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SUMMARY

Global land systems are increasingly shaped by international trade of agricultural products. An increasing
number of studies have quantified the implications of agricultural trade for single different aspects of land
system sustainability. Bringing together studies across different sustainability dimensions, this review inves-
tigates how global agricultural trade flows have affected land systems and resulting impacts on food and
nutrient availability, natural habitat conversion, biodiversity loss, and ecosystem carbon storage. We show
that the effects of trade on land systems are highly heterogeneous across regions and commodities,
revealing both synergies and trade-offs between improved nutrition and environmental conservation. For
instance, we find that while the concentration of cereal production in North America has spared land, the
increased demand for tropical products induced by trade has negatively impacted tropical ecosystems.
Based on the current state of knowledge, we identify six pathways for how future research can contribute
to amore comprehensive understanding of how agricultural trade can positively contribute tomeeting global
sustainability goals.
INTRODUCTION

Land systems encompass not only the terrestrial component of

the Earth system, but also ‘‘all processes and activities related

to the human use of land, including socioeconomic, technological

and organizational investments and arrangements, as well as the

benefits gained from land and the unintended social and ecolog-

ical outcomes of societal activities.’’1 Land systems are thus

essential to the functioning of both social and ecological systems.

Among other ecosystem services, land systems provide societies

with food, material, and energy resources. At the same time, how

wemanage land resources hasmajor implications for central sus-

tainability challenges, such as the provision of sufficient and nutri-

tious food and the climate and biodiversity crises.

In preindustrial times, most land systems were largely local

systems, and trade was only a viable option for very high-value

goods or between cities and their immediate hinterlands. Indus-

trialization has opened these local systems, with trade flows be-

tween systems becoming a central component.2 These trade

flows encompass both agricultural inputs, such as fossil fuels

and artificial fertilizers, which are typically traded over large dis-

tances, and the many outputs of land systems, for instance food

resources exported to areas that are limited in their natural

resource endowments.3 Recently, the spatial disconnect be-
One Earth 4, Octob
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tween different components of land systems has attracted

increased scholarly attention.4,5 However, although many

studies have been conducted around the topic of this spatial

disconnect, most have focused on the impact of international

trade on a single dimension of land systems (e.g., food availabil-

ity, carbon, biodiversity, or nitrogen) or have explored telecou-

plings between individual, distant social-ecological systems.4

We address this knowledge gap by jointly reviewing quantitative

global studies across multiple sustainability dimensions and by

providing an integrated analysis of the implications of interna-

tional trade on land systems. In particular, our review focuses

on food availability and habitat conversion and its effect on

ecosystem carbon and biodiversity.

Since the industrial revolution, growing trade volumes have

increasingly driven transformations of land systems. Looking at

the major output of land systems, a body of literature has asked

how trade alters the quantity and quality of food and nutrients

available for human consumption around the globe. Other studies

have quantified how increasing trade volumes alter ecological

characteristics of land systems, which represents a central

aspect of global change. International trade has been identified

as a driver of recent conversions of natural habitats (e.g.,

deforestation). Such habitat conversions are the largest driver of

biodiversity loss and they induce land-use change emissions, a
er 22, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 1425
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Figure 1. Schematic view of links between local land systems and remote markets
(A–D) The thickness of arrows symbolizes the approximate biophysical extent of the respective energy flows in (A) typical agrarian and (B) typical industrial
globalized land systems (italic font refers to conditions for some land systems only), and in the example of Vallès County in Catalonia, Spain in (C) 1860 and (D)
1999, based on Marco et al.,17. Export quantities were estimated based on the assumption that in 1860 food and energy was consumed locally and only the
surplus was sold, while in 1999 all production was assumed to be exported.

ll
OPEN ACCESS Review
major component of the global carbon budget. The climate and

biodiversity crises are among the major sustainability crises the

global community faces today,6 with changeswithin land systems

being central to addressing both, as recently elaborated in

assessment reports by the Intergovernmental Science-Policy

Platform on Biodiversity and Ecosystem Services and the Inter-

governmental Panel on Climate Change.7,8

Bringing the different dimensions together in a quantitative

assessment, we compile available global-level data on these is-

sues and integrate them into a common analysis framework.

Our integrated approach, discussing several major sustainability

implications of international trade on global land systems, is

important in light of the United Nations’ sustainable development

goals framework where a holistic and multi-indicator analysis is

encouraged to identify trade-offs and synergies.9 Drawing on

insights from the reviewed literature and the integrated multi-

dimensional analyses, we end this review by laying out major

challenges for research that address the links between agricul-

tural trade and land systems.

Throughout this review we take a global perspective, as-

sessing patterns in agricultural trade and associated impacts

across large spatial scales. While this assures comprehen-

siveness, it also implies we miss some nuance and detail

that affect how these processes play out locally, in different

contexts and places. The focus is largely on studies quanti-

fying impacts of agricultural trade on nutrition and habitats;

i.e., we do not cover the burgeoning literature on how to

govern land use and trade in an increasingly telecoupled

world (see, for instance, Friis and Nielsen4 and references

therein). In addition, other sustainability dimensions such as

the impact of international trade on freshwater use, biogeo-
1426 One Earth 4, October 22, 2021
chemical cycles, livelihoods, and human development were

beyond the scope of our review.

AGRICULTURAL TRADE FROM PREINDUSTRIAL TO
MODERN TIMES

With the industrial revolution (c. 1800 to c. 1950), international

trade in agricultural commodities shifted from primarily consist-

ing of international exchange of cultivars, denoted as the

‘‘Colombian exchange’’ where plant breeds, such as potatoes

or tomatoes, were traded to be cultivated in remote places, to

trade in crops or food commodities.10,11 Comprehensive quanti-

tative global assessments of trade in agricultural products during

the industrial revolution are scarce,12 but impacts of trade on

land systems in this period can be inferred on the basis of frag-

mented evidence. During the industrial revolution, international

trade in agricultural products increased steadily13 through tech-

nological innovation, resulting in a reduction of steamboat trans-

port costs and an expansion of railway networks14 as well as

increasing international trade liberalization.15 The increases in

agricultural trade transformed agrarian land systems around

the globe in various ways, in terms of both inputs to and outputs

from land systems16 (for a schematic representation, see

Figure 1).

Agricultural trade during the industrial revolution
Global agricultural trade during the industrial revolution, i.e., from

the 19th century to c. 1950, contributed to increasing agricultural

production and to overcoming constraints of preindustrial agri-

cultural production and consumption.18 Agricultural expansion

in North America and Russia provided produce to domestic
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urban centers and to Europe.13 Trade was already then linked to

deforestation, for instance in regions of Central Europe.15 Agri-

cultural expansion enabled mobilizing additional soil nutrients

for production.19 In addition, trade in fertilizers included guano,

or phosphorus,20 before the production and trade in synthetic ni-

trogen fertilizer took off.21

Trade also impacted regional specialization and land-use

intensification in the 19th and early 20th centuries. Regions

accessible for (sea) transport specialized in early cash crops,

such as cocoa, wool, or cotton in the European colonies22–24

or wine in Mediterranean Europe.25 The growing industrial cities

of the 19th century exerted increasing pressure on their domes-

tic hinterlands for the provision of food,26,27 contributing to land-

use intensification. At the national level, the United Kingdomwas

the country dominating international agricultural trade in the 19th

and early 20th centuries.28 It has been characterized as external-

izing large amounts of land use in the 19th century by importing

cereals while exporting mostly coal and manufactured

goods.29,30 By the beginning of the 20th century, other European

countries gained importance as major importers of agricultural

products,13 as demonstrated for example in a recent quantifica-

tion of net agricultural imports to Spain.31 After World War I,

Russia ceased being a major exporter of agricultural products13

while exports from Latin America became increasingly important

in the early 20th century.32

The ‘‘Great Acceleration’’ of agricultural trade
Since World War II, a new dynamic of land system change and

international trade set in, part of the ‘‘Great Acceleration,’’10,11

which resulted in further—and qualitatively different—industrial-

ization and globalization of land systems. Trade in agricultural

and forestry products grew at increased rates in absolute terms,

even though fossil fuels emerged as the most important material

category in terms of globally traded volume.33 The universal

availability of fossil fuels lifted many of the input limitations of

local land systems in large parts of the world.18,34 Despite

growing in absolute volume, trade in agricultural and forestry

products declined as a fraction of total global trade, amounting

for only 15% of the volume in 2010,35 and the monetary share

of agricultural products in total merchandise trade declined

from 25% in 1961 to 8% in 2010.36

As for the outputs of land systems, cereals continued to be

the major bulk commodities in agricultural trade, while feed

crops, such as soybeans, gained significance in quantitative

terms.37–39 By supplying livestock production rather than final

consumption, trade in feed and fodder products became a

new type of major external input in some specialized industrial-

ized local land systems.17 In addition, specialized cash crops

such as palm oil started impacting many local and regional trop-

ical land systems, increasingly supplying global markets in

recent decades (e.g., Lee et al.40).

Since the 1980s, less densely populatedworld regions such as

Latin America, North America, and Australia further manifested

as major supply regions providing agricultural products to

densely populated regions such as Europe and, increasingly,

East Asia.38,41 While China became a major importing market

of agricultural products after a shift in trade policy in the early

1980s,42 Russia and the countries of the former Soviet Union

turned from net importers to net exporters of agricultural prod-
ucts in the period since 1990.43,44 This spatial pattern of agricul-

tural products being traded from less densely populated regions

to more densely populated regions, irrespective of income

levels, is unique to agricultural and forestry products. Other re-

sources tend to be exported from lower-income world regions

to world regions of higher income in general.45

Based on global databases provided by the United Nations’

Food and Agriculture Organization,36 studies have shown that

in the past three decades the amount of traded food has more

than doubled, accounting for about a quarter of total global pro-

duction,46 implying that around 25% of humanity’s food (caloric)

requirements are fulfilled through crop product trade. Just five

crops—wheat, soybean, palm oil, maize, and sugar—account

for approximately 60%of traded calories and 44%of traded pro-

tein, respectively.46 This food trade is being enabled by devoting

�20% (245 million hectares) of global harvested cropland area

and �11% of permanent pasture area (365 million hectares) to

export production.47 In addition, the average number of food

trade partners per country has more than doubled in the past

three decades.46 While the United States alone contributed a

quarter of traded food in 1986, this share had declined to 17%

by 2009 with the emergence of Indonesia and Brazil as major ex-

porting countries.46 Studies have also identified the countries of

origin and the amounts of individual food items imported by each

country to highlight the dependency of a country on others for

fulfilling the demand for individual foods domestically.48 For

example, Scheelbeek et al.49 showed that most of the demand

for fruits and vegetables in high-income countries such as the

United Kingdom is met by imports from low-income countries.

AGRICULTURAL TRADE, NUTRITION, AND FOOD
SECURITY

The trends described in the previous section have led to a situa-

tion where today 80% of the world’s population lives in countries

whose total calorie imports exceed calorie exports, highlighting

the role of trade in meeting food supply.50 For instance, North Af-

rica and the Middle East do not produce enough food to feed

their populations but fulfill their nutritional requirements through

imports, while East Africa and Sahel do not achieve food suffi-

ciency even after their food imports.46,51 Even China and West-

ern Europe, despite producing enough calories domestically for

their population, are net food importers.46 This is partly explained

by the increasing spatial disconnect in livestock production,

whereby large quantities of feed are produced far from the pla-

ces where livestock are reared.52 At the same time, some major

net food exporters, namely the United States, Brazil, Argentina,

Indonesia, France, Canada, and Malaysia, are able to maintain

their food sufficiency even after exporting a substantial amount

of food produced domestically because of high production levels

in relation to their populations.

Impacts of trade on micronutrient availability
Apart from calories, humans need other macronutrients such as

protein, fiber, and several essential micronutrients (vitamins and

minerals) for a healthy life. Recent studies have shown that inter-

national food trade enables many countries to meet their micro-

nutrient requirements and that a counterfactual scenario with no

trade would leave millions of people malnourished in many
One Earth 4, October 22, 2021 1427
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countries.53,54 For example, the sufficient availability of folate

and zinc in Mexico, Spain, and Saudi Arabia is enabled through

their food imports while the iron requirements of the Chinese

population would not be met through current domestic produc-

tion levels but are covered by imported food and feed.54

Still, over 2 billion people worldwide are currently suffering

from ‘‘hidden hunger,’’ meaning their diets are deficient in one

or more essential micronutrients.55,56 Trade does not always

help address this: Clark et al.57 point out instances where inter-

national trade agreements, such as between the United States

andMexico, have increased the supply of foods linked to obesity

(e.g., corn, soybeans, sugar, snack foods, and meat products).

This has contributed to deterioration of dietary quality in Mexico

and increased the per capita intake of foods of health concern

such as sugar, sodium, cholesterol, and saturated fats.

The structure of global food trade
While trade enables nutritional security in many countries, it also

highlights their vulnerability to any future shock in international

trade. Torreggiani et al.58 identified the community structure of

global food trade and found that countries tend to cluster into

trading blocs for different food commodities depending upon

their geopolitical relations and socio-economic conditions. For

instance, in a North American cluster, Central and South America

trade food with the United States and Canada. Brazil, and

Argentina are found to often set up alternative communities inde-

pendently. Russia is generally involved in a cluster with former

Soviet Union countries and a few Middle, Eastern, and Northern

African (MENA) countries such as Egypt. European Union coun-

tries mostly belong to the same cluster, which sometimes trades

with the Russian cluster but rarely with the United States. East

and South Asian countries, e.g., Japan, China, and India, typi-

cally belong to different food trade communities than Southeast

Asian countries, e.g., Thailand, Vietnam, and the Philippines.58

Such community structure analyses can be used to under-

stand the vulnerabilities of different countries to production

shocks within their trade partners. For example, d’Amour

et al.59 pointed out how the unusual heat wave during 2008–

2010 reduced the wheat yields and total production in Russia,

which led it to restrict exports. This resulted in increased market

prices for wheat across the importing nations in the Middle East,

likely contributing to the Arab Spring.

Kummu et al.60 found that the increase in supply diversity of

fruit and vegetables over the period 1987–2013 came with

increased dependency on imports for most countries, with

some countries—such as China and Japan in Asia and Mexico,

Colombia, and Venezuela in Central America—being particularly

vulnerable to the future shocks in the global fruit and vegetable

trade network due to a low number of import partners. Beltra-

Peña et al.61 highlight future hotspots of crop production deficits,

reliance on food imports, and vulnerability to food supply

shocks, and point out that most countries in Africa and the Mid-

dle East will continue to be heavily reliant on imports throughout

the 21st century.

Another emerging trend linking land systems with nutritional

security is the acquisition of almost 100million hectares of global

agricultural land by foreign investors and affluent countries since

the early 2000s, striving to ensure future supply of food.62 The

exports from already undernourished countries are more likely
1428 One Earth 4, October 22, 2021
to embody more agricultural land than their imports, and the im-

ports of food-secure countries generally have higher embodied

land than the imports of countries where undernourishment is

prevalent. Land acquisitions therefore tend to reduce the crop-

land availability per capita in undernourished countries, further

jeopardizing their food security.62 M€uller et al.63 found that

many of the land deals in Asia and sub-Saharan Africa increase

the area efficiency of land systems but at the same time threaten

local nutritional security by shifting the production away from

local staples toward export-oriented crops.

CLIMATE AND BIODIVERSITY IMPACTS OF
AGRICULTURAL TRADE

The previous section has highlighted how trade in agricultural

products affects food and nutrient availability in various ways.

In this section, we review literature focusing on ecological im-

pacts of agricultural trade. The conversion of natural habitats,

such as tropical forests, woodlands, and savannas, to cropland

and pastures is a key driver of both climate change and biodiver-

sity loss, from local to global scales.7,8 Understanding the role of

agricultural trade in driving these land-use changes is therefore

key to forging effective conservation and sustainable-sourcing

policies. In recent years, an increasing focus on agricultural sup-

ply-chain sustainability and zero-deforestation commitments of

global agribusinesses64,65 turned the spotlight on the links be-

tween agricultural trade flows, tropical deforestation, and the

consequent impacts on climate and biodiversity.

Linking deforestation to trade
Early econometric studies trying to link (agricultural) trade to for-

est loss were severely hampered by lack of consistent data on

deforestation and methodological challenges66,67 and showed

mixed effects of trade on forest cover. Barbier68 and Barbier

et al.69 suggested that increased trade leads to higher deforesta-

tion by driving agricultural expansion, while López and Gali-

nato66 showed that the relationships between trade and defores-

tation were highly context dependent. On the one hand, where

deforestation was mainly driven by smallholder agriculture,

reduced poverty and substitution of subsistence crop produc-

tion for imported commodities meant that trade helped take

pressure off local forests. On the other hand, where deforesta-

tion was driven by export agriculture, an increased openness

to trade tended to increase pressure on forests.

With deforestation increasingly being driven by commercial

agricultural production, especially by export commodities such

as soybeans, palm oil, and cash crops,65,70 we should thus

expect that agricultural trade increasingly contributes to forest

loss. This is also what more recent cross-country studies find:

DeFries et al.71 and Leblois et al.72 both showed that in the early

2000s, forest losses in the tropics were higher in countries with

more agricultural exports and better terms of trade (Table 1). In

line with results from these cross-country studies, Faria and

Almeida73 found that municipalities in the Brazilian Amazon

that were more open to trade tended to have higher deforesta-

tion rates, even when controlling for the main drivers of defores-

tation, beef and soybean production.

Again, though, Leblois et al.72 have shown how the links

between trade and deforestation are heterogeneous: trade



Table 1. Overview of econometric studies assessing the role of trade in agricultural commodities in driving natural habitat loss

(tropical deforestation)

Reference

Coverage

Habitat loss embodied in tradeTemporal Geographic

DeFries et al.

(2010)71
2000–2005 41 tropical countries net agricultural trade (per capita) is positively

correlated with forest loss

Faria and Almeida

(2016)73
2000–2010 Brazilian Amazon

(732 municipalities)

municipalities that are more open to trade exhibit

higher deforestation rates

Leblois et al.

(2017)72
2001–2010 128 low-income

countries

trade measures (openness, terms of trade and

agricultural exports) are positively correlated with

deforestation in high forest cover/low-income

countries

Abman and

Clark (2019)74
2001–2012 189 countries trade liberalization through regional trade

agreements drives increases in tropical

deforestation through agricultural area expansion
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openness primarily induces deforestation in Latin America (and

not in Africa or Asia) where commercial agriculture is a key driver

of forest loss. Increases in agricultural exports drive deforesta-

tion mainly in countries with large remaining forest areas (i.e.,

countries in the early stages of the forest transition) and not in

forest-scarce countries. That increased agricultural trade drives

agricultural expansion and associated forest loss (and not the

opposite) is corroborated by Abman and Lundberg,74 who

showed that trade liberalization through regional trade agree-

ments on average increased forest loss in tropical low-income

countries by 48% in the 3 years following their enactment.

Quantifying embodied deforestation
While econometric analyses provide evidence on a general link

between agricultural commodity trade and tropical forest loss,

these studies do not give any detail on the commodities driving

deforestation in different places, nor do they quantify the associ-

ated environmental impacts embodied in agricultural trade.

Recent analyses based on combinations of remote sensing

data, agricultural statistics, and trade models are starting to

shed light on these issues.

These studies have confirmed the general picture that agricul-

tural trade is a significant driver of deforestation due to land

expansion. Pendrill et al.75 estimate that on average 40% of all

deforestation due to cropland expansion was embodied in trade

in 2005–2013. As seen in Table 2, for export commodities such

as soybeans and palm oil, international demand represents a

much larger share (60% and above). Although demand for beef

is primarily domestic in Latin America, due to the outsized role

of pasture expansion in driving deforestation, forest loss and

associated carbon emissions embodied in beef exports from

this region still rival or exceed those from soy, constituting nearly

a fifth of all deforestation embodied in global agricultural trade.76

In absolute numbers, exports of beef, soybeans, and palm oil

from a handful of countries in Latin America and Southeast Asia

are linked to deforestation of hundreds of thousands of hectares

annually. On the consumption side, China and the European

Union play a central role, being major importers of deforestation

embodied in both soybeans and beef from Latin America as well

as palm oil from Southeast Asia.76,78,79,82,84 Russia and Middle

Eastern countries are also major importers of deforestation

attributed to Latin American beef,76,78 while India and other
Asian countries are major importers of palm oil deforestation

embodied in exports from mainly Malaysia and Indonesia.76,79

Overall, trade in embodied deforestation tends to flow from

countries with rapidly declining forest resources to countries

that have passed the forest transition, and thus the increases

in domestic forest areas in the latter are to some extent facilitated

by the outsourcing of agricultural production.75

While studies quantifying the link between agricultural trade

and deforestation agree on overall patterns, in terms of main

commodities implicated and key sourcing and consumer re-

gions, there are still large differences in estimates of deforesta-

tion embodied in trade across studies (see Table 2). Partly this

is due to temporal trends (e.g., the rapid decrease in overall

deforestation in Brazil post 2004), which result in different find-

ings for different base years. Partly the differences reflect meth-

odological choices (e.g., choice of amortization period over

which deforestation is allocated to agricultural production).86,87

In addition, data limitations still prevail: despite great advances

in remote sensing improving our understanding of land-cover

changes (e.g., Hansen et al.88), lack of global datasets distin-

guishing between different agricultural land uses limits our ability

to consistently attribute forest loss to drivers across scales.89 To

overcome this data gap, many studies still rely on more or less

simplistic assumptions or land-use change models to attribute

deforestation to agricultural commodity production and trade

(Table 2). These data limitations also explain why quantitative

evidence on deforestation embodied in agricultural trade is

concentrated on a few commodities (primarily beef and soy)

and countries (primarily Brazil) where data availability is better.

Carbon emissions from land-use change embodied
in trade
The carbon emissions due to deforestation embodied in agricul-

tural trade flows are substantial: Pendrill et al.76 estimate these

emissions to nearly 1 Gt of CO2 annually, constituting around a

tenth of total food system greenhouse gas emissions.90,91 This

implies that for major importers of embodied deforestation,

these emissions also constitute a substantial share of the climate

impact of food consumption. In the European Union, for

instance, carbon emissions from deforestation are estimated

to account for between 13% and 30% of the carbon footprint

of the average diet.76,92
One Earth 4, October 22, 2021 1429



Table 2. Overview of studies quantifying the role of trade in agricultural commodities in driving natural habitat loss and associated carbon emissions

Reference

Coverage Approach to linking

trade to impacts

Habitat loss embodied

in trade Carbon emissions embodied in tradeTemporal Geographic Commodity

Saikku et al. (2012)77 2007 Brazil, Indonesia all agricultural

commodities

all deforestation attributed

to agricultural production

based on harvested area

– Brazil: 594 MtCO2/year (32%)

Indonesia: 638 MtCO2/year (15%)

Karstensen et al.

(2013)78
1990–2010 Brazil (Legal

Amazon)

beef, soybeans simple assumptions based

on literature

– beef: 75–150 MtCO–2/year (12%–19%)

soy: 50–300 MtCO–2/year (33%–69%)

Henders et al. (2015)79 2000–2011 Argentina, Bolivia,

Brazil, Indonesia,

Malaysia, Papua

New Guinea,

Paraguay

beef, soybeans,

palm oil

based on remote sensing

studies and agricultural

statistics

beef: 205–577 kha/year

(7%–21%)

beef: 70–227 MtCO2/year (7%–22%)

soy: 205–538 kha/year

(70%–87%)

soy: 46–112 MtCO2 (68%–85%)

palm oil: 99–293 kha/year

(52%–68%)

palm oil: 65–196 MtCO2/year (51%–64%)

Caro et al. (2018)80 2008–2012 Brazil pork, poultry

(through

embodied

soybean feed)

all soy feed used in meat

production assumed to

come from deforested

land (based on Flynn

et al., 2012)81

– pork: 4.6 MtCO2/year (17%)

poultry: 1.6 MtCO2 (39%)

Pendrill et al. (2019)75 2005–2013 156 countries

(tropics and

sub-tropics)

all crops, beef land-balance model

based on remote

sensing data and

agricultural statistics

crops: 968 kha/year

(40%)

–

beef: 250 kha/year

(11%)

Pendrill et al. (2019)76 2010–2014 106 tropical

countries

all crops, beef – crops: 764 MtCO2/year (54%)

beef: 197 MtCO2/year (22%)

zu Ermgassen et al.

(2020a)82
2006–2017 Brazil soybeans remote sensing data on

forest loss and soybean

cropland area

soy: 41–167 kha/year

(66%–84%)

–

Escobar et al. (2020)83 2010–2015 Brazil soybeans – soy: 75 MtCO2/year

zu Ermgassen et al.

(2020)84
2015–2017 Brazil beef remote sensing data on

forest loss and pasture

beef: 73–75 kha/year

(14%–15%)

–

Johansson et al.

(2020)85
1987–2017 Cambodia cassava, corn,

jatropha, palm oil,

rice, rubber, sugar

cane, wood

remote sensing and land

concession data, coupled

to vegetation model

– rubber: 2.1 MtCO2/year (71%)

sugar cane: 0.9 MtCO2/year (74%)

wood: 0.7 MtCO2/year (100%)

other crops: 0.5 MtCO2/year (73%)
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A different perspective on the impact of agricultural trade on

ecosystem carbon is provided by Marques et al.93 and Yang

and Tan,94 who estimate the carbon sequestration forgone by

agricultural production and consumption by comparing current

land-use patterns with a scenario where land under crop produc-

tion or pasture would be allowed to naturally regenerate. These

studies estimate that in �2010 agricultural trade contributed to

forgone carbon sequestration by between 2 and 11 GtCO2 per

year, with differences partly reflecting divergent assumptions

regarding the time and speed over which the sequestration

would occur should production and trade cease. While carbon

emissions from deforestation originate from the tropics, where

agricultural expansion is ongoing, carbon sequestration forgone

due to agricultural trade is allocated to all production systems on

potentially carbon-rich lands, irrespective when land conversion

has taken place. As a consequence, the carbon losses due to

forgone sequestration are spread more evenly around the globe.

At the same time, the European Union, Asia, and the Middle East

remain regions that import this environmental impact.93,94

Biodiversity impacts embodied in agricultural trade
The consequences of international trade flows for biodiversity

are being increasingly studied. Pioneering studies have shown

that international trade drives between 14% and 30% of total

biodiversity impacts.95,96 Lenzen et al.95 were the first to present

the impacts of international trade on biodiversity by linking eco-

nomic multi-region input-output tables with data on threats

affecting species in different countries. They found that around

30% of species threats were driven by international trade, with

many of these threats being associated with the trade of agricul-

tural and forestry-related products from low-income to high-in-

come countries. The number of threats embodied in international

trade informs on the amount of pressures affecting the species

but does not provide a direct measure of the biodiversity loss.

Subsequent studies quantified the role of international trade in

driving biodiversity loss using alternative metrics, leading to

different results (Table 3 and Table S1). Chaudhary and Kastner48

calculated the potential vertebrate species extinctions (i.e., mam-

mals, birds, amphibians, and reptile species committed to extinc-

tion) that can be attributed to land use embodied in trade flows of

individual crop items between different countries. They found that

the relative ranking of trade flows in terms of embodied biodiver-

sity impacts varies depending uponwhether the regional or global

(endemic) species extinctions metric is used (Table S1). The

ranking of trade flows in terms of biodiversity impacts also de-

pends upon which taxa are under consideration.48,97 This vari-

ability in results due to the use of different biodiversity metrics

and models reflects the multi-dimensional nature of biodiversity

and the complexity of its quantification.98–100

Other biodiversity metrics have also been used to understand

the role of international trade in driving biodiversity impacts.

Kitzes et al.101 estimated biodiversity impacts in terms of occu-

pied bird ranges and missing individual birds, and found that

approximately 23% of the impacts on biodiversity are driven

by international trade. Wilting et al.96 showed that the interna-

tional trade of agricultural and forestry activities accounted for

approximately 14% of total loss in mean species abundance

(MSA). MSA is a metric of local biodiversity intactness and mea-

sures changes in mean abundance of original species in
disturbed conditions relative to their abundance in undisturbed

habitat.105

Studies focusing on specific commodities or regions offer

more detailed insights into the role of international trade driving

biodiversity impacts. Green et al.102 studied how international

trade of soy drove biodiversity impacts in the Brazilian Cerrado

with great spatial detail and at the level of individual species.

For example, they linked the European Union’s and China’s soy-

bean consumption to recent habitat losses for the giant anteater

in the Mato Grosso state. Wilting et al.103 investigated the pro-

portion of biodiversity impacts driven by trade in the European

Union at subnational level and revealed strong differences at

this level. For example, for Spain’s region of Extremadura 44%

of total biodiversity impacts from consumption were embodied

in trade from the rest of theworld and 20%embodied in intra-Eu-

ropean Union trade. For Catalonia, 16% of total biodiversity im-

pacts from consumption were embodied in trade from the rest of

the world and 17% embodied in intra-European Union trade.

The agricultural commodities whose trade has been identified

as driving the highest biodiversity impacts are coffee, tea, cocoa,

beef, wood pulp, palm oil, rubber, soy, fruits, and vegeta-

bles.48,95,102 Although certain staple crops such as rice, and cas-

sava are also strongly linked with deforestation and biodiversity

impacts, they are not heavily traded internationally. As with the

overall importance of agricultural trade, over time the role of

trade as a driver of biodiversity impacts has increased, with

countries in the Asia and Pacific, Africa, and Middle East regions

becoming more relevant as importers of biodiversity impacts

embodied in international trade.93 An analysis focusing on the in-

come level of different countries showed similar trends, with low-

income and middle-income countries showing the highest

increases in the import share of their biodiversity footprints.104

DISENTANGLING THE EFFECTS OF TRADE ON
SUSTAINABILITY

The previous sections have highlighted that the increasing trade

flows have been linked to positive or negative impacts on human

nutrition and, through natural habitat loss, to negative impacts on

carbon storage and biodiversity. Despite increasing availability of

data and global studies, assessing the overall effect of agricultural

trade on land systems outcomes is far from straightforward. Due

to the complex inter-relations within and across systems, we are

missing a scenario of how agricultural production and land use

would look without these trade flows. To quantify the effects of

trade, simple counterfactuals are often used that keep all factors

constant but assume that imported products are produced locally

in the importing countries with their respective efficiencies.106

To provide a quantitative assessment of the positive and nega-

tive role played by international trade across different indicators,

we employ, based on published data, such a counterfactual

approach that compares the situation in 2010 with such a hypo-

thetical no-trade scenario. This serves as a joint analysis on the ef-

fects of trade on the sustainability dimensions discussed in the

previous sections and to highlight the complexities associated

with assessing the sustainability of trade patterns. We combine

data for theyear2010on (1) globalmapson theextent of croplands

and crop products, broken down into 42 crop types,107 (2) trade

data that linkcropproduction tocountrieswhere thecropproducts
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Table 3. Overview of studies quantifying the role of trade in agricultural commodities in driving biodiversity loss

Reference

Coverage Approach to linking trade to

impacts Biodiversity loss embodied in tradeTemporal Geographic Commodity

Lenzen et al.

(2012)95
2000 187 countries 15,909 sectors attribution of biodiversity

threats to industry sectors

biodiversity threats used as a proxy for

impacts on biodiversity

30% of global species threats due to

international trade

Chaudhary and

Kastner (2016)48
2011 184 countries 170 crops countryside species-area

relationship to related land-

use area and impacts on

species richness

regional and global impacts on

biodiversity measured as potential

species extinctions

17% of global biodiversity loss due to

international trade

Kiztes et al.

(2017)101
2007 129 regions 57 sectors bird ranges and bird

densities linked to a map of

Human Appropriation of

Primary Productivity and a

map of land use

impacts measured as occupied bird

ranges and missing individual birds

23% of occupied bird ranges and

missing birds due to international trade

Wilting et al.

(2017)96
2007 45 regions 48 sectors loss in mean species

abundance (MSA) due to

land use, urban

infrastructure, roads, and

climate change

impacts on biodiversity quantified as

loss of MSA

16% of MSA loss due to

international trade

Chaudhary and

Brooks (2019)97
2007 129 regions four land-use

types

(agricultural,

pasture, urban,

forestry)

countryside species-area

relationship to related land-

use area and impacts on

species richness

projected global species extinctions

25% of global species extinctions due

to international trade

Green et al.

(2019)102
2000–2011 Brazil (Cerrado) soy soy expansion maps linked

with suitable habitat models

impacts computed as a ‘‘conservation

score’’ that captures the non-linear

cumulative effect of historical habitat

loss on the local persistence of a

species

Marques et al.

(2019)93
2000–2011 49 regions 200 products countryside species-area

relationship to related land-

use area and impacts on

birds species richness

global impacts on biodiversity

measured as potential bird species

extinctions

22% of potential extinctions due to

international trade in 2000 and 25%

in 2011

Wilting et al.

(2021)103
2010 162 regions

in European

Union

18 sectors loss in MSA due to land use,

urban infrastructure, roads,

fragmentation, and climate

change

impacts on biodiversity quantified as

loss of MSA

14 other

countries/

world regions

Bjelle et al.

(2021)104
1995–2015 214 countries 200 sectors LC-IMPACT characterization

factors of biodiversity

impacts from land use

(based on countryside

species-area relationship)

impacts on biodiversity quantified as

potentially disappeared fraction (PDF) of

species

19% of global PDF due to international

trade in 1995 and 33% in 2015
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are consumed,36,41,75 and (3) data on the impacts of crop produc-

tionondeforestation,biodiversity, andcarbonstorage.76,93,108The

procedure of how the different datasets were merged for the pre-

sented analyses in Figures 2, 3, 4, and the figure accompanying

Box 1 is described in experimental procedures.

The net effect of global agricultural trade
Maps of the ‘‘net trade’’ balances, i.e., imports minus exports,

highlight that trade patterns can be very different, depending
1432 One Earth 4, October 22, 2021
on the metric in focus. While trade in terms of calories flows

largely from regions with lower population densities (Americas,

Australia) to more densely populated regions with lower land

availability, impacts such as deforestation and species loss are

concentrated in the tropics, and most countries outside the

tropics are ‘‘net importers’’ of these impacts.

There are indications that international food trade has contrib-

uted to lowering the total agricultural land demand compared

with a counterfactual no-trade scenario. Based on data for



Figure 2. Per capita ‘‘net trade’’ balances for crop products and environmental pressures embodied in them, based on national level data for
the year 2010
(A–F) The balance is calculated as imports minus exports. (A) kcal availability, (B) cropland requirements, (C) potential global species loss induced by crop
production, (D) deforested area attributed to cropland expansion, (E) carbon sequestration forgone due to crop production, and (F) land-use change emissions
attributed to cropland expansion. Net importers are shown in purple and net exporters in turquoise. For data sources and how the data were compiled, see
experimental procedures.
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2008, total cropland use was estimated 88 Mha (or 7%) higher if

food imports had been substituted by domestic production (for

imported products that were also grown domestically).41 That

is, because trade tends to flow from countries with higher yields

for the traded product to countries with lower yields, there is a

land-sparing effect of trade. Roughly half of this land-sparing ef-

fect is due to differences in agricultural management, and

roughly half due to better growing conditions in the exporting

countries.41 This finding complements the existing evidence

that food imports have been widely used to overcome the scar-

city of land and water in several importing countries.3

Surprisingly, our analyses based on available global-level data

suggest that this land-sparing effect of agricultural trade also

translates into a net avoidance of environmental pressures linked

to habitat conversion globally. Using data on potential carbon

sequestration forgone and potential global species loss due to

cropland use,93,108 Figure 3 shows that the net effect of crop

commodity trade on carbon storage and biodiversity is currently
positive, i.e., global impacts on carbon storage and biodiversity

are currently smaller compared with a no-trade situation,

whereby traded products were produced in the importing coun-

try, assuming current crop yields. For importing countries and for

crops that could be grown domestically, this implies, on average,

not only lower domestic cropland productivity for the traded

commodities but also, on average, higher domestic environ-

mental impacts, on biodiversity and carbon storage, per unit

crop product. These differences are to a large extent explained

by yield differences but can also come about through differences

in impacts per unit of cropland used.

For instance, we find a very large amount of avoided biodiver-

sity impacts through current trade flows from North America to

Central America and the Caribbean (Figure 3). This can partly

be explained by the fact that countries in Central America and

the Caribbean are home to many endemic species, which is

considered in the factors we used to assess potential global spe-

cies loss.108 At the same time, Figure 3 highlights that the effects
One Earth 4, October 22, 2021 1433



Figure 3. Differences of environmental
impacts of current trade patterns versus a
hypothetical ‘‘no-trade’’ assumption
The difference is shown for cropland use, forgone
carbon sequestration, and potential species
loss, and compares agricultural trade patterns in
2010 with a no-trade counterfactual. Results are
aggregated over crop categories, regions where
the traded crops are currently produced and
exported from, and regions where the crops are
imported to and consumed. The no-trade coun-
terfactual assumes that imported crops are pro-
duced domestically with the importing country’s
current efficiencies and that overall demand
stays constant. Cases where the exporting coun-
try’s efficiencies are higher than the importing
country’s efficiencies are labeled ‘‘avoided im-
pacts,’’ as the impacts with current trade patterns
are lower compared to the no-trade assumption.
The opposite cases are labeled ‘‘induced im-
pacts:’’ here current trade patterns lead to higher
impacts than the no-trade assumption. Cases
where the traded crop is not grown in the
importing country are presented as gray segments
of the bar, matching the current situation. We
present this on the side of the additional
impacts of the current situation compared with
the no-trade assumption, as it is not clear
whether demand for these products would exist
without trade. Refer to the text for details and
important caveats to be kept in mind when
looking at this comparison. For data sources and
how the data were compiled, see experimental
procedures.
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are not uniformly distributed across crops or world regions. For

instance, current import patterns of the European Union induce

rather than avoid impacts.

Decomposing the net impacts of trade
Our counterfactual analysis highlights the net land-sparing effect

of agricultural trade. However, this is only one of the mechanisms

through which increased trade affects the environment. Typically,

the effect of trade on the environment is decomposed into a scale,

composition, and technique effect.119,120 That is, trade affects not

only how things are produced and the associated environmental

impacts (technique—discussed in the paragraphs above), but

also what (composition) and how much (scale) we consume.

Thus, to assess the full impact of agricultural trade on land use,

carbon storage, biodiversity, and other ecosystem services, the

latter two effects should also be accounted for.

Starting with the composition effect, it is clear that agricultural

trade has changed what we eat: roughly one-third of agricultural

trade is in commodities not produced in the importing country,41

and there are large carbon and biodiversity impacts associated

with those trade flows (gray segments in Figure 3). For instance,

international trade has promoted the consumption of discre-

tionary commodities121 such as chocolate, coffee, and tea in

temperate, high-income countries where these crops cannot

be grown, causing environmental damage in exporting low-in-

come, tropical countries. Accounting for these impacts reduces

the positive global net effects displayed in Figure 3 for land area,
1434 One Earth 4, October 22, 2021
carbon sequestration, and biodiversity by 60%, 80%, and 40%,

respectively. While some of this consumption would have been

substituted for other domestic produce in the hypothetical

absence of international trade, and some of this production

would instead have been consumed in the countries of produc-

tion, it seems likely that trade has contributed to increasing de-

mand for and environmental impacts from the cultivation of these

commodities.

Moving on to the scale effect, the question is whether the effi-

ciency increases brought about by current trade patterns are

outweighed by the increased demand that this trade creates

through lower agricultural prices. There is mixed evidence on

such a rebound effect in agriculture, but increased agricultural

productivity tends to lead to increases in cropland area (i.e.,

the scale effect dominates over the technique effect) for coun-

tries with large agricultural exports122 or for crops that are

primarily exported,123 while for staple cereals productivity in-

creases tend to translate to land sparing (i.e., the technique ef-

fect dominates over the scale effect).

To summarize, existing empirical evidence suggests that agri-

cultural trade might have a positive effect on land demand, car-

bon sequestration, and biodiversity by enabling the concentra-

tion of agricultural production with intensive management

systems and high yields. However, these positive effects have

partly been offset by the increases in demand enabled by trade,

in particular for certain cash crops such as coffee and cocoa that

satisfy discretionary consumption.121



Figure 4. Relation between internationally traded crop production and potential global species loss and deforestation area attributed to
cropland expansion
The bubble size indicates the amount of cropland area required for the production of the traded products; the bubble color indicates the share of global crop
production that is used for exports. For data sources and how the data were compiled, see experimental procedures.
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An illustrative example of the potential interplay of the different

effects discussed in this section is trade in vegetable oils: Többen

et al.124 show that between 2000 and 2010, domestic vegetable

oils production in Europe, China, and the United States was

substituted with imported oils from biodiverse countries, specif-

ically Indonesian palm oil and Brazilian soybean oil (composition

effect). Due to the higher number of species per unit area in the ex-

porting tropical countries, the net impact of increasing palm and

soybean oil trade on global biodiversity is negative (see also

Figure 3). Despite the higher yields of these oils and decreasing

biodiversity impacts per unit over time (technique effect),Marques

et al.93 found that economic growth led to increasing consumption

as vegetable oils have high price elasticities, especially for indus-

trial uses,125 which in turn translated into higher impacts on biodi-

versity.

The heterogeneous impacts of agricultural trade
While the numbers we compiled cover a range of land system

sustainability dimensions, drawing conclusions from this tenta-

tive evidence on the role of trade in sparing land for nature should

be done with caution. While land sparing can have positive envi-

ronmental net effects, concentrating agricultural production in

high-intensity systems also has negative effects in the form of

eutrophication impacts, water scarcity, and biodiversity impacts

other than the ones from habitat conversion, as well as intro-

ducing social problems.126,127 We highlight one such potentially

negative effect in Box 1 by investigating differences in crop di-

versity across cropland areas serving export production and

cropland areas serving domestic consumption.

Importantly, even if the global net effect of agricultural trade is

positive (as for the environmental indicators assessed here and

within the assumptions of the analysis), the aim should still be

to mitigate the negative effects of trade and to exploit its positive

potential. Doing so requires an understanding of the current het-
erogeneity in impacts. Figure 3 clearly shows that the land, car-

bon, and biodiversity sparing effects are not uniform across crop

groups: for cereals, where some key exporters are less carbon

and biodiversity rich (e.g., the United States), avoided impacts

clearly dominate over induced ones, while for the ‘‘other’’ crop

group, which includes cash crops grown in biodiverse and

carbon-rich tropical countries, current trade patterns induce

additional impacts. In addition, for the category of stimulants,

made up of coffee, tea, and cocoa, we find that trade in these

crops is associated with considerable impacts, but the importing

countries are largely located in the Global North where their culti-

vation is not feasible (Figure 3).

Overall, these numbers imply that the trade-offs between the

effects of agricultural trade on environment and nutrition look

very different for different agricultural commodities: for staple

cereals, increased trade volumes have been particularly impor-

tant for nutritional gains,54 and there are also large positive car-

bon and biodiversity effects from this trade (see Figure 3). Here,

the rebound (scale) effect is also likely small.123 This implies that

for traded cereal crops, the biodiversity and carbon impacts are

relatively small compared with the amount of calories their trade

provides, suggesting a ‘‘win-win’’ situation (Figure 4). Note that

this result might not hold true if instead of calories the embodied

amounts of micronutrients (e.g., vitamins and minerals) were

considered. This is because the staple cereal crops either

completely lack or have low amounts of micronutrients per unit

weight. The trade-off between embodied environmental impacts

and embodied nutrition for a particular commodity depends

heavily on which nutrient is considered. In our empirical analysis

we could only include traded calories, as we limited our analyses

here to available data.

Conversely, for cash-crop commodities such as palm oil, cof-

fee, and cocoa, the nutritional benefits are small and the environ-

mental impacts of trade are large (Figures 3 and 4). In Figure 4,
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Box 1. Crop diversity and international trade

Over the past decades, crop supply across countries has become more varied while the diversity of crops grown within countries

has been largely homogenized.109 At the same time, crop diversity has recently been identified as an important driver of the stability

of crop production.110–112 High crop diversity also enhances other important ecosystem functions and services, such as soil func-

tioning113 and soil health,114 and recent studies suggest that increasing crop heterogeneity within countries represents a potential

lever to increase synergies between food production and biodiversity conservation.115

We make use of the spatial explicitness of the data compiled for this review (main text and supplemental information) and analyze

relationships between global crop diversity and crop product trade. We assess differences in crop diversity across areas produc-

ing for domestic consumption and areas dedicated to export production. To do so, we assess the crop diversity at a 10 3 10 km

grid globally, expressed as the exponential of the Shannon index116 of crop types, hereafter referred to as ‘‘crop diversity.’’ We

differentiated the 42 crop types for which information on their spatial distribution in 2010 is available.107We calculated the Shannon

index as

Shannon index=
XN

i

ðpi ln½pi�Þ

, where pi is the proportion of area dedicated to crop i and N is the total number of crop types. The Shannon index weights each

crop type in a specific area by the proportion of total area dedicated to this specific crop type. We then used the exponential of this

index to express the crop diversity as linear data.112 High crop diversity therefore corresponds to a high number of crop types

grown, evenly abundant in the area considered. Finally, we calculated the mean crop diversity index across countries and crop

types, weighted by cropland area in each pixel, differentiating areas dedicated to domestic production and areas dedicated to

export production, and explored the distribution of this averaged index.

A Wilcoxon rank-sum test117 showed that areas that were used for the production of exported goods were significantly less diverse

(mean crop diversity index 4.39) than areas producing crops for domestic consumption (mean crop diversity index 5.28, W = 2.653

1011, p < 0.001). This difference is also evident from the histograms in the accompanying figure, which visualizes the relation between

crop diversity and cropland use for export production. Yellow areas exhibit high crop diversity (expressed as exponential of the Shan-

non index) and a low share of cropland area serving export production. Blue areas harbor low crop diversity and are used for export

production to a large extent. Black areas are both high in export production and crop diversity. The inset on the lower left of the figure

shows histograms of distribution of crop diversity across areas used for export production (export) versus areas used for the produc-

tion for products not traded internationally (domestic). The figure highlights that there are large areas in the Americas, Southeast Asia,

and Australia that exhibit low crop diversity and that a high share of cropland serves export production. In contrast, many parts of

Sub-Saharan Africa and China have high values of crop diversity but a low share of cropland area serving export production. In

many parts of Europe, croplands are comparably high in crop diversity and also serve export to a larger extent.

Our results highlight that, while current trade patterns increase global area efficiency (seemain text), exports rely on croplands with

lower crop diversity. Agricultural areas dedicated to export production are indeed often dominated by large-scale industrial

(Continued on next page)
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Box 1. Continued

monocultures.118 Reduced crop heterogeneity may have large negative implications for the maintainance of sustainable produc-

tion and the protection of important ecosystem services.113 These results point to the importance of a nuanced and multifaceted

perspective when discussing effects of international trade on land systems. Since lower crop diversity jeopardizes the stability of

crop production,112 the potential of supply shocks perpetuating through international trade networkswill be increased for products

originating from less crop-diverse lands. In addition, there is now growing recognition that crop heterogeneity within countries is an

essential lever to maintain local biodiversity115 and ecosystem functioning.113,114
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soybeans are shown in the top right corner, implying high contri-

bution to calorie supply and high environmental costs. However,

the caveat here is that the bulk of these imported soybeans is

used as livestock feed128 and the calories ultimately delivered

for human nutrition are therefore much lower. At the same

time, livestock products such as milk, eggs, and meat have

higher amounts of micronutrients per unit weight than cereal

crops and help meet the micronutrient demand of the population

of importing countries.54
RESEARCH FRONTIERS

As shown by this review, global-level datasets increasingly allow

for quantifying effects of trade on land systems across multiple

sustainability dimensions. The revealed patterns are far from uni-

form and highly context specific. Methodological advances are

needed to translate insights from these global-level studies

into concrete policy and governance options on how systems

could be adapted to reach more efficient and equitable out-

comes. To guide such advances, we here sketch out a number

of research frontiers that, if addressed, have the potential to

make this relatively young research area more robust and im-

pactful.

1. When studying the effects of trade on human nutrition,

studies are increasingly extending the usual focus on

macronutrients, such as calories and protein, toward

investigations of how trade affects micronutrient availabil-

ity.54,129 This should be further extended to cover a com-

plete set of essential micronutrients required for a healthy

life. Increasingly available global data on nutrient availabil-

ity will be a crucial input for advancing this field.130,131 At

the same time, more research is needed to understand

in what settings trade is fostering or speeding up a transi-

tion toward unhealthy Western dietary patterns.132 A bet-

ter understanding of the impacts of trade on nutrient avail-

ability for exporting systems will be important, considering

the increasing importance of large-scale land acquisitions

in the Global South.63

2. Studies have focused on the effect of trade on habitat con-

version and ecosystem carbon storage, a central function

of ecosystems. It will be important to more comprehen-

sively assess how trade alters whole sets of ecosystem

functions and services and also how trade benefits from

them.133,134 Recent studies of how trade depends on polli-

nation services in the exporting countries’ land systems

are an example for such endeavors.135,136 As it becomes

increasingly evident that ecosystem functions and ser-

vices are interacting with each other and should be as-
sessed in concert,137 it is important to assess how trade

affects ecosystem multi-functionality and stability.

3. Similarly, work on how trade impacts biodiversity will have

to pay attention to the multi-dimensional nature of the

concept. Most studies so far have focused on the effect

of habitat conversion on species richness. Incorporating

different biodiversity metricsmight be amore encompass-

ing option.134,138,139 Suchmetrics could focus on phyloge-

netic,98 functional,140 or structural diversity,141 to obtain a

more comprehensive idea of how agricultural trade im-

pacts biological diversity. In addition, the role of baseline

choice, for instance, changes compared with potential

natural patterns or changes compared with a year in the

recent past, should be explored systematically.142

Furthermore, going beyond investigating the effects of

habitat conversion on biodiversity and carbon dynamics

will be crucial: land management, for instance, through

pesticide143 and fertilizer use or landscape configura-

tion,144 has large effects on human health, biodiversity,

and aquatic systems, which are presently not sufficiently

captured in global models.145 Lastly, linking the introduc-

tion of alien species, which occurs largely through global

transport movements,146 to the trade and consumption

of agricultural products will help to draw a more complete

picture.

4. Most of the studies in our review rely on national data for

trade flows and consumption patterns. For the impacts in

exporting countries, typically a proportional distribution

across areas between export production and production

for domestic use is assumed.147 Increasingly, data are

becoming available that allow for finer-resolution assess-

ments along various parts of international supply

chains.148 For instance, Escobar et al.83 and zu Ermgas-

sen et al.84 provide detailed assessments of how Brazil’s

production of soybeans and beef is linked to international

trade. They find that sourcing patterns of consumer

countries differ markedly across a large producer coun-

try, and with them the impacts of consumption on pro-

ducing systems. At the same time, the sectoral resolution

of economic models is continuously increasing,139 and

hybrid models that rely on monetary and physical

data are being developed.124,149,150 These models are

deemed to be better suited for capturing trade in agricul-

tural products.

5. In addition to refining assessments on the production side,

it will be important to assess how consumption patterns

are affected by trade beyond national averages. The nutri-

tional benefits brought about by trade might not translate

into benefits for certain population groups, as in many
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settings there are large discrepancies in food consump-

tion patterns across socio-economic groups or urban rural

gradients.151 Such more fine-tuned approaches can help

identify potential points of interventions along specific

supply chains.

6. To be more impactful, it will be important to find ways to

link global-level studies that we reviewed here across

scales to local processes and supply-chain actors. The

emerging field of telecoupling research4 has started to

explore tools for such cross-scale integration, building

on experience from transdisciplinary land system sci-

ence.152 Better data across scales can also inform impact

evaluations of trade and conservation policy153 that can

help inform trade policy and facilitate learning from posi-

tive examples.

A point that becomes clear from this list is that research has to

move beyond disciplinary perspectives and that in many areas

progress can only be achieved by knowledge integration across

individual disciplines. This is particularly important if we are to

provide insights and policy support for managing the trade-offs

between environmental and social targets arising from the het-

erogeneous impacts of agricultural trade.

By showing that trade has both positive and negative sustain-

ability implications, our review has highlighted trade-offs and

synergies between nutrition, carbon, and biodiversity impacts.

Overall our results indicate that trade can play a positive role in

fostering sustainable land use. To achieve this, trade should

contribute to, on the production side, minimizing use of land

and industrial inputs, while simultaneously securing crop diver-

sity and protecting carbon stocks and biodiversity. On the con-

sumption side, trade flows ideally improve the availability of

essential nutrients and reduce the share of land-intensive prod-

ucts in diets that are not required for a healthy diet.

While we found that presently trade links exist, which (partly)

contribute to overall positive effects, many trade flows are asso-

ciated with overall negative effects or with trade-offs between

positive and negative sustainability implications. For instance,

while the concentration of cereal production in North America

has spared land and reduced biodiversity loss compared with

a no-trade counterfactual, the increased demand for tropical

products fuel by international markets and trade strongly con-

tributes to high levels of deforestation and biodiversity loss,

with the traded products often contributing little to improved

nutrition in the importing countries.

Again, this calls for acknowledging the multi-dimensionality

of the issue and consideration of the local contexts in which

trading partners operate. Quantitative assessments of the im-

pacts of global agricultural trade flows across multiple sustain-

ability dimensions, grounded in such an understanding of local

context, have the potential to generate a system-wide under-

standing of how to enhance the positive role international trade

can play in addressing sustainability challenges. Such assess-

ments could, for instance, contribute to the development of pol-

icy actions to reduce deforestation by providing guidance on

commodities and regions to target and by acknowledging po-

tential trade-offs and problem shifts,154 thus laying the ground-

work for stronger sustainability criteria in international trade

agreements.155
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Resource availability
Lead contact
Further information and queries will be fulfilled by the lead contact, Thomas
Kastner (thomas.kastner@senckenberg.de).
Materials availability
Data generated in this study have been deposited at Zenodo, https://doi.org/
10.5281/zenodo.5243353.
Data and code availability
Analyses were performed in R 4.0.3. Next to the generated data, all original
code for the presented analyses has been deposited at Zenodo under
https://doi.org/10.5281/zenodo.5243353 and is publicly available as of the
date of publication.

Spatial data of cropland use and crop production
Data on global cropland use (in hectares of physical area) and production (in
tons) were available via the latest version of the MapSPAM database,107 rep-
resenting the situation in 2010 at the resolution of 5 arcmin. These data differ-
entiate 42 crop types covering the primary crops covered in FAOSTAT and four
management types. The data also contain information on the country to which
the respective pixel belongs. We reprojected these data to a 10-by-10 km
equal area grid (Eckert IV projection) to obtain comparable cell sizes for the
crop diversity analysis.

Integration with data on crop product trade and consumption
We then overlaid these maps of crop production and cropland area with data
on trade and consumption of crop products. To match the product resolution
between MapSPAM and FAOSTAT,36 we aggregated MapSPAM data on the
two coffee crops, the two types of millet, and the two sugar crops, respec-
tively. The trade and consumption data are based on production and trade
data from FAOSTAT36 and are processed with an algorithm that tracks primary
and processed crop and livestock products along international supply
chains.75,156 The approach uses physical trade and production, i.e., in tons,
converts processed products into their primary crop equivalents (e.g., soy-
bean oil to soybean equivalents), and uses the underlying assumption that,
within a country, domestic production and imports contribute proportionally
to domestic consumption and exports. For instance, if the Netherlands imports
soybeans from Brazil and processes them into soybean oil, which is exported
to Germany where it is consumed in food products, these data will show a link
between consumption in Germany and soybean cultivation in Brazil. We used
the data calculated with this approach from Pendrill et al.75 and average them
for the period 2009–2011 to be in line with the land-use data. We assign export
production proportionally to all production areas in a country, except for areas
identified to serve subsistence production in MapSPAM107, which are consid-
ered to exclusively serve domestic consumption.
The resulting data were used for the crop diversity analysis (see Box 1) and

aggregated to the national level. This gave us data linking countries of crop
production with countries where the products processed from these crops
are (physically) consumed, along with data on the physical areas required to
produce the crops.We converted the data on crop products into caloric equiv-
alents based on factors from FAO.157

Integration with data on impacts of crop production on ecosystems
We then linked these data with factors per unit area that quantify the impacts of
crop production on biodiversity, deforestation area, and ecosystem carbon.
For biodiversity loss, we apply the national level characterization factors,108

indicating the number of species potentially lost at the global level (potential
global species loss) per square meter of cropland use. These factors are built
on a countryside species-area relationship approach,158 taking into account
the extent of habitat conversion through land use and species’ abilities to survive
inmodified habitats. We employ factors for arable land for annual crops and fac-
tors for plantations for permanent crops in theMapSPAMdata, respectively. The
factors originally distinguish three different land-use intensity classes.108We use
the values for low intensity, effectively excluding the land-use intensity effects on
species extinctions, i.e., focusing, in line with our review, on habitat conversion
effects. However, in the current implementation, the effect of land-use intensity
is limited; using the factors for high intensity would not alter the overall patterns
and increases the global total for potential species loss by less than 10%.
In addition, we make use of recently published data to link crop products

and crop product trade to deforestation impacts, both in terms of area75 and
in terms of land-use change emissions.76 These data are based on satellite
data on forest loss88 and on a land-balance model that attributes forest loss,
and associated emissions, to expanding land uses. For the data on forgone
carbon sequestration we followed the approach developed by Marques

mailto:thomas.kastner@senckenberg.de
https://doi.org/10.5281/zenodo.5243353
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et al.,93 but replaced the land-use data they used with the MapSPAM data107

and utilized a more recent layer on carbon sequestration potential of land.159

The hypothetical assumption underlying this perspective is that land currently
under use for crop production is taken out of production and left to regenerate.
The values presented indicate the average annual carbon sequestration po-
tential over a regrowth period of 30 years, if production ceased for the entire
period.

Analyses presented in the article
Based on the compiled data, we performed analyses, which are presented in
Figures 2, 3, and 4 as well as Box 1.
National level per capita ‘‘net trade’’ balances
For each country, we aggregated the total imports, respectively cropland use
and impacts induced by them, and subtracted the total exports. The resulting
values show the ‘‘net trade balance’’ for the respective indicator. We normal-
ized the resulting values by the country’s population in 2010.36 Net imports
imply that imports, respectively of resources or impacts associated with
them, are larger than the corresponding values for exports, while net exports
refer to the opposite situation. For instance, if country A’s imports were attrib-
uted with a deforestation area of 100 m2 per capita and year and its exports
were attributed with a deforestation area of 60 m2 per capita and year, the
country will be considered a net importer of deforestation area, with a value
of 100 � 60 = 40 m2 per capita and year. We grouped net importers and net
exporters into four groups, respectively, and included a group for balanced
‘‘trade patterns.’’ The results of this analysis are presented in Figure 2.
Effects of current trade pattern on global cropland use and
associated impacts
To assess the effect that current trade patterns of cropland products have on
land demand, biodiversity loss, and ecosystem carbon storage, we compared
the situation in 2010 with a counterfactual no-trade situation. This assumes
that consuming countries produce all the crops for their consumption, i.e.,
including imports but excluding exports, domestically, with average domestic
yields and average domestic factors for impacts per unit of cropland,
assuming land is available for this production if the respective crop is currently
already produced domestically. This approach follows the rationale of ‘‘global
water savings’’106 that is commonly used in assessing global effects of virtual
water trade. We stress that this presents a hypothetical thought experiment,
and we discuss a number of caveats in the main text that have to be kept in
mind when interpreting its results. With this approach, the overall consumption
is unchanged but the origin of this consumption is, wherever possible,
assumed to be domestically sourced. In cases where the imported crop is
not grown in the consuming countries, the approach is not applicable, and
here we show the area demand and impacts of the exporting countries (i.e.,
the same as in the current situation). If the crop is grown in the importing coun-
try, and under the counterfactual assumption, two cases can emerge: (1) the
domestic impact per unit product is higher than the corresponding value in
the exporting country, implying that current trade patterns contribute to avoid-
ing impacts; and (2) the domestic impact per unit product is lower than the cor-
responding value in the exporting country, implying that current trade patterns
introduce additional impacts.We present the results of this analysis in Figure 3,
aggregated across crop categories, producing regions and consuming re-
gions, respectively, for the three impact categories. The composition of these
aggregates is shown in Tables S2 and S3.
Crop production for exports and associated biodiversity loss and
deforestation
In Figure 4 we plot data summed up across crop categories in terms of caloric
output versus the totals for biodiversity loss and annual forest loss to visualize
how output and impacts align. In addition, we indicate the global area for the
production (bubble size) and the share of global production used for exports
(bubble color).
Relations between crop diversity and international trade
For the description of this analysis, please refer to Box 1. The categories for the
bivariate map are based on quantiles for both the crop diversity measure and
the share of area used for export production.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
oneear.2021.09.006.
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66. López, R., and Galinato, G.I. (2005). Trade policies, economic growth,
and the direct causes of deforestation. Land Econ. 81, 145–169.

67. Scrieciu, S.S. (2007). Can economic causes of tropical deforestation be
identified at a global level? Ecol. Econ. 62, 603–612.

68. Barbier, E.B. (2004). Explaining agricultural land expansion and defores-
tation in developing countries. Am. J. Agric. Econ. 86, 1347–1353.
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