near-future technologies and includes

both the systematic and random components. Moreover, according to empirical data gath-

ered by [43], these two components are approximately equal for 32 nm technology. Hence,

we assume that they have equal variances. Since both components are modeled as normal

distributions, their standard deviations σrand and σsys are equal to 9%/
√

2 = 6.4% of the

mean. This value for the random component matches the empirical data of Keshavarzi et

al. [44].

As explained before, we take the total σ/μ of Leff to be half of that of Vth. Con-

sequently, Leff’s σ/μ is 4.5%. Furthermore, assuming again that the two components

of variation are more or less equal, we have that σrand and σsys for Leff are equal to

4.5%/
√

2 = 3.2% of the mean.

To estimate φ, we note that Friedberg et al. [25] experimentally measured the correla-

tion of gate length to be around half of the chip length. The rest of this work also adopts

φ = 0.5, but depending on how φ scales with die size, larger values may be appropriate for

smaller dies.

2.3 Impact on Chip-Level Behavior

For an initial analytical evaluation of the impact of variation on a chip’s behavior, we look

at two key characteristics: chip leakage power and frequency.

2.3.1 Leakage Power

Subthreshold leakage is the main source of leakage in current and future technologies, es-

pecially now that the accelerated adoption of high-k gate dielectric is set to reduce gate

leakage 100-fold [11]. The following subthreshold leakage model is based on that of

9

HotLeakage [86], itself a simplification of the full BSIM3 SPICE model:

Ileak ∝ (kT/q)2e
q(Voff−Vth)

(ηkT) (2.4)

where Vth = Tc1 + c2, k is Boltzmann’s constant, and q the electron charge, while c1, c2,

η and Voff are empirically determined parameters. We find the value for these parameters

by fitting the leakage Equation 2.4 to experimental data for the 32 nm technology node

obtained from SPICE simulations using the Predictive Technology Model [87].

The values for these parameters are given in Table 3.1 for both PMOS and NMOS

transistors.

Transistor Type Parameter Values for 32 nm

NMOS c1 = −1.23mV/K, c2 = 613mV ,

Voff = 134mV , η = 3.42
PMOS c1 = −1.14mV/K, c2 = 544mV ,

Voff = 183mV , η = 3.43

Table 2.1: Parameter values for Equation 2.4.

In order to estimate the impact of different levels of Vth variance on the chip’s leak-

age power, we take our Vth distribution and integrate Equation 2.4 over all the transistors

in the chip. The result is the total leakage current in the chip. Let Pleak and Ileak be the

chip leakage power and current under Vth variation, and P 0
leak and I0

leak be the same pa-

rameters when there is no variation. The expected value of the ratio of post-variation and

pre-variation leakage is:

Pleak/P
0
leak = Ileak/I

0
leak = e(qσ/ηkT)2/2 (2.5)

which implies that the increase in the chip’s leakage power and current due to Vth variation

depends on the standard deviation σ of Vth. Figure 2.4 plots the relative power as a function

of σ. It increases rapidly as σ goes up.

10

 1

 1.2

 1.4

 1.6

 1.8

 2

�� ������ ������ ������
�

P

 /
P le

ak
le

ak
0

Figure 2.4: Relative leakage power in the chip as a function of Vth’s σ. Vth0 is 0.150V at

100 oC.

Another important factor affecting leakage power is temperature. Figure 2.5 shows

how the relative leakage power changes as a function of temperature, for different thresh-

old voltages at 100 oC. Leakage power increases dramatically with temperature (3X from

50 oC to 100 oC). In addition, we observe that the leakage dependence on the threshold

voltage is significant. For different Vth (different lines in Figure 2.5), the leakage changes

significantly. For instance, for a 20% variation in the reference Vth at 100 oC, we see a

130% increase in leakage power.

2.3.2 Chip Frequency

The delay of an inverter gate is given by the alpha-power model [67] as:

Tg ∝ LeffV

μ(V − Vth)
α

(2.6)

where α is typically 1.3 and μ is the mobility of carriers (μ(T) ∝ T−1.5). As Vth decreases,

V − Vth increases and the gate becomes faster. As T increases, V − Vth(T) increases, but

μ(T) decreases [42]. The second factor dominates and, with higher T , the gate becomes

11

50 60 70 80 90 100

0
1

2
3

4
5

6

Temperature (C)

P
le

ak
P

le
ak

0

Vth = 0.180V
Vth = 0.165V
Vth = 0.150V
Vth = 0.135V
Vth = 0.120V

Figure 2.5: Relative leakage power versus temperature for different threshold voltages at

100 oC. We use Vth0=0.150V at 100 oC.

slower. Figure 2.6 plots the dependence between relative switching frequency and temper-

ature as dictated by Equation 2.6. We can see that the dependence is not very strong.

Consider now a fixed temperature. Substituting Equation 2.2 into Equation 2.6 and

factoring out constants with respect to Vth produces:

Tg ∝ 1 + Vth/Vth0

(V − Vth)
α

(2.7)

Empirically, we find that Equation 2.7 is nearly linear with respect to Vth for the param-

eter range of interest. Because Vth is normally distributed and a linear function of a normal

variable is itself normal, Tg is approximately normal.

Assuming that every critical path in a processor consists of ncp gates, and that a modern

processor chip has thousands of critical paths, Bowman et al. [7] compute the probability

distribution of the longest critical path delay in the chip (max{Tcp}). Such path determines

the processor frequency (1/ max{Tcp}). Using this approach, we find that the value of

Vth’s σ affects the chip frequency.

12

Figure 2.7 shows the probability distribution of the chip frequency for different values

of Vth’s σ. The frequency is given relative to a processor without Vth variation (F/F0). The

figure shows that, as σ increases, (i) the mean chip frequency decreases and (ii) the chip

frequency distribution gets more spread out. In other words, given a batch of chips, as Vth’s

σ increases, the mean frequency of the batch decreases and, at the same time, an individual

chip’s frequency deviates more from the mean.

We saw that Vth’s σ directly affects chip leakage and frequency. As σ increases, chip

leakage increases rapidly, and chip frequency decreases in mean value and varies more.

Therefore, Vth (and Leff) variation is very detrimental.

13

50 60 70 80 90 100

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Temperature (C)

R
el

at
iv

e
S

w
itc

hi
ng

 F
re

qu
en

cy

Vth = 0.180V
Vth = 0.165V
Vth = 0.150V
Vth = 0.135V
Vth = 0.120V

Figure 2.6: Relative switching frequency versus temperature for different threshold volt-

ages at 100 oC. We use Vth0=0.150V at 100 oC.

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

50

100

150

200

250

F/F
0

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

� / � = 0.03
� / � = 0.06
� / � = 0.09
� / � = 0.12

Figure 2.7: Probability distribution of the relative chip frequency as a function of Vth’s σ.

We use Vth0=0.150V at 100 oC, 12 FO4s in the critical path, and 10,000 critical paths.

14

CHAPTER 3

Dynamic Fine-Grain Body Biasing

3.1 Introduction

As we have seen in Chapter 2, variation in Vth directly impacts two major properties of the

processor, namely the frequency it attains and the leakage power it dissipates. Moreover,

Vth is also a function of temperature, which increases its variability [78].

A recently-proposed technique to mitigate Vth variation within a chip is Fine-Grain

Body Biasing (FGBB) [82]. FGBB applies different body biases to different sections of

the chip, which we call Cells. A body bias is a voltage applied between the source or drain

of a transistor and its substrate, effectively changing the transistor’s Vth [78]. Depending on

the polarity of the voltage applied, Vth increases or decreases. If it increases, the transistor

becomes less leaky and slower; if it decreases, the transistor becomes leakier and faster.

By reducing the Vth in cells with slow transistors and increasing the Vth in cells of leaky

transistors, we reduce the variation within the die and attain a better frequency-leakage

operation for the chip.

Previous work has proposed determining the body bias voltages at manufacturing time

and setting them permanently for the lifetime of the chip. This means that the optimal val-

ues for the bias voltages have to be selected considering worst-case temperature and, there-

fore, delay conditions. This results in an overly-conservative configuration. In practice, the

processor does not normally run at worst-case temperature and delay conditions. To take

advantage of this, we propose to continuously adjust the body biases dynamically, adapting

to changes in operating conditions. We call the scheme Dynamic FGBB (D-FGBB).

15

The main contribution of this work is to introduce and evaluate D-FGBB. We show

that D-FGBB is very versatile and significantly more effective than S-FGBB. Specifically,

with the processor working in normal mode at fixed frequency, D-FGBB reduces the leak-

age power of the chip by an average of 28–42% compared to static FGBB — the higher

savings corresponding to the cases with more body bias cells per chip. Alternatively, with

the processor working in a high-performance mode, D-FGBB increases the processor fre-

quency by an average of 7–9% compared to static FGBB — or 7–16% compared to no body

biasing. We also show that D-FGBB can complement Dynamic Voltage Scaling (DVS) and

that it scales well when combined with Dynamic Voltage and Frequency Scaling (DVFS).

3.2 Body Biasing

Body Biasing (BB) a transistor involves applying a voltage between its source or drain and

substrate to alter its Vth [50]. In Forward BB (FBB), the voltage polarity is such that Vth

decreases, creating a faster and leakier transistor. In Reverse BB (RBB), Vth increases,

creating a slower, less leaky transistor. BB can be applied in a way such that the chip

receives a single bias voltage or that it receives different bias voltages in different regions

of the chip [82] — we call the latter Fine-Grain Body Biasing (FGBB). We call each of the

regions with a different bias voltage a Cell.

3.2.1 Uses of BB and FGBB

At least two commercial processors use BB, namely Intel’s Xscale [15] and Transmeta’s

Efficeon [19]. Both apply a single, chip-wide BB. Xscale uses RBB in standby mode

to reduce leakage. There are fewer details on Efficeon, but it appears that the chip uses

BB either to reduce leakage or to boost frequency. In addition, an experimental 80-core

network-on-chip from Intel [84] uses FGBB. Specifically, it uses FBB to increase frequency

in active mode and RBB to save leakage power in idle mode.

16

Another proposed use of BB is to reduce D2D process variation [6, 82]. After fabri-

cation, different dies from the same batch run at different frequencies and leak different

amounts. Applying different levels of chip-wide BB to different chips — RBB to high-

leaking chips and FBB to slow ones — pushes the chips into a more homogeneous region

of operation with acceptable frequency and leakage.

Other work has focused on using FGBB to mitigate WID variation [2, 12, 82]. Specif-

ically, Tschanz et al. [82] implement FGBB on a test chip with 21 cells, each containing

one critical path and circuitry to determine the optimal BB for the cell. Cells with a slow

critical path are made faster with FBB, while cells with a fast (and leaky) critical path are

made less leaky with RBB. The result is that WID variation in speed and leakage decreases.

3.2.2 Overhead of BB and FGBB

Implementing BB in a chip requires adding power lines for the BB voltage and including

circuitry to determine and generate the optimal BB voltage [50]. In addition, to apply BB

to NMOS, the manufacturing process has to be enhanced with a triple-well process [82].

There are three overheads to consider, namely area, power, and time.

The area overhead of BB is examined by Kuroda and Sakurai [50], who discuss various

circuits to apply BB. The circuitry that controls the BB is simple, and its area overhead is

estimated to be 1% of the chip area. On top of that, there is the area overhead of routing

the power lines for BB. However, Narendra et al. [58] implement a router chip with BB

for PMOS that contains a central bias generator, 24 local bias generators distributed in the

chip with their own control circuits, and the needed global routing, and report a full-chip

area overhead of 2%. Similarly, in an experimental 150nm FGBB chip, with 21 cells that

contain one critical path each, Tschanz et al. [82] report an overall chip area overhead

due to FGBB of 2-3%. Furthermore, an optimized design of BB circuits using recently-

proposed approaches such as Chen and Gregg’s [12] or Azizi and Najm’s [2] may further

17

reduce the area overhead.

Applying and controlling BB consumes some static and dynamic power. The static

power dissipated is proportional to the area and, therefore, is small. The dynamic power

consumed charging and discharging the substrate capacitance when BB levels change is

small because the currents are small. Overall, according to Kuroda and Sakurai [50], the

power overhead of BB and the circuitry that controls it is 1% of the chip’s power.

The timing overhead of BB is also negligible. Kuroda and Sakurai [50] present designs

that allow large changes in BB voltage to occur in the order of 1μs or 10μs. In this work, we

only change the BB voltage in small increments when T changes, which is in the order of

ms. Moreover, the processor does not stop while the BB voltage is being adjusted. Finally,

Narendra et al. [58] report that the presence of the BB circuitry does not hurt the frequency

of their router chip. Consequently, we assume there is no timing overhead.

Finally, determining the optimal amount of BB to apply can be done using a circuit

that is representative of the critical paths in the cell. Using a phase detector similar to the

one used in Razor [23] on that representative circuit, Tschanz et al. [82] determine the

frequency that the transistors in that cell can support. Based on it, they set the BB to apply

to the cell.

3.3 Dynamic Fine-Grain Body Biasing

Judicious application of FGBB can redress the problem of WID Vth variation. As suggested

by Tschanz et al. [82], RBB can be applied to cells with low Vth and FBB to cells with high

Vth. The net effect is to lower Vth’s σ. As a result, the chip may increase its frequency,

reduce its leakage, or a combination of both.

While Tschanz et al. proposed to use FGBB statically, we propose to use FGBB dy-

namically. Moreover, our approach and goal are different than Intel’s 80-core network-on-

chip [84]. In the latter, active cores receive FBB to increase their frequency and idle cores

18

receive RBB to reduce their leakage.

Our approach is different in two ways. First, we apply D-FGBB in a fine time scale,

adapting it as an application runs and the T changes. Secondly, we are redressing parameter

variation within a core. Our goal is different in that we want to run a core at the highest

frequency and/or at the lowest power that can be attained at any given time. In this section,

we propose a mechanism to apply D-FGBB and use it in different scenarios.

Body Bias Cell

Local Bias Generator

N-CNT

P-CNT D2A

D2A
AND

OR

DEC

INC

RBB FBB

RBB

RBB

RBBFBB

FBB

FBB

Critical Path
Replica

Phase
Detector

extra
delay

fast

slow

RBB

FBB

NMOS Vbb

Sample Points

Sample Point

PMOS Vbb

CLK

Figure 3.1: Proposed circuit to support D-FGBB in a cell.

3.3.1 A Mechanism to Apply D-FGBB

To implement FGBB in a chip, we divide it into cells that can be body-biased independently.

In each cell, we add a Local Bias Generator, which is a simple circuit to generate the BB

voltage. Then, we determine the optimal BB voltage that should be applied to each cell.

19

BB essentially trades off leakage power for delay. The optimal BB voltage is therefore the

one that results in the minimum leakage consumption while ensuring that all the critical

paths in the cell meet timing. The optimal BB voltage is therefore a function of the cell’s

critical path delays, which in turn are dependent on the Vth and T distributions.

Analytical solutions to determine the optimal BB voltage are not practical because of

the non-determinism caused by Vth and T variation. We instead rely on direct measurement

of critical path delay to determine the BB voltage to apply to each cell.

In [82], a dedicated control circuit estimates the delay of the transistors in the cell and

adjusts the BB for the cell accordingly. The circuit consists of a critical path replica and

a phase detector that recognizes when the critical path replica is not meeting the target

frequency. A feedback mechanism is used to adjust the BB of the cell until the target

frequency is met.

We modify that design to work for D-FGBB. A diagram of our circuit for a single cell is

shown in Figure 3.1. We use multiple critical-path replicas distributed across the cell. This

allows for a more accurate assessment of the cell’s delay, in the presence of variation. Each

critical path replica is paired with its own phase detector, forming what we call a Sample

Point (Figure 3.1).

In cases of severe variation, it may happen that none of the critical path replicas captures

the worst-case delay of the cell. This will be detected during normal testing of the chip.

To solve this problem, we add some inverters to one of the critical path replicas of each

cell (Figure 3.1). These inverters are normally bypassed by pass transistors. If a cell fails

to meet the target timing during testing, some of the pass transistors in its corresponding

critical path replica are enabled. This increases the delay of the critical path replica so that

it becomes representative for that cell.

We use a bidirectional phase detector that identifies when the frequency supported by

the critical path replica is noticeably higher than or not as high as current conditions. In

the former case, it raises the RBB signal; in the latter, it raises the FBB signal (Figure 3.1).

20

This allows the circuit to fine-tune the BB voltage applied dynamically, by either increasing

or decreasing it depending on the signal raised. It saves both time and power compared to

the unidirectional calibration performed statically in [82] — which starts at the maximum

RBB and gradually reduces it, finally applying FBB until the target frequency is met.

An alternative to using critical path replicas is to directly measure the delay of the

actual critical paths as proposed in [18]. The critical paths in each cell are identified by

the CAD tools and their inputs and outputs sampled after fabrication by a circuit similar

to our phase detector. There are two advantages to this solution. First, it incurs a smaller

area overhead because it does not need to replicate critical paths. Secondly, it can be more

accurate because it measures the actual critical paths rather than replicas. The downside is

that it is more intrusive to the hardware design.

Each cell has a local bias generator that generates separate BB voltages for NMOS

and PMOS transistors (Figure 3.1). This is because NMOS and PMOS transistors can be

affected differently by variation and have different optimal BB voltages. The BB values

for PMOS and NMOS are stored in two bidirectional counters called P-CNT and N-CNT,

respectively. The counters are incremented and decremented dynamically. Their initial

values are set at a post-manufacturing calibration phase that determines the optimal BB

values for NMOS and PMOS at a calibration temperature (Section 3.3.2). Thereafter, their

values change only together by the same amount.

The counter values are converted to voltages by two digital-to-analog (D2A) converters

based on a resistor ladder and an OP-AMP. By setting the appropriate reference voltages

to the resistor ladders, and incrementing/decrementing the counters, the BB voltages range

from a maximum RBB of -500mV to a maximum FBB of 500mV in 32mV steps. This has

the effect of changing Vth by a range of ± 70mV.

The conditions for changing the BB are as follows. The counters are incremented as

long as at least one of the critical path replicas asserts its FBB signal. This ensures that the

cell receives higher BB until the slowest critical path replica meets timing. The counters are

21

decremented as long as all the critical path replicas assert their RBB signals. This means

that the cell receives lower BB only as long as all the critical path replicas are faster than

the desired delay. This saves leakage power while meeting the target frequency. When

neither of the above conditions is met, the counters hold their current values.

3.3.2 Static Calibration of FGBB

The chip manufacturer calibrates the FGBB for each chip. The goal is to bring each chip to

its best frequency-leakage operating point before shipment. The calibration is performed in

a controlled environment, at worst-case temperature conditions Tcal (for Calibration Tem-

perature). This ensures that the chip will function properly at any T. At the same time,

the manufacturer runs a set of test vectors designed to exercise the chip at full load and

generate the maximum dynamic power dissipation.

This process first sets the initial values of the P-CNT and N-CNT counters in all cells.

The goal is to correct the potential imbalance between the Vth of the NMOS and PMOS

transistors. Using a simple circuit like the one proposed in [26, 59], each cell measures the

local imbalance. Then, the cell increments the counter of the slower transistor type so that

the imbalance is eliminated. For cells with no Vth imbalance, P-CNT and N-CNT remain

at 0.

Next, the highest possible frequency at which the chip can run is determined using

binary search. First an initial Target Frequency F 0
cal is selected and applied to the chip. F 0

cal

can be a fixed percentage of the frequency expected for a chip with no Vth variation. In

each cell, the phase detectors automatically time the critical path replicas and the local bias

generator sets the optimal BB voltages for PMOS and NMOS. After the cells have been

body-biased, the chip’s total power is measured — both dynamic and leakage power. If the

power is below a tolerable maximum value, F 0
cal can be increased; if it is above, F 0

cal must

be decreased. Let us call F 1
cal the new frequency. The calibration process is then repeated

22

for F 1
cal. This process may be repeated a few times, each time decreasing ΔFcal until the

highest possible frequency, subject to the power constraint, is found. Let us call the final

value Fcal.

3.3.3 Using D-FGBB to Save Leakage Power

We propose to use our D-FGBB control circuit of Figure 3.1 to save leakage power by

continuously adapting BB voltages as T changes — without changing the frequency. Recall

that, as T goes up, gate delay goes up (Section 2.3). As a result, a chip’s critical path delays

also increase. The static FGBB (S-FGBB) settings are necessarily conservative because

they are calibrated using the conservatively high Tcal. In reality, there is a significant T

variation across and within workloads.

In
tQ

In
tR

eg
Ld

St
Q

In
tE

xe
c

In
tM

ap
D

TB IT
B

FP
Q

FP
R

eg
FP

M
ap

Bp
re

d
FP

Ad
d

FP
M

ul
D

ca
ch

e
Ic

ac
he

L2
C

ac
he

Functional Units

0

20

40

60

80

100

T
em

pe
ra

tu
re

 (
C

)

Tmax Tavg

Figure 3.2: Tmax and Tavg in different units of a processor running a sequence of SPECint

and SPECfp codes.

To illustrate it, Figure 3.2 shows, for each unit in a processor, the Tmax and Tavg of

that unit when running a sequence of SPECint and SPECfp codes. The difference between

Tmax and Tavg is often 20-30 oC. The initial S-FGBB calibration is performed at a Tcal that

23

is higher than the highest Tmax, while units typically operate at close to Tavg. As a result,

critical paths are generally faster than during calibration, and we can reduce the BB applied

and save leakage.

0 mV

FBB

RBB

D−FGBB

S−FGBB D−FGBB

(a) (b) (c)

500 mV
B

od
y

B
ia

s
V

ol
ta

ge
 (

m
V

)

D−FGBB

S−FGBB

S−FGBB

D−FGBB for performanceD−FGBB for leakage

−500 mV

Figure 3.3: Changing the BB voltage with D-FGBB.

When the chip is first powered-up, each cell’s BB is set to its S-FGBB calibration

value. As the chip workload changes, our D-FGBB control circuit adjusts the BB for each

cell to the optimal value for the current T. This is done without changing the frequency.

Figures 3.3(a) and (b) show the BB voltage values under S-FGBB and D-FGBB. In (a),

the cell is initially slow, and S-FGBB applies FBB at calibration time. Then, D-FGBB can

dynamically reduce the FBB and even apply RBB to save leakage power. Figure 3.3(b)

shows the case when the cell is initially fast enough to meet the target frequency, and

S-FGBB applies RBB at calibration time. D-FGBB can still save additional leakage by

applying further RBB when conditions permit.

D-FGBB dynamically adjusts the BB voltages without stopping the running applica-

tion. Consequently, it induces no time overhead.

24

3.3.4 Using D-FGBB to Improve Performance

A second use of D-FGBB is to increase performance by adapting frequency and BB volt-

ages as power consumption changes. This approach is used when the user wants to run the

processor in a high-performance mode, where the goal is to deliver the highest possible

performance while staying within the chip’s power budget (Pmax) at all times.

The insight that enables this mode of operation is that the manufacturer determines the

chip’s frequency Fcal conservatively, assuming a worst-case power consumption Pmax —

including worst-case dynamic power consumption — in addition to worst-case Tcal. Since

he assumes the maximum dynamic power, he imposes a conservative limit on the leakage

power — such that when both are added together, Pmax is not exceeded. At run time, such

maximum dynamic power is not always reached. Consequently, as long as Pmax is not

exceeded, we can dynamically increase the frequency beyond Fcal — which will increase

the dynamic power and, at the same time, require our D-FGBB circuit to increase the BB

of cells. The approach is shown in Figure 3.3 (c).

To support this mode of operation, we extend the S-FGBB calibration process. Specif-

ically, recall that we calibrated the chip’s Fcal under full load, generating the maximum

dynamic power dissipation (Section 3.3.2). After this, we place the chip in idle mode,

to dissipate little dynamic power, and repeat the calibration. Because the dynamic power

is low, more leakage power can be expended. This in turn allows higher BB in the cells,

enabling a higher processor frequency. The resulting frequency (Fmax
cal) is the absolute max-

imum frequency that the chip’s circuits can meet while not exceeding Pmax. Fcal and Fmax
cal

are recorded in a programmable table on-chip; they are used as lower and upper bounds,

respectively, on the processor frequency in high-performance mode.

At run time, the processor starts at Fcal. As it runs under load, it adjusts its frequency

at regular intervals, taking values between Fcal and Fmax
cal , depending on the current power

consumption of the chip. We assume that the chip includes circuits to measure average

25

power, possibly like those in Itanium’s Foxton [55]. As long as the average power is less

than Pmax and the processor is under load, the frequency is increased. To meet the new

frequency, the D-FGBB control circuit quickly increases the BB levels. Safety mechanisms

are in place to ensure that Pmax or Tcal are not exceeded. If this is about to happen, the

frequency is reduced.

3.3.5 D-FGBB and Dynamic Voltage Scaling

While D-FGBB trades-off circuit delay for leakage power, Dynamic Voltage Scaling (DVS)

largely trades-off circuit delay for dynamic power. Consequently, we can combine both

techniques so that, for a given frequency of operation — e.g., Fcal — the processor con-

sumes less power than with either technique alone. Previous work has shown that BB can

complement DVS to improve the power savings of DVS alone [54]. However, that work

decided the optimal combination of techniques using an analytical expression, which is not

suitable in the presence of variation.

A given circuit delay can be obtained with different combinations of supply voltage

and BB values, each with a different power cost. In some cases, more power can be saved

with a lower supply voltage (saving dynamic power) and a higher BB to compensate for

the circuit slowdown (consuming more static power). In other cases, it is better to have a

higher supply voltage (consuming more dynamic power) and use up the time slack with

a lower BB (saving leakage power). The best approach depends on the fraction of power

dissipated of each type and on the T.

We propose to augment the S-FGBB calibration process of Section 3.3.2 with one ad-

ditional step to find a configuration that substantially reduces the power consumed at Fcal.

Specifically, after the manufacturer has set the BB voltages for each cell at Fcal, he proceeds

as follows. The supply voltage is reduced in small increments through all the voltages that

are supported. At each step, our D-FGBB circuit of Figure 3.1 recomputes the BB values,

26

and the total power in the chip is also measured. When the voltage drops so much that Fcal

can barely be met, the process stops. Then, we select the combination of supply voltage

and BB values that consumes the least power. If the processor has multiple DVS domains

(e.g., one for the core and one for the L2), this algorithm is first run reducing the voltage

of one domain only. Once the best configuration is found, the configuration is used to run

the algorithm reducing the voltage of another domain, and so on. This process will find the

optimal combination of supply voltage and BB values at the calibration temperature Tcal.

3.4 Selecting the BB Cells

Previous work [57] has shown that microarchitectural structure plays an important role in

deciding how to partition the chip into BB cells. There are advantages to using BB cells

with shapes that follow the contour of microarchitectural modules such as caches, registers,

or execution units when compared to simply partitioning the chip in a uniform grid of cells.

There are two main reasons for this, namely variations in T and differences in the types of

critical paths in different modules.

3.4.1 Temperature Effects

Equations (2.4) and (2.6) show that T significantly affects transistor leakage and gate delay.

At high T, transistors become vastly leakier and gates slower. As a result, the BB voltage

applied can be better targeted if T does not vary much within a cell. It is well known that the

spatial T profile in a chip under load follows the layout of microarchitectural modules. For

example, the execution unit is hot while the L2 cache is cold. Consequently, we propose

organizing the chip into cells that follow the contours of groups of hot and groups of cold

microarchitectural modules.

27

3.4.2 Critical Paths in Logic and Memories

Different microarchitectural modules have different types of critical paths. This is most

obvious when comparing logic blocks such as functional units to memory structures such

as the L1 cache or TLB. In the former, a critical path contains many, physically close gates

and a modest amount of wire — e.g., 8-16 FO4-equivalent gates in high-end processors

connected by short wires. In contrast, the critical path in memory structures has a few,

physically separated transistors and much more wire — e.g., the path that stretches from a

driver through a word line, a pass transistor, a bit line, and then to a sense amplifier.

From a Vth variation point of view, these two critical paths differ dramatically. The

transistors in a logic path are many and physically close. Their large number enables a

better averaging of random Vth variations, while physical proximity makes them subject to

the same systematic Vth variation. On the other hand, the transistors in the memory path

are few and distant from each other. Fewer transistors means less averaging of random

Vth variations, while farther distances implies better averaging of systematic Vth variations.

Since these two types of critical paths are affected differently by a given BB voltage, we

separate logic and memory structures into different BB cells.

3.5 Evaluation Methodology

3.5.1 Processor Chip Architecture

We use detailed simulations using the SESC [65] cycle-accurate simulator to evaluate a chip

multiprocessor (CMP) with four high-performance processors at 45nm. The processor is

based on the Alpha 21364, and has a 64KB L1 I-cache, a 64KB L1 D-cache, and a 2MB L2

cache. We estimate a nominal frequency of 4GHz with a supply voltage of 1V. We generate

the processor layout from the Alpha 21364 chip floor-plan, without the router and I/O pads,

and with an L2 cache as in [69]. We use constant scaling to scale the dimensions to 45nm.

28

Finally, we put four such units on a chip, and interconnect them with a wide snoopy bus.

The resulting 8MB L2 cache is shared by all the cores. The resulting 132 mm2 chip is

shown in Figure 3.4(a).

(d) FGBB144(b) FGBB16 (c) FGBB64

ICache

L2 Cache

DCache

Bpred

FPReg

FPAdd

FPMul

DTB

ITB

LdSTQ

IntExec

IntReg

(a) CMP with a detailed processor

FPMap

IntMap IntQFPQ

Figure 3.4: CMP floor-plan used (a) and the partitioning of one processor and its share of

the bus into BB cells (b–d). Chart (b) shows the five critical path replicas in one cell.

3.5.2 Power and Temperature Model

To estimate power, we scale the results given by popular tools using technology projections

from ITRS [37]. Specifically, we use SESC augmented with dynamic power models from

Wattch [8] to estimate dynamic power at a reference technology and frequency. In addition,

we use HotLeakage [86] to estimate leakage power at the same reference technology. Then,

29

we obtain ITRS’s scaling projections for the per-transistor dynamic power-delay product,

and for the per-transistor static power. With these two factors, given that we keep the

number of transistors constant as we scale, we estimate the dynamic and leakage power for

the scaled technology and the frequency relative to the reference values.

We use HotSpot [69] to estimate the on-chip T profile. To do so, we use the iterative

approach of Su et al. [76]: the T is estimated based on the current total power; the leakage

power is estimated based on the current T; and the leakage power is added to the dynamic

power. This is repeated until convergence. In our experiments, the maximum temperatures

reached in the chip are in the 95-100 oC range.

We run several applications from SPECint (bzip2, crafty, gap, gzip, mcf, parser, twolf)

and from SPECfp (applu, equake, mesa, mgrid, swim). A workload consists of running

four instances of the same application at a time, one on each core. We use the reference

input set for 1B instructions after discarding the first 1B instructions.

3.5.3 Critical Path Model

We do not have access to detailed information on the structure and distribution of a proces-

sor’s critical paths. For this reason, we build a simple model that we use in our experiments.

Specifically, we design different critical paths for logic modules, small memories, and large

memories. For logic modules, we model a critical path as 12 FO4 gates connected in series

by short wires. The wires account for 35% of the path delay [31]. We use CACTI [77] to

estimate wire delays and Equation 2.6 to compute gate delays. For memory modules, we

separate large memories (the two L1 caches) from the remaining SRAM structures (e.g.,

the register file). The latter are assumed to cycle at twice the frequency of the former. We

use CACTI to determine the optimal sub-array sizes and the physical layout. In both struc-

tures, a critical path stretches from a driver driving a word line, through the word line, a

pass transistor, the bit line, and the sense amplifier. We model the path as three logic gates

30

connected by word- and bit-line wires laid out as per CACTI.

We model each logic module and each memory module as having many, spatially-

distributed critical paths. Specifically, we use Bowman et al.’s estimate that a high-performance

processor chip at our technology has about 10,000 critical paths [7]. We distribute these

paths uniformly on the area taken by the cores and L1 caches — we assume that the L2 and

the bus do not have critical paths. Each module gets critical paths of its type. Finally, as we

superimpose the Vth, Leff, and T variation maps on the chip, parameter variation impacts

the delay of these paths. The frequency supported by a module is determined by the slowest

of its critical paths.

3.5.4 Variation Model Parameters

We only model WID variation. Table 3.1 shows some of the parameter values used. For

Vth’s σ/μ, the 1999 ITRS [36] gave a design target of 0.06 for year 2006 (although no

solution existed); however, the projection has since been discontinued. On the other hand,

Kahng [40, 41] reckons that the ITRS variability projections (for at least the gate-length

parameter that he examines) are too optimistic. Consequently, we use a default Vth’s σ/μ

of 0.12, which we vary in some experiments. Moreover, according to [43], the random and

systematic components are approximately equal. Hence, we assume that they have equal

variances. This means that, using Equation 2.3, σsys = σrand = σ/
√

2.

To set Vth’s φ, we note that Friedberg et al. [25] found that the gate length had a cor-

relation range close to 0.5 of the chip’s width. Since the systematic component of Vth’s

variation directly depends on the gate length’s variation, we use a default φ = 0.5 for Vth.

As indicated in Section 2.2.4, based on the 1999 ITRS [36], we set Leff’s σ/μ to 0.5 of

Vth’s σ/μ. Moreover, for Leff, we also assume that σsys = σrand = σ/
√

2 and φ = 0.5.

Each individual experiment uses a batch of 200 chips that have a different Vth (and Leff)

map generated with the same μ, σ, and φ. To generate the per-chip Vth and Leff maps, we

31

Parameter Values

Tech: 45nm; Nominal frequency: 4GHz; Vdd: 1V; Tcal: 100 oC

Vth: μ: 150mV at 100 oC; σ/μ: 0.12;

σsys = σrand = σ/
√

2; φ: 0.5

Leff: σ/μ: 0.5 ×Vth’s σ/μ; σsys = σrand = σ/
√

2; φ: 0.5

Body bias application: Maximum bias: ±500mV; Resolution: 32mV

Number of FGBB cells per chip: 16, 64, or 144

Number of critical path replicas per cell: 5

Number of chips per experiment: 200

Table 3.1: Parameter values used.

use the geoR statistical package [66] of R [64]. We use a resolution of 1M grid points per

chip. To relate BB to Vth, we use the nonlinear formula from [78] that takes into account

short-channel effects.

3.5.5 BB Environments Evaluated

We evaluate chips with FGBB applied at different granularities, from the trivial case that

has a single BB cell (FGBB1), to environments with 16, 64 and 144 BB cells per CMP

chip (FGBB16, FGBB64, and FGBB144). When partitioning a chip into cells, we first

separate groups of hot units from groups of cold ones. Then, in each group, we separate

logic, large memories, and small memories (Figures 3.4(b) to (d)). A large module like the

L2 cache is broken into multiple cells. Each cell has five uniformly-spaced critical path

replicas (Figure 3.4(b) shows them for one cell). The slowest of such replicas determines

the cell’s BB voltage.

We consider three different scenarios: FGBB set statically (S-FGBB), FGBB set dy-

namically as the chip runs (D-FGBB), and no BB applied (NoBB). As a reference, we also

consider chips with no process-induced Vth variation (NoVar). Note that NoVar’s Vth is

not constant due to T variation. For our DVS experiments, we use one DVS domain per

processor and one for the L2 cache.

32

In D-FGBB, the BB voltage changes infrequently because it tracks gate delay changes

due to T. A BB update occurs when the delay changes by ≈2%, which corresponds to a T

change of ≈5 oC. We assume that the circuit in Figure 3.1 can detect such delay changes.

Otherwise, we can use more elaborate circuits, which have high accuracy [27, 47]. In our

D-FGBB simulations, we recompute the BB every 2ms.

3.6 Evaluation

We first assess the effect of Vth variation on frequency and leakage. Then, we focus on how

D-FGBB improves on S-FGBB in three scenarios: normal operation, high performance,

and low power.

3.6.1 Characterizing Variation

Figure 3.5 shows chip frequency (a) and chip leakage power (b) as Vth variation (measured

in σ/μ) changes. For each value of σ/μ, the figure shows bars for three different φ. In all

cases, frequency and leakage are relative to the NoVar chip. The bands in the bars show the

variation across chips in the batch.

As Vth variation increases, the average frequency of the chips decreases and their av-

erage leakage power goes up. On average, at 0.12 variation and φ=0.5, the frequency is

10% lower and the leakage over 20% higher. Clearly, variation is undesirable. The long

bands show high variation across chips in the batch. This is due to the T variation. At high

T, a transistor becomes slower and leakier. Consequently, if transistors with very high Vth

happen to “fall” on the hottest region of the chip, the chip is likely to have low frequency.

On the other hand, if many transistors with very low Vth fall on the hottest area, the chip is

likely to have high leakage.

We see two main trends. First, across chips in one experiment, leakage varies more than

frequency — since leakage is exponential with T, an unfavorable Vth distribution can sig-

33

0.03 0.06 0.09 0.12
0

0.2

0.4

0.6

0.8

1.0

1.2

F
re

qu
en

cy

(a)

0.03 0.06 0.09 0.12
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Le
ak

ag
e

P
ow

er

=0.1 =0.2 =0.5

(b)

/ /

Figure 3.5: Impact of Vth variation on the chip’s frequency (a) and leakage power (b).

nificantly increase leakage power. Second, as φ decreases, the average frequency decreases

as well. The reason is that, given a more uniform distribution of high-Vth transistors across

each die (low φ) there is a higher chance that some will fall on the hottest region of the chip.

Transistors that have high-Vth and are also very hot are very likely to be the slowest on the

die and therefore likely to impact the maximum frequency of a chip. On the other hand, the

probability that the chips will have no high-Vth transistors in the hot area increases with φ.

Therefore, for larger φ’s the average frequency of the chips is higher.

3.6.2 Normal Operation: D-FGBB Improves a Chip’s Operating Point

S-FGBB can be used to tune the chips in a batch so that they fall into desirable frequency-

leakage bins [82]. The goal is to place each chip at the highest possible frequency bin

where it still meets the power consumption constraint. In this section, we summarize the

impact of S-FGBB and then show how D-FGBB further improves a chip’s operating point.

The Acceptable Region for a chip [82] is bounded by two conditions: (i) the frequency

should be higher than a given minimum value, and (ii) the sum of dynamic and leakage

34

power should be less than a given maximum value. In a frequency-leakage plot such as

Figure 3.6(a), these constraints require that the chip be above a horizontal line and to the

left of a slanted line, respectively. The slanted line has this shape because, as frequency

increases, the dynamic power increases linearly and, therefore, the amount of tolerable

leakage power decreases linearly. Inside the Acceptable Region, higher frequency is better.

NoBB

(a)

0 0.5 1.0 1.5 2.0 2.5 3.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

ycneuqerf

0 0.5 1.0 1.5 2.0 2.5 3.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

S-FGBB1

(b)

0 0.5 1.0 1.5 2.0 2.5 3.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

S-FGBB16

(c)

0 0.5 1.0 1.5 2.0 2.5 3.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

S-FGBB64

(d)

0 0.5 1.0 1.5 2.0 2.5 3.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

S-FGBB144

(e)

Figure 3.6: Frequency versus leakage power for a batch of 200 chips at Tcal and full load

under various schemes.

Figure 3.6(a) shows a scatter plot of the frequency and leakage power for our 200 chips,

with axes normalized to NoVar (no process-induced Vth variation). We build the slanted line

so that it would include the NoVar chip, which is point (1,1). We then arbitrarily set the

horizontal line to 0.85 of the frequency of the NoVar chip, and divide the range into four

equally-spaced frequency bins. As a fraction of the NoVar frequency, the ranges of the

bins are: 0.850–0.887, 0.887–0.925, 0.925–0.962, and over 0.962. These bins are in the

ballpark of those used in commercial processors.

35

3.6.3 Impact of S-FGBB

In Figure 3.6(a), some chips fall outside the Acceptable Region. By applying S-FGBB to a

chip, we can move it into the Acceptable Region or, if it is already there, move it to a higher

frequency point. Using the axes and the slanted line of Figure 3.6, Figure 4.3.1 graphically

shows the impact of our S-FGBB calibration algorithm of Section 3.3.2.

at Tavg

at Tcalat Tcal

calS−FGBB at T

Fcal

Leakage Power

C
A’

A

B

D−FGBB

D

F
re

qu
en

cy

Leakage limit Original chip

S−FGBB

Figure 3.7: Impact of S-FGBB and D-FGBB on a chip’s operating point.

Consider a chip that is originally operating at point A. Our algorithm can move the chip

along the curve labeled S-FGBB at Tcal. The result of the algorithm is to bring the chip

to point B, at frequency Fcal, where the chip dissipates the maximum allowed power —

thus, point B is on the slanted line. Point B is more desirable than A in that it is inside

the Acceptable Region and is potentially in a higher frequency bin than A. Increasing the

frequency beyond Fcal would push the chip to the left of the slanted line, where power

consumption is excessive. In cases where the original chip is operating at point A’, the

S-FGBB algorithm reduces the frequency and brings it to point B.

The actual curve followed from A depends on the number of FGBB cells. The schemes

with more cells such as FGBB144 target their BB voltages better and push the chip to a B

position that is higher in the slanted line — thus delivering chips in better bins.

36

To show it, we take the batch of chips of Figure 3.6(a) and apply our S-FGBB algorithm

using the FGBB1, FGBB16, FGBB64, and FGBB144 schemes. The resulting frequency-

leakage scatter plots are shown in Figures 3.6(b)-(e). The charts show that all the schemes

move practically all the chips to the slanted line, in the Acceptable Region. However, the

schemes differ in how high they push the chips. The more BB cells they use, the more

effective they are.

The different impact of the schemes is best seen in Figure 3.8, which shows how many

chips fall in each frequency bin for the different schemes as a fraction of the 200 chips.

Chart (a) corresponds to our experiment, while (b) repeats it for Vth’s σ/μ = 0.09.

0.850-0.887

0.887-0.925

0.925-0.962
over 0.962

Frequency Bin

0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

C
hi

p
co

un
t (

%
)

NoBB S-FGBB1 S-FGBB16 S-FGBB64 S-FGBB144

(a)

0.850-0.887

0.887-0.925

0.925-0.962
over 0.962

Frequency Bin

0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

C
hi

p
co

un
t (

%
)

(b)

Figure 3.8: Frequency binning obtained by S-FGBB with different numbers of BB cells,

for σ/μ = 0.12 (a) and σ/μ = 0.09 (b).

Figure 3.8(a) shows that FGBB64 and FGBB144 move many chips to the top bin.

Specifically, FGBB144 has 36% of the chips in the top bin and 93% in the top two. On the

other hand, NoBB has none in the top bin and only 11% in the top two. Chart (b) shows that

the trends are the same for σ/μ = 0.09. Specifically, as we go from NoBB to FGBB144,

the number of chips in the top bin changes from 4% to 75%. Consequently, our results are

valid for smaller variations as well.

37

In the rest of the evaluation, when we refer to the average frequency and leakage of the

NoBB or other schemes, we count all the chips — rather than dropping from the average

those that fall outside the Acceptable Region. While in a practical environment they would

be dropped, we feel the results are more intuitive this way.

3.6.4 Leakage Reduction with D-FGBB

Applying the D-FGBB algorithm of Section 3.3.3 can substantially reduce the leakage

power consumed by the chip. To see it graphically, consider Figure 4.3.1. The chip was

calibrated with S-FGBB at Tcal, resulting in point B. However, given that the chip’s T during

execution is close to Tavg, the chip typically operates around point C, moving to the left and

right as shown depending on the current T conditions. If we apply D-FGBB, we push the

chip’s working point to moving around point D in the figure. The result is leakage power

savings.

Figure 3.9(a) compares the leakage power of the chips under NoBB, and with 1, 16, 64,

or 144 cells under S-FGBB and D-FGBB. We report the average across all the applications

and normalize the bars to NoBB. We see that D-FGBB reduces the leakage substantially

over S-FGBB. Specifically, with D-FGBB, the leakage power is reduced by 28–42% com-

pared to S-FGBB — where the highest reductions correspond to the chips with more cells.

In all cases, S-FGBB dissipates about the same amount of leakage power as NoBB.

Figure 3.9(b) shows the total power in this experiment. The figure also includes an

environment with DVS alone and one where D-FGBB is combined with DVS as detailed in

Section 3.3.5. All bars are normalized to NoBB. Recall that, as we increase the number of

cells, the frequency increases. However, for the same number of cells, the frequency is the

same. From the figure, we see that D-FGBB reduces the total power consumption by 15–

22% relative to S-FGBB for the same frequency, with the higher reductions corresponding

to the schemes with more cells. If we combine D-FGBB and DVS, the total power saved

38

1 16 64 144

Number of BB Cells

0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

P
ow

er

NoBB
S-FGBB
D-FGBB

(a)

1 16 64 144

Number of BB Cells

0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 P

ow
er

NoBB
DVS
S-FGBB

D-FGBB
D-FGBB+DVS

(b)

Figure 3.9: Leakage (a) and total power (b) of the chips for different FGBB schemes in

normal operation.

is 21–36% of the S-FGBB power — again, with the schemes with more cells doing the

best. This large impact is possible because DVS lowers the voltage of the domain that

dissipates the most dynamic power (namely, the core), while D-FGBB applies higher BB

to ensure that the target frequency is met. This results in dynamic power savings that add

to the leakage savings of D-FGBB. Finally, DVS alone can only reduce less than 5% of the

power in NoBB. This is because the voltage can be lowered little while still meeting the

target frequency.

3.6.5 High Performance: D-FGBB Improves Frequency

A second application of D-FGBB is to improve performance by increasing the average

frequency of a chip beyond the Fcal determined at calibration (Section 3.3.4). Figure 3.10

compares the average frequency of the chips with S-FGBB and this use of D-FGBB. The

figure considers chips with different numbers of cells, and normalizes the bars to NoBB.

We see that D-FGBB increases the frequency by 7–9% over S-FGBB for the same number

of cells. Compared to NoBB, the frequency increase is 7–16%. With more cells, the

frequency is higher because BB can be tuned better.

39

1 16 64 144
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

F
re
qu
en
cy

NoBB
S-FGBB
D-FGBB

Figure 3.10: Average frequency of the chips for different FGBB schemes.

The frequency increase varies across applications, depending on their dynamic power

consumption. Those with low dynamic power consumption see the biggest boosts in fre-

quency. However, applications benefit differently from a frequency boost, depending on

whether they are memory- or compute-intensive. Figure 3.11 compares the execution time

of the applications with S-FGBB144 and D-FGBB144. In the figure, the bars are nor-

malized to NoBB. On average, D-FGBB144 reduces the execution time by 6% over S-

FGBB144. Moreover, compared to NoBB and S-FGBB1 (not shown in the figure), the

reduction is 10%.

ap
pl

u
bz

ip
2

cr
af

ty

eq
ua

ke

ga
p

gz
ip

m

cf

m
es

a
m

gr
id

pa

rs
er

sw

im

tw
ol

f
A.

m
ea

n

0.5

0.6

0.7

0.8

0.9

1.0

E
xe

cu
tio

n
T

im
e

NoBB S-FGBB144 D-FGBB144

Figure 3.11: Execution time of the applications for different FGBB schemes.

40

The speedups delivered by D-FGBB come at a significant cost in total power consump-

tion. Increasing the frequency induces higher dynamic power; applying the more aggres-

sive BB voltage needed to increase frequency induces higher leakage power. The resulting

total power for S-FGBB and D-FGBB is shown in Figure 3.12. Because of the high power

cost, this mode of operation is only appealing when the highest possible performance is

needed.

3.6.6 Low Power: D-FGBB Reduces Leakage

Finally, we consider an environment where we do not attempt to improve the original fre-

quency of the chip with the S-FGBB calibration step of Section 3.3.2. Instead, we take each

chip in the batch in turn, identify the frequency at which it runs, and then apply D-FGBB

(or S-FGBB) to save leakage. Our goal is to save as much leakage as possible. We call this

environment low power mode.

1 16 64 144

Number of BB Cells

0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 P

ow
er

NoBB
S-FGBB
D-FGBB

Figure 3.12: Total power of the chips for different FGBB schemes.

First, we look at the case when the frequency of the chip does not change. The result

is shown in Figure 3.13. In Figure 3.13(a), we repeat the frequency-leakage scatter plot of

Figure 3.6(a), this time at usual T and load conditions. As a result, the leakage power is

significantly lower than in the worst case presented in Figure 3.6(a). Then, Figures 3.13(b)-

(e) show the result of applying S-FGBB or D-FGBB with different numbers of cells, to

reduce leakage at constant frequency.

41

0 0.5 1.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

fr
eq
ue
nc
y

NoBB

(a)

0 0.5 1.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

S-FGBB64

(b)

0 0.5 1.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

S-FGBB144

(c)

0 0.5 1.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

D-FGBB64

(d)

0 0.5 1.0

leakage

0.812

0.850

0.887

0.925

0.962

1.000

1.037

D-FGBB144

(e)

Figure 3.13: Frequency versus leakage power for a batch of 200 chips at usual T and load

conditions.

Comparing Chart (a) to (b)-(c), we see that, if we apply S-FGBB, the chips move to

the left, therefore saving leakage. Moreover, Charts (d)-(e) show that D-FGBB reduces the

leakage of the chips even further. The higher the number of cells per chip is, the higher the

leakage reduction is.

Figure 3.14 extends these experiments to all the BB environments. Figure 3.14(a) shows

the average leakage power of the chips normalized to NoBB. The figure shows that both

S-FGBB and D-FGBB save substantial leakage, especially as the number of cells per chip

increases. However, D-FGBB is much more effective. D-FGBB reduces the leakage by

10–51% compared to S-FGBB, and by 12–69% compared to NoBB. Even with only 16

cells per chip, D-FGBB saves substantial leakage.

Figure 3.14(b) shows the total power consumption for the different FGBB schemes,

42

1 16 64 144

Number of BB Cells

0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

P
ow

er

NoBB
S-FGBB
D-FGBB

(a)

1 16 64 144

Number of BB Cells

0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 P

ow
er

NoBB
DVS
S-FGBB

D-FGBB
D-FGBB+DVS

(b)

Figure 3.14: Leakage (a) and total power (b) of the chips for different FGBB schemes at

constant frequency.

DVS, and D-FGBB+DVS. The savings induced by D-FGBB are still large. Specifically,

D-FGBB reduces the total power consumption by 6–19% relative to S-FGBB. When com-

bined with DVS, D-FGBB+DVS reduces total power consumption by 15–36% compared

to S-FGBB. DVS alone is not very effective.

3.6.7 Dynamic Voltage and Frequency Scaling (DVFS)

Since many processors today use DVFS to save power, we would like to examine how

the effectiveness of D-FGBB changes as Vdd decreases with DVFS. For that, we take each

chip in the batch and, for a set of supply voltages V i
dd ranging from 1V to 0.6V, determine

the corresponding frequency Fi before BB. Then, we apply D-FGBB at Fi. Finally, we

measure the leakage and total powers for each V i
dd before and after applying D-FGBB. The

results are shown in Figure 3.15, where all bars are normalized to NoBB with Vdd=1V.

Figure 3.15(a) shows that D-FGBB retains its relative effectiveness at reducing leakage

as Vdd decreases from 1V to 0.6V — for all numbers of cells. Naturally, the absolute reduc-

tion decreases as Vdd decreases because there is less leakage to start with. Figure 3.15(b)

43

1 V 0.8 V 0.6 V

Vdd

0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

P
ow

er

(a)

1 V 0.8 V 0.6 V

Vdd

0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 P

ow
er

NoBB D-FGBB1 D-FGBB16 D-FGBB64 D-FGBB144

(b)

Figure 3.15: Leakage (a) and total power (b) at different voltage-frequency pairs, without

and with D-FGBB.

shows that the total power savings are smaller but still very significant.

On the other hand, if we use S-FGBB, the BB levels are fixed at manufacturing time

and cannot change with different voltages. When the same experiment is attempted with

S-FGBB, we observe that the BB levels set at Vdd=1 are such that, as the voltage decreases,

the processor cannot meet timing at the lower frequencies. Consequently, S-FGBB and

DVFS cannot be easily combined.

44

3.6.8 Estimated Area Overhead of D-FGBB

To estimate the area overhead of D-FGBB, we use published data on BB support in real

chips. Specifically, we use the area overhead reported in [58, 82] and scale it down to

45nm. We consider two implementations: one that uses critical path replicas and one that

uses actual critical paths. Figure 3.16 shows the overhead as a fraction of the chip area.

We see that the overhead with replicas varies between <2% and 4%, increasing with the

number of BB cells. If actual critical paths are used rather than replicas, the overhead

decreases to ≈3% for 144 cells.

1 16 64 144

Number of BB Cells

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
ar

ea
 o

ve
rh

ea
d

 Replica Critical Paths
 Actual Critical Paths

Figure 3.16: Area overhead of D-FGBB as a fraction of the chip area.

45

CHAPTER 4

Variation-Aware Application Scheduling and Power

Management for Chip Multiprocessors

4.1 Introduction

In the context of Chip Multiprocessors (CMP), within-die process variation in current and

near-future technologies causes individual cores in the chip to differ substantially in the

amount of power that they consume and in the maximum frequency that they can support.

This effect, which has been reported elsewhere [34] and will be confirmed in this work,

suggests that it is no longer accurate to think of large CMPs as homogeneous systems.

In these environments, it is suboptimal to schedule applications ignoring variation ef-

fects. Instead, if applications are scheduled in a variation-aware manner, taking into ac-

count the different power and frequency characteristics of each individual core, substantial

savings in power or large increases in throughput are attainable. Similarly, it is suboptimal

to perform power management based on Dynamic Voltage and Frequency Scaling (DVFS)

assuming that all cores have the same properties. Instead, if DVFS is applied in a per-core

manner, fully aware of the heterogeneity of the cores, substantially more cost-effective

working points can be obtained.

Interestingly, the technology for variation-aware application scheduling and power man-

agement is now available. Indeed, sophisticated on-chip power monitors and controllers

such as those in Intel’s Foxton technology [55] can be used to measure and manage the

power heterogeneity of the cores. Moreover, the ability to support multiple on-chip fre-

quency domains and change the frequency of each core independently as in AMD’s Quad-

Core Opteron [21] can be used to exploit the frequency heterogeneity of the cores.

46

In this work, we propose simple, variation-aware algorithms for application scheduling

in a CMP to save power or improve throughput. Moreover, we complement these algo-

rithms with variation-aware power-management DVFS algorithms to maximize throughput

at a given power budget. One such power-management algorithm, called LinOpt, uses lin-

ear programming to find the voltage and frequency levels for each of the cores in the CMP.

LinOpt runs on-line periodically, using profile information provided by the chip manu-

facturer and by on-chip power and IPC sensors. In a 20-core CMP, the combination of

variation-aware application scheduling and LinOpt increases the average throughput by

12–17% and reduces the average ED2 by 30–38% — all relative to using variation-aware

scheduling together with a simple extension to Foxton’s power management algorithm.

Moreover, LinOpt’s throughput is within 2% of that of a simulated annealing algorithm,

which has a computation time orders of magnitude higher.

4.2 Application Scheduling and Power Management under

Process Variation

In an environment with process variation, each processor in a CMP typically consumes a

different amount of power and can support a different maximum frequency. Given that

the core-to-core differences can be substantial, it makes sense to schedule applications and

perform power management as if the variation-affected CMP was a heterogeneous system.

Uniform Frequency Non-Uniform Frequency

No Name: UniFreq Name: NUniFreq
DVFS – Minimize Power – Minimize Power

– Maximize Performance

Name: UniFreq+DVFS Name: NUniFreq+DVFS
DVFS – Maximize Performance – Maximize Performance

at a Power Budget at a Power Budget

Table 4.1: CMP configurations for application scheduling and power management under

variation.

47

In this environment, there are two high-level design issues (Table 4.1). The first is

whether the different cores of the CMP have to cycle at the same frequency (Uniform Fre-

quency) or not (Non-Uniform Frequency). The second is whether the frequency and voltage

of the cores can be changed dynamically (DVFS) or not (No DVFS). For these configura-

tions, we present a set of simple variation-aware algorithms for application scheduling and

power management, aimed at minimizing power or maximizing performance. Note that the

scheduling algorithms are intended to complement the other scheduling criteria used by the

OS, such as priority, fairness, or starvation-avoidance.

4.2.1 UniFreq: Uniform Frequency & No DVFS

In this configuration all cores run at the frequency of the slowest one. Moreover, frequency

does not change dynamically. We call this configuration UniFreq (Table 4.1). The only

inter-core variation is in power consumption. Since all cores run at the same frequency, the

goal of the scheduler is to minimize the power consumption at the given frequency.

The top part of Table 4.2 shows three possible algorithms that the scheduler can use in

this configuration to minimize power. In Random, threads are mapped on cores randomly.

This is our baseline. In VarP, the cores are ranked by their static power consumption from

lowest to highest. Then, the N threads are randomly mapped on the top N cores (one

thread per core). Finally, in VarP&AppP, in addition to ranking the cores as before, the

threads are ranked by their dynamic power consumption from highest to lowest. Then, the

highest-power threads are mapped on the lowest-power cores. The intuition is to “even

out” the power consumption across cores, avoiding hot spots. Because of the exponential

dependence of leakage on temperature, keeping the power consumption (and temperature)

as uniform as possible saves power.

The configuration in Table 4.1 where the frequency is uniform and there is DVFS is

called UniFreq+DVFS. It is a generalization of UniFreq, where the goal is now to maximize

48

Algorithms to Minimize Power

Random Map threads on cores randomly

VarP Map threads randomly on cores with lowest power

VarP&AppP Map threads with highest dynamic power on cores

with lowest static power

Algorithms to Maximize Performance

Random Map threads on cores randomly

VarF Map threads randomly on cores with highest frequency

VarF&AppIPC Map threads with highest IPC on cores with highest

frequency

Algorithms to Maximize Performance at a Power Budget (Ptarget)

Random+Foxton* Map threads on cores randomly and reduce (Vi,fi)

of cores round robin to meet Ptarget

VarF&AppIPC+Foxton* Map threads on cores with VarF&AppIPC and reduce

(Vi,fi) of cores round robin to meet Ptarget

VarF&AppIPC+LinOpt Map threads on cores with VarF&AppIPC and use

LinOpt to meet Ptarget

VarF&AppIPC+SAnn Map threads on cores with VarF&AppIPC and use

SAnn to meet Ptarget

Table 4.2: Algorithms for application scheduling and power management.

performance at a given power budget. We can use the same scheduling algorithms as in

UniFreq — e.g., mapping the threads with the highest dynamic power on the cores with the

lowest static power — and then reduce the frequency and voltage until the power budget is

met. Since most aspects of this configuration are covered in the other configurations, we

do not consider it further in this work.

4.2.2 NUniFreq: Non-Uniform Frequency & No DVFS

In the NUniFreq configuration (Table 4.1), different cores run at different frequencies —

the highest that each supports. However, frequencies do not change dynamically. In this

configuration, two simple scheduling goals are to minimize power or to maximize perfor-

mance.

To minimize power, we use the VarP or VarP&AppP algorithms discussed in the previ-

49

ous section. To maximize performance, we use the algorithms in the middle of Table 4.2.

In VarF, the cores are ranked by the maximum frequency they support, from highest to

lowest. Then, the N threads are randomly mapped on the top N cores (one thread per core).

In VarF&AppIPC, in addition to ranking the cores as before, the threads are ranked by

their average IPC from highest to lowest. Then, the highest-IPC threads are mapped on the

highest-frequency cores. The intuition is that low-IPC threads typically benefit less from

high frequency — because they are often memory-bound.

4.2.3 NUniFreq+DVFS: Non-Uniform Frequency & DVFS

In this configuration, different cores run at different frequencies and DVFS can be applied

independently to each core. We call this configuration NUniFreq+DVFS (Table 4.1). The

challenge in such a system is to dynamically determine what voltage and frequency each

core should have, depending on the characteristics of the applications and the constraints on

the system. In large CMPs, core-level power management decisions will be less effective

because they do not consider the constraints of the entire system. What we need instead

is a global (chip-wide) approach to power management, with global goals and constraints.

One possible goal is to maximize overall system throughput under a set of constraints. The

main constraint can be keeping total power below a power target.

The lower part of Table 4.2 shows possible algorithms to maximize throughput at

the target power. To simplify the problem, we construct each algorithm in two steps.

First, we select one of the scheduling algorithms that maximizes performance (VarF or

VarF&AppIPC), to map the threads to cores. Then, we use a power management algorithm

to find the best (Vi,fi) pair for each active core i, that maximizes overall throughput while

keeping the total power no higher than Ptarget.

Because of the non-linear dependence of power on V, and the exponential size of the

search space, finding the optimal solution to the second part of the problem is very expen-

50

sive. Previous solutions that have looked at global optimization of DVFS on CMPs [35]

have used an exhaustive search through the solution space. This is feasible only for very

small systems and does not scale. For a system like the one we evaluate (a 20-core CMP

with many per-core voltage-frequency pairs), exhaustive search is too expensive.

Our approach is to approximate the problem to a linear optimization problem, and then

use linear programming [63] to solve it. We call our algorithm LinOpt. To evaluate the

impact of this approximation on the accuracy of the solution we also use a more costly

non-linear algorithm based on simulated annealing (SAnn) to solve the original, non-linear

problem. In Section 4.4.5 we show that SAnn provides a solution that is very close to the

optimal one, obtained through exhaustive search.

Overall, we examine the following algorithms (Table 4.2). In Random+Foxton*, we

map threads on cores randomly. Then, from among the active cores, we select one core

at a time in a round-robin manner, and reduce that core’s (Vi,fi) one step. We stop when

the chip-wide Ptarget constraint is satisfied and a per-core power constraint (Pcoremax) is

satisfied for all cores. This power management algorithm is the simplest one, and a small

extension over the one implemented by the Foxton controller in the Itanium II [55] —

where the two cores have the same (V,f) pair. We use Random+Foxton* as our baseline

algorithm.

In the other algorithms, we map threads on cores using VarF&AppIPC and then use

different power management algorithms to set the (Vi,fi) pair for each active core i. Specif-

ically, we consider Foxton*, LinOpt, and SAnn. To be effective, both LinOpt and SAnn

have the same goal as the VarF&AppIPC scheduling algorithm, namely to maximize per-

formance. In the following, we present the LinOpt and SAnn algorithms.

51

4.2.4 LinOpt: Power Management Using Linear Programming

Linear programming [63] is a mathematical technique for solving linear optimization prob-

lems of the following form: for N independent variables x1, ..., xN , maximize the objective

function:

g = a1x1 + a2x2 + ... + aNxN

subject to N primary constraints x1 ≥ 0, x2 ≥ 0, ..., xN ≥ 0 and to any number of addi-

tional constraints of the form:

b1x1 + b2x2 + ... + bNxN + b ≤ B

where a1..N , b1..N , b and B are problem-specific constants.

The problem we want to optimize is the following. Given a set of N cores C1..N that can

each run at M different voltage levels V1..M (each with its corresponding frequency), find

the best selection of voltage levels (v1, ..., vN) for cores C1..N that maximizes the average

throughput (TP) subject to the following constraints: (i) the total chip power is less than

Ptarget and (ii) the power of each core is less than Pcoremax.

We would like to express this problem as a linear optimization problem. To do this, we

need to make sure that the objective function as well as all the constraint inequalities are

linear functions. This requires some approximation.

We start with the objective function, which is the average throughput TP, measured in

millions of instructions per second (MIPS). If we call tpi the throughput of core i, we have:

TP =
tp1 + tp2 + ... + tpN

N

We express TP as a linear function of the variables we are trying to find, namely the set

of optimal voltage levels (v1, ..., vN) for the cores. By definition, tpi = fi × ipci, where fi

is the frequency of core i and ipci is the IPC of the thread running on i. Now, both f and

52

ipc are largely linear functions of v — with parameters that depend on the core used and

the application. Consequently, we can write tpi = aivi, where ai is application and core

dependent. We obtain, for a given assignment of applications to cores:

TP =
a1

N
v1 +

a2

N
v2 + ... +

aN

N
vN

where v1..N are the set of voltages we are trying to find. Next, we define the constraints of

the optimization problem. Two trivial sets of constraints are the upper and lower bounds

on the values of v1..N :

v1, v2, ...vN ≤ Vhigh and v1, v2, ...vN ≥ Vlow

Next, we define the main constraint, which specifies that the total CMP power is less

than Ptarget. For this, we need to express the total power of each core i as a linear function of

supply voltage as pi = bivi+ci, where bi and ci are both core- and thread-specific constants.

In reality, the total power of a core is clearly not a linear function of supply voltage —

dynamic power is quadratic in supply voltage (or cubic, if we add the corresponding change

in frequency) and static power is more than linear. However, in practice, the solutions that

we obtain with this linear approximation are good. They satisfy the power constraints

with little slack and provide a performance very close to that obtained with more time

consuming, non-linear formulations. This will be shown in Section 4.5.5.

Because of variation, we cannot generate the p = f(v) function analytically. Instead,

we experimentally measure the power of a thread-core pair at three voltage levels, namely

Vlow, Vhigh and Vmid (the average of the two). Then, as shown in Figure 4.1, we find the

values of the constants bi and ci that minimize the differences dErr for all three points.

The Ptarget constraint equation can then be written as follows, where all the c1..N con-

stants are folded into c:

53

dErr

dErr

dErr

Voltage

Power

Real

Linear approximation

Vlow Vmid Vhigh

Figure 4.1: Linear approximation of the power dependence on voltage.

b1v1 + b2v2 + ... + bNvN + c ≤ Ptarget

Finally, the last set of constraints specifies that the power p1..N of each core should be

less than Pcoremax:

bivi + ci ≤ Pcoremax,∀i ∈ 1..N

There are several techniques for solving linear programming problems. We choose the

Simplex method [63] because it is relatively straightforward to implement and, in practice,

it is often fast to compute.

The inputs to LinOpt are the constants a1..N , b1..N and c1..N , as well as the power con-

straints Ptarget and Pcoremax. In Section 4.3, we show how we use profiling to compute

these constants. The output of LinOpt is the best voltage for each core (v1, ..., vN).

54

4.2.5 Other Global Optimization Solutions

We also examine solving the optimization problem of Section 4.2.4 using a non-linear al-

gorithm. We choose simulated annealing (SAnn) — a well-known probabilistic algorithm

for solving global optimization problems [46]. The goal of SAnn is the same as the one

used with LinOpt: maximize throughput under power constraints. For a given mapping of

threads to cores, the search space of the SAnn algorithm consists of all possible combina-

tions of voltage levels (and their corresponding frequency levels) for each of the cores.

Unlike LinOpt, SAnn computes the power at each voltage level accurately, without the

linear approximation. This should allow SAnn to generate a better solution. However,

unlike linear programming, simulated annealing may not find the global optimum and,

instead, produce a local optimum. In practice, the results of Section 4.5 show that SAnn

produces better results than LinOpt. However, SAnn is orders of magnitude slower than

LinOpt, which makes it impractical for on-line use.

4.3 System Implementation

Our target system is a CMP with many cores — 20 in our evaluation. The algorithms for

application scheduling and power management of Section 4.2 are run by supervisor code.

The power management algorithm can be run by either a core or a Power Management

Unit (PMU) as in the Itanium II [55]. The application scheduling and power management

algorithms may use profile information about core frequency and power, or application

dynamic power and IPC. In what follows, we briefly outline the frequency, voltage and

power control, and the profiling support.

55

4.3.1 Frequency, Voltage and Power Control

A CMP with per-core frequency control requires separate PLLs to generate the clock signal

for each core. These PLLs are controlled independently. Moreover, there is a synchroniza-

tion mechanism between the different frequency domains, such as FIFO buffers. All this

support is already present in AMD’s Quad-Core Opteron [21].

To support per-core voltage control, the CMP needs per-core power grids and voltage

regulators that generate the different voltages. Currently, such regulators are on the board,

but new technologies will soon make it possible to place them on the processor package

or even on the die [45]. In this case, voltage transition speeds will be orders of magnitude

faster. In this work, however, we conservatively assume that the voltage and frequency

transition speeds are those of current systems such as Xscale [14].

To run a power management algorithm such as LinOpt, we need on-chip sensors that

provide power consumption information as in Itanium II [55], on a per-core basis. If a

PMU is used to run the algorithm, a simple on-chip design like the controller in Itanium II

can be used. Such a design consumes less than 0.5W and takes up less than 0.5% of the die

area.

Figure 4.2 shows a timeline of the execution of the algorithms. At every OS scheduling

interval, the OS revisits its assignment of threads to cores using one of the scheduling

algorithms — for instance, VarF&AppIPC. At more frequent intervals, e.g., every 10ms,

the LinOpt algorithm runs and sets the cores to the best (V, f) pairs.

4.3.2 Profiling Support

For the application scheduling and power management algorithms to be effective, they

need some profile information. Some of this information is provided by the chip manu-

facturer, while other is provided dynamically by sensors as applications execute. Table 4.3

summarizes the profile information needed for each application scheduling and power man-

56

OS scheduling interval

DVFS interval

time

LinOpt

10ms 20ms

...

Figure 4.2: Execution timeline for application scheduling and LinOpt invocation.

agement algorithm.

For the VarP scheduling algorithm, we need, for each core, the static power consump-

tion at the maximum voltage. This is provided by the manufacturer, who measures the

power while keeping the chip under zero load. Note that this is only an estimate of the

actual static power of the cores at run time because the static power is heavily dependent

on the temperature. However, it is good enough because we are only interested in a ranking

of cores based on their static power.

For the VarP&AppP algorithm, we need, for each core, the static power consumption

at each voltage level (Table 4.3). All these values are also provided by the manufacturer.

In addition, we need, for each thread, the dynamic power it consumes while running on

one random core (Table 4.3). This information is obtained by reading the power sensors

in the core for a given section of the thread’s execution. The measured power is the total

power, so we need to subtract the static power. Since the core may be running at a voltage

different than the maximum value, we need to know the static power consumption at the

current voltage — hence the need for the previous information.

Note that each thread is potentially profiled on a different core. To compare the resulting

dynamic powers obtained, the power measured is scaled according to the frequency and

voltage of the particular core used. We assume that the other factors that determine the

57

Algorithm Profile Information Required

VarP For each core: static power consumption at the

maximum voltage

VarP&AppP For each core: static power consumption at each

voltage level

Sched. For each thread: dynamic power consumption

while running on one random core

VarF For each core: maximum frequency supported at the

maximum voltage

VarF&AppIPC For each core: maximum frequency supported at the

maximum voltage

For each thread: IPC while running on any core

Foxton* For each core: total power consumption

Power For each core: table of (voltage, frequency) pairs

Manag. LinOpt For each selected thread-core pair: IPC of the thread

while running on the core

For each selected thread-core pair: total power at

3 (or 2) voltage levels

Table 4.3: Profile information needed for the application scheduling and power manage-

ment algorithms.

dynamic power are largely constant across cores. Again, these measurements are good

enough because we are only interested in a ranking of threads based on their dynamic

power.

The VarF algorithm needs, for each core, the maximum frequency supported at the

maximum voltage. This is provided by the manufacturer.

The VarF&AppIPC algorithm additionally needs, for each thread, the IPC it delivers

while running on one random core (Table 4.3). The IPC is obtained by reading simple

performance counters in the core for a given section of the thread’s execution. Each thread

is profiled on a potentially different core. As indicated in Section 4.2.4, we assume that the

IPC changes negligibly with frequency and voltage changes — although a correction could

be made based on the measured miss rate. We also assume that no other core property

affects the IPC. Again, we are only interested in a ranking of threads based on their IPC.

We now consider the power management algorithms. Foxton* needs information about

58

total power consumption for each core. LinOpt, as described in Section 4.2.4, needs some

additional information (Table 4.3). First, for each core, it needs a table of (voltage, fre-

quency) pairs. This table is supplied by the manufacturer. Then, for each of the thread-core

pairs selected by the scheduling algorithm, we need the IPC of the thread while running

on the core. As indicated before, this is obtained dynamically with performance counters

and is assumed largely independent of the frequency and voltage. With these two sets of

values, we can generate the a1..N constants of Section 4.2.4.

Finally, for each of the thread-core pairs selected by the scheduling algorithm, we need

the power consumed at three (or at the very least two) voltages. This information allows us

to generate a curve like Figure 4.1 for each of the selected thread-core pairs, and then gener-

ate the b1..N and c1..N constants of Section 4.2.4. This information is obtained dynamically

with power sensors in the cores.

Since the IPC and power of a thread-core pair changes with time, IPC and power pro-

filing is on all the time, and the LinOpt algorithm is run periodically at short intervals. At

longer intervals, we run the scheduling algorithm, which may change the assignment of

threads to cores based on the new conditions. This is shown in Figure 4.2.

Note that, in all algorithms, the system continuously monitors the total power and the

per-core powers. These values are compared to Ptarget and Pcoremax, respectively.

4.4 Evaluation Methodology

We use the SESC cycle-accurate execution-driven simulator [65] to model a large CMP

with 20 2-issue out-of-order cores on 32nm technology. Each core is like an Alpha 21264.

Figure 4.3 shows the floorplan of the CMP and Table 4.4 summarizes the architecture

configuration. In the following, we discuss the different parts of our infrastructure.

59

L2 Cache

L2 Cache

C1 C2

C6 C7

C11 C12

C16 C17

C3

C8

C13

C18

C4

C9

C14

C19

C5

C10

C15

C20

L2 Cache

L2 Cache

C1 C2

C6 C7

C11 C12

C16 C17

C3

C8

C13

C18

C4

C9

C14

C19

C5

C10

C15

C20

Figure 4.3: Floorplan of the 20-core CMP and superimposition of a Vth variation map.

4.4.1 Variation Model Parameters

To model WID variation, we use the VARIUS model [68, 79] to generate Vth and Leff

variation maps. We then superimpose these maps on our floorplan as shown in Figure 4.3.

This allows us to model how variation affects core power and frequency.

Table 4.4 shows some of the process parameters used. There is little public-domain

information on likely values for Vth σ/μ and φ. For σ/μ, the 1999 ITRS [36] gave a design

target of 0.06 for year 2006 (although no solution existed); however, the projection has been

discontinued since 1999. Toyoda [81] presents a measured σ/μ = 0.07 for Vth in chips at

130nm technology. In this work, we consider a range of values for Vth’s σ/μ, namely

0.03–0.12, and use as default 0.12. Moreover, we assume that the random and systematic

components have equal variances. For φ, we use Friedberg’s et al. [25] measurement that

the gate length had a correlation range close to 0.5 of the chip’s width. Since the systematic

component of Vth’s variation directly depends on the gate length’s variation, we set φ = 0.5

for Vth.

Based on the 1999 ITRS [36], we set Leff’s σ/μ to 0.5 of Vth’s σ/μ. Moreover, for Leff,

we also assume that that the random and systematic components have equal variances, and

that φ = 0.5.

60

Overall: CMP with 20 out-of-order Alpha 21264-like procs.

Technology: 32nm, 4GHz (nominal)

Branch prediction: 4K-entry BTB, 7-cycle mispred. penalty

Core fetch/issue/commit width: 4/2/2

Register file size: 80 entry; Scheduler size: 20 fp, 40 int

Private data and instr. L1: 2-way 16K each; 2-cycle access

Shared L2: 8-way 8 MB; 8-12 cycle access

Cache line size: 64 bytes all

Memory access time: 400 cycles

Die size: 340mm2; VDD: 0.6-1V (default is 1V)

Number of dies per experiment: 200

Vth: μ: 250mV at 60 oC

σ/μ: 0.03-0.12 (default is 0.12)

φ (fraction of chip’s width): 0.5

Table 4.4: Summary of the architecture configuration.

Each individual experiment uses a batch of 200 chips that have a different Vth (and Leff)

map generated with the same μ, σ, and φ. To generate each map, we use the geoR statistical

package [66] of R [64]. We use a resolution of 1M points per chip.

4.4.2 Power and Temperature Model

To estimate power, we scale the results given by popular tools using technology projections

from ITRS [37]. Specifically, we use SESC, which is augmented with dynamic power mod-

els from Wattch [8] to estimate dynamic power at a reference technology and frequency. In

addition, we use HotLeakage [86] to estimate leakage power at the same reference technol-

ogy. Then, we obtain ITRS’s scaling projections for the per-transistor dynamic power-delay

product, and for the per-transistor static power. With these two factors, given that we keep

the number of transistors constant as we scale, we can estimate the dynamic and leakage

power for the scaled technology and frequency relative to the reference values.

We use HotSpot [69] to estimate on-chip temperatures. To do so, we use the iterative

approach of Su et al. [76]: the temperature is estimated based on the current total power;

61

the leakage power is estimated based on the current temperature; and the leakage power is

included in the total power. This is repeated until convergence.

4.4.3 Critical Path Model

To determine how the frequency of the processors is affected by variation, we need to

model the structure and distribution of critical paths in the processors. For this, we use

the models in [68], which include models for critical path distributions in pipeline stages

with logic and in stages with memory structures. The distribution of critical path delays for

logic stages is obtained using experimental data from Ernst et al. [23], who characterized

a multiplier unit. For memory stages, [68] extends the model of Mukhopadhyay et al. [56]

for the access time of a 6-transistor SRAM cell, to include the time to access the whole

SRAM structure. With this model, we can estimate the frequency of the processors. We

use CACTI 4.0 [77] to estimate path layouts and wire delays, and the alpha-power law [67]

to compute gate delays.

4.4.4 Workloads

We evaluate our algorithms with a collection of applications from SPECint (bzip2, crafty,

gap, gzip, mcf, parser, twolf, and vortex) and SPECfp (applu, apsi, art, equake, mgrid,

and swim). We use applications from this pool to construct multi-programmed workloads

that contain from 1 to 20 applications — where each application runs on a different core.

This approach to construct workloads has been used elsewhere [35, 48]. Each experiment

is repeated 20 times; each time with a different set of applications. We report the average

outcome of the 20 trials. Each application runs with the reference input set for about 12

billion instructions.

62

4.4.5 Optimization Algorithms

The LinOpt algorithm uses the Simplex method [63] to solve the linear optimization prob-

lem. We use profile information as described in Section 4.3.2 to generate all the constants

required. To approximate the power dependence on voltage as in Figure 4.1, we measure

the power at 1, 0.8, and 0.6V. In our experiments of Section 4.5, we run LinOpt every 10ms.

For SAnn, we use the implementation of simulated annealing in the R statistical pack-

age [64]. The goal of SAnn is the same as LinOpt: maximize throughput under power con-

straints. In SAnn, the initial values of voltage and frequency for each core are determined

using a simple greedy heuristic. The initial Annealing Temperature (AT) is determined

based on the complexity of the problem: for a large number of threads, more randomness

is needed in the initial search and, therefore, a higher value of the initial AT is used. As

the number of threads decreases, we use a lower initial AT. At each AT, the next point in

the solution space is generated from a Gaussian Markov kernel with scale proportional to

the current AT. The algorithm automatically decreases the AT according to a logarithmic

cooling schedule. The algorithm stops after 1 million function evaluations.

We use the results of SAnn as an upper bound for what LinOpt can achieve. We there-

fore want to make sure that SAnn produces a solution as close to the optimal one as possible.

Consequently, we tune the constants in SAnn by comparing its results, for several configu-

rations, to an exhaustive search through the solution space. Since the exhaustive search is

very time consuming, we can only perform it for configurations of up to 4 threads. In all

these cases, the SAnn throughput results are within 1% of those for the exhaustive search.

4.4.6 Metrics

In our evaluation, we use the following metrics: total power (which includes the static and

dynamic powers of processors, L1 caches, and the L2 cache), average frequency of the

active cores, throughput (measured in millions of instructions per second or MIPS), and

63

the energy delay-square product (ED2). We also give the weighted throughput [70], which

uses the weighted IPC of the applications. The weighted IPC of an application is computed

as the application’s IPC normalized to the application’s IPC at reference conditions. This

metric gives equal weight to all the applications when measuring total system throughput.

4.5 Evaluation

We begin by examining the effect of process variation on core-to-core variation in power

and frequency. Next, we evaluate the variation-aware algorithms for application scheduling

and power management of Table 4.2 for the UniFreq, NUniFreq, and NUniFreq+DVFS

configurations.

4.5.1 Variation Effects on Power and Frequency

To examine the potential of variation-aware algorithms, we measure the core-to-core vari-

ation. For a given die, we successively run all of our applications on a given core and

compute the average power consumed by the core (which includes the L1 caches) per ap-

plication. We repeat the experiment for all the cores. Then, we compute the ratio between

the power consumed by the most power-consuming core to the power of the least power-

consuming core. Figure 4.4(a) shows the resulting ratio for all the 200 dies in the form of

a histogram. We see that, in most of the dies, there is 40-70% variation in total power. The

average is around 53%.

We now examine core-to-core frequency variation. Since circuit delay increases with

temperature, we measure the frequency of each core at the maximum temperature that any

application reaches, which we measure to be around 95 oC. Then, for each die, we compute

the ratio between the frequencies of the fastest and the slowest cores. Figure 4.4(b) shows

the resulting ratio for all the 200 dies in the form of a histogram. We see that, in most of

the dies, there is 20-50% variation in core frequency. The average is around 33%.

64

Relative power

N
um

be
r

of
 d

ie
s

1.4 1.5 1.6 1.7

0
5

10
15

(a)
Relative frequency

N
um

be
r

of
 d

ie
s

1.20 1.30 1.40 1.50

0
5

10
15

(b)

Figure 4.4: Histograms of the ratio between the powers consumed by the most and least

power-consuming cores in the die (a) and between the frequencies of the fastest and slowest

cores in the die (b).

Figure 4.5 shows how the average ratio between maximum and minimum core power

(a) and frequency (b) changes with different values of Vth σ/μ. As expected, the core-to-

core variation in both power and frequency increases with larger σ/μ. Even for a small

σ/μ=0.06, the variation is very significant. Consequently, variation-aware algorithms for

application scheduling and power management have good potential.

0.03 0.06 0.09 0.12
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

P
ow

er
 r

at
io

(a)

0.03 0.06 0.09 0.12
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

F
re

qu
en

cy
 r

at
io

(b)

/ /

Figure 4.5: Average ratio between the maximum and minimum core power (a) and core

frequency (b) for different values of Vth σ/μ, for 200 dies.

65

Due to variation, two different cores may achieve the same frequency at different volt-

age levels and with very different power costs. Moreover, the relative power efficiency of

the two cores can change with the frequency. All this variation makes the job of a global

power management scheme very challenging. As an illustration, we consider one sample

die and identify the highest-frequency core (which we call MaxF) and the lowest-frequency

one (which we call MinF). We run the bzip2 application and, as we change the voltage lev-

els, we measure the core power.

The result is shown in Figure 4.6. The figure shows the core power as a function of the

frequency. Each core has a curve, where the dots represent voltage levels changing from

1V (top right) to 0.6V (bottom left). Power and frequency axes are normalized to the values

for MaxF at 1V. The figure shows that, say, a 0.8 frequency can be obtained by MaxF at

0.7V or by MinF at 1V — but MaxF consumes less power. The figure also shows that,

for frequencies below 0.74, MinF is more power efficient, while above that, MaxF is more

efficient.

●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
6

0.
8

1.
0

Frequency

C
or

e
po

w
er

●

●

●

●

●
●

●
●

●

● MaxF core at Vdd=0.6 1V
MinF core at Vdd=0.6 1V

1V

0.8V

0.7V

0.9V

0.6V

1V

0.6V

Figure 4.6: Core power as a function of frequency for the highest- and lowest-frequency

cores in a sample die.

66

4.5.2 Application Power and IPC

Application scheduling and power management algorithms also leverage the fact that appli-

cations have a varied behavior. For example, Table 4.5 shows, for each of our applications,

the average dynamic power of the core (which includes the L1 cache) at 4GHz and 1V, and

the average IPC. From the table, we see that there is significant variation in both dynamic

power (up to 2.9×) and IPC (up to 12×) across applications.

applu apsi art bzip2 crafty equake gap

Dynamic

power (W) 4.3 1.6 2.4 3.7 3.9 2.1 3.5

IPC 1.1 0.1 0.2 1.1 1.1 0.3 1.0

gzip mcf mgrid parser swim twolf vortex

Dynamic

power (W) 2.7 1.5 2.2 2.8 2.2 2.3 4.4

IPC 0.7 0.1 0.4 0.7 0.3 0.4 1.2

Table 4.5: Average dynamic power of the core at 4GHz and 1V, and IPC for the applications

used.

4.5.3 UniFreq: Uniform Frequency & No DVFS

The first configuration we evaluate is one with all the cores running at the same frequency

and no DVFS. Figure 4.7(a) shows the total power consumed in the Random, VarP and

VarP&AppP scheduling algorithms of Table 4.2, as we vary the number of threads in the

workload. For a given number of threads, the bars are normalized to Random. Note that

the cores that are not used are assumed to be powered off.

Focusing on VarP, we see that for a lightly-loaded system, the savings in power are

substantial — around 10% for 4 threads in the system. As the system load increases and

more threads have to be scheduled, the power savings decrease. This is because more of

the high-power cores need to be included in the scheduling pool. For full utilization (20

threads), VarP shows no power improvement.

67

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

P
ow

er

(a)

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

E
D

^2

Random VarP VarP&AppP

(b)

Figure 4.7: Total power consumption (a) and ED2 (b) relative to Random in UniFreq.

VarP&AppP consumes the same power as VarP. The power averaging effect sought

with VarP&AppP is not significant enough to reduce the temperature noticeably and, there-

fore, reduce the leakage power.

Figure 4.7(b) shows the ED2 of the system for the different scheduling algorithms.

Since VarP and VarP&AppP reduce the power at no cost in frequency, the ED2 reduction

is the same as the power reduction in Figure 4.7(a).

4.5.4 NUniFreq: Non-Uniform Frequency & No DVFS

NUniFreq allows each core to run at its maximum frequency. It can be shown that, under

full occupancy (i.e., 20 threads), this increases the average core frequency by about 15%

over UniFreq and increases the average power consumption by 10%. This in turn causes an

average reduction in ED2 of almost 20% for our applications. In what follows, we examine

how variation-aware scheduling can further improve on these gains.

We start by evaluating algorithms to minimize power, namely VarP and VarP&AppP.

Figures 4.8(a)–(b) are similar to 4.7(a)–(b) for NUniFreq. Figure 4.8(a) shows that the

savings due to VarP and VarP&AppP are 14% for 4 threads. They decrease for more

threads.

68

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

P
ow

er

(a)

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

E
D

^2

Random VarP VarP&AppP

(b)

Figure 4.8: Total power consumption (a) and ED2 (b) relative to Random in NUniFreq.

Figure 4.8(b) shows that these algorithms reduce ED2 less than they did in 4.7(b).

This is because in NUniFreq, different cores have different frequencies and VarP and

VarP&AppP, by selecting the least-consuming cores, they may also end up selecting the

lower-frequency ones, thus hurting ED2. Note that the goal of this optimization is to re-

duce power, not ED2.

We now consider algorithms to maximize performance, namely VarF and VarF&AppIPC

(Table 4.2). Figure 4.9(a) shows the average frequency at which the threads run, normal-

ized to that of Random. Recall that VarF and VarF&AppIPC select the same set of cores;

therefore, their bars are the same. The figure shows that VarF increases the average fre-

quency by 10% over Random for 4 threads. The frequency improvements decrease as the

number of threads increases.

The benefits of VarF&AppIPC are apparent in Figure 4.9(b), which shows the average

throughput in millions of instructions per second (MIPS) relative to Random. By schedul-

ing high-IPC threads on high-frequency cores, VarF&AppIPC consistently delivers a higher

throughput. Specifically, the throughput is 5–10% higher than Random. VarF, on the other

hand, only delivers improvements for lightly-loaded systems — for the 20-thread configu-

ration, it effectively works as Random.

Finally, Figure 4.10 shows ED2 for the same algorithms. For lightly-loaded sys-

69

2 4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

F
re

qu
en

cy

(a)

2 4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

M
IP

S

Random VarF VarF&AppIPC

(b)

Figure 4.9: Average frequency (a) and average throughput (b) relative to Random in

NUniFreq.

tems (4 threads or less), the higher throughput of VarF and VarF&AppIPC come at the

cost of a higher ED2. This is because the high-frequency cores selected dissipate more

power, and the increase in throughput does not compensate. Again, the goal of the opti-

mization was to improve performance, not ED2. However, under higher loads (8 to 20

threads), VarF&AppIPC has a substantially lower ED2 than Random or VarF. Specifically,

VarF&AppIPC’s ED2 is 10–13% lower than Random’s. The reason is that VarF&AppIPC

increases the throughput substantially.

2 4 8 16 20

Number of threads

0.5

0.7

0.9

1.1

E
D

^2

Random
VarF
VarF&AppIPC

Figure 4.10: ED2 relative to Random in NUniFreq.

70

4.5.5 NUniFreq+DVFS: Non-Uniform Frequency & DVFS

For NUniFreq+DVFS, we evaluate the algorithms in Table 4.2 that maximize performance

at a given power budget, namely Random+Foxton*, VarF&AppIPC+Foxton*,

VarF&AppIPC+LinOpt, and VarF&AppIPC+SAnn. We evaluate them under three Power

Environments: Low Power, Cost-Performance, and High Performance. In these environ-

ments, the Ptarget when 20 threads are active is set to 50W, 75W, and 100W, respectively.

When there are fewer threads, Ptarget is scaled down proportionally.

Figure 4.11(a) shows the average throughput of all the algorithms normalized to Ran-

dom+Foxton*, in the Cost-Performance Power Environment. We show results for different

loads on the system, ranging from 4 to 20 threads. We see that VarF&AppIPC+Foxton*

only improves the average throughput by 4–6% for different numbers of threads. How-

ever, VarF&AppIPC+LinOpt is much more effective at boosting throughput. Specifically,

it improves the average throughput by 12–17%. Moreover, its throughput is within 2% to

that of VarF&AppIPC+SAnn. This is despite the fact that VarF&AppIPC+SAnn is orders

of magnitude more costly in computation time. Also VarF&AppIPC+SAnn’s throughput is

only 1% lower than the optimal throughput obtained through exhaustive search.

4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

M
IP

S

(a)

4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

E
D

^2

Random+Foxton*
VarF&AppIPC+Foxton*

VarF&AppIPC+LinOpt
VarF&AppIPC+SAnn

(b)

Figure 4.11: Average throughput (a) and ED2 (b) for different algorithms relative to Ran-
dom+Foxton* in the Cost-Performance Power Environment.

71

Figure 4.11(b) shows the ED2 for the same experiment. VarF&AppIPC+LinOpt re-

duces ED2 by 30–38%. This is a very remarkable reduction, and is very close to that of

VarF&AppIPC+SAnn.

We now compare the three Power Environments. Figure 4.12 shows the average through-

put of the algorithms normalized to Random+Foxton* in the three Power Environments.

All experiments are for 20-thread runs. We can see that the relative throughput gains of

VarF&AppIPC+LinOpt are highest when the power target is low. The same is true for the

other algorithms. For VarF&AppIPC+LinOpt, the average throughput gains in the Low

Power, Cost-Performance, and High Performance environments are 16%, 12% and 11%,

respectively.

50W 75W 100W

Power target

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

M
IP

S

Random+Foxton*
VarF&AppIPC+Foxton*
VarF&AppIPC+LinOpt
VarF&AppIPC+SAnn

Figure 4.12: Average throughput for different algorithms relative to Random+Foxton* in

the three Power Environments. All experiments are for 20-thread runs.

Finally, we examine the impact of the algorithms on weighted throughput. This met-

ric uses normalized IPC for each application and, therefore, is fairer to applications with

low intrinsic IPC. Our algorithms improve throughput by adapting to IPC changes within

each application — speeding up high-IPC sections and slowing down (and therefore saving

power in) low-IPC sections.

Figure 4.13 shows the same experiments as Figure 4.11 but with weighted through-

put as the optimization goal. We can see that the two figures are very similar, except for

slightly smaller throughput improvements and ED2 reductions in Figure 4.13. For ex-

ample, VarF&AppIPC+LinOpt improves the weighted throughput by 9–14% and reduces

ED2 by 24–33% — rather than by 12–17% and 30–38%, respectively, in Figure 4.11.

72

4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

W
ei

gh
te

d
M

IP
S

(a)

4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d
E

D
^2

Random+Foxton*
VarF&AppIPC+Foxton*

VarF&AppIPC+LinOpt
VarF&AppIPC+SAnn

(b)

Figure 4.13: Average weighted throughput (a) and weighted ED2 (b) for different algo-

rithms relative to Random+Foxton* in the Cost-Performance Power Environment.

4.5.6 LinOpt Granularity

How often we run LinOpt impacts our ability to keep the system power close to Ptarget.

Specifically, if we use long intervals between LinOpt runs, the power consumed is likely

to deviate more from Ptarget than if we use short intervals. Figure 4.14 considers different

interval durations and measures the deviation between power consumed and Ptarget. Devi-

ation is measured as follows. At every ms, the average power consumed in the past 1ms is

compared to Ptarget and the absolute difference is recorded. Then, all the values recorded

in the interval between two LinOpt runs are averaged out and plotted in Figure 4.14. The

figure includes lines for 20- and 4-thread runs.

2s 1s 500ms 100ms 10ms

Time interval

0

5

10

15

20

P
er

ce
nt

ag
e

de
vi

at
io

n
(%

)

4 threads
20 threads

Figure 4.14: Average deviation of power consumption from Ptarget for different intervals

between LinOpt runs.

73

Figure 4.14 shows that, as we decrease the interval between LinOpt runs, the power

deviation decreases. For the 10ms-intervals that we use in our experiments, the deviation

is less than 1%.

4.5.7 LinOpt Execution Time

The Simplex method used to solve LinOpt is generally very fast. The algorithm involves a

variable number of steps, where the computation time of each step is affected by the size

of the problem (the number of threads that are scheduled) and the number of constraints.

Figure 4.15 shows the execution time of the algorithm on a 4GHz processor like the one

considered in this work. The figure shows data for different numbers of running threads

and the different Power Environments.

1 2 4 8 16 20

Number of threads

0

2

4

6

T
im

e
(m

ic
ro

se
co

nd
s)

High Performance
Cost-Performance
Low Power

Figure 4.15: Execution time of the LinOpt algorithm for different numbers of threads in the

three Power Environments.

The figure shows that the execution time increases with the number of threads. More-

over, it also increases as we go to less power-constrained environments such as High Per-

formance. This is because a less strict environment increases the search space, making it

harder to find a solution. Overall, the longest running time is 6μs. Since we run LinOpt

every 10ms, the overhead is negligible.

74

CHAPTER 5

Related Work

The work presented in this thesis is related to an extensive body of research. In this Chapter

we briefly describe some of this work and how it relates to this thesis.

5.1 Variation Measurement and Modeling

While the problem of process variation has long been known to the VLSI community,

Borkar et al. [6] are one of the first to provide a microarchitectural perspective. Other key

contributors are Bowman et al. [7], who provided a model to estimate chip frequency in the

presence of WID process variation.

Substantial effort has been devoted to modeling parameter variation [73]. Most of the

models are analytical and some have been validated with data obtained through measure-

ments of test chips. For instance, Stine et al. [75], Orshansky et al. [60], and Friedberg et

al. [25] performed measurements of test chips to characterize gate length variation. They

observed that a significant portion of the WID variation is systematic.

An important issue has been how to model the spatial correlation of systematic vari-

ation. While we use a multivariate normal distribution with a spherical spatial correla-

tion structure, other approaches include quad-tree modeling [53] and regression-based ap-

proaches [34]. In the former, it is difficult to control aspects of the correlation structure

and the distribution parameters; in the latter, the model is deterministic — it models the

distribution of the systematic component of just one die. It cannot be used to study a set of

dies to find average statistics.

75

Cao and Clark [9] proposed a model that attributes Vth variation to gate length variation

and studied the impact of spatial correlation on the delay of one critical path. Datta et

al. [17] developed a statistical approach for pipeline delay analysis to show the importance

of logic depth in variability analysis.

Chang and Sapatnekar [10] and Srivastava et al. [72] considered the impact of spatially

correlated variation on leakage and/or performance. They generated distributions of coarse

grid points by assuming a linear [10] or reciprocal [72] correlation function. They did not

discuss trade-offs between the various correlation lengths and leakage/frequency.

5.2 Body Bias and Adaptive Supply Voltage

There is abundant work on body bias. Section 3.2 has outlined some of the main issues.

In addition, Kumar et al. [49] pointed out the importance of BB adaptation to T changes.

However, they rely on a static method, based on a mathematical model, to find the optimal

BB voltages at manufacturing time, for all possible values of Vth and T that a circuit can

have. In the presence of variation and given the scale of today’s processors, this is a daunt-

ing task. Finally, Martin et al. [54] and Chen and Naffziger [13] examined the combination

of BB and DVS.

Adaptive Supply Voltage (ASV) has also been proposed as a solution for process vari-

ation. ASV dynamically changes the supply voltage (Vdd) as a mechanism for trading off

frequency for power. Previous work [13, 83] has shown ASV to be about as useful as S-

FGBB at mitigating the effects of process variation. The hardware overhead is also compa-

rable. Fine-grain ASV requires a voltage regulator for each cell, just like FGBB. However,

a higher Vdd increases the rate of electromigration which affects the lifetime reliability of

the circuit. At the same time, lower Vdd results in SRAM stability problems.

76

Other researchers have proposed microarchitectural techniques to mitigate or tolerate

parameter variation. They target register file and execute units [53], data caches [61],

pipeline balancing [80].

5.3 Handling Core-To-Core Process Variation

Humenay et al. [34] examine process variation in a CMP and point out the core-to-core

variation in frequency. They estimate the maximum difference in core frequencies to be ap-

proximately 20%. They suggest Adaptive Body Bias (ABB) and Adaptive Supply Voltage

(ASV) to reduce some of this variation — at the cost of increasing power variation. Donald

and Martonosi [20] also examine process variation in a CMP and focus on the core-to-core

variation in power. They suggest turning off cores that consume power in excess of a cer-

tain computed value, with the goal of maximizing the chip-wide performance/power ratio.

In our work, we combine application scheduling and global DVFS power management.

5.4 Scheduling for Heterogeneous Architectures

Balakrishnan et al. [4] study how heterogeneous CMPs impact parallel workloads. They

suggest fine-granularity threading as a solution for alleviating the performance instabil-

ity caused by heterogeneous CMPs. Kumar et al. [48] propose a CMP with different-

complexity cores and the same ISA. The goal is to reduce power consumption by using

the simpler, more power-efficient cores to run memory-bound applications. They schedule

applications to cores based on application ILP, and adapt to phase changes within an appli-

cation. Our work considers design-identical cores that are affected by variation. Since we

do not know beforehand the power and frequency of each core, this information is obtained

post-manufacturing and is unique to each CMP.

Kadayif et al. [39] examine the benefits of exploiting the heterogeneity of workloads in

77

the context of multicore embedded systems. Specifically, they use the compiler to assign

different voltages and frequencies to different processors depending on the characteristics

of the workload. Also in embedded systems, linear programming has been used to solve

the problem of scheduling tasks on CMPs [71]. The goal is to minimize power while

meeting strict timing constraints. Our optimization approach is different, since we do not

have timing constrains. Moreover, due to variation, our cores are heterogeneous.

Other researchers like Heo et al. [28] and Stavrou and Trancoso [74] minimize power

density or temperature hot spots by judiciously scheduling jobs or migrating them from

core to core.

5.5 Power Management in Chip Multiprocessors

Given the importance of power, power management control is an area of high interest.

Perhaps the most sophisticated design is Intel’s Foxton technology [55], which has been

implemented in the Itanium II processor. Foxton is a control system that maximizes per-

formance while staying within target power and temperature. It consists of power and

temperature sensors, and a small on-chip hardware controller. If the power consumption is

less than the target, the controller increases the core voltage — and the frequency follows.

The opposite occurs if the power is over the target. Both cores in the Itanium II have the

same voltage and frequency.

Academic research on power management for CMPs is still in its infancy. Some ex-

amples include Li and Martinez [51] who optimize a parallel workload running on a CMP

by dynamically changing the number of active processors and the voltage and frequency

levels at which the CMP runs. They apply DVFS chip-wide rather than independently per

core, which reduces the flexibility and impact of the optimization.

Isci et al. [35] consider a 4-core CMP with core-level DVFS (i.e., the voltage and fre-

quency levels are changed independently in each core). They examine different DVFS

78

policies for high performance and for power efficiency. Their solutions are primarily based

on the exhaustive search of the solution space. Because of this, the solutions are not scal-

able to large systems. In this work, we consider a large CMP with process variation. As

a result, both application scheduling and power management have to be variation-aware.

Moreover, given the large design space, we need to use an intelligent way to prune the

design space.

5.6 DVFS Granularity and Implementation

State-of-the-art processor chips often have multiple voltages — for example, giving mem-

ory arrays a slightly higher voltage than the core for reliability reasons. Herbert and Mar-

culescu [29] examine the tradeoffs of using different DVFS granularities (i.e., the number

of cores in the same voltage-frequency domain). They find that having a small number of

cores per domain produces the most complexity-effective design.

The first general-purpose CMP to support a form of core-level DVFS is the AMD Quad-

Core Opteron [21]. In this chip, the frequency of each core can be set independently,

although all cores have the same voltage. Currently, multiple on-chip voltages are pro-

vided by off-chip voltage regulators, which are bulky and costly. Recent work by Kim et

al. [45] describes designs of on-chip regulators. They are able to perform voltage changes

in nanoseconds rather than in microseconds, and consume little energy. Designs similar to

these will enable wide use of core-level DVFS.

5.7 Other Dynamic Power Management Algorithms

There has been significant research on reducing power and energy consumption using dy-

namic adaptation. Generally the adaptation is local, within a core and the tradeoff is be-

tween the amount of hardware resources that gets allocated to a task and the performance

79

impact. In other cases the tradeoff is between DVFS and performance, or the two ap-

proaches are combined. Most previous work has used heuristic techniques to save power

with the minimum impact on performance [1,3,22,24]. These techniques generally require

a significant amount of tuning and it is hard to provide any optimality guarantees.

Other previous work has taken more formal approaches. Huang et al. [30] proposed an

algorithm for architectural-level adaptation, assigning different processor configurations

to different subroutines. The search space of possible configurations is relatively small,

allowing them to always perform an exhaustive search and come up with the optimal so-

lution in that space. Hughes and Adve [32, 33] proposed an adaptive control algorithm for

processors running multimedia applications. They define the adaptation as a constrained

optimization problem that maximizes the energy saved per unit of work subject to timing

constraints. They solve the problem using the method of Lagrange multipliers.

80

CHAPTER 6

Conclusions and Future Work

Parameter variation is a major challenge for processor designers. To address this challenge,

we will likely need a combination of solutions at different layers, such as lithography,

layout, circuits, and microarchitecture.

The work presented in this thesis makes several contributions in this space. First, we

developed a parametrized model of process variation within the chip. The model was used

throughout the thesis to estimate the effects of variation on current and future chip mul-

tiprocessors and to test the effectiveness of our proposed solutions for mitigating these

effects.

In this work I proposed two solutions for dealing with variation. The first solution,

D-FGBB attacks the problem at a lower level. Our results showed that D-FGBB is very

versatile and effective. I outlined three uses of D-FGBB: (i) reducing the leakage power at

constant frequency in normal processor operation, (ii) increasing the processor frequency

in a high-performance mode, and (iii) reducing the leakage power at constant frequency in

a low power mode.

In its first use, D-FGBB reduces the leakage power of the chip by an average of 28–42%

compared to S-FGBB. The higher savings correspond to the cases with more BB cells per

chip. If, in addition, we combine D-FGBB with DVS, we save both leakage and dynamic

power. In the high-performance mode, D-FGBB increases the processor frequency by an

average of 7–9% compared to S-FGBB and by 7–16% compared to no BB. Finally, in the

low-power mode, D-FGBB reduces the leakage power of the chip by an average of 10–51%

compared to S-FGBB and by 12–69% compared to no BB.

81

I also showed that D-FGBB can be synergistically combined with DVFS. While DVFS

mostly controls dynamic power, D-FGBB controls leakage power. Overall, like DVFS, D-

FGBB is a versatile control hook that can be managed in hardware or in software, and that

can be used at different time and area granularities.

In the second part of this thesis I examined the effects of variation on large chip mul-

tiprocessors. What I found was that as a result of within-die process variation, individ-

ual cores in a CMP differ substantially in both static power consumed and maximum fre-

quency supported. I proposed leveraging this core-to-core variation with variation-aware

algorithms for application scheduling to save power or improve throughput, and variation-

aware power-management algorithms to maximize throughput at a given power budget.

One such power-management algorithm, called LinOpt, uses linear programming to

find the voltage and frequency levels for each of the cores in the CMP. LinOpt runs on-line

periodically, using profile information provided by the chip manufacturer and by on-chip

power and IPC sensors. In a 20-core CMP, the combination of variation-aware application

scheduling and LinOpt increased the average throughput by 12–17% and reduced the av-

erage ED2 by 30–38% — all relative to using variation-aware scheduling together with a

simple extension to Foxton’s power management algorithm. Moreover, LinOpt’s through-

put was within 2% of that of a simulated annealing algorithm, which had a computation

time orders of magnitude higher.

There are several possible avenues for future extensions to this work. One is to enhance

the scheduling and power management algorithms with the additional goal of keeping the

temperature of the CMP as uniform as possible. This can be achieved through aggressive

migration of applications from active to inactive cores as in [28], and through temperature-

aware mapping of applications to cores and assignment of (V,f) pairs. The result is likely

to be fewer hot spots and lower power consumption, but it comes at the cost of increased

complexity of the algorithms. Other possible extensions include understanding how our

variation-aware algorithms affect CMP wearout, or analyzing the impact of the algorithms

82

on parallel applications.

Dynamic fine-grain body biasing proved to be a very useful knob for trading off leak-

age power for frequency. An interesting extension to this work is exposing this knob to

software. This will give the system another mechanism for managing power in addition to

DVFS. Another interesting research topic would be to examine global power management

policies that can co-optimize core-level dynamic body biasing and DVFS to achieve higher

performance with lower power consumption.

83

REFERENCES

[1] D. H. Albonesi. Selective cache ways: on-demand cache resource allocation. In

International Symposium on Microarchitecture, 1999.

[2] N. Azizi and F. Najm. Compensation for within-die variations in dynamic logic by

using body-bias. In International IEEE-NEWCAS Conference, 2005.

[3] R. I. Bahar and S. Manne. Power and energy reduction via pipeline balancing. In

International Symposium on Computer Architecture, 2001.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of performance asym-

metry in emerging multicore architectures. In International Symposium on Computer
Architecture, June 2005.

[5] S. Borkar, T. Karnik, and V. De. Design and reliability challenges in nanometer

technologies. In Design Automation Conference, June 2004.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parame-

ter variations and impact on circuits and microarchitecture. In Design Automation
Conference, June 2003.

[7] K. A. Bowman, S. G. Duvall, and J. D. Meindl. Impact of die-to-die and within-die

parameter fluctuations on the maximum clock frequency distribution for gigascale

integration. Journal of Solid-State Circuits, February 2002.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. In International Symposium on Computer
Architecture, June 2000.

[9] Y. Cao and L. Clark. Mapping statistical process variation toward circuit performance

variability: An analytical approach. In Design Automation Conference, June 2005.

[10] H. Chang and S. Sapatnekar. Full-chip analysis of leakage power under process vari-

ations, including spatial correlations. In Design Automation Conference, June 2005.

[11] R. Chau, S. Datta, M. Doczy, J. Kavalieros, and M. Metz. Gate dielectric scaling for

high-performance CMOS: from SiO2 to High-K. In IWGI, 2003.

84

[12] T. Chen and J. Gregg. A low cost individual-well adaptive body bias (IWABB) scheme

for leakage power reduction and performance enhancement in the presence of intra-

die variations. In Design, Automation and Test in Europe, February 2004.

[13] T. Chen and S. Naffziger. Comparison of adaptive body bias (ABB) and adaptive

supply voltage (ASV) for improving delay and leakage under the presence of process

variation. Transactions on VLSI Systems, October 2003.

[14] L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Liao, S. Strazdus, M. Morrow, K. Ve-

larde, and M. Yarch. An embedded 32-b microprocessor core for low-power and

high-performance applications. In Journal of Solid-State Circuits, volume 36, pages

1599–1608, November 2001.

[15] L. Clark, E. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus, M. Morrow, K. Ve-

larde, and M. Yarch. An embedded 32-b microprocessor core for low-power and

high-performance applications. Journal of Solid-State Circuits, November 2001.

[16] N. Cressie. Statistics for Spatial Data. John Wiley & Sons, 1993.

[17] A. Datta, S. Bhunia, S. Mukhopadhyay, N. Banerjee, and K. Roy. Statistical modeling

of pipeline delay and design of pipeline under process variation to enhance yield in

sub 100nm technologies. In Design, Automation and Test in Europe, March 2005.

[18] R. Datta, A. Sebastine, A. Raghunathan, and J. A. Abraham. On-chip delay measure-

ment for silicon debug. In Great Lakes Symposium on VLSI, April 2004.

[19] D. Ditzel. Power reduction using LongRun2 in Transmeta’s Efficeon processor. In

Spring Processor Forum Presentation, 2006.

[20] J. Donald and M. Martonosi. Power efficiency for variation-tolerant multicore pro-

cessors. In International Symposium on Low Power Electronics and Design, pages

304–309, October 2006.

[21] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,

S. Meyers, E. Fang, and R. Kumar. An integrated quad-core Opteron processor. In

International Solid State Circuits Conference, pages 102–103, February 2007.

[22] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,

G. Semeraro, G. Magklis, and M. L. Scott. Integrating adaptive on-chip storage struc-

tures for reduced dynamic power. In International Conference on Parallel Architec-
tures and Compilation Techniques, 2002.

[23] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge. Razor: A low-power pipeline based on circuit-

level timing speculation. In International Symposium on Microarchitecture, Decem-

ber 2003.

[24] D. Folegnani and A. González. Energy-effective issue logic. In International Sympo-
sium on Computer Architecture, 2001.

85

[25] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos. Modeling within-

die spatial correlation effects for process-design co-optimization. In International
Symposium on Quality Electronic Design, March 2005.

[26] A. Ghosh, R. Rao, R. Brown, and C. Chuang. On-chip process variation detection and

compensation for parametric yield enhancement in sub-100nm CMOS technology.

IBM Austin Center for Advanced Studies, 2007.

[27] M. Hatzilambrou, A. Neureuther, and C. Spanos. Ring oscillator sensitivity to spatial

process variation. In First International Workshop on Statistical Metrology, June

1996.

[28] S. Heo, K. Barr, and K. Asanovic. Reducing power density through activity migration.

In International Symposium on Low Power Electronics and Design, August 2003.

[29] S. Herbert and D. Marculescu. Analysis of voltage/frequency island granularity in

chip-multiprocessors. In International Symposium on Low Power Electronics and
Design, August 2007.

[30] M. C. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors: Appli-

cation to energy reduction. In International Symposium on Computer Architecture,

2003.

[31] Z. Huang and M. Ercegovac. Effect of wire delay on the design of prefix adders

in deep-submicron technology. In Asilomar Conference on Signals, Systems, and
Computers, October 2000.

[32] C. J. Hughes. General-Purpose Processors for Multimedia Applications: Predictabil-
ity and Energy Efficiency. PhD thesis, University of Illinois at Urbana-Champaign,

2003.

[33] C. J. Hughes and S. V. Adve. A formal approach to frequent energy adaptations

for multimedia applications. In International Symposium on Computer Architecture,

2004.

[34] E. Humenay, D. Tarjan, and K. Skadron. The impact of systematic process variations

on symmetrical performance in chip multi-processors. In Design, Automation and
Test in Europe, April 2007.

[35] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An analysis

of efficient multi-core global power management policies: Maximizing performance

for a given power budget. In International Symposium on Microarchitecture, pages

347–358, December 2006.

[36] International Technology Roadmap for Semiconductors (1999).

[37] International Technology Roadmap for Semiconductors (2006 Update).

[38] A. Journel and C. Huijbregts. Mining Geostatistics. Academic Press, 1978.

86

[39] I. Kadayif, M. Kandemir, and I. Kolcu. Exploiting processor workload heterogeneity

for reducing energy consumption in chip multiprocessors. In Design, Automation and
Test in Europe, February 2004.

[40] A. Kahng. The road ahead: Variability. Design & Test of Computers, May-June 2002.

[41] A. Kahng. How much variability can designers tolerate? Design & Test of Computers,

November-December 2003.

[42] K. Kanda, K. Nose, H. Kawaguchi, and T. Sakura. Design impact of positive temper-

ature dependence on drain current in sub-1-V CMOS VLSIs. JSSC, 36(10), 2001.

[43] T. Karnik, S. Borkar, and V. De. Probabilistic and variation-tolerant design: Key

to continued Moore’s Law. In Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, February 2004.

[44] A. Keshavarzi, G. Schrom, S. Tang, S. Ma, K. Bowman, S. Tyagi, K. Zhang, T. Linton,

N. Hakim, S. Duvall, J. Brews, and V. De. Measurements and modeling of intrinsic

fluctuations in MOSFET threshold voltage. In ISLPED, 2005.

[45] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast, per-

core DVFS using on-chip switching regulators. In International Symposium on High-
Performance Computer Architecture, February 2008.

[46] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

In Science, volume 220, pages 671–680, May 1983.

[47] S. Krishnamurthy, S. Paul, and S. Bhunia. Adaptation to temperature-induced delay

variations in logic circuits using low-overhead online delay calibration. In Interna-
tional Symposium on Quality Electronic Design, March 2007.

[48] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-ISA het-

erogeneous multi-core architectures: The potential for processor power reduction. In

International Symposium on Microarchitecture, December 2003.

[49] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Mathematically assisted adaptive body

bias (ABB) for temperature compensation in gigascale LSI systems. In Asia South
Pacific Design Automation Conference, January 2006.

[50] T. Kuroda and T. Sakurai. Body biasing. In S. Narendra and A. Chandrakasan, editors,

Leakage in Nanometer CMOS Technologies. Springer US, 2006.

[51] J. Li and J. Martı́nez. Dynamic power-performance adaptation of parallel compu-

tation on chip multiprocessors. In International Symposium on High-Performance
Computer Architecture, 2006.

[52] X. Liang and D. Brooks. Latency adaptation of multiported register files to mitigate

variations. In ASGI, 2006.

87

[53] X. Liang and D. Brooks. Mitigating the impact of process variations on processor

register files and execution units. In International Symposium on Microarchitecture,

December 2006.

[54] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage

scaling and adaptive body biasing for lower power microprocessors under dynamic

workloads. In International Conference on Computer Aided Design, November 2002.

[55] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W. H. Parks, and

S. Naffziger. Power and temperature control on a 90-nm Itanium family processor.

Journal of Solid-State Circuits, January 2006.

[56] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure probability and

statistical design of SRAM array for yield enhancement in nanoscaled CMOS. Trans-
actions on Computer-Aided Design, 24(12), 2005.

[57] J. Nakano. Techniques to address unreliability and variability of computing systems.

PhD thesis, University of Illinois at Urbana-Champaign, 2006.

[58] S. Narendra, M. Haycock, V. Govindarajulu, V. Erraguntla, H. Wilson, S. Vangal,

A. Pangal, E. Seligman, R. Nair, A. Keshavarzi, B. Bloechel, G. Dermer, R. Mooney,

N. Borkar, S. Borkar, and V. De. 1.1V 1GHz communications router with on-chip

body bias in 150 nm CMOS. In International Solid-State Circuits Conference, Febru-

ary 2002.

[59] G. Ono and M. Miyazaki. Threshold-voltage balance for minimum supply operation.

In International Solid-State Circuits Conference, February 2003.

[60] M. Orshansky, L. Milor, and C. Hu. Characterization of spatial intrafield gate CD vari-

ability, its impact on circuit performance, and spatial mask-level correction. Transac-
tions on Semiconductor Manufacturing, February 2004.

[61] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-aware cache archi-

tectures. In International Symposium on Microarchitecture, December 2006.

[62] A. Papoulis. Probability, Random Variables and Stochastic Process. McGrawHill,

2002.

[63] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press, New York, NY,

USA, 1988.

[64] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, 2006. http://www.R-project.org.

[65] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss,

S. Sarangi, P. Sack, and P. Montesinos. SESC Simulator, January 2005.

http://sesc.sourceforge.net.

88

[66] P. Ribeiro Jr. and P. Diggle. geoR: A package for geostatistical analysis. R-NEWS,

1(2), 2001.

[67] T. Sakurai and R. Newton. Alpha-power law MOSFET model and its applications to

CMOS inverter delay and other formulas. Journal of Solid-State Circuits, April 1990.

[68] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.

VARIUS: A model of parameter variation and resulting timing errors for microarchi-

tects. In IEEE Transactions on Semiconductor Manufacturing, 2008.

[69] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-

jan. Temperature-aware microarchitecture. In International Symposium on Computer
Architecture, June 2003.

[70] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous multi-

threaded processor. In Architectural Support for Programming Languages and Oper-
ating Systems, November 2000.

[71] K. Srinivasan and K. S. Chatha. Integer linear programming and heuristic techniques

for system-level low power scheduling on multiprocessor architectures under through-

put constraints. Integration VLSI, 40(3):326–354, 2007.

[72] A. Srivastava, S. Shah, K. Agarwal, D. Sylvester, D. Blaauw, and S. Director. Accu-

rate and efficient gate-level parametric yield estimation considering correlated vari-

ations in leakage power and performance. In Design Automation Conference, June

2005.

[73] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical Analysis and Optimization for
VLSI: Timing and Power. Springer, 2005.

[74] K. Stavrou and P. Trancoso. Thermal-aware scheduling: A solution for future chip

multiprocessors thermal problems. In EUROMICRO Conference on Digital System
Design, pages 123–126, August, 2006.

[75] B. Stine, D. Boning, and J. Chung. Analysis and decomposition of spatial variation

in integrated circuit processes and devices. Transactions on Semiconductor Manufac-
turing, February 1997.

[76] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif. Full chip leakage estimation consid-

ering power supply and temperature variations. In International Symposium on Low
Power Electronics and Design, August 2003.

[77] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical Report HPL-2006-

86, HP Labs, 2006.

[78] Y. Taur and T. H. Ning. Fundamentals of Modern VLSI Devices. Cambridge Univer-

sity Press, 1998.

89

[79] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. Mitigating parameter variation

with dynamic fine-grain body biasing. In International Symposium on Microarchitec-
ture, December 2007.

[80] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle: Pipeline adaptation to tolerate

process variation. In International Symposium on Computer Architecture, June 2007.

[81] E. Toyoda. DFM: device and circuit design challenges. In International Forum on
Semiconductor Technology, February 2004.

[82] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De.

Adaptive body bias for reducing impacts of die-to-die and within-die parameter vari-

ations on microprocessor frequency and leakage. Journal of Solid-State Circuits,

February 2002.

[83] J. Tschanz, S. Narendra, A. Keshavarzi, and V. De. Adaptive circuit techniques to

minimize variation impacts on microprocessor performance and power. In ISCAS,

volume 1, pages 9–12, May 2005.

[84] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,

A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile

1.28TFLOPS network-on-chip in 65nm CMOS. In International Solid-State Circuits
Conference, 2007.

[85] S. Xiong et al. Is gate line edge roughness a first-order issue in affecting the perfor-

mance of deep sub-micro bulk mosfet devices? IEEE Transactions on Semiconductor
Manufacturing, 17(3):357–361, Aug 2004.

[86] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. HotLeakage: A

temperature-aware model of subthreshold and gate leakage for architects. Technical

Report CS-2003-05, University of Virginia, March 2003.

[87] W. Zhao and Y. Cao. New generation of predictive technology model for sub-45nm

design exploration. In International Symposium on Quality Electronic Design, 2006.

90

AUTHOR’S BIOGRAPHY

Radu Teodorescu was born in Cluj-Napoca, in the heart of Transilvania, Romania. From

a very young age he wanted to become a doctor — the kind that treats diseases. Every-

thing changed in eighth grade, when he discovered his first computer. His passion for the

technical side of things has only grown since.

Radu received his Engineer Diploma in Computer Science from the Technical Univer-

sity of Cluj-Napoca where he did research in medical imaging. He continued his studies

in Urbana-Champaign where he received his M.S. and Ph.D. degrees in Computer Science

from University of Illinois. His graduate research has been focused on computer architec-

ture. He developed solutions for efficiently enhancing the reliability of software and pro-

posed techniques for ensuring the continued improvement in microprocessor performance

and power consumption in the face of increasing technological challenges.

Radu has co-authored over 15 research papers and has received awards for his thesis

work and for his research in computer architecture. He has also held an Intel Foundation

Fellowship during part of his graduate studies. After receiving his PhD he joined the De-

partment of Computer Science and Engineering at Ohio State University as an Assistant

Professor.

91

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

