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Abstract

The living cell exhibits emergence of complex behavior and its modeling
requires a systemic, integrative approach if we are to thoroughly
understand and harness it. The work in this thesis has had the more narrow
aim of quantitatively characterizing and mapping the proteome using
data-driven methods, as proteins perform most functional and structural
roles within the cell. Covered are the different parts of the cycle from
improving quantification methods, to deriving protein features relying on
their primary structure, predicting the protein content solely from sequence
data, and, finally, to developing theoretical protein engineering tools,
leading back to experiment.

High-throughput mass spectrometry platforms provide detailed snap-
shots of a cell’s protein content, which can be mined towards understanding
how the phenotype arises from genotype and the interplay between the
various properties of the constituent proteins. However, these large
and dense data present an increased analysis challenge and current
methods capture only a small fraction of signal. The first part of my
work has involved tackling these issues with the implementation of a
GPU-accelerated and distributed signal decomposition pipeline, making
factorization of large proteomics scans feasible and efficient. The pipeline
yields individual analyte signals spanning the majority of acquired signal,
enabling high precision quantification and further analytical tasks.

Having such detailed snapshots of the proteome enables a multitude of
undertakings. Ome application has been to use a deep neural network
model to learn the amino acid sequence determinants of temperature
adaptation, in the form of reusable deep model features. More generally,
systemic quantities may be predicted from the information encoded in
sequence by evolutionary pressure. Two studies taking inspiration from
natural language processing have sought to learn the grammars behind the
languages of expression, in one case predicting mRNA levels from DNA
sequence, and in the other protein abundance from amino acid sequence.
These two models helped build a quantitative understanding of the central
dogma and, furthermore, in combination yielded an improved predictor



of protein amount. Finally, a mathematical framework relying on the
embedded space of a deep model has been constructed to assist guided
mutation of proteins towards optimizing their abundance.

Keywords: data-independent acquisition, deep learning, feature

learning, machine learning, mass spectrometry, model interpretation,
proteomics, sequence feature engineering, tensor factorization
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1 | Background

1.1 The challenge and reward of mapping
life’s machinery

Life is beautiful in its complexity and awe-inspiring in its intrinsic drive
towards perpetuating itself in spite of the constant pull asunder from the
universe around it. This is exhibited in the simplest cells and viruses, as
well as across entire species. Yet this complexity often perplexes when we
try to grasp the intricacies of life’s behavior and trajectories, hindering at
the same time the pure intellectual pursuit, the strive to sustainably live in
harmony with our environment, as well as the struggle to heal and preserve.
As with science and engineering in general, progress in biology relies on
a thorough understanding of the constituents of life’s machinery, as well
as the rules which govern their intricate behavior. Once understood to a
certain level, the possibility of harnessing these processes for technological
applications and medical intervention appears.

Within all cells, life is organized around the central dogma of molecular
biology, conceptually separating information storage, and its logic of
retrieval and propagation, from the assembly and maintenance processes
that renew the structure of the cell and drive it towards division [Alb15].
This transfer of information between the involved biopolymers (DNA,
RNA, and protein) can be seen as the central part of the self-replication
that is a defining characteristic of life. This simplistic framing is augmented
by the many levels of regulation taking place constantly to maintain the
cell’s homeostasis, while adapting it to the environment and preparing it
for division. The ensemble of these various processes, whether regulatory
or more “straight-forward” information forwarding (transcription and
translation), is characterized by non-linearity and thermodynamical
non-equilibrium [NP77; Str14]. The biochemical reaction networks from
which this behavior emerges are dynamic and complex, featuring numerous
forms of feedback and robustness. They are also subject to constant
evolution, arising from the continual negotiation between environmental
pressure and intrinsic change caused by inevitable mutation or, in some
species, extrinsic change due to horizontal gene transfer. Evolution thus
adds another dimension to this complexity and flexibility, shaping a varied
adaptational landscape, with some reaction pathways more conserved than
others, and some essentially universal, such as transcription, translation,
and central metabolism, evidence of their critical importance. [Alb15].



Chapter 1. Background

Whereas the genome (the set of all DNA sequences) could be seen as
the intergenerational carrier of information, and the transcriptome (the set
of all RNA transcripts) as a messenger (and regulator) towards shaping
the phenotype, proteins can conversely be seen as actuators, signalers,
regulators, and construction material, both inside the cell, as well as
in its community. While not explored here, it is important to keep in
mind this larger context, as proteins are also crucial for intercellular
communication, be it quorum sensing in bacteria, mating signals in
yeast, or more elaborate regulatory signaling networks in multicellular
organisms. Whereas intracellular signal transduction pathways are built
from proteins, the extracellular signals themselves are proteins in this latter
case, increasing both the complexity as well as specificity of these molecules
[AIb15]. A striking example of the importance of proteome dynamics is its
role in synaptic plasticity, vital for normal brain function and learning
[GA21]. Synaptic activity and the associated protein-protein interaction
networks rely on quick changes to proteome composition and allocation,
often demanding quick synthesis, transport, and degradation [GA21]. For
yeast and Gram-positive bacteria, the extracellular factors are peptides
[RB12; MB12]. This signaling behavior can be seen as a social extension
of the proteome, albeit with varying relevance and occurrence in a given
species. Given its myriad functions and dynamics, a comprehensive picture
of the proteome thus forms a considerable part of the overall tapestry of
knowledge within cellular biology and mapping its behavior is essential to
our understanding of life.

Beyond the pursuit of knowledge as intellectual aim of its own,
understanding the composition and function of the proteome enables the
treatment of disease. Given their ubiquity, one could of course argue that
proteins are involved in virtually all disease. However, there are classes of
disorders that have protein malfunction (and consequently, the resulting
shift in abundance) as a clear driver of pathosis. One such example are
the varieties of Alzheimer’s disease. While the cause is still debated,
its progression is strongly associated with abnormalities in two proteins.
Tau proteins are a promoter of microtubule (cytoskeleton) assembly, their
activity being regulated by their degree of phosphorylation. An abnormal
hyperphosphorylated state of tau protein aggregates intracellularly, also
capturing normal tau and evading ubiquitination (degradation). This
inhibits cytoskeleton formation and axonal transport, leading ultimately to
cell death [Iqb—+05; HF21]. This pathology is also present in other disorders
classified as tauopathies [Iqgb+05]. An overproduction of the peptide
amyloid beta, resulting from an alternative cleaving of amyloid precursor
protein, coupled with its reduced degradation, leads to its extracellular
accumulation in the form of insoluble plaques and neuroinflammation as
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a reaction to these [HF21]. On a different side of the protein homeostasis
are lysosomal storage diseases, which affect the capacity of cells to degrade
proteins. The lysosome is an organelle present in all eukaryotes, responsible
with the breakdown and recycling of a diverse range of large molecules
and other organelles, thus part of the overall environment-responsive
autophagic pathway [PMB21]. The failure of its normal functioning leads
to the accumulation or secretion of undesirable proteins, which would have
been processed in the lysosome [Alb15].

With an understanding of the proteome and key interactions, the
possibilities of bioengineering emerge. Cells can be made into living
factories to produce chemical products for a range of needs, from industrial
to medicinal.  Obtaining a desired product is achieved in different
ways, either by optimizing existing pathways (by e.g. overexpressing
an enzyme) [NK16], modifying or designing the structure of proteins
to alter their performance or endow them with a desired behavior,
either through evolution [YWA19] or rational design (the latter still a
considerable challenge, especially for de novo designs) [KD20], or by
introducing an exogenous process into a platform organism (one that
is well-characterized and amenable to the task) [NK16]. Proteins are
involved in virtually all applications, either as a means of “rewiring”
the cell, or as a desired output, often in the form of enzymes. These
have many uses, from detergents [vDH13] to breaking down undesired,
yet robust matter such as plant biomass [Kme+20] or plastic [Tou+20;
Zri4+-20b] into reusable material, instead of wastefully burning it. Many
proteins are produced in cell factories for medical applications such
as tissue engineering, for example spine [MR20] and cartilage [Shi+16]
regeneration. Examples of pharmacological protein products are insulin
[Vec+18], interferon (signaling proteins that are used to treat various
diseases) [vDH13], agkisacutacin (an antithrombotic) [WP18], apidaecin Ia
(antimicrobial peptide) [WP18], aliglucerase alfa (used to treat Graucher’s
disease, which manifests with accumulation of glucocerebroside due to
a faulty lysosomal enzyme) [PW16], HIV antibodies [PW16], albumin
(transport protein in blood plasma) [PW16], and many more for treating
various diseases including metabolic disorders, hematological disorders,
and cancers [San+16].

Understanding the progression of disease and finding treatment targets,
as well as engineering cell factories to produce desired chemicals in an
efficient way, naturally presuppose an accurate image of the proteome,
but also comprehensive modeling that captures the intricacies of the
various subsystems and interactions involved. This is unfortunately a
very difficult undertaking, both from the data acquisition and modeling
sides. Given the size, complex structure, heterogeneity, and fragility of
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cells, measurements that are comprehensive, precise, and time-resolved to
arbitrary scale are difficult technologically (though constantly improving).
Moreover, proper environmental conditions or community composition
required to grow cells in the lab are known only for a relatively small
number of species [Stel2]. Additionally, digital storage and computational
capacity for big data sets is a severe limitation even if collection were
quickly and substantially improved [Ste+15]. Thus biological models are
developed with only partial information, whether due to this difficulty
in obtaining measurements, lack of knowledge, or simplifications required
for analysis feasibility. On the other hand, life’s machinery works on
a wide range of spatial and temporal scales, and, as outlined above,
the processes involved may be very complicated, especially considered
in unison. In some cases, emergence of high-level phenomena may not
be possible to capture from elementary components [Strl4]. Given all
of this, establishing clear causality between the various biological factors
and events via an e.g. structural causal model [Peal0] is difficult. On a
fundamental level, many computational tasks in biology are known to be
intrinsically difficult to perform, formally falling into the NP-complete or
even NP-hard computational classes, such as multiple sequence alignment
[WJ94], protein folding [HI97], protein-protein interaction network analysis
[Karll], and control of gene regulatory networks modeled as Boolean
networks [Aku+407]. This implies the running time of the algorithms
scales superpolynomially (and often exponentially) with the size of the
input and thus solving for large datasets becomes infeasible (see Fig. 1.1).
While for a select few hard problems we will likely see a great benefit
from the coming paradigm of (practical) quantum computing, NP-complete
and harder problems are believed to not be efficiently solvable on these
types of machines [Aar07]. Another way to characterize difficult tasks,
especially involving continuous quantities, is through the framework of
optimization theory. Here one defines the task in terms of minimizing some
cost associated to the problem (e.g. finding the folded state of a protein
by searching for its lowest energy). In the case of difficult problems, the
“landscape” this cost creates, as a function of the many parameters usually
involved, is quite intricate and difficult to “traverse” in search of global
minima and often only local minima are obtained [SK06].
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Figure 1.1: The optimum solution for many biological problems is intractable.
A) The worst-case single CPU time cost (complexity) of solving some problems optimally
(time units are arbitrary - au). Searching in a sorted list of length n takes log(n)
au, aligning 2 sequences of length n takes m? au, protein folding (formulated as an
energy-minimization Hamiltonian path problem [HI97; HK62]) takes m?2" au, while
aligning n sequences of length 100 takes 100" au (exhaustively comparing all positions).
To illustrate this last cost, if 1 au = 1 ms, the time required to guarantee an optimal
alignment (worst case instance) of 100 sequence would take 10'% days. B) The cost
landscape of many biological problems is quite complex and difficult to traverse towards
a global optimum, even with stochastic exploration methods. The illustration shows a
hypothetical cost landscape of two random variables, whereas typical problems involve
many (hundreds) of variables.

For the above reasons concerning the complexity of some computational
tasks required to study biological systems, we must therefore rely on
heuristics and stochasticity to make these tasks tractable (for instance,
by using artificial neural networks), abandoning the guarantee of finding
globally optimum solutions, focusing instead on more narrow cases and
relying on assumptions about the shape of the cost landscape in order
to constrain the problem, while at the same time trying to avoid
over-specialization (overfitting) to the datasets we use to derive solutions.
However, these types of approaches often require knowledge of either
the systems being studied, or at least, abstractly, a characterization
of the quantitative variables that describe the systems. As outlined
above, the former is a work in progress, while the latter requires
experimentation and data acquisition. Within the realm of proteomics,
there is great opportunity in the large amounts of data generated by
high-throughput experiments from the past two decades [Deu+20]. The
quantity and variation provide good grounds for statistical inference and
model construction using machine learning.

The perspective of the thesis is this data-driven approach to charac-
terizing the proteome, which relies on large collections of experimental
data to support the distillation of empirical models and which serves to

5
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complement hypothesis-driven research. This is because a data-driven
approach is beneficial in a stage where much data exists, but mechanistic
models are lacking. In terms of complexity and biological knowledge,
data-driven techniques have the advantage that one may derive agnostic
relations between observed quantities, bypassing the need for a detailed
image of the structure of the system under investigation. On the other
hand, mining for patterns in data is often itself a difficult task.

After briefly describing the proteome and going into more detail about
the data-driven approach, as well as justifying the focus on sequence data
for quantitative predictions of protein properties, the subsequent chapters
present results from the included papers, covering measurement of protein
quantities, learning protein features from their amino acid sequence, then,
more generally, predicting expression levels from sequence data only, as
well as sketching a meta-modeling approach to bridge the deep models
that predict molecular quantities around the central dogma. Finally, a
way to use such deep sequence models for protein engineering is presented.

1.2 The life and struggles of proteins

Proteins are arguably the most dynamic class of molecules in the
cell, involved in both functional (catalysis, signaling, DNA replication,
protein folding, transport) and structural (cytoskeleton) roles [Albl5].
In Saccharomyces cerevisiae (baker’s yeast) they make up roughly half
of the biomass [She02; Ono+17; Jac+19]. To properly understand the
dynamics of the cell, one requires a thorough grasp of the proteome
composition. However, proteins are complex molecules, both in terms
of their structure and regulation, so to understand how the composition
of the proteome arises, one needs an overall picture of protein synthesis,
degradation, and regulation [VM12; MDR17]. Protein amount reflects
their biological process: regulatory proteins (such as those involved
in chromatin organization and transcriptional regulation) are rapidly
degraded, while housekeeping proteins (such as metabolism) have long
half-lives [VM12]. Beyond homeostasis, the significance of balance between
these three processes is evident in signaling, where the complex intracellular
logic of response to extracellular signals depends not only on the given
concentration of a protein, but also on the speeds of degradation and
synthesis, i.e. the protein turnover [Alb15]. More so complicated by the
fact that the dynamic range of signal sensitivity of the different pathways
varies considerably, with some responses depending on only small changes
of signaling protein amount, while others requiring large changes [Alb15].

The synthesis of proteins is one of the biggest cellular energy
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expenditures. In yeast, the fraction of all ATP assigned to it varies between
21% [Lah+17] and 50% for rapidly growing cells [LBA16]. This shows
the importance of producing protein for the cell, and the high energy
cost implies the optimization of its use through regulation and protein
longevity. The information that encodes a protein is held in the coding
sequence of its gene. The process of transcription consists in copying the
information from DNA into messenger RNA (mRNA) strands that serve
as the templates of protein synthesis through the process of translation,
performed by ribosomes, and consisting in constructing a chain of amino
acids. Each nucleotide triplet or codon in the mRNA sequence corresponds
to a certain amino acid. The translation of proteins from mRNA consists of
three main stages: initiation, elongation. and termination. Each of these
steps is affected by a number of factors, among which the following have
the highest known impact: mRNA level [VM12; Lah+17; HBB18], codon
usage bias, ribosome density, amino acid composition, and hydrophobicity
[Rib+19].

After translation, the amino acid chain folds into its final
three-dimensional shape, often in steps, as longer proteins fold along
conserved regions called protein domains, frequently assisted by helper
proteins called chaperones.  The various forces and chemical bond
constraints acting between the amino acids is what determines the final
shape, in a process that can be understood in terms of an energy
minimization of the conformation of the protein. This shape is made up
of structural motifs in the shape of sheets, helices, or coils, a classification
referred to as secondary structure. It is the overall, tertiary, structure of
a protein that gives it its function, either by itself or in a complex (see
Fig. 1.2). Proteins may be characterized by the distribution of amino acid
physicochemical properties, for example hydrophobic amino acids tend to
be localized at the interior of proteins and, conversely, hydrophilic ones at
the surface. The distributions of these properties, along with the shape and
mechanical properties, determine their interaction with other molecules,

often in specific fashion due to structural elements such as binding pockets
[Alb15].
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Figure 1.2: Protein structure. The amino acid sequence (primary structure) of the
S. cerevisiae Diphthamide biosynthesis protein 3 (UniProt ID: Q3E840), with secondary
structure annotation and 3D structure, the latter two from PDB entry 1YOP, based on
nuclear magnetic resonance spectroscopy [Sun+05]. Pink stretches denote helices and
yellow stretches denote sheets. 3D image created using Mol* Viewer [Seh+21]

Degradation is known to be (weakly) influenced by disordered protein
regions, the length of [-sheets, and by so-called degron short sequence
motifs [VM12; MDR17; MV17|. Unfortunately, this process has received
far less attention than synthesis [VM12]. The organelle responsible for
degrading proteins is the lysosome and its behavior is also quite complex.
Besides its role in degrading protein, this organelle reacts to energetic
conditions in the cell by recruiting various factors to its surface, for
example promoting anabolic processes in the presence of high nutrient
levels by recruiting mTORCI1, a protein complex that promotes translation
[PMB21]. Its membrane houses about 60 types of digestive enzymes
and some disorders result when certain of these are not present in the
lysosome, as a results of defects in their genes, thus the accumulation of
would-be target proteins. In other cases, such as inclusion-cell disease,
a lack of proper sorting via glycosylation of most of these enzymes (due
to a defective phosphotransferase) results in them being secreted rather
than transported to and kept in the lysosome [Alb15]. However, there
are cases of undegraded molecules that are not associated to defective
enzymes, as well as problems with signaling and vesicle trafficking, hinting
at more complex relationships in the overall autophagy-lysosomal pathway
[PMB21].

Many proteins undergo post-translational modifications (PTMs),
whether as a normal part of their function or as a result of e.g.
oxidative stress. While the latter is one example of modifications linked
to pathological states, PTMs are essential for enzyme activation and
deactivation, protein localization, degradation, and transmitting signals
[Alb15]. Thus, modifications serve proteomic regulation and in order to

8
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properly characterize the state of a cell, one needs to assess these in a
precise way.

When considering the molecular flow from transcription to translation,
the relation between transcript level and protein abundance is complex,
with various factors such as translation rates (as a function of mRNA
structure), translation rate modulation (via RNA-binding proteins and
noncoding RNAs [Ho+21] or ribosome availability), the modulation
of protein half-life via degradation, and protein transport [LBA16] In
general, mRNA half-life is an order of magnitude shorter than protein
in mammalian cells and two orders in bacteria [VM12]. The importance
of these additional translational and post-translational processes depends
on the organism, biological system, and conditions, with mechanisms such
as the unfolded protein response acting to halt translation and remove
misfolded protein under endoplasmatic reticulum stress [LA16]. Indeed,
the image put forward by the authors is that relative contribution of mRNA
to protein abundance is roughly inversely proportional to the strength of
perturbation of the cell, with steady state levels being largely determined
by mRNA. The work in this thesis has been concerned with bulk quantities
in cell populations, not single cell measurements and behaviors. Thus,
transient perturbations or short-lived changes in the proteome due to
e.g. cellular division are averaged out.

All these processes and factors offer a diverse quantitative assessment
of the proteome and, while some are better characterized than others,
there is already a large collection of useful datasets available for analysis
with data-driven approaches [Deu+20]. The articles included in this thesis
have sought to find connections between the information captured by
the data-driven models and the various processes and protein properties
outlined above.

1.3 The data-driven approach and machine
learning

All too often, one starts the journey of scientific understanding with limited
knowledge, a handful of hypotheses, and a large collection of data that are
to be scrutinized for patterns and phenomenological laws. These laws serve
as the basis for distilling models and generating new hypotheses, leading
thus back to experimentation and data collection. Indeed, this sort of
development generally appears to be rather cyclical in science in general.
The abundance of biological data (e.g. the capture of almost full
proteomes in single mass spectrometric runs [Nav+16; Vow+18; Mes+21])
is fueling a paradigm shift towards data-driven methods. This is a rather

9
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broad category, but it usually involves a philosophy of induction and
regression, complemented by validation through recapitulation of known
results, then prediction and experimental testing [Dhal3; Leo20]. This
contrasts (but also complements) hypothesis-driven methods, in which
mechanistic models are built from a priori knowledge and hypotheses
about the structure of the biological systems, either from first principles
or more abstract levels (e.g. differential equations, metabolic networks)
[FH20]. One purported benefit of the data-driven approach is avoiding
preconceptions regarding the nature of the system under study [Leo20], or
at least suspending them until patterns in the data can be inspected and
cross-checked with existing hypotheses. Conversely, new hypotheses may
be generated from such patterns, especially in initial, exploratory studies.

Figure 1.3: The data-driven approach complements hypothesis-driven
investigation. I[lustration: Drawing Hands by M.C. Escher. All M.C. Escher works

(C) 2021 The M.C. Escher Company - the Netherlands. All rights reserved. Used by
permission. www.mcescher.com

To put it into perspective, this methodology is nothing new, only
brought back into focus due to recent jumps in computing power
(massive parallelism, graphical processing unit improvements) and the
democratization of powerful data processing and machine learning software
through open source distribution (e.g. Tensorflow), a trend starting
roughly in the early 2010s. To give a sense of scale, our current
technological capacity allows for near-routine analysis of data sets on
the order of hundreds of terabytes in the order of hours. Historically,
sciences like astronomy relied heavily on data accumulation and induction
(observation of trajectories), such as Kepler’s laws of planetary motion
(derived from Tycho Brahe’s detailed records) [Thu94|, prior to the
derivation of mechanistic models. Other examples of phenomenological

10
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models throughout science are Newton’s universal law of gravitation,
Balmer’s equation for the emission spectrum of atomic hydrogen [Bok11],
and Monod’s bacterial growth rate model as a function of a limiting
substrate [El-12].

The act of inferring from observation is carried out routinely today with
machine learning, which is a collection of methodologies used to look for
statistically significant variable associations and patterns in potentially
heterogenous data, and aimed to build models with predictive power
[Dhal3]. Machine learning concepts and methodologies are treated in
depth elsewhere [HTF09; GBC16]. In this work I will merely point out
salient aspects of the models under discussion. More formally in statistical
learning theory, one speaks of a learning task defined on a set of variables
or features (e.g. temperature, nutrient concentrations) with either the
objective of finding a relation between said features and an outcome or
target variable (e.g. protein abundance) - referred to as supervised learning,
or discovering clusters or other types of patterns in the features that may
hint towards structure within the system under investigation [HTF09] -
referred to as unsupervised learning. Both features and outcome variables
may be quantitative or qualitative (e.g. discrete classes). Finding such
patterns and relation models is nontrivial and proper data processing and
statistical methods must be employed.

Supervised learning typically consists of starting with an a prior:
decided model class, namely a parametrized function between feature
domain and target codomain (e.g. expressing outcome as a polynomial
combination of input features). Various types of iterative methods are
used to adjust the parameter values (e.g. polynomial coefficients) so that
the model predictions best match the example feature data, a process
referred to as fitting [HTF09]. In the case of unsupervised learning, a task
consists of inferring the properties of the joint distribution of input features,
i.e. how the observations are structured. Often one performs a clustering
of the features or fits a type of algebraic decomposition of the features
(e.g. principal component decomposition, factorization). The former seeks
to explain the data using combinations of simpler distributions (the
clusters), while the latter seeks to identify lower-dimensional manifolds that
capture the most feature density and explain the data as combinations of
such latent variables. Often there is no clear general measure of the quality
of this type of learning as one no longer relies on any “ground truth” in
the shape of targets. The evaluation thus becomes heavily domain-specific,
but is routinely used to explore data for structure, generate or support
hypotheses, and extract novel associations [HTF09].

For both types of learning tasks, the advent of deep (many-layered)
neural networks has brought clear progress across a variety of fields, fueled
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by the technological advances previously mentioned [GBC16]. Neural
networks rely on the composition of a large ensemble of simple nonlinear
functions (neurons or wnits) to obtain a more complex mapping between
feature and target space (for a supervised task). When these units are
organized in layers and the network features “many” such layers (rather
arbitrary measure, depending on the precise network architecture, but
often tens of layers), the consensus is that layers will learn increasingly
complex or high-level associations between features, based on this layered
hierarchy of function composition, parametrized by millions of inter-unit
connection weights [GBC16].

While there is a large variety of network architectures, the work
in this thesis mainly concerns itself with convolutional (CNN) and
Transformer-type networks. CNNs were designed for input data with
a grid-like structure, such as images or time series, and their deeper
incarnations have seen much success especially in image-processing tasks
[GBC16], but also in various biological tasks [Ang+16; LCC19; Tra+19;
Gai+20; BV20; Zri+21]. In CNNs, small regions of the input are convolved
with learned kernels (in the image processing sense of the word, essentially
weight matrices, also referred to as filters). As each layer feeds into the
next, the input “cones” (receptive fields) of the convolutions will span
the entire input. Additionally, sub-sampling is performed between layers,
which enforces translational invariance, meaning features in the input will
be recognized regardless of their position. See Fig. 1.4 for a simplified
diagram of a CNN.
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Sequence Convolutional Block Dense Layers
X — —--

C
N I

Figure 1.4: Simplified diagram of a typical convolutional neural network
(CNN). Convolutional blocks consist of alternating convolutional layers and downsam-
pling layers. The input sequence is x and the output value is y. Each output ¢ of units in
the convolutional layer results from the convolution of an input region of width w with
a learned kernel (weight matrix) k, i.e. ¢ (> ;" x;k;), where ¢ is a nonlinear activation
(gating) function. The nonlinear downsampling s is used as a strong prior to enforce
translational invariance. The final dense layers are fully connected, that is the input of
each unit is the entire previous layer’s width.

Transformer networks differ from CNNs in a number of ways, but
their distinguishing feature is the attention mechanism they employ in
the majority of layers. Attention values give the relative importance of
pairs of variables in the input, e.g. pairs of words in a sentence. Whereas
the convolutions in CNNs span small regions of the input, attention nodes
receive information from the entire input and learn association strengths
between pairs of words in a sentence. Thus, these types of networks are
explicitly designed to capture long-distance relationships between sequence
elements. The attention mechanism aims to have the network learn a
representation space or word embedding (or rather, a transformation of
the input into this space) in which words of similar meaning are closer
together and functionally connected pairs of words have high attention
values [Vas+17; Vigl9]. “Meaning” here is application-dependent and
may reflect how words across languages are similar in function when
performing translation, or how different words or structures convey the
same meaning in emotion detection tasks [RKR20]. See Fig. 1.5 for
a simplified diagram of a Transformer network. For more information
on this quite intricate architecture, see the original article [Vas+17] for
more details. In Paper III, where such a network was used to predict
protein abundance from amino acid sequence, my assumption was that the
structure of this embedded representation space reflects the ordering of the
predicted value and the “meaning” (or semantics) is the protein abundance.
Based on this, the space was probed and the structure exploited to perform
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guided mutation aiming at increasing predicted protein abundance.

Positional Attention Layers Dense Layers
Encoding
X, . —
-
A7 m- . |
X, ' L —
Sequence Encoder Predictor

Figure 1.5: Simplified diagram of a Transformer-type network. This in
particular is the BERT sequence-to-value network used in Paper III, while typical
sequence-to-sequence Transformers have a symmetrical Decoder instead of the Predictor.
The initial positional encoding captures information about the order of letters in the
input sequence x. The attention layers learn directional associations between pairs of
letters, each unit a having input spanning the entire sequence. Finally, a few dense (fully
connected) layers produce the final single-value output y.

The motivation and one reason for the proven versatility of deep
neural network is the universal approximation theorem, which states
that even rather shallow networks may approximate any continuous
(Borel-measurable) function from features to targets, provided the layers
are “wide” enough and training proceeds successfully. While the currently
known worst-case bounds for the necessary amount of units is generally
exponential in the number of features, for constrained classes of functions
and input domains, it is expected that the number of units required for
good results is considerably smaller [GBC16].

There are a few important things to keep in mind when considering
best practices of machine learning. Learned models must generalize as
much as possible beyond the example feature data they were exposed to.
Overfitting to the example set is increasingly likely with more complex
models, as the high number of degrees of freedom allows for very close
fitting to the provided examples, but with a drastic loss of generality.
Generally speaking, in order to reduce generalization error, models of
appropriate complexity must be considered (e.g. perhaps more than linear,
yet constrained by the principle of parsimony) and large enough sample
sizes should be acquired, to reduce estimate bias. The overfitting behavior
may also be expressed as a tradeoff between the bias and variance of the
model (trained predictor function): with higher complexity of this function,
the lower the bias but higher the variance [HTF09]. See Fig. 1.6 for an
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illustration of how these concepts relate. Assuming the available sample
data is a good representation of a larger population, besides constraining
the complexity of the model, a common technique to test generality is
to use cross-validation, consisting in putting aside a small portion of the
dataset on which to test the prediction performance of the model after a
certain number of training iterations.

High Bias Low Bias
\ Low Variance High Variance
-+ —_——

(Underfitting) (Overfitting)

Generalization Error

Prediction Error

-------------------- \Training Error (Bias)

Optimal complexity Complexit;

Figure 1.6: Bias-variance tradeoff, illustrated in an idealized model selection
scenario. When considering model complexity using a cross-validation assessment of
training, there is a theoretical optimum that balances bias and variance of the model’s
prediction. With an increase in complexity, bias (training error) and generalization
error both drop, but past an optimum point, generalization error and variance increase
significantly, as one obtains overfitted models, tailored to the training set but unable to
generalize.

Given the complexity of deep models, a large amount of data is thus
desirable for good performance. However, another difficulty arises from
using many feature variables, stemming from the exponential increase in
volume of the space spanned by these variables. Referred to as the “curse
of dimensionality”, there are two major consequences of dealing with these
high-dimensional spaces. One is the fact that the sample date becomes
quite sparse in relation to the volume of space, an exhaustive sampling
requiring an exponential increase in the combinations of feature values.
The other is that in high-dimensional space, most commonly used distances
between points tend to be effectively equal, which poses obvious issues
for clustering procedures [HTF09]. The typical approaches to reduce this
issue involve pruning redundant features, if there are any, and reducing
the number of dimensions, either linearly (e.g. with principal component
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analysis, by choosing components with most variance) or nonlinearly (e.g.
with t-SNE [MHO08] or UMAP [MHM18], which seek to recover local
topology between points, at the cost of global distortion). Part of the
success of deep learning is that it was developed to better deal with
high-dimensional data and in many cases feature selection is not required
[GBC16].

Finally, it is worth keeping in mind the human factor, as we are prone
to many cognitive biases, including a preference for simplistic explanations.
Moreover, a researcher or community may have certain preconceptions
about the relations of the variables under study. The data-first perspective
cannot completely prevent this, but the methodology does not require
a priori assumptions on the mathematical structure of the data and,
moreover, may yield surprising relationships [Dhal3]. Needless to say,
there will always be some form of “bias”: to understand a thing, it must
be placed within an existing ontological framework (whether this is a
formal endeavor or implicit thinking), thus subject to relativism. Indeed,
formulating theories and testing them requires an a priori framework and
paradigm shifts may occur when contradictions are identified within a given
framework, causing a revisit of axioms, assumptions, and so on.

1.4 The case for relying on sequence in
building models

Sequence encodes the necessary information to create and maintain a cell
and may be obtained relatively easily. With the reduced costs of present
day sequencing (as low as US cents per million base pairs [Kul16]), sequence
is one of the most abundant types of biological data. For example, genomic
data is projected by 2025 to require between 2 and 40 million terabytes
storage per year and in 2015 about 32000 microbial, 5000 plant, and 250000
individual human genomes were stored by the US NIH/NCBI-maintained
Sequence Read Archive alone [Ste+15]. In terms of phenotypic data, many
fields have transitioned to high-throughput methodologies, as is the case for
proteomics, with single experiments generating on the order of hundreds
of gigabytes of data [Zel+18] and the total size of ProteomeXchange
consortium datasets exceeding 1 million gigabytes as of 2019, spanning
over 14000 datasets [Deu+20)].

The moment-to-moment state of the cell is determined by the
interaction between the functional ensemble of components that make
up the cell, and the environment (potentially including other cells),
as well as some inevitable stochasticity [Alb15]. Concerning the cell
alone, the various components and their interactions ultimately derive
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from sequence information, albeit in an emergent way, confounding
simple or reductionistic characterizations in terms of sequence elements
(e.g. composition of nucleotides or amino acids, motifs, regulatory regions)
[Niel7].

Sequence information thus appears as an abundant “primary” source
of understanding and prediction. Coupled with the aforementioned
recent technological leaps, data-driven characterization of phenotype from
sequence information has seen many breakthrough results, including
learning regulatory interactions at the nucleotide level [Zri+20a; Zri421].
When learning occurs from sequence data, salient features consisting of
patterns within the input sequences are distilled across the layers (and
implicitly, the high-dimensional spaces) that make up the network model
[GBC16]. Importantly, assumptions about the physical process are not
required, though they may serve as validation. Since deep learning
alleviates the need to reduce the number of features, sequences need not be
summarized by quantitative variables such as abundance of amino acids or
k-mers, physicochemical values, or adaptation indices. Besides the extra
amount of effort, feature selection in classical machine learning methods
may lose information by removing features that are not fully redundant
(especially by relying solely on linear measures such as correlation).

With respect to the proteome, there are many studies linking various
regions of a gene to molecular quantities using data-driven machine
learning. Most have been classic (“shallow”) models that numerically
summarize sequences or used derived features such as physicochemical
properties. Relatively few have utilized sequences as-is, either due to the
limitation of the classic machine learning models used or due to technical
limitations (primarily memory) of the hardware being used at that time.

Using the sequence as input directly (effectively assigning each letter
as a separate variable) has become feasible with deep models, however.
The model in Paper IV for example considers in total 2150 base pairs
for regulatory regions. If the model were extended to include full coding
sequences of say 6000 base pairs, covering the majority of yeast genes,
this would result in 8150 input variables. While these types of network
models would be quite large, depending on the actual architecture, the
required memory could however be accommodated if not on a typical
consumer-grade GPUs (32 GB of RAM for two paired GPUs at the
time of writing), then certainly on the more powerful configurations of
datacenter-grade GPUs increasingly available to the research community,
such as the NVIDIA A100 with up to 80 GB of RAM per each card.
The information content of the sequence may thus be kept intact and
various types of neural network architectures may be used to learn relevant
associations rules between these letters. We have referred to these learned
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association rules as “grammars” [Zri+20a; Zri+21], both for the intuitive
explanation but also because much of this work borrows heavily from
natural language processing.

Protein abundance of a single yeast gene, for instance, has
been predicted directly from 5 UTR sequences with a coefficient of
determination R? of 62% [Cup+17]. (Unless otherwise stated, all R? values
in this thesis are reported over held-out test sets.) The authors trained
a CNN model from experimental measurements using about 0.5 million
50-base-pair 5 UTR sequences for the gene HIS3. While this produced
good results and the authors argue for generality across genes, in Paper
IV we showed evidence that the different gene regions are a part of a
co-evolved unit and all contribute towards transcription, thus underlining
the need for comprehensive, gene-specific data, though this a difficult
experimental undertaking. Regardless, taking advantage of the sequence
is also underlined by the authors [Cup+17], which note that more complex
shallow models without positional information perform more poorly than
simpler ones with this information. By probing the trained network filters,
they extracted significant motifs informing abundance.

Another study using a random forest (i.e. “shallow”) model to predict
protein abundance from 5" UTR, for a single E. coli gene, achieved an
R? of 82% [Bon+16]. The authors experimentally measured the effect in
abundance difference for about 3000 Shine-Dalgarno sequences (ribosomal
binding sites in bacteria, contained in the 5 UTR). The sequences were
numerically summarized with hybridization energy between these and
16S rRNA. In contrast, a hypothesis-based thermodynamical model using
ribosome-mRNA binding energy as input achieved an R? of 54% on E. coli
genes [SMV09].

While various quantities have been predicted for transcription and
translation from regulatory region sequence, with both classic and deep
models, relatively few studies considered interaction between all regions
using sequence [Zri+21]|, which served as motivation for Paper IV
[Zri+20a].

The coding sequence has been used to predict protein abundance by a
few studies using classical machine learning models. [Fer4-21] used codon
usage to differentiate between the highest and lowest 10% yeast protein by
abundance in terms of codon frequency using principal component analysis.
They trained an AdaBoost model on codon metrics (without positional
information) to predict protein abundance and achieved a Spearman rank
correlation between prediction and experimental values of p = 0.74. The
same model trained on S. cerevisiae. was used to predict abundance for
E. coli, Schizosaccharomyces pombe, and Kluyveromyces marzianus genes,
with correlations to experimental values of 0.5, 0.7, and 0.62, respectively.
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The amino acid sequence has been used in a few studies to predict
several protein aspects, using deep models developed for natural language
processing. For example, in terms of structural models, secondary protein
structure was predicted with an accuracy of 0.75 and contact maps with a
precision of 0.4 (measured with a metric used in the Critical Assessment of
Methods of Protein Structure prediction competition, with 1 as maximum)
[Rao+19]. Higher results were obtained by including alignment information
(0.8 and 0.64, respectively), whereas the former were from sequence
alone. In terms of quantitative associations, fluorescence intensity was
predicted with a Spearman p of 0.68, and protein stability with a p of 0.73
[Rao+19]. Papers IT and III in this thesis are concerned with this type of
association, relating amino acid sequence to optimal catalytic temperature
and protein abundance, respectively.

While in some cases the deep sequence-based models have lower
performance than their shallow counterparts, this can certainly be
improved with better architectures, allowing the networks to learn
the numeric features that were given as input to the shallow models
(recapitulating this information). While this might seem like overhead
for such cases, this approach has two major advantages. From a practical
point of view, it accelerates studies by removing the need to select features
(and to iterate evaluation over combinations of such features). But more
importantly, by learning rules in the sequences themselves, one may
discover determinants of the target variables. For example, what sort
of amino acid combinations are associated with high-abundance proteins?
Even if there are cases where the performance is not greater than shallow
models using proxy feature variables, this benefit alone is worth the training
of sequence-based models. And as I outline in the next section on model
interpretability, there is great effort being put into developing models and
probing procedures to extract meaningful rules out of deep models. This,
coupled with the improvements in computing power mentioned above,
makes “direct-from-sequence” models quite attractive.

Nonetheless, the complex nature of the processes involved may
require infeasible deep models (in terms of size and/or training time)
should one aim for highly detailed characterizations of phenotype from
DNA sequence, especially given that phenotype arises additionally from
interaction with the environment, various emergent behaviors, as well as
from the compositional inheritance of the cell from its mother (i.e. no
cell is created ex nihilo from sequence, there is always a “bootstrapped”
intracellular context). Given this barrier, an obvious approach is to rely on
integrations of multiple models that capture different processes, systems,
or abstract properties. I outline a simple example of this approach in

Chapter 4.
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1.5 Model interpretation and protein
properties

Once a phenomenological association between observables has been
achieved with a data-driven method, the next phase of inquiry is explaining
how the variables in question contribute to yield target values (for
supervised tasks) or what distinguishing features characterize clusters of
data (in unsupervised tasks). Limiting the discussion to supervised models,
one usually wishes to find the main determinants (groups of variables)
of the predicted values, as well as how these associate. This implies a
simplification of the trained model into a set of human-understandable
or at least more intuitive and wieldy rules or equations, as the explicit
mathematical formulation of the e.g. deep neural network is in fact available
but defies simple description.

For the current generation of deep models, a major drawback is that
they are essentially black boxes that offer little transparency and even
less human-understandable insights into the meaning and behavior of the
patterns they have learned. At best one can describe neural networks in
very abstract terms concerning how the groups of functions being composed
process their inputs, but the predictive power of this approach is very
small and usually serves as a guide for network design [GBC16]. Still,
attempts are being made in the broader machine learning community to
develop interpretable models. Here, there are subtle differences in aims
and it is helpful to distinguish between transparency and interpretability
[Lip17; WP19]. The former concerns itself with the possibility of inspecting
the “inner workings” of models and assigning familiar concepts and
mathematical constructs to the various components of the models. The
latter refers to offering human-understandable explanations for the way in
which the models function. Some authors also distinguish explainability
[WP19] as the capacity for a model to offer its decision-making process,
which would be especially valuable for medical applications.

Within this framing, transparency of deep models is an easier task
and achieved to some extent in this work, especially in Paper I1II,
with post-hoc analyses in the form of parameter inspection and probing
of the high-dimensional space the model uses internally to represent
transformations of the input data. The latter goal of interpretation is
much harder, as one is faced on the one hand with the challenge of framing
exceedingly complex functionality within familiar human metaphors, and
on the other hand, with the emergent behavior of these models. This second
issue is important to keep in mind, as it can to some extent undermine
the goals of transparency and explainability (when “the whole is greater
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than the sum of its parts”) and, more importantly, it raises the bar of
understanding beyond reductionistic explanations. Thus, ideally a systems
type of thinking and even perhaps new theoretical frameworks would be in
order.

While aiming for at least transparency, a series of probing techniques
are normally used to determine the behavior of deep networks. In silico
perturbation experiments may be performed with virtually any type of
model to probe the relevance of each variable. For images and sequences,
this typically involves systematically covering or “occluding” regions of
an image or sequence to find important contributions to the prediction
[ZF14; Zri+20a]. In convolutional neural networks, one may inspect layer
activation (i.e. which units “fire”) in response to input, though this tends
to be very sparse. One can also inspect the weights of the convolutional
kernels to see what types of features they have learned to recognize (for
images, first layers usually learn simpler shapes such as lines, while deeper
layers learn more complex shapes) [KSH12; ZF14; GBC16]. One major
issue with such approaches is that their extraction of salient features in the
input data is easy to verify when one is working with images. Thus one can
distinguish a probing technique that is able to capture useful information
for interpretation, whereas with e.g. protein sequences one essentially does
not know what they are looking for. At best, correlations can be made to
various protein properties.

For attention-based neural networks such as the one used in Paper
ITI, the weight assigned to each variable (the attention) may be directly
inspected. The attention mechanism was created to capture salient
associations between words in a sentence [Vas+17] and appears as a better
way to gauge both the importance of amino acids and the strength of
interactions towards producing the predicted target value [Vig+20].

Other probing approaches seek to capture the structure of the
high-dimensional embedded (or “latent”) space in the interior part of
the network, to recover associations between words in a sentence, in the
shape of syntactical (sentence parsing) or semantical (word-association)
structures. These probes however can be quite complex (even neural
networks themselves) and a major concern is that the patterns they recover
may be more specific to the probes than to the neural network under
investigation [RKR20]. Depending on the aim, points from this space
can be nonlinearly reduced to a few dimensions using t-SNE or UMAP
in the hope that clusters may be recovered (e.g. sequences with low or
high predicted value cluster together). In Paper III, I have built such
a nonlinear reduction to support guided protein mutation. In natural
language processing models, parse trees describing the structure of the
sentence in terms of functional roles of words have been built from the
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high-dimensional embedded space [RKR20].

Within existing work and typical practice today, there is often the
tacit assumption that only a handful of feature variables provided in the
input are highly impactful for the end result. Given the complexity of
the model, this is also likely the simplest part in terms of interpretation,
as perturbation experiments often identify these variables. Such an
investigation was for example used in Paper II, where parts of the
sequence were occluded to determine the impact of those amino acids
towards the prediction. Then the natural question is how these salient
features jointly determine the prediction. At this stage, measurements
of variable relevance such as perturbation profiles, activation maps, or
convolutional filters are correlated with known quantities. In the case
of sequence models, these profiles may be correlated with physicochemical
properties of the polypeptide chain, for instance. Moreover, mechanistic
models may be tested against these determinant variables, besides just
deep model predictions.

In terms of finding simpler, human-understandable models that still
retain a sufficiently close predictive power to the deep model, some success
has been obtained recently in deriving symbolic expressions of the relations
between variables that best explain the trained model [Cra+420]. In
this study, known force laws (such as Newton’s law of gravitation) were
recovered from simulations based on these laws. While this area of symbolic
regression appears quite promising, it still requires network design informed
by the nature of the process being modeled and, moreover, its demonstrated
performance (and role for interpretability) has been on low-dimensional
inputs, raising the question of how to further interpret equations of
thousands of variables for e.g. sequence models (i.e. a transparent, yet
likely not interpretable result).

For the scope of this thesis, the type of protein properties used
in attempting to interpret deep models are quickly summarized below.
Needless to say, determining such properties relies heavily on experimental
work and, coupled with any hypotheses that may be formulated at this
point, brings us to closing the loop back to experiment.

Physicochemical properties of the protein, such as hydrophobicity,
emerge from the combination, relative position, and interactions of
individual amino acids that form the polypeptide chain. Thus, each protein
can be seen as a landscape of these properties, with various levels of
detail informing various functional roles of the protein or its substructures
(e.g. a binding pocket). It is understood that these landscapes are strongly
determined through evolution to satisfy the protein’s function within the
overall cellular physiology [Alb15].

Given that proteins fulfill both a functional and structural role, their
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three-dimensional shape and constituent motifs (sheets, helices, etc.),
along with mechanical properties provide important information about the
functioning of polypeptides and where one might try to intervene to alter
the operation of these biological machines. The recent breakthrough in
tertiary structure prediction from amino acid sequence [Jum+-21] opens up
many exciting possibilities of constructing accurate in silico representations
of proteins and their physicochemical properties.

Sequence properties then refer to numerical characterizations of the
amino acid sequence, be it residue frequencies, positional patterns,
sequence complexity, residue association rules, or statistically significant
motifs. Additionally, such measures may be linked to protein domains.

Within this area of research there are many largely reductionistic
studies that attribute protein abundance to specific such properties,
with rather weak associations based usually on correlation (i.e. linear
relations) [Rib+19; Ver+19; DML19; Cha+20; Web+20]. While each
feature contributes to the overall function of a protein, one would wish
an integrative approach towards understanding the overall physiology of
the cell, hence the expected benefit of deep models and the data-driven
approach.
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It is essential to have precise and in-depth quantification when mapping
out a biological system, more so if one is aiming at a time-resolved picture.
For instance, to assess cellular regulation under stress, frequent proteomic
snapshots are desirable, especially since the protein abundance plays a
greater role than that of transcript in such perturbed conditions [LA16;
LBA16].

Mass spectrometry, often coupled with a physical separation step such
as liquid chromatography, is the workhorse of proteomics and innovations
in the past ten years have allowed relatively rapid and cheap quantification
through high-throughput platforms. This has proven extremely valuable,
especially in crisis situations like the current viral pandemic, where blood,
plasma, serum, and immune cell samples from large cohorts have been
used to identify biomarkers for diagnostic and prognostic purposes, to
understand cellular mechanisms, and to support treatment development
[Spe+20; Dem+21; Mes+21]. Towards these aims, especially in initial
stages, data-driven approaches have been employed [Spe+20], for example
to construct a time-resolved SARS-CoV-2 phenotype evolution map,
from which prognostic signatures were identified with machine learning
[Dem+21].

The field of mass spectrometry is quite intricate and a detailed
treatment requires understanding of the instruments, the analytical
techniques, as well as the statistics involved. In this chapter, I
will introduce technical details as relevant to the discussion. For an
introduction to the field, the tutorial by [Smi+14] gives a good overview.

In terms of proteome quantification, the high-throughput experimental
platforms have shifted the burden to downstream analytics, as the data
produced is quite large and, more problematically, highly dense and
consisting of many overlapped signals spanning a wide variety of dynamic
ranges, making the recovery of analyte quantities very difficult. [PMW19;
Dem+19]. Proteins with low copy numbers can be especially problematic,
as they are close to baseline signal levels [Nav+16; BS20], yet important
for mapping heterogeneous systems such as the nervous system and in
single-cell contexts [GA21]. Thus new techniques that leverage the entirety

25



Chapter 2. Measurement (Paper I)

of the data in an efficient way are required [Lik09; Zha+; Deu+18].

My work in Paper I has focused on processing the dense scans
from data-independent acquisition (DIA) runs, using an unsupervised
decomposition method that yields separate molecular signal fingerprints.
The methodology itself is elaborated in the section below. The work
consisted in building a parallelized, GPU-accelerated pipeline called
CANDIA that can process large scan series in the order of hundreds
of GB in a matter of hours. While the decomposition method itself
has been used before, up to my implementation it was not feasible on
DIA data, as existing use cases were using single-machine, CPU-bound
software implementations on small datasets (in the order of MB) consisting
in a small number (tens or a few hundreds) of analytes, whereas in
high-throughput DIA scans one expects tens of thousands of peptides and
a single scan is around 10 GB. Moreover, they required a human specialist
to validate parameter choices by visual inspection, which is not tenable for
the large DIA runs, whereas CANDIA is fully automated.

DIA platforms [Ven+04] strike a compromise between the high precision
but low throughput of the gold standard selected reaction monitoring
(SRM) technique, and the high throughput but low precision of shotgun
techniques [ZKZ16]. The “data-independent” qualifier refer to the fact that
the instrument performs an exhaustive scan of its mass range, regardless of
where the highest peaks occur in survey scans, as is the case with shotgun
proteomics. The SWATH-MS platform [Lud+18], introduced about ten
years ago |Gil+12] has in particular proven quite performant, achieving
good precision and reproducibility, as well as high throughput [Col+17;
Ros+17; Vow+18]. Due to the high overlap of signal, the standard
approach to identification and quantification relies on an a prior: spectral
library consisting of fingerprint signals (or spectra) of expected protein
fragments, which are checked against the DIA scans. This however only
recovers a small percentage of total signal, just over 2% on the benchmark
dataset used in Paper I (Fig 3A in the article), the large remaining
fraction referred to as proteomic “dark matter”. Moreover, constructing
libraries incurs experimental cost, as they require additional shotgun
mass spectrometric runs, the process being specific to the instrument and
conditions [Sch+15].

The CANDIA pipeline functions as a preprocessing and data extraction
step for DIA scans series, upstream of conventional database search engines
used in shotgun proteomics such as Crux [Mcl+14], TPP [Deu+15], and
MS-GF+ [KP14]. Briefly, such tools use a database of protein sequences
to match spectra in the shotgun scans with peptides (protein fragments)
from the database. Additionally, CANDIA performs a summarization
of the entire dataset, outputting a single file containing the deconvolved
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spectra present across all scans. As I will expand upon in the technical
section at the end of this chapter, one may obtain from CANDIA the
contribution of a deconvolved spectrum to each scan, thus distinguishing
between potentially varying quantities of the corresponding analyte or even
its absence across scans. This way of extracting a “trace” of an analyte’s
amount in each scan alleviates the issue of missing identifications, which
may otherwise even happen within technical replicates, as demonstrated
in the paper (Fig. 2A). While this trace information (the sample mode,
as explained below) proved to be too imprecise to directly obtain high
quality quantification from it, this is theoretically possible and a point
of future improvement. Instead, bypassing the need for additional mass
spectrometric runs, CANDIA builds a spectral library directly from its
output using DIA-NN [Dem+19], a tool that uses machine learning to
distinguish between true and false positive matches, and can also generate
and export a spectral library from a sequence database and a spectral input
as provided by CANDIA. It should be noted that software such as DIA-NN,
PECAN [Tin+17], and Spectronaut [Bru+15] that have (peptide-centric)
“library-free” modes generate their own libraries in silico as part of
their execution (based on e.g. simulated or machine-learned predictions
of spectra for a given peptide). They still however rely on the collection
of spectra within this generated library to match against the DIA scans,
whereas the decomposition method in CANDIA extracts analyte signals in
an untargeted fashion. In terms of procedure compatibility, the CANDIA /
DIA-NN library may be used in standard DIA quantification software such
as Spectronaut, Skyline [Pin+20], OpenSWATH [R6s+14], and DIA-NN
itself.

Results produced using CANDIA have high precision and lower false
positive rates compared to conventional alternatives. While the number of
identified proteins is comparable with established software, more unique
proteins to the CANDIA workflow were identified both in our yeast lysate
dataset, as well as in the more complex (mixed-organism) LFQbench
[Nav+16] benchmark dataset (Fig. 2A, C in Paper I). Quantification using
a CANDIA / DIA-NN library is precise (coefficient of variation CV = 9.3%
on our yeast technical replicate dataset). Twice more post-translational
modifications were identified by MS-GF+ running on CANDIA output, and
at higher prevalence across technical replicates, compared to the alternative
approach of running MS-GF+ on output from DIA-Umpire [Tso+15]. This
latter established tool extracts pseudo-spectra from DIA data by detecting
covarying molecular precursor-fragment signal groups, which may be used
by shotgun search engines. The main difference is that DIA-Umpire does
not perform true decomposition and generates an output file per each scan,
whereas the PARAFAC method in CANDIA uses the variation across all
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scans to generate its decomposed output.

Additionally, de novo sequencing results were improved by running
Novor [Mal5] and DeepNovo [Tra+17] on CANDIA output, the former
showing a 24-fold increase in high-confidence sequences, compared to
running on DIA-Umpire output. De novo sequencing is the task of
inferring a peptide’s sequence exclusively from the mass spectra, a much
more difficult combinatorial task than the current standard approach
of searching for a prior: known spectra, and one that benefits from
deconvolved signals [MR18]. Library-free approaches are advantageous
to less studied organisms, especially given the complementary advances
in high-throughput sequencing [HN20].  The possibility of quickly
characterizing a new organism has far-reaching consequences in the broader
life sciences and biotechnology. Towards this end, de novo protein
sequencing appears as a very attractive tool, despite its current reduced
competitiveness [MR18]. One of the aims of the CANDIA paper was to
help improve the existing status quo by offering a simplified problem for
de novo sequencing algorithms to solve.

While the total signal (ion count) of identified CANDIA spectra was
clearly higher than that of library-matched spectra in our datasets, a
large amount of the CANDIA output was not matched by the search
engines. The unidentified deconvolved spectra were non-redundant with
those that were identified and had a good overall decomposition metric
(i.e. unimodality, described in the section below), showing that these
represent useful data that could be leveraged by machine learning methods.

Besides the work on CANDIA, in Paper I we investigated some
methodological issues in the current software ecosystem. Most current
identification methods rely on a target-decoy strategy to control the
number of false positives. In brief, besides the search with a database
consisting of the target proteins, a control search is typically performed
on a decoy database consisting of shuffled or mirrored versions of the
target sequences [Kal4-08]. We however expressed some doubt regarding
how appropriate the shuffled or mirrored varieties of decoys are, as such
unnatural sequences are highly unlikely to appear in samples (i.e these
amino acid sequences are not sufficiently “peptide-like”). A striking
result was obtained when we assessed this fact in standard tools by using
shuffled versions of peptide sequences. Namely, we constructed a spectral
library from a database with purely spurious (30% shuffled) peptides,
alongside further shuffled versions of these as decoys. Two out of three
tools (DIA-NN and Skyline) still yielded a high number (hundreds and
thousands, respectively) of confident protein identifications (on average
185 times higher than the expected number of false discoveries at 1%
FDR) when given this library with which to search the scans. This
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shuffling strategy to generate decoys may therefore not do a good job of
implementing an accurate model of the null hypothesis as a match against
decoys, leading to all significance results relying on it to be inaccurate
[K&l+08]. Besides the spurious results, this is further evidenced by the
scores of these peptide sets, which showed distributions with heavy right
tails (i.e. scores) for both targets and decoys (Fig. S2 in Paper I). One
way then to interpret the high number of false positives on spurious
input is that, since the decoys are not natural-peptide-like, they don’t
provide a strong enough “attraction” for the matching procedures. So
there is no essential distinction between targets and decoys, both sets
representing sequences that would not be observable in samples. If the
converse were true (proper decoys), then the matching procedures ought
to have ignored the spurious targets and focused on the peptide-like decoys.
Using a CANDIA library helped reduce this effect, with no spurious such
identifications made by Skyline and a reduced number of 22 times higher
than what was expected at 1% FDR for DIA-NN (Fig. S1 in the paper), the
hypothesis being that the simplified data provided by the pipeline in the
form of deconvolved spectra helped against spurious (random) matches.

The work in Paper I thus demonstrates a data-driven approach to
analyzing large and complex data, leveraging variability in the data itself,
in combination with domain-specific assumptions and hypotheses. The
approach also shows the significant benefits of the large computing power
available today, allowing for a considerable amount of brute-force solution
searching when no efficient procedure exists for selecting models a priori, as
exemplified by the parallelized decomposition of many candidates models.
Additionally, the implementation of CANDIA demonstrates the great
benefit of open source software to innovation, as the code of the underlying
libraries like TensorLy [Kos+19] were readily adapted to the needs of
the pipeline. Finally, the PARAFAC method and core functionality of
CANDIA are generic and may be employed for different (multilinear) factor
separation tasks.

In the following technical section, 1 will briefly overview the
methodology at the core of the CANDIA pipeline. Additional detail may
be found in the Supplemental Information of Paper 1.

2.1 Parallel factor analysis for proteomics

The task solved by CANDIA is that of chemometric measurement of
individual analytes in a mixed (“convolved”) signal. The method used is a
type of factorization of the data, called parallel factor analysis (PARAFAC)
or canonical decomposition (CANDECOMP) [KB09].
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It can be considered an unsupervised method from a machine learning
perspective, in the sense that no expected target values are used to train or
derive a solution. This is in contrast to the related independent component
analysis (ICA) approach taken by the Specter software [Pec+18], which
factorizes each mass spectrometric scan separately using an a priori
constructed spectral library. Rather, PARAFAC considers a whole scan
series as a single input and decomposes it by exploiting the variation across
samples. The formulation of this data model can be thought of in terms
of the bottom-up construction of the observed signal, namely how has the
overall intensity arisen from individual contributions of analyte values?

The shape of observed signal data may be described as a
three-dimensional or “three-way” tensor, formed as follows. Each scan is
a two-dimensional map with axes mass/charge (mass, for simplicity) and
elution time (or retention time), the latter tracking the time at which
the analyte particle “clouds” have appeared in the scanner, while the
former records the fragmentation patterns of these particles. The time
dimension (via e.g. liquid chromatography) is introduced as a way to
achieve higher specificity, by physically separating peptides according to
their physical properties, leading to less overlap on the mass dimension.
These maps are stacked as separate observations, thus organizing the third,
sample dimension of the data. Given perfect elution, the signal from a
single analyte will appear at the same mass - elution time coordinates
across all samples, but with different values, depending on actual sample
concentrations and noise. It is precisely this sample variation that is
exploited to regress out the contribution of each peptide within each sample
[SBGO04]. This data tensor or cube is thus the input to the PARAFAC
decomposition.

The central assumption behind PARAFAC is that observed values in
the tensor arise out of a trilinear combination of the three mass, time,
and sample factors or modes (see Fig. 2.1). Additionally, a non-negativity
constraint is imposed on all modes, a natural assumption as these capture
particle counts. The output of the decomposition consists of three matrices
or modes corresponding to each dimension of the input tensor, each
with F' columns, where F' is the number of components for which the
decomposition is made. More explicitly, one can write:

F
Q:Zsr®tr®mr+E:[S,T,Mﬂ+E (2.1)

r=1
where D is the input data tensor, ® denotes outer product between
the three column vectors of each component r, the matrices S, T', and M
are the sample, time, and mass modes, respectively, and E is the residual
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(error) tensor. The second form of the inequality uses the Kruskal tensor
product operator [KB09]. Graphically:

A
%ﬂ_
D = s ! + E
B c o
e,
" AR Vot

Retention time

Figure 2.1: PARAFAC for proteomics (reproduced from [BZZ20]). A) The
tensor of observed intensity values D consists of stacked liquid chromatography-mass
spectrometric scan maps. The model expresses these values as a trilinear combination
of three matrices (modes or factors), namely the mass M, elution time 7, and sample
variation S, plus residual errors E. The width of each mode matrix is the number of
components (analytes) for which to decompose. B) Illustration of convolved signal of
two analytes (blue and red) in a single scan. Each analyte has a single elution curve
and a specific mass profile, with considerable overlap along these two dimensions. C)
Given several scans as the example in B), a PARAFAC decomposition for 2 components
(each assumed to capture an analyte) yields mass (m/z), retention time (RT), and sample
modes for each component.

The number of components F' must be decided a priori, based on
knowledge of the problem, or by examining the decomposition quality of
several models over a range [SBG04]. The assumption here is that each
separable peptide corresponds to such a component and is described by an
individual mass fingerprint, elution curve, and sample variation trace. A
complicating factor in the choice of value is that models do not “nest”, that
is F'+ 1 is not a model for F with an additional component [SBG04]. On
the other hand, the solution for a given F'is unique (modulo permutation
and scaling of the component matrices). Another advantage is that the
three decomposed modes have the natural interpretation of the dimensions
they capture, and are not some type of abstract component.

31



Chapter 2. Measurement (Paper I)

While  the oldest application of  factor  analysis to
gas-chromatography-coupled mass spectrometry that I could find
dates back to 1976 [Rit+76] and in spite of the linear algebra behind
the decomposition being relatively straightforward and well characterized
[SBGO4], only with the recent advances in powerful graphical cards (GPUs)
and distributed computing software could PARAFAC be made feasible for
DIA proteomics datasets, as demonstrated in Paper I. Given the sheer
size of the scans (a series easily reaching 500 GB) and the uncertainty
around the correct number of analytes to decompose for (requiring solving
multiple candidate models), one quickly reaches the limits of CPU-bound
processing and memory (64-128 GB of RAM) for typical a workstation,
as the tensor must be loaded into memory to be processed. Thus a
partitioning scheme is necessary and this relies on another advantage
of the SWATH-MS DIA scanning regimes. My insight here was that,
as the mass scanning windows in the SWATH platforms are expected
to be independent in term of precursor-fragment spectra [Lud+18], it
would be fairly “safe” to partition the data tensor along them, besides
partitioning along retention time windows. As for the time windows, their
width was decided based on balancing the expected number of elutants
(and consequentially, range of models) with the resulting number of such
windows, taking the full length of chromatography into consideration.
Each resulting partition or slice is an independent small tensor (on the
order of MBs) spanning a narrow range of the mass and time dimensions
(see Fig. 1A in Paper I), making it more more manageable, even for a
typical workstation, while benefiting most from distributed processing
across a computing cluster, CANDIA supporting both types of running
modes seamlessly. More details on data management and preprocessing
are further described in the Supplemental Information of Paper I.

The remaining issue of choosing the number of components F' was based
on a more straightforward iteration of all values within a reasonable range
(i.e. how many peptides would one expect in a given time window), leaving
model selection as a post-hoc problem. Among the criteria I considered for
this selection, the most effective was that elution curves should be single
peaks (or unimodal), given that peptides are expected to elute only once.
Optimally deriving the number of components from a tensor is a hard
(NP-complete) problem [Has90] and while there are diagnostic routines
one could run [Joh+14], the simpler approach based on the unimodality
criterion proved very efficient computationally, as all decompositions could
be run in parallel and the overall procedure performed well in terms of
results quality. See Algorithm 1 in the Supplemental Information of Paper
I below for a detailed description.
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protein features

from sequence
(Paper 1I)

It stands to reason that the amino acid sequence of a protein could be
used to infer its 3D structure, and thus a good deal about its function.
Indeed, we have seen just this year a significant leap in solving the folding
problem [Jum+21]. Thus, as structural information is present in sequence,
various physicochemical properties may be predicted from it and deep
models have been used to capture a diverse array of properties, such as
stability [CFCO05], fitness landscapes [RKA13], and function prediction
[Sur+19].

Moreover, these models learn various abstract features of the input
sequence space that may be reused towards predicting other properties
than what the original model was trained for. This is referred to as
transfer learning and has had many successful classification, regression,
and clustering applications, in areas such as natural language processing,
image classification, genomics, medicine, and climate science [GBCI16;
WKW16; PY10], with many of the models quite generic. One of the
major benefits of this approach is that it may bypass the limitation of
data unavailability [PY10; GBC16]. To be more precise, one speaks
about a source domain (variables with an associated marginal probability
distribution over them) and a learning task on this domain (a function
to be learned, that maps the domain to e.g. labels or output values).
Transfer learning consists in using features learned as part of this source
task to enable or improve a similar task on another target domain (different
variables or distributions) [WKW16]. Concretely, in the case of neural
networks, this typically consists of “transplanting” parts of one network
into a target one, or partially freezing or reducing the change of certain
network weights while training the source network onto the target task, a
process often referred to as fine tuning. The transfer assumes that there
are common (low-complexity) features shared between the two domains
that capture the variance in both of these [GBC16]. Another assumption
and often the motivation is that the source domain possesses significantly
more data, such that it would be easier to generalize to a target domain
containing relatively few data.

This technique presents the clear benefit of using proxy variables where

33



Chapter 3. Learning protein features from sequence (Paper II)

measurements are missing for a desired variable, as a model may in
principle be trained on a different, derived or highly correlated proxy
variable, for which there is abundant data. The correlation or dependence
between this proxy variable and the desired one ought to be high however,
as it was shown that transfer learning will not be optimal when the
marginal probability distributions of the source and target domains are
different [WKW16; Shi00]. Moreover, care must be taken as correlation is
not generally a transitive relation, unless the correlation is arbitrarily close
to 1 [14].

This transfer learning technique was used to good effect in Paper
II, wherein the DeepET model was first trained to predict optimal
cell growth temperature (OGT) on a large set of enzyme sequences (3
million), then subsequently retrained with only minimal tuning to predict
optimal catalytic temperature (7;,) on a much smaller set of enzyme
sequences (N = 1902), motivated by the assumption that proteins should
be functional at the organism’s OGT. While similar in performance
(R? = 57%) to a previous random forest model relying on amino acid
compositions and OGT, the DeepET model has the major advantage of
relying solely on sequence, as OGT data may not be available for a given
organism. Moreover, the performance provides evidence that the deep
model has learned repurposable sequence features, especially since the best
performance was obtained by only fine tuning the last two (dense) layers of
the network, keeping the convolutional layers and the residual block frozen
(see Fig. 1 in Paper II).

A natural aim then was to probe these features in the context of
Tope prediction and relate them to known physical protein factors. Due
to the black box nature of the deep convolutional-residual network, a
perturbation approach was chosen. Namely, each protein sequence was
covered (occluded) with a sliding window and, for each position of the
window, fed to the network. The percentual deviation in prediction
from the unoccluded sequence was considered as the relevance of the
given position toward prediction [ZF14]. The resulting sequence relevance
profiles were then smoothed with a moving average. Finally, only
significant deviations (over £2 standard deviations) were considered for
matching against protein properties.

To check against properties that are known to affect thermal stability,
I matched the significant relevance profiles with amino acid composition,
secondary structure annotation, and protein domains. The first was a
simple assessment of how the presence of certain residues influences the
model, while the latter two were more specific to the sequence information,
taking advantage of the position-dependent relevance profiles. This was
done separately for enzymes from mesophilic organisms (with OGT 20-45
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°C) and those from thermophilic organisms (OGT > 45 °C), in an
attempt to contrast the most relevant matched elements between these
two adaptation classes. See Fig. 3 in Paper II.

The amino acids that were enriched (overrepresented) at significantly
relevant positions, when compared to the background amino acid count
in the proteome, appear overall in line with known associations. In terms
of composition, the majority of enriched amino acids were hydrophobic,
which is a known (weak) determinant of thermostability, the hydrophobic
content increasing with temperature [MMS16]. The set of such amino
acids differed between thermal adaptation classes, with only Leu, Met, Phe
common to both. Matching relevant positions with secondary structure
annotation showed that for the prediction of 7Ty,, there is more distinction
between the two thermal classes. For mesophilic enzymes, a larger number
of structure types are relevant, while for thermophilic enzymes, only helices
and turns are determinative. Helical content is known to increase with
temperature, due to its stabilizing role, and the enrichment of Arg in
the relevance profiles of thermophiles aligns with this, given that this
amino acid is favored for helical formation [KTN00O]. When measuring the
coverage of InterPro protein domains [Blu+21] by relevance profiles across
both thermal classes, only about 3% of searched domains were significantly
overlapped (30% of their length), compared to control. This would seem
to indicate a narrow range of functionality and to assess this, I derived GO
slim terms from the GO annotations of the InterPro domains. While the
biological processes associated with mesophilic enzymes is rather broad,
thermophile terms were limited to metabolic processes and response to
stress, the hypothesis being that these domains become more determinative
for prediction of T,,; at higher thermal adaptation.

Thus, the DeepET network, trained on a very large set of enzymes
to predict optimal growth temperature, learned to represent various
protein properties as model features. These sequence features capture
physicochemical properties, secondary structure, and a narrow set of
protein domains. With only slight fine tuning, they were shown to be
determinative in predicting optimal catalytic temperature. The first two
types of properties were also seen to be captured by UniRep features, an
unsupervised deep network model [All+19]. However, for the prediction
tasks in Paper II, models trained on features exported by UniRep yielded
the lowest performance, specifically R?> = 35% for Tope. Lastly, as the
combination and strength of the determinants differ between enzyme
families [MMS16], future inquiry ought to include a clustered perspective
across the enzyme set.

Due to the black box nature of the model, there are downsides to
this sort of perturbation analysis, however. Primarily, the biggest issue
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is the arbitrariness of the perturbation procedure, namely the positioning
and size of occlusions - whether these should be contiguous windows or
rather scattered points, perhaps relying on external information, such as
3D contact maps. Moreover, occlusion assesses the impact of information
removal from the sequence. While a subtle point, it begs the question
if this measure of relevance indeed fully captures the effect of the region
being present and interacting with the rest of the sequence. For contrast,
in image processing, where the technique originates, often the subjects of
identification are (essentially) independent groups of pixels (e.g. a dog on a
green field). Thus excision of an object in a scene is adequately informative
with respect to its detection by the network, whereas the situation is less
clear with protein sequences. Given these aspects, results stemming from
window occlusions may tend towards capturing local subsequence relevance
and miss long-range interactions. From this interpretability perspective,
the BERT architecture described in the next chapter serves as an attractive
alternative, as it exposes its learned weights in a more transparent fashion,
intrinsically highlighting pairwise amino acid association strengths.
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expression levels

from sequence
(Papers III and IV)

In the previous chapter, I explored a case of using amino acid sequence
to capture physical properties of proteins, as well as using this data-driven
approach to infer the determinative factors of these properties. Here I will
cover a broader goal, that of determining the composition of the proteome
from sequence data. The work can be seen as part of a larger undertaking to
quantify the central dogma and get comprehensive phenotypic predictions
from genomic and proteomic sequence. Additionally, “grammars” of
expression were sought, i.e. rules of nucleotide and amino acid associations
determining expression levels, as expanded on in the first section below.

As briefly overviewed in the introduction chapter, proteome composi-
tion arises out of the balance of different processes and cellular needs. Much
work so far regarding protein abundance has been done either from genomic
or transcriptomic information [Zri+21], though in most cases sequence
information was summarized as e.g. amino acid frequencies or codon
usage bias and the majority of models considered were very simplistic,
often linear, and with rather poor explanatory power [VM12; CRIS;
Rib+19]. These simplifications, while providing valuable indication of the
relations between the various factors, lead to many of the more complicated
interactions between said factors to not be captured, whereas we know that
between the “levels” of central dogma there is much regulation and the
molecular abundances span different dynamic ranges (e.g. as is the case of
mRNA and protein abundance) [VM12; BS20].

The results in Paper III are derived from S. cerevisiae median
protein abundances (N = 5202, median over 21 experiments), collected
predominantly from mid-exponential growth phase. They show that much
information about abundance is encoded in a protein’s amino acid sequence
alone (the best model had an R? = 41.6%), which is perhaps not surprising
given evolution’s imprint and the fact that function is given by structure,
thus indirectly the sequence. There is also the fact that protein levels have
relatively low variance across different conditions (i.e. within 1 or 2 orders of
magnitude), relative to the wide range of levels observed across all proteins
(i.e. 5 orders of magnitude) [HBB18] (see Fig. 1A in Paper III), hinting a
rather tight coupling between protein structure and proteome composition.
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Of note that on the data from [HBB18] (which were used in this paper),
there is no correlation between amino acid sequence length and protein
abundance (Pearson r = —0.1, p-value = 1.26e-10) in spite of its reported
determination of mRNA levels [VM12; Rib+19], even when restricted to
the set of median abundance with at most 1 standard deviation across
experiments).

The deep mneural network model chosen to learn this
sequence-to-abundance relationship was BERT, a Transformer-type
model using the attention mechanism described in the introduction
chapter [Dev+19]. The choice of network architecture was encouraged
by the expectation that attention values would provide an intrinsic
way to inspect amino acid association rules, and by previous successes
in capturing contact maps, binding sites, and substitution likelihoods
through the attention mechanism (either directly or through a simple
probe) [Vig+20]. The TAPE implementation of this model [Rao+19],
specialized in protein sequence, served as starting point for my code base.

And indeed, attention profiles were seen to correlate well with
physicochemical properties of the polypeptide chain, as well as to
preferentially cover protein domains and some homorepeats (stretches of
repeated occurrence of the same amino acid). The GO terms associated
with these were rather diverse, including translation, protein folding,
post-translational modification, carbohydrate and ion transport, stress
response, organelle fission, cell cycle, sporulation, and cell division.

The study performed previously in Paper IV was one “level” upstream
in the central dogma, assessing how much information about transcript
abundance is encoded in the entire gene. One main finding of this
study was that regulatory regions (as sequence input) jointly explained
49% of transcript level, while augmenting by including codon frequencies
and stability values (as numerical variables) in the input, 82% of mRNA
levels could be explained. The breakdown of these different predictions is
explored more in the second section of this chapter. Both learning tasks
used convolutional neural network models, which conferred a performance
increase compared to simpler shallow models.

A second result of this investigation was that a gene’s mRNA level arises
out of the interplay of its coding region and the full cis-regulatory structure
(Paper IV). Moreover, codon frequencies could be 58% explained
(predicted) from regulatory regions (Fig. 2c, d in Paper IV), showing
overlap in information and hinting that the ensemble of regions is a
co-evolving unit, backed by evidence that in eukaryotes non-coding and
coding regions are under weakly coupled selective pressure in orthologs
[CHAO04; Che+10], as well as mutation rate correlation computed between
regulatory and coding regions (Pearson r = 0.42 and 0.47 for promoters
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and terminators, respectively) in multiple orthologous yeast genes (Fig. 2e,
fin Paper IV). In line with protein abundance, mRNA variability in yeast
across conditions is smaller than between genes (within 1 relative standard
deviation for 85% of genes), another hint that much of the information on
transcript homeostasis has been imprinted in DNA.

In order to inspect how different regions and relative positions influence
the prediction, a perturbation study was performed using the model.
Region boundaries were found to be most impactful for the prediction
(Fig. 3a in Paper IV) and the relevance profiles of promoters were found
to anticorrelate (Pearson r = —0.7) with nucleosome occupancy scores (the
frequency of histone octamer occupation of a given DNA region across a
cell population [SS13]). These relevance profiles were clustered and two of
the resulting clusters matched low- and high-expression genes, enriched in
cell cycle regulation and DNA repair, and metabolic processes, respectively.

This approach was thus based on extrinsic probing, measuring the
impact (i.e. relevance) of systematic occlusion of sequences. This contrasts
with the strategy taken in the later Paper III study, using a BERT model
to predicting protein abundance, as that relied on an intrinsic measure of
position relevance, namely the attention mechanism. These aspects are
expanded upon in the first section below.

It is known that mRNA is a major determinant of protein abundance
[LBA16; Lah+17], however the coupling between these two quantities is
not tight in yeast. Using the datasets in Papers III and IV, Pearson
r = 0.74 on the low-variability subset of genes (N = 3399) and r =
0.69 on all (N = 4859) genes. Besides the missing explanatory fraction,
correlation is a linear assessment between the variables, implying that the
missing fraction might “hide” a more complex relation between the two
quantities (see Fig. 4.1). Indeed, as outlined in the introduction, we know
the post-transcriptional translation, regulation, and degradation processes
further determine protein levels, beyond the availability of mRNA amount
[VM12; LBA16; BS20; Ho+21], even if to a lesser extent during steady
state [LA16; LBA16].

The second section below bridges these two studies, towards an
improved prediction of protein abundance.
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Figure 4.1: Correlation between mRNA and protein abundance, using data
from Papers IIT and IV. Plotted are genes (N = 3399) with coefficient of variation at
most 100% across experiments. Values were standard-scaled and log-transformed. The
Pearson correlation on all (N = 4859) genes was r = 0.69 (p-value below double floating
precision).

As was mentioned in the introduction, it is a big step to learn expression
from sequence alone, accounting for different conditions, intercellular
interactions, and abstracting over complex pathways. But as evidenced
by these two studies, integrative or holistic sequence-driven modeling
can offer much insight into the information evolution has imprinted in
a genome. While one could in principle train a protein model on DNA
sequence directly, in spite of the complexity involved, the modeling in
Paper III focuses the analysis on the primary structure of proteins and
post-translational interactions. It also provides a simpler input than DNA
sequences, allowing for smaller models, and also simplifies the already
complicated task of interpreting deep models. Moreover, different models
could be integrated in a number of ways. In the second section of this
chapter I describe a simple meta-modeling approach that pools predictions
from the models in both papers for an improved protein abundance
prediction.
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4.1 The grammars of expression

In terms of sequence informing expression product, Paper IV is roughly
analogous to Paper III, albeit methodologically different and with
different focus, the two being placed on different “levels” of the central
dogma. As was centrally highlighted in Paper IV, it is the interactions
between the different regions that are most informative for the product
levels (in this case, transcript). This parallels the importance of amino
acid interactions towards predicting abundance in Paper I1I. Both studies
aimed at recovering a set of rules that may explain how association between
the respective elements inform their product quantities. These sequence
“orammars” are assumed to be learned by the deep neural networks and
are thus implicit to the predictor. By using different probing techniques,
associations of elements (regions, motifs, and amino acids) were uncovered
and used for protein engineering.

The input data for Paper IV is heterogenous (different regions with
different functions), raising the intriguing question of how the interplay
of regulatory and coding regions gives rise to mRNA levels. The probing
technique used in the study is perturbation by occlusion of windows along
the sequence length, in order to test which positions are the most relevant
for the prediction (see also Fig. S14 in the article), the approach also
taken in Paper II. This yields a prediction relevance profile for all genes,
which may be further mined for connections to known important sequence
patterns.

As first quantitative evidence of the importance of position (and hence,
sequence structure), the relevance profiles featured the largest perturbation
in promoters and terminators, irrespective of nucleotide composition
across all regions, and that region boundaries were most impactful. To
obtain structural sequence patterns, 2200 regulatory motifs (i.e. contiguous
short sequences) were extracted from the relevance profiles of all four
regulatory regions, by picking relevant DNA sequences (with absolute
values above 2 standard deviations), then clustering and aligning them.
Validation was performed against known motifs in databases. For more
details, see Methods in Paper IV. The majority of motifs are specific
to each region and it is their co-occurrence that is mostly predictive of
transcript levels. The co-occurrence of motifs was assessed with association
rule learning, a type of unsupervised task that identifies significant
combinations of items (motifs) from a large collection of observations
[HTF09]. Association rules are expressed in terms of implications such
as {motif 1, motif 2} = {motif 3}, meaning that, across the data, should
motif 1 and 2 appear in the same observation, this implies (with a certain
confidence) the presence of motif 3 as well. Almost 10000 significant
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rules were identified. These were often comprised of a few motifs (2
to 5 typically) clustered within small sets (< 10) of genes, and were
discriminative between low and high transcript values. Rules frequently
(88%) spanned all regulatory regions and covered a wider range of
transcript values than single motifs, as well as showing lower variance,
hinting at the important role of the rule presence in these genes. By
swapping an increasing number of motifs within a given gene, the predicted
expression level could be changed considerably, up to 3 orders of magnitude
when swapping 3 out 4 motifs. The most common motifs across all genes
were not enriched in any specific cellular function, comprising thus a
common vocabulary across the genome.

The motif grammar was validated in wvivo (yeast) in a simplified
scenario, using a model trained on the most relevant segments of the various
regions (due to experiment limitations on region length). The experiment
used the native promoters of 6 constitutive genes for the green fluorescent
reporter protein (GFP), along with all combinations of native, weak, and
strong terminators (18 combinations in total). The changes in expression
level correlated quite well with prediction (Pearson r = 0.65), showing
the potential of the motif grammar in screening promising promoters and
terminators from the very large space (millions) of possible combinations.

In terms of model interpretation, aspects of the transcription regulation
grammar learned by the deep network may therefore be represented as
combinatorial associations of motifs. Due to limited transparency of
convolutional neural network model class used in this study, however,
probing it to find the main determinants and their interactions toward
prediction requires the extrinsic perturbation approach. This comes
with some arbitrariness and limitations, namely occlusion is performed
on contiguous regions, capturing local interactions. While pertinent
for this application, such an approach was perceived to be limiting for
modeling sequences of amino acids, which are expected to show long-range
interactions (i.e. via folding). Moreover, the perturbation analysis is
further complicated by the chaining of downstream analytic tasks, such
as clustering, alignment, and rule mining. Lastly, the motif rules and
their matching to expression levels were mined post hoc from the set of
perturbation profiles. Thus, while the model indeed has good performance,
has given insight into important regions, and yielded predictive motif
co-occurrence rules, one would ideally like a more intrinsic weighting of the
associations of various sequence sections, coming directly from the model
itself. The attention mechanism used in the BERT model in Paper III is
such an alternative.

While the “grammar” analogy to language was used rather intuitively in
Paper 1V, my approach in Paper 111 was to explicitly rely on frameworks
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from natural and formal language processing, distinguishing between
syntactical (structural) and semantical (quantitative) characterization of
amino acid interactions learned by the BERT model to produce protein
abundance predictions, partially motivated by the use of this type of deep
model to study language in this way [Vig+20]. As a simple illustration of
how these two notions frame the grammatical understanding, consider the
two phrases “I eat the cake” and “The cake eats me”. From a syntactical
point of view, both of these are structurally correct English sentences
and the rule of their formation obeys the pattern subject-verb-object.
However, the meaning or semantics of the two sentences are quite different.
Indeed, the same distinction is made in formal language processing, when
a computer program is first analyzed syntactically, then is ultimately
converted to purely numeric values. As an analogy closer to the protein
application, my intent was that given a sentence such as “one plus two”, a
hypothetical BERT model would learn the functional role of each word
(i.e. number and operator words), the correct value to assign to each
number word, as well as the correct operation to perform on these values
(given by the operator word), finally outputting the prediction “3”. The
more ambitious goal was to also extract such operational understanding.

The syntax-semantics analytical paradigm was motivated by the fact
that attention-based models appear amenable to this type of analysis, the
common understanding being that attention layers learn syntax, especially
in lower layers, while the topmost (deepest) layers, as well as the embedded
space of the network, capture more semantical aspects, though the exact
cutoff is debated and may very well vary depending on task [RKR20].

In terms of syntax, to characterize the attention-based sequence
association rules, I represented attention matrices for a given sequence
as dependency trees, where each residue is a node and a connection is given
by an attention value (for more details on the construction, see Paper 111
Methods). In natural language processing (NLP), these trees are a way
to describe the structure of a sentence, by connecting words that depend
on each other. The strength of dependency between words is determined
in different ways, often by computing word pair association weights over
a large corpus. The relation is often not symmetric, and one word is

considered to depend on another (Fig. 4.2A) [JM09].
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Figure 4.2: Dependency tree examples. These trees are constructed from the
pairwise association weights between the tokens of a sequence (words or symbols),
typically by deriving the maximum spanning arborescence graph from the aforementioned
weight matrix. A) Dependency tree for the sentence “I prefer the morning train from
Gothenburg”. B) Amino acid sequence dependency tree for the protein Diphthamide
biosynthesis protein 3 (UniProt ID: Q3E840), constructed from the attention matrix of a
BERT head when given this sequence as input. The nodes are marked with the amino
acid and position in the sequence.

Accordingly, the attention matrix produce by every BERT head for
a sequence expresses how much a given residue in the sequence attends
every other, normalized as a percentage across all pairs. As was observed
in Paper 111, for protein sequences this relation is asymmetric. Similar
types of attention-derived trees have been constructed for Transformer-type
models in NLP, with overall quite good success in matching curated
trees [RT18; Htu+19]. The directional relation captured by attention
between pairs of residues thus serves as the basis for constructing
sequence dependency trees that show a hierarchical, position-dependent
description of the importance of each residue towards predicting abundance
(Fig. 4.2B). Another motivation for such a hierarchical representation is
that residue interactions are expected to be complex and span the entire
sequence (when thinking of e.g. protein folding).
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While it is still unclear how this or similar representations can be
connected to the semantics posited to be captured in the network’s
embedded space, the dependency tree does highlight some interesting
properties. Within each tree, there are only a few “hub” residues on
which many others residues spread across the entire sequence depend.
Additionally, the majority of hubs are “occupied” by just three amino acids,
Ser, Lys, Ala, in order of increasing depth (Fig. 3D in Paper III). Given
the hierarchical organization, the depth in the tree could be interpreted
as importance ranking, with most important hubs at the top (however
“Iimportance” may be quantified towards prediction). Interestingly, amino
acids do not seem to be preferred by attention at any given position along
the length of sequences. Moreover, there is little variation in the above
patterns across protein abundance bins. These last two observations hint
at the BERT attention-based prediction arising out of complex interactions
of residues across the entire sequence, rather than special prevalent regions
or amino acid motifs.

As mentioned above, overlapping semantical information onto these
trees was less fruitful, although it is possible to implicitly harness the
embedded space of the model to effect a significant change in prediction, as
I expand upon in the next section. How these two grammatical dimensions
may be seamlessly integrated such that one may observe how semantical
operations “endow” syntax with value, is an avenue for further research.
This problem, recognized across other areas such as image recognition, is
referred to as the “semantic gap” [DK21] and could be summarized as the
difficulty in assigning human meaning to features learned by a deep model,
part of the overall challenge of interpretability.

4.2 A surrogate model spanning the
central dogma

To assess the composition of the proteome, ideally one would like to
construct an overarching transparent model predicting protein abundance
directly from DNA sequence, to the full extent at which this information is
encoded in sequence. However, such models may not yet be feasible due to
computational limitations and perhaps model complexity (at least, for the
current classes of existing deep models). Moreover, transparency or even
interpretation might be difficult to achieve through such models. In spite
of this, given the strong connections between the subprocesses involved,
one may use the partial modeling performed on these subprocesses. The
models in Papers III and IV helped construct a piecewise quantitative
characterization of the central dogma. The variables in question correlate
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and jointly contribute to the overall “information flow”.

All of this raises the possibility of somehow building on these piecewise
predictions. For the purpose of predicting protein abundance, one simple
way to do this is to construct a surrogate (meta-)model [DCA19] using
the mRNA and protein estimators obtained with the deep models (i.e. the
predicted values alone as surrogates for the models themselves). To this
end, estimator variables (i.e. predicted values for all genes) were produced
using the various models. In order to guard against overfitting, the
distinction between the training and test sets used in Paper IV was kept
for all models, including the CNN model in Paper III. This model was
retrained on a repartitioning of the protein abundance data, respecting the
training-test split of the mRNA data. A new hyperparameter search was
performed (see the thesis Appendiz for the best hyperparameter values)
and the best CNN model performance was 41.6%, the same as the original
model described in the paper. Thus, considering the intersection in
genes present in the mRNA and protein abundance datasets, the same
partitioning of 2708 training and 303 test genes was used across all models
here.

The models considered were:

® M,., - the CNN model trained on gene regulatory regions from
Paper IV

® M. oqons - @ random forest model I trained here on codon frequencies

® Mgyepne - the full CNN model from Paper IV, trained on regulatory
regions, codon frequencies, and mRNA stability variables

e M,, - the CNN re-trained here on amino acid sequences to predict
protein abundance.

The predictions from these models are considered as estimators of the
mRNA (Rp) and protein (P,,) abundance. As was shown in Paper IV,
there is a significant amount of interdependence between the different
variables the models capture, and it is also known that there is a high
correlation between mRNA and protein abundance [Lah+17], which I
illustrated in the first part of this chapter (see Fig. 4.1). Because the
interdependencies of the variables (and, in fact, processes) in question
are however not tight (the variables are not perfectly correlated), the
expectation is that combinations of these different piecewise estimators
would yield a better prediction of protein abundance (Fig. 4.3).

Indeed, even a simple linear model fitted to ]%regz-ons and Paa to predict
protein abundance gave an R? of 50.28% (on the hold-out test set), a
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clear improvement on the performance of the CNN model in Paper III.
To get a full overview, I considered here all combinations of at least two
estimators as input for linear and random forest models, as shown in
Fig. 4.3. The random forest class of model was chosen as it is nonlinear,
computationally inexpensive, yet readily exposes the relative importance
of its input variables.

Random forests consist of an ensemble of many de-correlated regression
trees, all trained on subsamples (with replacement) of the same input
data. The output of all trees in the ensemble is averaged to give the
final prediction. Through the splits at each level, these trees partition the
domain of input variables into smaller regions, for which simple constraints
hold. These constraints are then hierarchically organized such that they
model a decision process for each datum. Using the average across multiple
tress serves to the reduce variance of the final estimator (generally leaving
bias of the forest the same as any of the trees) and increases training
stability (i.e. the dependence of the model structure on the training set),
both of which are characteristic problems of single decision trees. This
also helps with overfitting, which can be further restrained by limiting the
depth of the trees in the ensemble [HTF09].

The random forest models considered shared the same hyperparameters
across all estimator combinations (see the Appendiz). Both mRNA
and protein quantities have been Box-Cox-transformed as input to the
original deep models (A = 0.22 and -0.05155, respectively, same as in the
two papers), and the predictions of these models (the estimators) were
normalized with standard score.

Of all the combinations that do not include ]%gene, the highest
performance (R? = 63.51%) was obtained by the random forest trained
on all three estimators derived from sequence (regulatory regions, codon
frequencies, and amino acid sequence), once again illustrating how these
sources of information jointly predict the quantity of the end translation
product (Fig. 4.3B). There is redundancy between the mRNA models, as
pointed out in Paper IV, and }?gen,e is additionally trained on mRNA
stability variables. = Moreover, the codon frequency and amino acid
sequence data are clearly overlapping in terms of information as well.
The redundancies in these four estimators is evident in the performance of
the combinations listed here, with very close performance obtained from
the various combinations of three predictors, and the highest variance
explained obtained from using all four.

Considering only the sequence-based random forest model (Fig. 4.3C),
each estimator contributes roughly a third in terms of importance to
the model, in decreasing order of codons, amino acid sequence, and
regions. It is known [HTF09] that the random forest variable importance
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measure tends to be rather uniform, with the ranking as the most salient
distinction. It should be stressed however that these percentages reflect
their importance to the random forest model, based on the respective
partial deep models used to obtain these estimators (the performance of
said models incidentally decreasing in the same order), and should not be
interpreted as a direct reflection of the ranking of the associated molecular
quantities and physical processes in their roles toward the resulting protein
abundance.

This simpler surrogate model outlined here, based on regulatory
regions, codon frequencies, and amino acid sequence shows that piecewise
modeling along the processes in the central dogma can yield good
predictions from sequence alone, leveraging the good performance of each
partial model. Moreover, such an approach alleviates computational cost.
In the example presented here, we are dealing with few estimators and
partial models on a relatively simple (essentially linear) network model.
Regardless, as argued above, bridging the work in Papers 1II and IV by
training a full DNA-to-protein-abundance model (especially of the BERT
variety) is severely limited by the size of the input data (full genes and
upstream and downstream regions) and the model complexity required to
learn these data. However, even when such a technical challenge will be
overcome for this particular case, the approach presented in this section
could conceivably be taken with much larger process networks and perhaps
expanded to consider graphical models or similar formalisms that account
for the topology of the network (and associated inferences), as well as
the uncertainty around each partial prediction. Conversely, training deep
neural network models may not be feasible for large models of this sort due
to both the size of the data as well as the way the model complexity (and,
implicitly, training time) might scale with the data.
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Figure 4.3: A surrogate model from piecewise estimators improves the
prediction of protein abundance. A) Conceptual diagram with explanatory variables
and models around the central dogma. Purple circles depict molecular quantities and
light blue boxes depict DNA and amino acid sequences. Models trained to predict these
molecular quantities from sequence are shown as green octagons, with arrows connecting
the sequences as sources of information to the predicted quantities. The variance explained
(R?) by these models are shown as percentages on the arrows. The CNN models trained on
gene regulatory regions (M,.,) and the full gene, including mRNA stability values (Mgepe),
have been characterized in Paper IV, while the model predicting protein abundance from
amino acid sequence (M,,) is a CNN model retrained on the same train-test dataset split
as the models in Paper IV. M, 40,5 is a random forest model trained here from the codon
frequency dataset used in Paper IV. B) Performance (as variance explained) of random
forest models constructed from all combinations of at least two estimators (and evaluated
on the same test set). All models share the same hyperparameters. C) The performance as
variance explained of a random forest surrogate model trained on the mRNA and protein
abundance estimators derived from sequence information only (i.e. regulatory regions,
codon frequencies, and amino acid sequence). In terms of model importance, the three
estimators contribute roughly a third each.

50
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Proteome

As previously stated in the introductory chapter, once a certain level of
information has been captured by a model or framework, a way is opened
towards engineering desired products. Such is the case with the BERT
sequence-to-abundance model that was investigated in Paper III, as its
structure is conductive to exploring the effect of variation in sequence
space towards the final quantitative prediction. In this chapter, I will
describe in more detail the guided mutation framework developed for
protein engineering applications, thus closing the cycle back to experiment.

Classically, to obtain a protein with desired properties or influence the
composition of the proteome in a certain way, researchers rely on directed
evolution to yield a mutant with the desiderata, thus effectively conducting
a local search in the space of protein sequences [YWA19]. Besides the
experimental costs involved, a random search through sequence space
however is a daunting undertaking, due to the astronomical size arising
from combinatorial explosion. Mutating just 10 residues results in a search
space of 1910 ~ 6 trillion combinations. Moreover, it is assumed that
only a relatively small number of “islands” in this vast space correspond
to functional proteins [YWA19]. Current methods thus perform a sparse
sampling of this space with various mutagenesis methods, then try to move
toward optimal regions (i.e. combinations of amino acids maximizing the
desired effect) by a screening step [PL15; YWA19].

Machine learning can be beneficial for directed evolution pipelines by
providing candidate mutants based on previous rounds of screening, thus
acting like a “shortcut” and alleviating the costs associated with screening.
The data-driven approach is a way to sidestep the computationally
hard problem of sequence optimization and the reliance on detailed
understanding of the physics or biochemical networks involved [YWA19].
There is also the question if some of the aforementioned islands are indeed
accessible through evolution [PL15] or may require an artificially designed
“jump” over regions corresponding to inviable proteins.

For the study in Paper III, I developed a proof-of-concept strategy to
mutate the amino acid sequence of a protein (by substitution only) in order
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to change the predicted output of the deep model. The method allows one
to set how many residues to mutate and the algorithm deterministically
chooses the substitute residues in order to increase the predicted abundance
as much as possible, by taking advantage of the structure of the embedded
space that the BERT network learns. Incidentally, while increase was
the aim of the study, the method can just as well be used to decrease
abundance, should this be desirable. The approach does not require an
iterative experiment-machine-learning pipeline [YWA19] and produces a
mutant sequence for each starting wild type protein.

Similar work includes the support vector machine model developed
in [vdBer+14]. Here, the model was trained on many example amino
acid sequences from Aspergillus niger to discriminate between low and
high production proteins. The predicted classification was used as a
criterion in an iterative sequence mutation procedure relying on a genetic
algorithm. The common aspect with my method is the reliance on the
representation space used by the model to “sort” sequences from low to
high abundance. However, the BERT network I used is a continuous
map from sequence to abundance. Moreover, as I outline below, no
iterative sequence optimization is required. A sequence deemed to be
optimized is returned directly. Other current approaches to learning
abstract representations of protein sequences focus on unsupervised models
(i.e. without target values), which aim to cluster a large number of
sequences across many organisms, in order to improve performance of
downstream machine learning tasks or at least offer a lower dimensional
feature space to model [Yan+18; All+19]. Additionally, these clusters may
capture some physicochemical properties or secondary structure features
[All4+19]. In contrast, the BERT network has been specifically targeted
towards predicting abundance in S. cerevisiae and it is expected its internal
representation reflects this specifically. Connections between the two
approaches are an intriguing future direction.

In the second part of this chapter, I will intuitively describe the guided
mutation framework in Paper III and the motivations behind it.

The core assumption is that the embedded space into which the
BERT encoder maps sequences is structured in such a way that point
clouds rather “closely” follow the order of abundance values predicted
from them. The assumption is motivated by the thin predictor stack
further mapping into protein abundance (consisting of only two dense
layers, see Fig. 1B in Paper III), which would imply that the way the
sequences are represented in the embedded space ought to reflect their
distribution in the target abundance space. This would be an example
of a “manifold hypothesis” [GBC16], stating that representations of input
data lie on a lower-dimensional manifold. See Fig. 4A in Paper III for
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a conceptual illustration. Additionally, given that the target space (R)
is a totally-ordered set, my intuition was that this strict structure would
further constrain the topology of the embedded space, such that the point
clouds corresponding to each sequence would be ordered if not totally, then
partially but “close” to a total order. The point clouds are thus expected
to lie on a geodesic in F that reflects the total ordering of the real values
each cloud is mapped to.

Slightly more formally, let £ C P (R1024) be the embedded vector space
into which the BERT encoder e maps sequences. F consists of sets (or point
clouds) of 1024-dimensional vectors (or points), each vector representing
a residue in the amino acid sequence. So E = {e(s) | V sequence s €
sequence space S}. Note that BERT uses a positional encoding of the
protein sequence, meaning an amino acid (“letter”) will generally have
different embedded values (1024-dimensional points) depending on where
in the sequence it occurs. FEach point cloud c¢ is then mapped by the
predictor layer p into R. Let us furthermore assume that points clouds are
“clusters”, i.e. points in a cloud are generally closer to each other than to
points in another cloud. This appears to be the case when tested with the
UMAP projection described below. See Fig. 5.1 for an illustration of these
structures.
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Figure 5.1: Idealized description of the BERT model and the embedded
ordering construction used for mutation. The BERT network consists of two
composed maps e and p (encoding and prediction, respectively). The first takes a sequence
and assigns it a set of points (or point cloud) in the 1024-dimensional embedded space
E learned by the model (each residue in the sequence being assigned a point). The map
p takes the point cloud of an e-mapped sequence (e.g. ¢;) and outputs a real number
(p(c1)), the predicted protein abundance. The UMAP projection o takes the point cloud
of a sequence and assigns each 1024-dimensional point in the cloud to a real number. The
codomain of o is referred to as O to distinguish it form the codomain of p.

Now, to describe the structure of the spaces in question, we have the
target abundance space R with the total ordering <. Then we posit the
order < between elements of E satisfying

1 < o= plcr) < ples) (5.1)

where c; and ¢y are two point clouds in £/. This is perhaps an optimistic
ansatz, but is expected to cover most sequences given as input to the
encoder and serves to fix the intuition of structure preservation through p.
Note that p is not injective, as there are proteins with the same median
abundance in the dataset.

It is however unclear how the < order arises from the contribution of
each point in a cloud. Still, given the previous assumption that point
clouds are clusters in this space, conceivably, by virtue of the left-right-to
implication, when shifting subsets of points in a cloud ¢ toward regions
that are known to be higher-valued in terms of p, the shifted cloud ¢ is
expected to obey p(c) < p(c).

But how do we shift a point in R!“* towards a region with high
predicted abundance? The geodesic on which this movement would occur is
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the one that respects < but we do not know how this is expressed in terms
of individual points and the very high dimensionality confounds approaches
based on distances within . The approach I took was to perform a
non-linear dimensionality reduction using Parametric UMAP [SMG20]
from R'%?* down to R, as UMAP was designed aiming to preserve local
topology [MHM18], in our case the point clouds. The intent was to have
a proxy space (R) with understandable movement of points corresponding
to residues. To simplify discussion, let the UMAP projection be labeled
as o : R — O c R, and, forcing notation, let this designate both the
projection of a point or a point cloud, i.e. o(c) = {o(r) | r € ¢}, where r
is the point corresponding to a residue in the sequence. This construction
I call “embedded ordering” in the paper. The “parametric” variety of
UMAP was chosen because it returns the map o itself, not just the set of
projected points, which allows us to project any new arbitrary points from
E. The neural network underlying this type of UMAP was trained on the
points corresponding to start tokens of each sequence, as BERT forward
“routes” information from the entire sequence through these nodes (i.e.
they appeared as good representative points for each cloud).

Because the projection is done down to 1D, this induces a total order
< between the projected points. Note that for our purpose, the relative
distance between point clouds (now on the line O) is less relevant than
their order. The only expected problem is that some point clouds will be in
swapped order on O compared to < in E, given UMAP does not guarantee
preserving global topology. To assess this, I computed the centroids in
R1924 of the point clouds of all sequences, projected them with o, then
rank-correlated them with their BERT abundance predictions, obtaining
Spearman p = 0.85 (Fig. 5.2A). As the Spearman rank correlation can
be seen as gauging the monotonicity of the function mapping one of its
argument variables to the other, the UMAP projection o thus appears
approximately order-preserving (via composition with the average).

In addition, I computed the centroids (in R) of o-projected point
clouds of all sequences, and again correlated these centroids with predicted
abundance values. This gave a p = 0.83 (Fig. 5.2B), which is more evidence
that o preserves structure with respect to the order < on E. So, empirically
for our dataset, in most cases we have:

(o(er)) < {olca)) =" pler) < plea) (5.2)
0((c1))) < o((e2)) =2 p(er) < plea) (5.3)

where () denotes average, i.e. the centroid of a set of points.
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Interestingly, while ((J) and o do not commute, in 97% of cases we have

(o(c)) < o({c)) (5.4)
(and their rank correlation p = 0.9). While unclear what this says
about o or F, it seems to show a systematic “bias” rather than disorder.
Given the above evidence, while considering the centroids as
representatives of point clouds (both in E and O), I deemed the movement
along the O axis to be a good enough proxy for the movement of points
on the geodesic in F, and, consequently, as a way to tweak the embedded
values of a sequence to increase its abundance. An intuitive way to think
about the value on O of a single residue is as its global ranking or sorting
(i.e. across all sequences) of its contribution to the predicted abundance
value of its sequence.
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Figure 5.2: The UMAP projection approximately preserves the structure
of the embedded space E. Both plots have the points corresponding to the lowest
and highest predicted sequence value highlighted by a red square and a blue circle,
respectively. A) Correlation between centroids on O of UMAP-projected point clouds
from the embedded space E with predicted (Box-Cox-transformed) protein abundance.
B) Correlation between UMAP-projected centroids of point clouds in F with predicted
(Box-Cox-transformed) protein abundance.

In order to substitute a residue to increase predicted abundance, the
O value of its embedded 1024-point is increased by a large amount, thus
shifting it into a region corresponding to high-abundance clouds. This then
requires a way to get the amino acid that corresponds to this increased O
value. However, we do not have a backward mapping from this space to
amino acids. As a workaround solution, I opted for a guided approach,
taking the point clouds of the 5 highest abundance sequences as substitute
candidates. (The number is arbitrary and more than one sequence was
taken to allow for some diversity.) The algorithm chooses the closest point
on the O axis in any guide cloud to the increased O value (Figure 4C in
the paper). The amino acid corresponding to this guide point is used as
substitute for the wild type residue chosen for mutation. The intuition
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behind this was that however that guide point contributes to the high
abundance of its guide sequence, it should fulfill a similar role for the wild
type sequence, as it is closest to the increased O value of the wild type
residues under mutation.

To reiterate, the mutation algorithm for a sequence s,; using the
embedded ordering proceeds as follows:

Algorithm 5.1 Guided Mutation Algorithm

1: Set the number of residues k£ to mutate

2: Project the embedded w.t. residue points e(s,;) with UMAP down to
O

3. Choose the top 5 highest abundance sequences as guides and project
their point clouds down to O as well

4: Choose the k residues with the lowest O values (lowest “ranking” or
“contribution”) for shifting

5: Increase the O values of these k points with a large amount. In the
paper, a fixed value of 10 was chosen as this spans a good deal of the
range of values in O across all sequences (the abscissa in Fig. 4B in
the paper). (Decrease the value if the goal is lowering the predicted
abundance.)

6: For each increased O value:

1. find the closest guide point on O

2. take the amino acid corresponding to this guide point (i.e. from
the guide sequence)

3. substitute the residue in s,; with this amino acid

It would be perhaps improper to say this framework gives transparency
to the model, as it relies on the distorting UMAP projection to
approximately map the topology of the network’s embedded space, based
on several assumption about this high-dimensional space. Regardless, it
provides a way to bypass understanding of the exact behavior of the model
and perform an optimization task on protein sequence space. Of course,
much of this framework is predicated on the performance of the model
and how well it is able to approximate an ideal sequence-to-abundance
function. Still, n silico results were orders of magnitude larger than
random mutation (Fig. 4D in the paper). And as suggested above,
there is room for improvement. The ideal version of this method would
have a mapping from O back to sequence space, giving an amino acid
for an arbitrary O or E point, without the need for guide sequences.
Further investigating the properties outlined above more thoroughly (and
rigorously) was beyond the scope of the study.
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In terms of method development, my attempt was to approach the
probing and mapping of the spaces learned by the model in a systematic
fashion, inspired by order theory and topology, as well as the intuitive way
deep models are understood to behave.

Finally, it should be noted that the framework is generally applicable to
any sequence-to-reals BERT model, not relying on any domain knowledge.
Quite likely it generalizes to other types of deep models as well, provided
they learn a similarly-structured embedded space. While it is not clear how
important the positional encoding is for the approach, this type of encoding
is however a common feature in current sequence models [Vas+17].
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6 | Conclusions and outlook

In this thesis I have described the data-driven approach to studying the
proteome, first by outlining the philosophical outlook, a complementary
approach to hypothesis-driven research, then by giving examples of its
usage and the benefits of deep machine learning techniques to model
complex biological systems, showing that much can be learned from
only sequence data, as the carrier of both functional information and
evolutionary conditioning, and finally by discussing how the derived
deep models may be used to generate new hypotheses, either directly
by inspecting their inner workings, or by using them to validate more
mechanistic models. In the main chapters of the work, I have listed several
projects that take advantage of both large amounts of experimental data
and computing power, two crucial underpinnings of the approach.

The first application was the efficient implementation of an unsuper-
vised decomposition procedure of dense mass spectrometric data, enabling
its application to high-throughput protein quantification. Benefits of
the pipeline are the recovery of the majority of scan signal, in contrast
to existing methods relying on spectral libraries, and enabling precise
quantification using standard downstream software. As a data-driven
methodology, the variability in the data itself is used for the decomposition,
with a limited amount of natural assumptions, such as non-negativity and
the elution behavior of analytes.

The other three papers included in the thesis demonstrated that
sequence alone may be used to predict different aspects of proteomic
phenotype. From amino acid sequence one may predict optimum organism
growth temperature and thereby learn protein features which can be
repurposed to related problems, for instance predicting enzyme catalytic
temperature. This type of sequence data was also used in a more abstract
model to predict protein abundance, and, similarly, a deep model was
trained to predict mRNA abundance from DNA sequence.

By probing these models through different techniques, insights were
gained into the sequence logic that determines their predictions. The
gene was shown to be a co-evolving unit, where regulatory and coding
regions control the level of transcript in tandem. Moreover, a grammar
of motif combinations across the regulatory regions was derived and
used for engineering. As a determinant of the cell’s protein content,
the interactions of residues along the entire length of the amino acid
sequence were shown to be relevant and hierarchically organized. Moreover,
physicochemical properties and various domains were highlighted as
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relevant for the predicted protein amount. The sequence features learned
by the temperature-predicting model showed agreement with known factors
that influence the thermal adaptation of proteins, such as hydrophobicity
and secondary structure. Additionally, the most prediction-relevant
domains for higher temperatures were those associated to metabolic
processes and response to stress, hinting at the importance of these for
thermophilic organisms.

To gain more benefit from the transcript and protein quantity
predicting models described in the respective papers, I illustrated
how they may be combined to yield improved predictions of protein
amounts, by constructing a meta-model using predictions as surrogates
of the sequence-dependent models themselves. Thus, while technical or
complexity limitations can hinder development of an overarching deep
model, such surrogate or, alternatively, heterogenous ensemble models may
be constructed by composing partial models of the greater system.

Finally, I have described a mathematical approach to sort and
manipulate the sequence representations learned by the Transformer-type
deep model, allowing for an exploration of sequence space informed by
the learning task that can be used to support engineering by providing
optimized protein mutants. The framework relies only on the manifold
hypothesis that the representations are organized in a near linear fashion
in the embedded space of the deep model. It is thus usable for any similar
sequence-to-value model, provided it was able to adequately learn its task.

In closing, it is enticing to think about further developments that
integrate data-derived models and the overall understanding and theory
building. =~ While uncertain that a hypothetical Biological Theory of
Everything may be formulated through a only handful of laws, at least
with current approaches, or that its formulation would provide effective
predictive models, the integrative program of systems biology and related
areas provides a guide for bridging different modeling and theory-building
paradigms, of which the data-driven approach is one. On the other
hand, the drawback of the powerful deep learning models currently in
wide use across science is their opaque or extremely complicated inner
workings. However, efforts are being made to construct more transparent
models, that would lend themselves to easier human interpretation. On
the experimental side, technological advances are yielding ever increasing
amounts of data to explore. It will be most intriguing to see whether
such developments will foster new analytical frameworks or perhaps even
a new calculus of deep learning to be used in building models. But the
factor I suggest is ultimately essential is the collaborations and insights
through multidisciplinary participation, as the nature of projects that
model complex biological systems demands sustained awareness of different
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fields and receptiveness to evolving techniques, almost regardless of how
initial goals of such projects are satisfied. As with many things, the
scientific journey is at least as important as the destination.
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A | Appendix

Table A.1: CNN parameters after hyperparameter search respecting the
train-test split of the mRNA data in Paper IV. The range of the hyperparameter
search is the same as the one in Paper III (Supplementary Information). The network
consists of 7 convolutional layers with batch normalization and dropout, each layer with
the given number of filters, convolutional kernel size, dilation rate, and connection dropout
rate.

Hyperparameter Value
num_convld_layers 7
learning rate 0.0006
beta_1 0.714
beta 2 0.714
filters 0 64
kernel size 0 40
dilation_rate O 3
convld_dropout_rate 0 | 0.81
filters_1 128
kernel size_1 50
dilation rate_1 1
convld_dropout_rate_1 | 0.5
filters_ 2 128
kernel size 2 80
dilation_rate 2 5)
convld _dropout_rate 2 | 0.83
filters.3 64
kernel size 3 80
dilation rate_ 3 1
convld_dropout_rate_3 | 0.565
dense_units_0 128
dense_dropout_rate 0 | 0.346
dense units_1 128
dense_dropout_rate_1 | 0.842
filters 4 64
kernel size 4 20
dilation_rate 4 1
convld_dropout_rate 4 | 0.1
filters b 64
kernel size 5 20
dilation rate b 1
convld dropout_rate 5 | 0.1
filters 6 64
kernel size 6 20
dilation rate 6 1
convld_dropout_rate 6 | 0.1
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Table A.2: Hyperparameters of the random forest surrogate model. All other
parameters were left as default (scikit-learn 0.22.2).

Hyperparameter | Value | Description

n_estimators 5000 n. of trees in the ensemble

max_depth 10 depth limit of trees in ensemble

min _samples_leaf | 2 the n. of samples of lead nodes

bootstrap True | whether to use bootstrapping (training set sampling)
max_features sqrt size of training set sample

random_state 42 random seed to reproduce results

Table A.3: Software used for the results in the thesis.

Package Version | Use

scikit-learn | 0.22.2 random forest and linear regression mdoels, data processing
tensorflow | 2.3.0 CNN models

keras 1.1.2 CNN models, data processing

numpy 1.18.5 general

scipy 1.5.3 general

pandas 1.2.2 data processing and analysis

seaborn 0.11.1 plotting

matplotlib | 3.3.2 plotting

upsetplot 0.4.1 plotting
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