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Comparison and Analysis of GPS
Measured Electric Vehicle Charging
Demand: The Case of Western
Sweden and Seattle
Elias Hartvigsson*, Niklas Jakobsson, Maria Taljegard and Mikael Odenberger

Department of Space Earth and the Environment, Chalmers University of Technology, Gothenburg, Sweden

Electrification of transportation using electric vehicles has a large potential to reduce
transport related emissions but could potentially cause issues in generation and
distribution of electricity. This study uses GPS measured driving patterns from
conventional gasoline and diesel cars in western Sweden and Seattle, United States,
to estimate and analyze expected charging coincidence assuming these driving patterns
were the same for electric vehicles. The results show that the electric vehicle charging
power demand in western Sweden and Seattle is 50–183% higher compared to studies
that were relying on national household travel surveys in Sweden and United States. The
after-coincidence charging power demand from GPS measured driving behavior
converges at 1.8 kW or lower for Sweden and at 2.1 kW or lower for the United States
The results show that nominal charging power has the largest impact on after-coincidence
charging power demand, followed by the vehicle’s electricity consumption and lastly the
charging location. We also find that the reduction in charging demand, when charging is
moved in time, is largest for few vehicles and reduces as the number of vehicles increase.
Our results are important when analyzing the impact from large scale introduction of
electric vehicles on electricity distribution and generation.

Keywords: electric vehicles, charging demand, driving behavior, GPS measurements, Sweden, Seattle

INTRODUCTION

The transport sector is to 96% dependent on fossil fuels, making the sector the least energy-
diversified of all sectors in terms of primary energy supply (International Energy Agency, 2018). In
order to achieve global and European climate targets limiting global warming to 1.5–2°C (European
Commission, 2011; UNFCC, 2015), the road transport sector needs to reduce its associated
greenhouse gas emissions. Electric vehicles (EVs) are one option to cut emissions in the road
transport sector. An increased battery energy density, reduced battery cost and an extended charging
network have made investments in EV more attractive for potential customers during the last years.
As a consequence of this, there has been a fast increase in EV sales (Edison Electric Institute, 2019).
Following several years of strong growth the global number of EVs reached more than 5 million in
2018 (International Energy Agency, 2018, 2019). The International Energy Agency (IEA) estimates
that the number of EVs will keep on increasing, and reach 130–250 million globally by 2030
(International Energy Agency, 2019). The global electricity demand is predicted by the IEA to
increase by 640–1,100 TWh by 2030 as a consequence of EV charging. The largest group of vehicles
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in most countries are passenger vehicles, which corresponds to
roughly 90% of all vehicles in Sweden (Statistics Sweden, 2019)
and 46% in the United States (International Organization of
Motor Vehicle Manufacturers, 2015). The low value of passenger
cars in the United States is likely caused by the ambiguous
definition. According to the International Organization of
Motor Vehicles pickup trucks may be considered as passenger
or commercial vehicles. The share of vehicles used by households
for personal transportation is therefore likely higher than 46% in
the United States. Most passenger vehicles are privately owned,
and a significant part of the charging is likely to take place at
residential properties (Morrissey et al., 2016; Charilaos et al.,
2017).

A large-scale diffusion of EVs can cause grid issues if the
charging occurs when there is a capacity deficit in the grid
(Muratori, 2018). EVs often utilize charging rates with high
power levels when compared to other household loads. If
these EV charging demands coincide with the current demand
for electricity in households, or are independently large enough, it
can cause issues in the current electricity distribution systems
(Hable et al., 2010; Putrus et al., 2009). However, EVs can also be a
resource for the grid by storing electricity that can be discharged
back to the grid at certain critical hours, so-called vehicle-to-grid
(V2G) (Lazzeroni et al., 2019). Battery electric vehicles (BEV) can
thereby support the grid by providing ancillary services, voltage
stabilization and peak shaving (Sortomme and El-Sharkawi, 2012;
Sarabi et al., 2016). The potential grid issues and benefits that EVs
can provide are to a large extent dependent on which charging
strategy that is used. Studies investigating different charging
strategies have focused on reducing grid impacts (Richardson
et al., 2012), market controlled strategies (Alipour et al., 2017), or
a mix of these (Sortomme and El-Sharkawi, 2011). Some charging
strategies that focus on reducing grid impact do not only include
when charging takes place, but also the geographical localization
of the charging (Faridimehr et al., 2019).

Studies on charging strategies rely on, and the results are
sensitive to, assumptions on what time charging occurs for
individual vehicles (Shepero et al., 2018). Data on when
charging occur is generally obtained from either statistical
distributions of charging (Faridimehr et al., 2019; Rezaee et al.,
2013) or from travel surveys on driving patterns (Babrowski et al.,
2014; Schuller et al., 2014). Travel surveys often only capture
travel behavior for a few days or the travel patterns of a typical day
and rely on respondents to accurately estimate their departure
time, arrival time and distance traveled. The availability of
National Households Travel Surveys (NHTS) have led them to
be a common data source for estimating driving and charging
patterns (Crozier et al., 2020; Jahangir et al., 2019; Li et al., 2020;
Wu et al., 2019; Y. Liu et al., 2018; Chen et al., 2017; Yi et al., 2020;
Wei et al., 2021). Using the National Household Travel Survey
(NHTS) in Sweden, Liu et al. (2014) estimated charging demand
in Sweden to be about 0.4 kW/vehicle. In the United States, Wu
et al. (2011) analyzed NHTS data to estimate charging demand in
the United States to be approximately 0.6 kW/vehicle. Zhang et al.
(2020) used NHTS data to model different daily load profiles in
the United States depending on age groups. They found that age
of drivers and their education had important impacts on charging

behavior. Using NHTS data, Ramos Muñoz and Jabbari (2020)
proposed a smart charging protocol for work place charging that
reduced overall power demand. Similarly, Li et al. (2020) used
NHTS data to show that smart charging could reduce operating
costs. An issue with studies relying on NHTS data is that the data
haven’t been validated with measured driving behavior and as
such the uncertainty using NHTS data is unknown.

An alternative to NHTS datasets for estimating charging is
datasets on EV charging from public and private charging stations
(Hardinghaus et al., 2020; Zachary et al., 2019; Kezunovic et al.,
2020; Huber et al., 2020; Almaghrebi et al., 2020; Noussan and
Neirotti, 2020). Using data from public charging points in Berlin,
Hardinghaus et al. (2020) found the utilization of charging points
to be similar even though the charging points were distributed
unequally in the city. Investigating emissions from EVs and using
data from public and private chargers in Germany, Noussan and
Neirotti (2020) found that the influence of charging strategy had a
limited impact on emissions. One issue with datasets that rely on
data public charging stations is that these do not keep track of
individual vehicles, and as such fail to track individual vehicle’s
behavior. Thismakes it difficult to draw conclusions on driving and
charging patterns during large scale BEV adoptions. In addition,
datasets using public and private charging are often conducted by
collecting data from BEV owners that are early adopters and
represents households with higher than average income and
education levels (Harris and Webber, 2014), and does not
represent the overall population when reaching large scale
market penetration of EVs.

A third option for estimating charging behavior is to use
Global Positioning System (GPS) to track driving patterns of
specific vehicles (Yang et al., 2017; Q. Liu et al., 2019; Pearre et al.,
2011). GPS tracking can capture driving patterns for several
weeks or months in a row, but may require additional
resources for tracking, collecting and analyzing data, which
can be a barrier for collecting sufficiently representative data.
The main benefit of GPSmeasured driving data is that this type of
data gives first-hand information about actual driving patterns
for an individual vehicle. This can be compared to data collected
through questionnaires, travel surveys or assumptions on
statistical distributions which are either second-hand
information or in the case of probability distributions, based
on assumptions of the driving patterns. As such, GPS measured
driving behavior can also reveal individual variations and how
these variations might affect charging power demand. Several
datasets of GPS measurements with conventional cars exist, but
have mainly been used to study driving behavior (Dong et al.,
2014), EV battery size requirements (Pearre et al., 2011;
Björnsson and Karlsson, 2015) and impacts on investments in
the electricity system (Taljegard et al., 2019). Pearre et al. (2011)
used a GPS measured database from Atlanta in the United States
to estimate battery sizes needed to fulfill certain number of
recorded trips. Dong et al. (2014) used a GPS measured
dataset from the greater Seattle region to analyze impacts from
public charging on share of the distances that can be driven by an
EV. Björnsson and Karlsson (2015) and Jakobsson et al. (2016)
used a dataset of GPS measured representative driving profiles for
a region in Sweden to analyze the potential of EVs for substituting

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7302422

Hartvigsson et al. Analysis of GPS Measured Charging

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


fossil fueled vehicles and what battery sizes that are required to
meet the driving demand using the measured driving patterns.

However, none of the aforementioned GPS based datasets
have been used to analyze possible impacts of GPS measured
driving behavior on EV charging power demand. Previous
estimates of charging power demand have relied on NHTS
data or assumptions and have therefore not been validated
against measured driving behavior. This study aims to fill this
research gap, and contribute to current literature, by calculating
and analyzing the EV charging power demand using GPS
measured driving data. To produce accurate estimates for
multiple EVs the study focuses on after-coincidence charging
power demand while excluding coincidence with other residential
loads. Coincidence is the likelihood of two events occurring
simultaneously. After-coincidence charging power demand
therefore consider the likelihood of charging occurring
simultaneously. After-coincidence charging power demand is
relevant when considering multiple EVs. Specifically, this
study aims to answer the following questions: what is the
after-coincidence charging power demand for EVs when using
GPSmeasured data? And, is there a significant difference between
the EV charging power demand when using GPS measured data
and questionnaire based data?

MATERIALS AND METHODS

The Materials and Methods section is divided into three
subsections. First, we outline the method for calculating after-
coincidence charging power demand from the GPS measured
driving behavior (Methods section). Second, we present three
different charging scenarios which are investigated (Scenarios
section). Third, we present a detailed description of the GPS
measurement datasets (Data section).

Methods
The process of calculating after-coincidence charging power
demand is outlined below, and is shown as a flowchart in
Figure 1. To estimate the charging power demand from EV,
the likelihood of the charging events to occur simultaneously is
needed. This likelihood is commonly referred to as coincidence in
electric power systems. Coincidence is often implemented in
power systems using a coincidence factor ranging from 0 to 1.
The coincidence factor is commonly used when designing electric
power systems and is necessary when doing power system
analysis of EV charging. The coincidence factor is defined as
the ratio between maximum measured power and rated power of
the equipment or load considered, and as such describe the hour
with the highest net power demand. For EV charging the
coincidence factor can be calculated as

Coincidence factor(N) � max(∑N
i�1 Pi,t

N · P ) (1)

where P is the rated charging power, Pi,t the charging power of
vehicle i at time t and N the total number of vehicles. The max
function extracts the highest value during a specific time-period, in

our case 1 year. The coincidence factor is calculated for a specific
number of vehicles. In a common local urban grid (one low-voltage
transformer), there are around 400 households connected, while in
rural areas there can be as few as one household per low-voltage
transformer. On average in Sweden there is 1.04 vehicle per
household (Statistics Sweden, 2019; Transport Analysis, 2019)
while in the United States it is 1.88 per household (Bureau of
Transportation Statistics, 2017). The charging power per EV
(expressed as kW/vehicle) when considering N number of
vehicles [referred to as the after-coincidence charging power
demand (PACCPD)] becomes

PACCPD � P · Coincidence factor(t, N) (2)

The coincidence factor can show significant variation
depending on which individual vehicles that are included in the
calculation and it is therefore important to consider different
combinations of vehicles. The number of combinations of k

vehicles in a dataset of n vehicles are ( k
n
) � k!

n!(k−n)!. For values

of k and n relevant in our analysis, the number of combinations
reach 10125. In order tomake the problem computationally feasible,
we conduct a bootstrap estimation using p resamples (Efron, 2003).
The bootstrap estimate will converge to the real estimate for an
increasing number of resamples. Due to computational and
memory limits (Core i7 8700 and 64 GB of RAM), we
conducted p � 1,000 resamples for each number of vehicles.
This represent a fraction of all possible combinations of
vehicles, yet should result in a representative coincidence factor
for a given number of vehicles (Davidson and MacKinnon, 2000).
Nevertheless the low resample rate could reduce the coincidence
factor distribution. To further increase computational speed, only
every third number of vehicles is considered, from 4 to 400.

The amount of electricity that is consumed by the vehicles
between two charging occasions is calculated based on the
measured driving distance and a given vehicle electricity
consumption rate per km (see Eq. 3). The vehicle electricity
consumption is amongst other dependent on aerodynamics,
auxiliary services in the vehicle and the vehicle’s speed. It is
assumed that a vehicle starts charging as soon as it arrives at its
charging location. No specific battery size is assumed and charging is
done until the vehicle leaves for a new trip or the accumulated energy
from all previous trips is zero. This happens when the vehicle has
been charged sufficiently to cover all previous trips. By not assuming
any specific battery size, our study focuses on the implications from
driving behavior on charging demand and thereby exclude impacts
from technical choice, such as battery size. This clarifies the impacts
arising from driving behavior. Charging power is simplified to a step
function, with the charging always made at the charger’s rated
power. The equation for vehicle electricity consumption between
two charging events (ENet) becomes

ENet � E0 + EVehicle ·∑J
j�1

dTrip,j (3)

Where EVehicle is the vehicles electricity consumption per km, E0

is the net electricity from previous charging events, dTrip,j is the
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driving distance in km for trip j, and J the number of trips
between two charging events.

Given the investigated driving demand profiles and assumed
charging capacities, EVs only need to be charged on average
4–8% of the hours per day, which would allow for using strategic
and scheduled charging times. The benefit of strategic charging
could be to reduce the hours with the highest charging
coincidence factor and thereby reduce power demand and
grid impacts from EV charging. To investigate the potential
of moving charging power demand we develop a charging
demand reduction factor. The charging demand reduction
factor states the reduction in after-coincidence charging
power demand that occurs when the charging is moved in
time. It uses the calculated after-coincidence charging power
demand to find the theoretical largest possible reduction in
charging demand that can be achieved by moving a specific
amount of the charging. The charging demand reduction is
calculated by generating an after-coincidence charging power
demand duration curve (i.e., a curve with the after-coincidence
charging power demand sorted from highest to lowest during a
year) for a specific number of vehicles. The reduction in
coincidence factor is then calculated between the time with
the highest after-coincidence charging power demand (t1 � 1)
and after-coincidence charging power demand at location t′ �
364 (e.g., the after-coincidence power demand at the 364th
worst hour). Depending on how the hours with worst
coincidence are distributed, t′ � 364 could represent moving
charging an average 1 h per day for a full year, or an average of
1 h and 24 min per weekday. Charging demand reduction factor
gives the maximum reduction in after-coincidence charging
power demand that can be reached when moving the
charging in time for the t′ hours with highest after-
coincidence charging power demand. The charging demand
reduction factor assumes that some of the demand on an hour
with a high coincidence factor can be moved to hours with a
lower or equal coincidence factor that occurs at time t′ � 364 in
the duration curve. The reduction in charging demand for n
vehicles and moving charging t′ hours is calculated as

Charging demand reduction factor(n) �
⎛⎝1 − Coincidence factor(t′, n)

Coincidence factor(t1, n)
⎞⎠ · 100 (4)

Scenarios
After-coincidence charging power demand is calculated with
different nominal charging power, vehicle electricity
consumption per km and charging locations. Three nominal
charging powers are considered: 3.3, 6.6 and 11 kW. A
nominal charging power of 3.3 kW likely represents a lower
limit for EV nominal charging power as lower charging power
would require a very long charging time. A nominal charging
power of 11 kW likely represents a higher limit for home
charging, since in Sweden most households are equipped with
a 3-phase 16 A (about 11 kW) connection to the grid. A higher
nominal charging power than 11 kW would in these cases either
require increasing the grid connection or investing in additional
equipment behind the meter (e.g., stationary battery and/or solar
photovoltaic). Three vehicle electricity consumption rates are also
considered: 0.15 kWh/km (small sized EV, similar to a Renault
Zoe), 0.20 kWh/km (medium sized EV, similar to a Nissan Leaf)
and 0.25 kWh/km (large sized EV, similar to a Tesla Model X).
Apart from vehicle size, electricity consumption is also influenced
by driving behavior, environmental conditions and auxiliary
systems used in the vehicle, which is reflected in the different
electricity consumption rates considered.

Finally, we investigate three different charging locations: home
charging, charging when parking is at least 2 h long, and charging
when parking is at least 8 h long. Home charging only allows a
vehicle to be charged at its home location. Charging while parked
for 8 h allows a vehicle to charge every time it stays at any location
for at least 8 h, this can be considered to include charging at home
and work. Charging at all parking that are at least 2 h allows for a
vehicle to be charged every time it stays at any location for at least
2 h, which would cover longer shopping trips.We have avoided to
use shorter time-periods as drivers are considered less likely to
charge their vehicle unless the charging power is very high.

FIGURE 1 | Flowchart of the process to calculate after-coincidence charging power demand from the GPS measured driving behavior.
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Data
Two datasets are used in this study, one from Västra Götaland
and Kungsbacka in western Sweden (from here on called western
Sweden) and one from Seattle in the United States, both including
GPS measured driving data. The Swedish Car Movement Dataset
(SCMD) consist of cars from Västra Götaland and Kungsbacka,
one of the largest regions in Sweden. The region, and the
geographical distribution of the cars, is representative for
Sweden in terms of the distribution of urban and rural areas,
and sizes of cities. The data is representative for Sweden in terms
of car sizes, car fuel type, and number of cars in the households
that participated in the study. It is not representative in terms of
car age, and the cars annual driving distance, as the original study
had a car age inclusion criterion of 8 years. In addition there is a
small bias towards older drivers in the dataset (Karlsson, 2013).
The Puget Sound Regional Council (PSRC) car movement dataset
includes measured vehicles in the urban settings of Seattle but is
not representative in terms of geographical location nor selection
of population (Puget Sound Regional Council, 2008). However,
due to the lack of representative datasets, and due to no previous
analysis of or comparisons between GPS measured driving
behavior and NHTS data, we consider the dataset to be
valuable. Furthermore, the PSRC dataset have been widely
used in the literature to preform analysis concerning EVs and
travel patterns (Dong et al., 2014; Bucher and Bradley, 2018;
Khemri et al., 2017, 2019).Table 1 contain some selected statistics
for the SCMD and the PSRC datasets. Both GPS driving datasets
applied in this study have been collected from internal
combustion engine vehicles and it is assumed in this study
that individual driving patterns will not change during an shift
from combustion vehicles to EVs. The measured driving period
per vehicle is extrapolated from the original period (measurement
periods differ between cars and dataset) to 12 months.

The SCMD dataset consist of GPS measurements on driving
behavior from more than 700 privately driven cars in western
Sweden. Out of these 700, we selected 429 cars that, after data
cleaning and filtering, have at least 30 days of high quality GPS
measurements (for details on the cleaning process, see Björnsson
and Karlsson, 2015). The measurements were evenly distributed
over the years 2010–2012. The cars were randomly selected from
the Swedish vehicle registry with restrictions on age of the car
(maximum 8 years) and the aforementioned geographical
limitation to home addresses in western Sweden. Eight years
was chosen as a maximum age since EVs are expected to mainly
replace newer vehicles. The sample is representative in terms of
car size and car fuel type. Fuel is important as can have indirect
implications on driving patterns, diesel vehicles are more beneficial
during longer individual trips. There is an over-representation of cars

in the data with a higher annual VKT (Vehicle Travelled Km). In the
SCMD the annual VKT is 17,154 km compared to a national
average of roughly 13,000 km. The higher VKT is likely due to
the lower age of the cars in SCMD (Caserini et al., 2013).
Concerning the driver’s age, there is a slight overrepresentation
of senior citizens. A full description of the data including pre-
processing is available in Karlsson (2013). In the SCMD data,
we identify the most common destination and select this as the
home location. Detailed analysis of the GPS recorded trips from
SCMD can be found in Jakobsson et al. (2016), Björnsson and
Karlsson (2015), Karlsson (2013), and Björnsson and Karlsson
(2016).

The PSRC dataset contains GPS measurements of 484 cars
during 18 months. The GPS measurements were collected
between 2004 and 2006, and the cars were registered to
households in the Seattle Metropolitan Area. The data was
collected as part of a congestion charge study using artificial
tolls. To avoid artifacts from the artificial toll in this study, we
only use the last 11 months of the data where the toll structure is
unchanged. The 11 months contain GPS measurements of 437
private cars. Similar to the SCMD data, we only include cars with
at least 30 measurement days. Furthermore, we remove one car
with unreasonably low annual VKT, which yields a total of 420
cars included in our analysis. The number of vehicles (429 SCMD
or 420 PRSC) compared to the maximum number of vehicles
selected for coincidence evaluation (400) likely results in a low
variation of coincidence when the number of vehicles is close to
the maximum number of vehicles. The low variation arises due to
the low variation between combination of vehicles. The PSRC
dataset contains information on which trips that end at the home
location and at the work location. Detailed analysis of the GPS
recorded trips from PSRC can be found in RSG (2015), Holden
et al. (2018), andWei et al. (2021). The difference inmeasurement
period, 2010–2012 for SCMD and 2004–2006 for PSRC is
unlikely to have a significant impact on results. Inter-country
differences are likely much larger than temporal changes from the
6 year difference between SCMD and PSRC.

RESULTS

The results are divided into five subsections. After-Coincidence
Charging Power Demand subsection shows results on after-
coincidence charging power demand for the different scenarios
investigated. After-Coincidence Charging Power Demand
Distribution subsection shows results on the after-coincidence
statistical distribution. After-Coincidence Charging Power
Demand Duration Curves subsection shows the after-coincidence

TABLE 1 | Summary statistics per vehicle in the two datasets the Swedish Car Movement Data (SCMD)and Puget Sound Research Council Data (PSRC).

SCMD1 (N = 429) PSRC (N = 420)

0.25-quantile Median Mean 0.75-quantile 0.25-quantile Median Mean 0.75-quantile

Observation period (days) 51 59 58 64 270 276 260 276
Share of driving days 0.67 0.83 0.8 0.96 0.73 0.85 0.8 0.92
Average daily VKT 38.4 51.9 57.1 72.3 35.4 48.2 50.3 61.8
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FIGURE 2 | After-coincidence charging power demand for the highest hour of the year and as an average for all combination of vehicles for three different charging
locations, (blue) charging at home location, (yellow), charging when the car is parked for at least 8 h in a row and (red) charging when the car is parked for at least 2 h in a
row. The nominal charging power is 11 kW and the electricity demand per km is assumed to be 0.2 kWh/km. Data for Western Sweden in (A) and Seattle (B). Shaded
areas show variation (max and min) from the randomized combinations.

FIGURE 3 | After-coincidence charging power demand for the highest hour of the year and as an average for all combination of vehicles with different driving
patterns. After-coincidence charging power demand for three different Nominal Charging Powers (NCP). Charging location is home only and electricity demand per km is
assumed to be 0.20 kWh/km. Data for Western Sweden in (A) and Seattle (B). Shaded areas show variation (max and min) from the randomized combinations.
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charging power demand duration curves. Charging Power
Demand Reduction subsection shows reduction in charging
demand from moving charging and Comparison Between GPS
Measured and NHTS Based Charging Power Demand subsection
shows a comparison with studies using NHTS data.

After-Coincidence Charging Power
Demand
Figures 2–4 shows the hour of the year with the highest EV
charging power demand for the average of all randomized
combinations of vehicles, assuming three different charging
locations (Figure 2), nominal charging power (Figure 3) and
car sizes (Figure 4). The results are shown for both datasets
(SCMD and PSRC) and for randomized combinations of driving
patterns of up to 400 vehicles.

As is expected, and similar to coincidence curves for other
electric loads, after-coincidence charging power demand drop
from about 10 to 2 kW as number of EVs increases. 2 kW
represents a coincidence factor of roughly 0.16. This can be
compared to typical coincidence values for household’s
electricity demands (before introducing the EV charging load)
which are about 0.2 for residential heated dwellings and 0.5 for
electric heated dwellings. The large variation marked by the
shaded areas in Figures 2–4 shows that there can be
significant variation in power demand, and therefore also in
local grid impacts for the same number of EVs. The choice of
charging location, i.e., the access to charging only at home
location or most parking places, has a small impact on the
charging power demand in SCMD. There is an 8% reduction
in charging coincidence for 400 EVs in SCMD comparing
different charging locations, and an 18% reduction in PSRC.
In PSRC charging at all stops that are 2 h or longer results in the
lowest charging power demand. For SCMD charging at all stops

that are 8 h or longer results in the lowest charging power
demand. However, the difference in SCMD for 2 h stops
and 8 h stops is very small. Extending the charging from
only home location can thus reduce overall power demand
with about 8% in western Sweden and 18% in Seattle. More
charging locations could therefore reduce the local EV
charging impact by increasing the geographical
distribution of the charging. For both western Sweden and
Seattle a nominal charging power of 11 kW and a medium
sized vehicle was assumed.

The impact from different nominal charging powers (11, 6.6
and 3.3 kW) on after-coincidence charging power demand is
shown in Figure 3. As expected, the after-coincidence charging
power demand is higher for higher nominal charging powers,
due to the higher individual nominal charging power. The
difference is due to a small extent offset by shorter charging
times when using a higher nominal charging power. The
difference in after-coincidence charging power demand from
different nominal charging powers is larger in Seattle than in
western Sweden. The after-coincidence charging power demand
is 0.9, 1.4 and 1.8 kW for 3.3, 6.6 and 11 kW nominal charging
powers for western Sweden and 400 EVs. For Seattle the after-
coincidence charging power demand is 1.2, 1.7 and 2.1 kW for
3.3, 6.6 and 11 kW nominal charging powers and 400 BEVs. The
higher charging power demand in Seattle compared to western
Sweden is likely due to a larger homogeneity in driving behavior
in PSRC. The larger homogeneity is likely due to all participants
in PSRC commute to Seattle, while SCMD contains a larger and
representative sample. There is a significant increase in after-
coincidence charging power demand with higher nominal
charging powers. The increase is 42 and 47% in after-
coincidence charging power demand between 3.3 and 11 kW
nominal charging power in western Sweden and Seattle,
respectively, assuming 400 EVs. For both western Sweden

FIGURE 4 | After-coincidence charging power demand for the highest hour of the year and as an average for all combination of vehicles with different driving
patterns. After-coincidence charging power demand for three different sized cars. Charging location is home only and nominal charging power is 11 kW. Data for
Western Sweden in (A) and Seattle (B). Shaded areas show variation (max and min) from the randomized combinations.
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and Seattle a medium sized vehicle and home charging only was
assumed.

The impact of vehicle electricity consumption per km on after-
coincidence charging power demand is shown in Figure 4.
Comparing the results in Figures 2–4, it is clear that the
impact from vehicle’s individual electricity consumption on
after-coincidence charging power demand is lower than the
impact from nominal charging power, but larger than the
charging strategy. The reduction in EV charging after-
coincidence charging power demand comparing small and
large vehicles is 19%, both for western Sweden and Seattle.
The larger electricity consumption for large vehicles causes a
larger total electricity consumption and therefore longer charging
times. The longer charging times increase the probability of
charging events occurring simultaneously thus increasing after-
coincidence charging power demand. For both western Sweden
and Seattle a nominal charging power of 11 kW and home
charging only was assumed.

After-Coincidence Charging Power
Demand Distribution
To capture and analyze variations in combinations of vehicles we
generate an empirical Cumulative Distribution Function (CDF)
of after-coincidence charging power demand (see Figure 5).
Figure 5 shows that the after-coincidence charging power
demand distribution varies significantly for small number of
vehicles but with only minor variation for large number of

vehicles. When only a few vehicles are included, there is the
possibility for the vehicles to have both high after-coincidence
charging power demand and low after-coincidence charging
power demand. On a local level, where only a few vehicles are
included in the same grid, we can therefore expect large
variations, with some areas showing little impact from EV
charging while other show large EV charging impacts. As
shown in Figure 5 when the number of EVs included is
increased, the variation is significantly reduced. For areas with
a large number of EVs, the grid impacts or demand requirements
should therefore show less variation.

After-Coincidence Charging Power
Demand Duration Curves
Figure 6 shows after-coincidence charging power demand
duration curves for 1 year, and four selected number of EVs.
As after-coincidence charging power demand is a measure of the
probability of charging occurring simultaneously, its time-
duration curve can reveal interesting patterns. Power systems
are generally designed based on after-coincidence power demand,
which occurs at the maximum coincidence over a year. In reality,
after-coincidence power demand can have significant temporal
variation within a year and between years, which becomes
relevant when considering the impacts from moving charging
in time. As is seen in Figure 6, after-coincidence charging power
demand shows a non-linear decrease with an initial fast drop
followed by a significantly slower reduction for all selected EV

FIGURE 5 | Empirical Cumulative Distribution Function (CDF) of after-coincidence charging power demand based on 132,000 randomized combinations of
vehicles. Results for Western Sweden (A) and Seattle (B). The nominal charging power is 11 kW, the electricity demand per km is assumed to be 0.2 kWh/km and
charging location is home only.
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numbers. It is noted that for more than 40 EVs there are very
small variation in after-coincidence charging power demand for a
considerable duration, both for western Sweden and Seattle. This
indicates that there are a few hours with a high after-coincidence
charging power demand, while most hours have a lower after-
coincidence charging power demand. Furthermore, when
selecting 10 EVs the after-coincidence charging power demand
duration curves show two plateaus. The plateaus seen for 10 EVs
in Figure 6 can partly be explained by that coincidence between
charging events can only be a multiple of number of EVs. For 10
EVs, this becomes amultiple of a 10th. The random combinations
of vehicles likely cause these values to be more common than
alternative combinations.

Charging Power Demand Reduction
Figure 7 shows the charging demand reduction. Based on the fast,
initial drop seen in Figure 6, we expect to see a high benefit of
moving charging from the first hours to hours when this fast,
initial drop stabilizes. As can be seen in Figure 6, the benefit from
moving charging demand in time is similar in both western
Sweden and Seattle. The benefits are highly dependent on the
number of EVs, with higher benefits for few EVs than for many
EVs. For 20 EVs, the reduction in charging demand frommoving
charging time is around 45%, while for 400 EVs the charging
demand reduction is reduced to 25% (Figure 7). In Figure 7, we
observe a continued decreasing, yet reduced, trend in charging
demand reduction as number of EVs are increased. The reduced
charging demand for many EVs are mainly explained by the
inherent large variation in driving patterns. For a few EVs these
variations can have a significant impact, while as the number of
EVs increase these variations are smoothed out.

Comparison Between GPS Measured and
NHTS Based Charging Power Demand
Table 2 shows a comparison of charging demand from the GPS
measured driving profiles with estimated charging demand from
literature using NHTS. The GPS measured charging demand
assumes a medium sized vehicle and a nominal charging power
similar to the compared studies. To estimate charging power
demand in Sweden from Liu et al. (2014) we assume that their
100% electrification scenario represents 5 million passenger
vehicles. As can be seen in Table 2, the GPS measured
demand consistently estimate the charging demand higher. For
Sweden, the charging demand is 50–125% higher, while for the
United States it is 62–183% higher. Since the nominal charging
power is similar, the main cause for difference is therefore in the
coincidence between different vehicles. There are likely
explanations to the differences in the two methods. First, the
GPS measured data was taken from regional areas in Sweden and

FIGURE 6 | After-coincidence charging power demand duration curve over a full year for 10, 40, 100 and 400 number of EVs. Results for western Sweden (A) and
Seattle (B). The nominal charging power is 11 kW, the electricity demand per km is assumed to be 0.2 kWh/km and charging location is home only.

FIGURE 7 | Charging demand reduction when moving the 364 highest
charging demand hours for 1 year. The nominal charging power is 11 kW, the
electricity demand per km is assumed to be 0.2 kWh/km and charging
location is home only.
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the United States, and might therefore differ from national
estimates, or from other areas. Secondly, there is a difference
in the reported driving from the NHTS and those measured with
the GPS devices.

DISCUSSION

We have presented the first analysis of after-coincidence charging
demand from EVs using GPS measured driving behavior from
Seattle and western Sweden. Previous work has to a large extent
relied on NHTS based data, without verification from
measurements of actual driving behavior. Even though the
dataset from Seattle is not representative in terms of
population, we still consider it to be useful. First, as there is a
lack of studies analyzing GPS measured driving behavior on the
purpose of estimating charging demand, the findings are relevant
from a local perspective. Secondly, the homogeneity of the Seattle
data has value when considering that single communities might
show a similar level of homogeneity. The results from Seattle can
be interpretate as the after-coincidence charging power demand
that a homogenous community can require, which is found in this
study to be significantly higher than the United States national
estimates relying on NHTS data.

We find that the results for the charging demand in this study,
which are based on GPS measured driving behavior, to be
significantly larger than previous studies that were using NHTS
data. For western Sweden, our estimated charging power demand is
50–125% higher, while for the United States it is 62–183% higher.
This assumes the results when using the after-coincidence power
demand for 400 EVs. Even though the after-coincidence charging
power demand is likely to continue decreasing with an increase in
number of EVs, the reduction is likely to be small due to the observed
emerging plateau. The NHTS based studies used data from 2009
(United States) and 2005–2006 (Sweden), while the GPS
measurements were conducted in 2005–2006 (United States) and
2010–2012 (Sweden). However, the difference in time period for the
datasets is unlikely to impact our results as travel behavior is unlikely
to change significant during such a short time. In addition, the
compared United States NHTS studies (Wood et al., 2017; D. Wu
et al., 2011) used datasets that covered all of the United States, while
the GPS measured data we used is limited to Seattle. There might be
geographical and demographic factors that can explain the

difference. As the PSRC data is limited to commuters in Seattle
(Puget Sound Regional Council, 2008), the dataset likely
overestimate coincidence leading to a higher after coincidence
charging power demand, which explain the differences when
compared to United States NHTS data. Wood et al. (2017)
assumed 50% Plugin-Electric Vehicles (PHEV) and 50% BEV.
The small battery and large share of PHEVs reduce the
coincidence windows between charging events and can partly
explain why their estimated charging power demand is lower.

The similarity in charging power demand estimates between
the two Swedish NHTS based studies, and their representation of
both a local and national area, suggests that it is the NHTS based
approach that reduces the estimate rather than geographical
variations. However, we also note that the difference between
GPS measured estimates and NHTS based estimates are larger for
the United States than for Sweden. This could be due to that the
PSRC dataset contains a larger share of car commuters than
would be found nationally. And that these commuters have a
higher homogeneity in their driving behavior. Wei et al. (2021)
used NHTS and GPS data interchangeably which can cause
problems due to discrepancies in the different methods.

As stated by Shepero et al. (2018) model assumptions and data
type is a source of error when estimating charging power demand
from EVs. Both which relate to the type of data collected originally.
Lack of accuracy when using NHTS data can probably explain
some of differences in our results. The surveys collect data on
reported length and duration of trips, which can include reporting
errors as it relies on people’s estimation of trip length and start/
finish time. The large discrepancy between the measured GPS
based data and reporting from the travel survey could be due to the
GPS data not capturing the large number of households that have
multiple vehicles. And that these vehicles spend most time parked
at home. A limitation of both the GPS-based andNHTS based data
is that vehicles may come from many different regions, while in
reality there might be homogenous groups living in the same area.
In the case of the PSRC data, all study participants drive to the
center of Seattle every day. To capture a more realistic variation,
future research should therefore include larger datasets with more
variation in vehicle trips. This would likely result in more accurate
estimations of coincidence distribution, both for tens and hundreds
of EVs. However, larger GPS datasets are resource consuming to
collect and analyze.

The decreasing trend for charging power demand reduction
and the comparably flat after-coincidence charging power
demand duration curve has significant power system
implications. The charging demand reduction shows the
potential in moving charging. As such it can be considered as
an upper limit for what power demand reduction EV charging
strategies can reach when excluding household appliances. The
higher charging demand reductions for few EVs suggest that
moving charging will have larger impacts on a very local level.
Alternatively, strategies aimed at moving charging in time will
have reducing impact at higher levels in power system, and
potentially small impacts on overall demand and generation
balance. In energy system modelling were EV charging
responds to electricity price (Taljegard et al., 2019) moving
charging in time up to 364 h per year should have less

TABLE 2 | Comparison of charging demand from GPSmeasured driving behavior
and driving behavior fromNHTS for Sweden and the United States, expressed
as kW/vehicle.

GPS measured
charging
demand (kW)

Estimated NHTS based
charging demand

Location

0.9 0.4 kW Liu et al. (2014) Sweden, national
0.9 0.6 kW Steen et al. (2011) Sweden,

Gothenburg
1.7 0.6 kW Wu et al. (2011) United States,

national
1.7 1.05 kW Wood et al. (2017) United States,

national
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implications on energy system levels, but more impacts on
individual low-voltage grids.

Furthermore, as is seen from Figure 6, there are only small
changes between the thousandth hour and the two thousandth
hour. Moving charging from the 1,820 worst hours during a year
reduce coincidence with 64% for 400 vehicles. This suggests that
there are diminishing charging power demand reductions when
moving charging power demand for very many hours. This may
seem surprising but can be explained by a large variation in
driving behavior amongst drivers (Björnsson and Karlsson, 2015;
RSG, 2015; Jakobsson et al., 2016). In Figure 7 charging demand
reduction from moving the 364 worst hours during a year is
largest for a few vehicles, and reduces with increasing vehicles.
This highlights that moving charging in time will have the most
effect for a single low-voltage feeder, or a low-voltage network
with few customers. The impact will be diminishing at higher
voltage levels. This imply that controlled charging strategies,
including V2G, will likely be most useful at a local level.
Analogously, the input signal to a control mechanism that
control charging and V2G would likely need to be locally
distributed, and not centralized to increase the benefits.

Our results rely on the assumption that driving behavior will
not change during an electrification of personal vehicles. Previous
research on driving behavior of EV drivers suggest that changes
mainly occur initially and mainly affects acceleration and
deceleration (Helmbrecht et al., 2014). As stated by Shepero
et al. (2018) this is a common assumption when estimating
EV charging power demand, and is unlikely to change.
However, as EVs just recently are starting to become
widespread, it is difficult to draw conclusions of how the
general public might change their behavior. Driving behavior
might increase as EVs have lower driving costs than comparable
combustion vehicles. However, this would primarily impact
drivers that are currently limiting their driving due to
economic reasons, and might therefore be primarily found in
areas with a low socio-economic status.

As shown in Figure 2, after-coincidence charging power
demand was reduced with 8% for western Sweden, and 18% for
Seattle when using multiple charging locations compared to home
charging only. Given the homogeneity of the PSRC, it is likely more
important to consider multiple charging locations when analyzing
homogenous communities. This is likely caused by homogenous
communities to a larger extent arrive simultaneously, and thereby
having a higher coincidence. When including charging away from
home, the time needed to charge while arriving at the home location
is smaller. Leading to a smaller window of coincidence with other
charging events. Driving is likely more varied in SCMD (since it is
representative to a larger population), and the likelihood of multiple
vehicles arriving home at the same time is therefore smaller.
Leading to a lower coincidence. Furthermore, battery size might
have large variations between vehicles, causing some vehicles to
require charging more often than others. In these instances, the
option in Figure 2with charging at every stop longer than 2 hmight
be more realistic. The overall implications on after-coincidence
charging power demand will ultimately be impacted by the
homogeneity of drivers, both in terms of their departure time,
their nominal charging power and vehicles energy consumption.

Using GPS measured driving behavior we have only analyzed
coincidence between different charging events, and excluded
coincidence with other residential loads. On a household level,
there is likely a high coincidence between charging and other
residential loads. If this is the case, coincidence of total household
loads can result in additional load dynamics and potentially larger
peak demands. Furthermore, adding residential loads might also
affect the benefit of moving charging if the coincidence between
EV charging and other residential demand is high. However, this
would require accurate driving behavior and high-resolution
residential load profiles for the same households.

CONCLUSION

This study has used empirical GPS measured driving patterns from
western Sweden and Seattle to estimate the EV after-coincidence
charging power demand. There has previously been a large reliance
on NHTS based data to estimate EV charging power demand. Our
results suggest that GPS measurements might overestimate after-
coincidence charging power demand with 50–183% compared to
NHTS data. The large power demand from EV charging during a
full EV deployment suggest that these differences can have
significant impacts on electric utilities and future electricity
production. However, due to the limited sample used in our
study, further data collection and analysis is needed.
Furthermore, representative GPS measurements for additional
countries would be useful to see if the findings in our study are
limited to specific countries or regions, or if they are general.We also
find that nominal charging power has the largest impact on after-
coincidence charging power demand. Reducing nominal charging
power can reduce overall power demand with up to 18%. Increasing
the number of charging locations mostly impact local charging
power demand, and has a modest impact on overall power demand.
Furthermore, even though the datasets used in this study have been
thoroughly analyzed in previous work, a comparative analysis of the
differences between Swedish and United States driving patterns
would be interesting. This could highlight important national
aspects that are relevant for EV adoption, both from a policy
perspective and a technical perspective.
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