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A B S T R A C T

Xiao and Jenny (2012) proposed an interesting hybrid LES/RANS method in which they use two solvers and
solve the RANS and LES equations in the entire computational domain. In the present work this method is
simplified and used as a hybrid RANS-LES method, a wall-modeled LES. The two solvers are employed in the
entire domain. Near the walls, the flow is governed by the steady RANS solver; drift terms are added to the
DES equations to ensure that the time-averaged DES fields agree with the steady RANS field. Away from the
walls, the flow is governed by the DES solver; in this region, the RANS field is set to the time-averaged LES
field. The disadvantage of traditional DES models is that the RANS models in the near-wall region – which
originally were developed and tuned for steady RANS – are used as URANS models where a large part of
the turbulence is resolved. In the present method – where steady RANS is used in the near-wall region – the
RANS turbulence models are used in a context for which they were developed. In standard DES methods, the
near-wall accuracy can be degraded by the unsteady agitation coming from the LES region. It may in the
present method be worth while to use an accurate, advanced RANS model. The EARSM model is used in the
steady RANS solver. The new method is called NZ S-DES . It is found to substantially improve the predicting
capability of the standard DES. A great advantage of the new model is that it is insensitive to the location of
the RANS-LES interface.
. Introduction

DES (Detached-Eddy Simulation) uses unsteady RANS near walls
URANS region) and LES further away from walls (LES region). The
esolved turbulence in the URANS region is often larger than the
odeled part. But the RANS models used in the URANS region were

riginally developed and tuned in steady RANS simulations. Hence the
ccuracy and the validity of the RANS models in the URANS region can
e questioned. In the present work, DES is coupled with steady RANS
ear the walls. We denote the method NZ S-DES (Non-Zonal approach
sing Steady RANS coupled to DES).

Xiao and Jenny (2012) proposed a new method in which they solve
oth the LES and RANS equations in the entire domain. The flow is in
he near-wall region governed by the RANS equations and in the outer
egion it is governed by the LES equations. This is achieved by adding
rift terms in the LES and RANS equations. In the interface region(s),
he drift terms are modified by a linear ramp function. Drift terms are
sed in all equations in the RANS equations (momentum equations,
he pressure equation (PISO is used)) and in the modeled turbulent
quations (𝑘 and 𝜀). Two drift terms are added in the LES momentum
quations; one to ensure that the mean velocity fields in the RANS and
ES equations are the same and one to ensure that the total turbulent
inetic energies are the same.

E-mail address: lars.davidson@chalmers.se.

In Xiao et al. (2013) they extended the method to account for non-
conformal meshes. They used a Cartesian mesh for the LES equations
and a body-fitted mesh for the RANS equations. They applied the
method to fully developed channel flow and the flow over periodic hills.
The paper shows how an accurate academic solver – massively parallel
– can be combined with industrial, flexible RANS solvers.

Tunstall et al. (2017) implemented the method in Xiao and Jenny
(2012) and modified it (different ramp function, different constants,
reducing the number of case-specific constants etc.). They applied it to
fully developed channel flow and a rather complex flow consisting of
a pipe junction including heat transfer. Hence, they had to introduce
drift terms also in the energy equations.

de Laage de Meux et al. (2015) used forcing to achieve resolved
Reynolds stress profiles equal to target modeled RANS stress profiles.
The resolved Reynolds stresses were averaged in time in the same way
as in Xiao and Jenny (2012), Tunstall et al. (2017).

Breuer and Schmidt (2014) used an advanced RANS turbulence
model – the Explicit Algebraic Reynolds Stress Model, EARSM – in
an hybrid LES-RANS methodology. However, as mentioned above, the
disadvantage is that the RANS equations were solved in transient mode,
where a large part of the large-scale turbulence is resolved.
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Fig. 1. Gray color indicates the solver that drives the flow. The interface, 𝐼 , is shown in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
𝛼

T

𝑢

Fig. 2. The domain of the hump.

Davidson (2019a) used the same model as in the present study.
n Davidson (2019a), however, the interface was defined along a pre-
elected gridline and the grid in the hump flow simulations was much
oarser upstream the hump and in the outlet region than in the present
ork. Moreover, the present work uses a different timescale in the drift

erm as well as evaluates different SGS length scales (𝛥𝐷𝐸𝑆 and 𝛥𝐼𝐷𝐷𝐸𝑆 ,
see Eq. (12)).

Recently, in Nguyen et al. (2020) they presented an interesting dual-
mesh approach where they used the method in Schumann (1975) of
expressing the SGS stress tensor in 𝑆𝑖𝑗 (instantaneous) and ⟨𝑆𝑖𝑗⟩ (time-
veraged). In Nguyen et al. (2020) they formulated the SGS stress
ensor as a blend, taking 𝑆𝑖𝑗 from the LES solver and ⟨𝑆𝑖𝑗⟩ from the
ANS solver, i.e.

𝑖𝑗 − 𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝑓𝑏𝜈𝑡,𝐿𝐸𝑆
(

𝑆𝑖𝑗 − ⟨𝑆𝑖𝑗⟩
)

− 2(1 − 𝑓𝑏)𝜈𝑡,𝑅𝐴𝑁𝑆𝑆𝑖𝑗

In the present study, the steady RANS equations are solved. Here
t makes sense to use advanced RANS turbulence models, since these
odels were developed for steady RANS. The EARSM (Wallin and

ohansson, 2000) is used in the RANS solver. The present method is
n many aspects similar to that proposed in Xiao and Jenny (2012),
unstall et al. (2017) but it is simplified: the RANS equations are used

n steady mode, a more advanced RANS turbulence model is used and
he present method includes fewer drift terms and tuning constants.

. Numerical solvers

The momentum equations with an added turbulent viscosity read

𝜕𝑢̄𝑖
𝜕𝑡

+
𝜕𝑢̄𝑗 𝑢̄𝑖
𝜕𝑥𝑗

= 𝛿1𝑖 −
1
𝜌
𝜕𝑝̄
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(

(

𝜈 + 𝜈𝑡
) 𝜕𝑢̄𝑖
𝜕𝑥𝑗

)

(1)

here the first term on the right side is the driving pressure gradient in
he streamwise direction, which is used in the fully-developed channel
low simulations. The overbar, ⋅̄, denotes volume filtering in the LES
egion and short-time filtering in the URANS region; for the RANS
olver it denotes the usual RANS averaging. The velocities, pressure etc.
re time averaged when presenting the results below which is denoted
y angular brackets, ⟨⋅⟩. The decomposition is defined as 𝑣̄𝑖 = ⟨𝑣̄𝑖⟩ + 𝑣̄′𝑖

where 𝑣̄′ denotes a URANS or LES (i.e. a DES) fluctuation.
2

𝑖

2.1. DES solver

An incompressible, finite volume code is used (Davidson and Peng,
2003a; Davidson, 2018). The convective terms in the momentum equa-
tions are discretized using central differencing. Hybrid central/upwind
is used for the 𝑘 and 𝜔 equations. The Crank–Nicolson scheme is used
for time discretization of all equations. The numerical procedure is
based on an implicit, fractional step technique with a multigrid pressure
Poisson solver (Emvin, 1997) and a non-staggered grid arrangement.

The discretized momentum equations read

𝑢̄𝑛+1∕2𝑖 = 𝑢̄𝑛𝑖 + 𝛥𝑡𝐻
(

𝑢̄𝑛, 𝑢̄𝑛+1∕2𝑖

)

−𝛼𝛥𝑡
𝜕𝑝̄𝑛+1∕2

𝜕𝑥𝑖
− (1 − 𝛼)𝛥𝑡

𝜕𝑝̄𝑛

𝜕𝑥𝑖

(2)

where 𝐻 includes convective, viscous and SGS terms. In SIMPLE nota-
tion (Patankar, 1980) this equation reads

𝑎𝑃 𝑢̄
𝑛+1∕2
𝑖 =

∑

𝑛𝑏
𝑎𝑛𝑏𝑢̄

𝑛+1∕2 + 𝑆𝑈 − 𝛼𝛥𝑡
𝜕𝑝̄𝑛+1∕2

𝜕𝑥𝑖
𝛥𝑉

where 𝑆𝑈 includes all source terms except the implicit pressure; 𝛼 =
0.5 in channel flow and boundary-layer flow (Crank–Nicolson) and

= 1 (fully implicit) in the hump flow. The face velocities 𝑢̄𝑛+1∕2𝑓,𝑖 =
0.5(𝑢̄𝑛+1∕2𝑖,𝑗 + 𝑢̄𝑛+1∕2𝑖,𝑗−1 ) (note that 𝑗 denotes node number and 𝑖 is a tensor
index) do not satisfy continuity. Create an intermediate velocity field
by subtracting the implicit pressure gradient from Eq. (2), i.e.

𝑢̄∗𝑖 = 𝑢̄𝑛𝑖 + 𝛥𝑡𝐻
(

𝑢̄𝑛, 𝑢̄𝑛+1∕2𝑖

)

− (1 − 𝛼)𝛥𝑡
𝜕𝑝̄𝑛

𝜕𝑥𝑖
(3a)

⇒ 𝑢̄∗𝑖 = 𝑢̄𝑛+1∕2𝑖 + 𝛼𝛥𝑡
𝜕𝑝̄𝑛+1∕2

𝜕𝑥𝑖
(3b)

ake the divergence of Eq. (3b) and require that 𝜕𝑢̄𝑛+1∕2𝑓,𝑖 ∕𝜕𝑥𝑖 = 0 so that

𝜕2𝑝̄𝑛+1

𝜕𝑥𝑖𝜕𝑥𝑖
= 1

𝛥𝑡𝛼

𝜕𝑢̄∗𝑓,𝑖
𝜕𝑥𝑖

(4)

The Poisson equation for 𝑝̄𝑛+1 is solved with an efficient multigrid
method (Emvin, 1997). In the 3D MG we use a plane-by-plane 2D MG.
After that, the face velocities are corrected as

̄𝑛+1𝑓,𝑖 = 𝑢̄∗𝑓,𝑖 − 𝛼𝛥𝑡
𝜕𝑝̄𝑛+1

𝜕𝑥𝑖
(5)

1. Solve the discretized filtered Navier–Stokes equation, Eq. (3a),
for 𝑢̄1, 𝑢̄2 and 𝑢̄3.

2. Create an intermediate velocity field 𝑢̄∗𝑖 from Eq. (3b).
3. Use linear interpolation to obtain the intermediate velocity field,

𝑢̄𝑓,𝑖, at the face
4. The Poisson equation (Eq. (4)) is solved with an efficient multi-

grid method (Emvin, 1997).
5. Compute the face velocities (which satisfy continuity) from the

pressure and the intermediate face velocity from Eq. (5)
6. The 𝑘 and 𝜔 equations are solved.
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7. The turbulent viscosity is computed.
8. Step 1 to 7 are performed till convergence (usually two itera-

tions) is reached.
9. Next time step.

More details can be found in Davidson and Peng (2003b).

2.2. RANS solver

An incompressible, finite volume code – CALC-BFC (Davidson and
Farhanieh, 1995) – is used. The transient term in Eq. (1) (the first term
on the left side) is not included. The convective terms in the momen-
tum equations are discretized using the second-order bounded scheme,
MUSCL (van Leer, 1979). Hybrid central/upwind is used for the 𝑘 and

equations. The numerical procedure is based on pressure-correction
ethod, SIMPLEC, and a staggered grid arrangement.

. The NZ S-DES methodology

Two sets of equations are solved (steady RANS solver, see Fig. 1(a)
nd DES solver, see Fig. 1(b)) in the entire domain on identical grids.
he steady RANS solver may be two dimensional (as in the present
ork). The location of the interface in the DES solver is defined in the

ame way as between the RANS solver and the DES solver. Drift terms
re added in the DES equations, 𝑆𝐷𝐸𝑆

𝑖 , in the URANS region, see Fig. 1.
he drift terms in the DES velocity equations read

𝐷𝐸𝑆
𝑖 =

⟨𝑣̄𝑅𝐴𝑁𝑆
𝑖 ⟩𝑇 − ⟨𝑣̄𝐷𝐸𝑆

𝑖 ⟩𝑇

𝜏𝑟
(6)

where

𝜏𝑟 = max(𝐶𝑟∕(𝐶𝜇𝜔), 𝛥𝑡), 𝐶𝑟 = 0.1 (7)

following Tunstall et al. (2017). No drift term is used in the pressure
equation. ⟨⋅⟩𝑇 indicates a time average over time, 𝑇 , i.e.

⟨𝜙(𝑡)⟩𝑇 = 1
𝑇 ∫

𝑡

−∞
𝜙(𝜏) exp(−(𝑡 − 𝜏)∕𝑇 )𝑑𝜏 ⇒

⟨𝜙⟩𝑛+1𝑇 ≡ ⟨𝜙⟩𝑇 = 𝑎⟨𝜙⟩𝑛𝑇 + (1 − 𝑎)𝜙𝑛,
(8)

where 𝑎 = 1∕(1 + 𝛥𝑡∕𝑇 ) and 𝑛 denotes the timestep number. It is a
method of approximating the time average which can be expressed as
a differential form which can be discretized (second line) (Meneveau
et al., 1996). Note that although the flow cases in the present work in-
clude homogeneous direction(s), no space averaging is made in Eq. (8).
It may be noted that although the velocity field in the RANS solver is
steady, it is time averaged when used in Eqs. (6) and (9) because it
varies slightly in time. This time averaging is probably not necessary.

In the LES region, see Fig. 1, the RANS velocities are prescribed as
̄𝑅𝐴𝑁𝑆
𝑖 = ⟨𝑣̄𝐿𝐸𝑆

𝑖 ⟩𝑇 by adding a large source term, i.e.

𝑆𝑅𝐴𝑁𝑆
𝑖 =

⟨𝑣̄𝐿𝐸𝑆
𝑖 ⟩𝑇 − ⟨𝑣̄𝑅𝐴𝑁𝑆

𝑖 ⟩𝑇

𝜖
𝑝̄𝑅𝐴𝑁𝑆 = ⟨𝑝̄𝐿𝐸𝑆

⟩𝑇

(9)

here 𝜖 = 10−10. The pressure correction is set to zero. This means that,
n reality, the steady RANS solver needs to be solved only in the URANS
egion. In the LES region, the momentum equations in the RANS solver
re merely transporting the turbulence quantities, 𝑘 and 𝜔, to ensure
hat correct values of 𝑘 and 𝜔 are transported into the URANS region
hrough the RANS-LES interface at 𝑦 = 𝛿𝐼 , see Fig. 1.

Since the RANS pressure and the velocity field in the LES region are
iven by the LES flowfield (Eq. (9)), the pressure and the streamwise
elocity adjacent to the RANS-LES interface, ⟨𝑝̄𝐿𝐸𝑆

𝑗+1 ⟩𝑇 and ⟨𝑢̄𝐿𝐸𝑆
𝑗+1 ⟩𝑇 ,

espectively, act as a boundary condition for the RANS equations in the
RANS region, see Fig. 3. The wall-normal velocity, 𝑣̄𝑅𝐴𝑁𝑆

𝑗 , is solved
or using the pressure at node 𝑗 + 1. The RANS solver is called every
3

0th time step.
Fig. 3. Control volume, 𝑗, in the URANS region (RANS solver) adjacent to the interface,
𝐼 (in red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.1. The 𝑘 − 𝜔 DES model

The Wilcox 𝑘 − 𝜔 turbulence DES model reads
𝑑𝑘
𝑑𝑡

= 𝑃 𝑘 + 𝜕
𝜕𝑥𝑗

[(

𝜈 +
𝜈𝑡
𝜎𝑘

)

𝜕𝑘
𝜕𝑥𝑗

]

− 𝐹𝐷𝐸𝑆𝐶𝜇𝑘𝜔

𝑑𝜔
𝑑𝑡

= 𝐶𝜔1
𝜔
𝑘
𝑃 𝑘 − 𝐶𝜔2𝜔

2 + 𝜕
𝜕𝑥𝑗

[(

𝜈 +
𝜈𝑡
𝜎𝜔

)

𝜕𝜔
𝜕𝑥𝑗

]

𝜈𝑡 =
𝑘
𝜔

(10)

where 𝑑∕𝑑𝑡 = 𝜕∕𝜕𝑡+𝑣̄𝑗𝜕∕𝜕𝑥𝑗 (𝜕∕𝜕𝑡 = 0 in the RANS solver). The standard
coefficients are used, i.e. 𝐶𝜔1 = 5∕9, 𝐶𝜔2 = 3∕40, 𝜎𝑘 = 𝜎𝜔 = 2 and
𝐶𝜇 = 0.09. The 𝐹𝐷𝐸𝑆 function is computed as

𝐹𝐷𝐸𝑆 = max
{

𝐿𝑡
𝛥

}

= max

{

𝑘1∕2∕(𝐶𝜇𝜔)
𝛥

}

(11)

Two different options for the LES length scale, 𝛥, are used, either from
DES (Spalart et al., 1997) or IDDES (Shur et al., 2008), i.e.

𝛥 ≡ 𝛥𝐷𝐸𝑆 = 𝐶𝐷𝐸𝑆𝛥𝑚𝑎𝑥, 𝛥𝑚𝑎𝑥 = max{𝛥𝑥, 𝛥𝑦, 𝛥𝑧}

𝛥 ≡ 𝛥𝐼𝐷𝐷𝐸𝑆 = 𝐶𝐼𝐷𝐷𝐸𝑆 min
(

max
[

𝐶𝑑𝑤𝑑𝑤, 𝐶𝑤𝛥𝑚𝑎𝑥, 𝛥𝑠𝑡𝑒𝑝
]

, 𝛥𝑚𝑎𝑥
)

𝐶𝐷𝐸𝑆 = 0.67, 𝐶𝐼𝐷𝐷𝐸𝑆 = 0.7

(12)

where 𝑑𝑤 is the wall distance, 𝐶𝑑𝑤 = 0.15, 𝛥𝑠𝑡𝑒𝑝 is the grid cell size in
the wall-normal direction.

The DES equations are solved in the entire region, but they govern
the flow only in the LES region, see Fig. 1. The location of the interface
in the DES solver and between the RANS solver and the DES solver is
defined by Eq. (11).

3.2. The 𝑘 − 𝜔 EARSM model in the RANS solver

The steady RANS equations are solved in the entire region, but
they govern the flow only in the URANS region, see Fig. 1. The 𝑘 −
𝜔 in Eq. (10) is used with 𝐹𝐷𝐸𝑆 = 1 and the transient terms are
set to zero. The Reynolds stresses, 𝑣′𝑖𝑣

′
𝑗 , are computed from the two-

imensional explicit algebraic Reynolds stress model (EARSM) (Wallin
nd Johansson, 2000).

.3. Initialization

The simulations are initialized as follows: first the 2D RANS equa-
ions are solved. The initial time averaged fields, ⟨𝑣𝐿𝐸𝑆

𝑖 ⟩𝑇 and ⟨𝑣𝑅𝐴𝑁𝑆
𝑖 ⟩𝑇 ,

re set from the 2D RANS field. Anisotropic synthetic fluctuations,
 ′
𝑖 )𝑚, are then superimposed to the 2D RANS field which gives the

nitial DES velocity field.
In order to compute ( ′

𝑖 )𝑚, synthetic fluctuations, 𝑣′𝑖,𝑠𝑦𝑛𝑡, are com-
uted plane-by-plane (𝑦 − 𝑧) in the same way as prescribing inlet
oundary conditions, see Section 4.2. They are created by prescribing
n integral length scale 𝐿𝑖𝑛𝑡, in the 𝑦 − 𝑧 plane. However, there is no
orrelation between the synthetic fluctuations in adjacent 𝑦− 𝑧 planes.
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Fig. 4. Channel flow. NZ S-DES . Comparison using different integration time scales, 𝑇̂ .
+ : Reichardt’s law, 𝑈+ = 1

𝜅
ln(1 − 0.4𝑦+) + 7.8

[

1 − exp
(

−𝑦+∕11
)

− (𝑦+∕11) exp
(

−𝑦+∕3
)]

.
Vertical thick black lines show RANS-LES interface.

Hence, the synthetic fluctuations in adjacent 𝑦 − 𝑧 planes are coupled
with an asymmetric space filter

( ′
𝑖 )𝑚 = 𝑎( ′

𝑖 )𝑚−1 + 𝑏(𝑣′𝑠𝑦𝑛𝑡,𝑖)𝑚 (13)

where 𝑚 denotes the index of the 𝑥 location and 𝑎 = exp(−𝛥𝑥∕𝐿𝑖𝑛𝑡),
𝑏2 = 1 − 𝑎2, where 𝛥𝑥 and 𝐿𝑖𝑛𝑡 denote the grid size and the integral
length scale, respectively (𝐿𝑖𝑛𝑡 = 0.2).

3.4. NZ S-DES compared to earlier work

• The present method is similar to those in Xiao and Jenny (2012),
de Laage de Meux et al. (2015), Tunstall et al. (2017). The main
differences are that

– In Xiao and Jenny (2012), Tunstall et al. (2017) they use
one additional drift terms in the LES momentum equations
to control resolved Reynolds stresses

– In Tunstall et al. (2017), the switch between the RANS
and DES solver takes place over a number of cells in the
wall-normal direction defined by a linear ramp function;
in Xiao and Jenny (2012) they use it in the initial part of
the simulations in order to stabilize the coupling between
the RANS and DES solvers. In the present work the switch
takes place abruptly over one cell defined by Eq. (11).

– They include drift terms in the Poisson equations for the
pressure (Eq. (4))

– They include drift terms also in the 𝑘 and 𝜀 equations (Xiao
and Jenny, 2012) or the 𝑘 equations (Tunstall et al., 2017).

– In Xiao and Jenny (2012), Tunstall et al. (2017) they in-
clude five tuning constants in all drift terms. In the present
method, there are two (𝑇 and 𝐶𝑟).

4. Results

4.1. Fully-developed channel flow

The first test case is fully developed channel flow with periodic
boundary conditions in streamwise (𝑥) and spanwise (𝑧) directions. The
Reynolds number, 𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈, is 8000 where ℎ denotes half-channel
width. The size of the domain is 𝑥𝑚𝑎𝑥 = 3.2ℎ, 𝑦𝑚𝑎𝑥 = 2ℎ and 𝑧𝑚𝑎𝑥 = 1.6ℎ
(ℎ = 1). The mesh has 32 × 96 × 32 (𝑥, 𝑦, 𝑧) cells. 𝛥𝑧+ = 400 and
𝛥𝑥+ = 800. Superscript + denotes that velocities are scaled by the
friction velocity, 𝑢𝜏 , and length scales are scaled by the viscous length
scale, 𝜈∕𝑢𝜏 so that 𝑦+ = 𝑢𝜏𝑦∕𝜈. The timestep is set to 𝛥𝑡 ≡ 𝛥𝑡𝑈𝑏∕ℎ = 0.025
(𝑈𝑏 denotes bulk velocity) which gives 𝐶𝐹𝐿 < 0.4. It is found that it is
important that the sampling time is much larger than the integration
4

Fig. 5. Channel flow. NZ S-DES compared with standard 𝐷𝐸𝑆. 𝛥𝐷𝐸𝑆 is used
(see Eq. (12)). : DES solver in NZ S-DES ; : RANS solver in NZ
S-DES ; : Standard DES; + : Reichardt’s law, 𝑈+ = 1

𝜅
ln(1 − 0.4𝑦+) +

7.8
[

1 − exp
(

−𝑦+∕11
)

− (𝑦+∕11) exp
(

−𝑦+∕3
)]

.

Fig. 6. Channel flow. Shear stresses scaled with 𝑢2𝜏 . 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). Vertical
black dashed lines show predicted RANS-LES interface. : resolved; :
viscous + modeled; : total. : viscous plus modeled in RANS solver (EARSM)
in NZ S-DES .

Fig. 7. Channel flow. Forces in the ⟨𝑢̄1⟩ equation (normalized with 𝑢2𝜏∕𝛿). 𝛥𝐷𝐸𝑆 is used
(see Eq. (12)). Thick black dashed line shows the predicted RANS-LES interface. :

−
𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑥2

; : 𝜕
𝜕𝑥2

⟨(

𝜈𝑡𝑜𝑡
𝜕𝑢̄
𝜕𝑥2

)⟩

; : Drift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

Fig. 8. Channel flow.

time, 𝑇 (see Eq. (8)). If it is too small, it may give an asymmetric
time-averaged flow field. Simulations with different values of 𝑇̂ are
presented in Fig. 4 (for more detail, see Davidson (2019b)). The time,
 , to reach fully developed condition and sampling time are both set
to ̂ ≡  𝑈𝑏∕ℎ = 1000 except for 𝑇̂ = 50 for which they are set
to ̂ ≡  𝑈 ∕ℎ = 2000. As can be seen, the influence is of 𝑇̂ on
𝑏
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the predicted velocities is negligible. In the results presented below,
̂ = 1000 and 𝑇̂ = 1.

Fig. 5 compares the velocity profiles obtained with NZ S-DES with
hat of standard DES. The velocity profiles predicted with NZ S-
ES agree very well with Reichardt’s law whereas the standard DES
xhibits the usual log-layer mismatch.

Fig. 6 shows the shear stresses. Fig. 6(b) presents the viscous plus
odeled EARSM shear stress in the RANS solver (see inset). As ex-
ected, it is much larger than the corresponding term in the DES solver.
he location of the interface is furthermore indicated and it can be seen
hat NZ S-DES puts the interface further away from the wall than the
tandard DES simulation does (see also Fig. 7). Regarding the resolved
hear stresses, we note first that they are zero in the URANS region,
ee Fig. 6(b). This means that we can maybe not replace the DES solver
y a LES solver because the modeled, SGS stress would be too small.
his may raise the question if the method is applicable to heat transfer.
owever, it should be kept in mind that the flow in the URANS region

s dictated by the RANS solver and the magnitude of the RANS shear
tress is indeed large (see inset in Fig. 6(b)). Second, we find that the
agnitude of the resolved shear stress in the LES region is much smaller

or NZ S-DES than for standard DES. As a consequence, NZ S-DES also
ives a much smaller total shear stress. In fully developed channel flow,
he total (resolved, modeled and viscous) shear stress is given by
+
𝑡𝑜𝑡 = 𝜏+𝑤

(

1 −
𝑦
ℎ

)

. (14)

here superscript denotes scaling with 𝑢2𝜏 . Normally, 𝜏+𝑤 ≡ 𝜌𝑢2𝜏 = 1
ecause the driving pressure gradient is equal to one (the first term on
he right side of Eq. (1)). For standard DES (Fig. 6(a)), the stresses and
he driving pressure gradient are in balance and as a result the total
hear stress varies linearly as dictated by Eq. (14). In NZ S-DES , the
all shear stress, 𝜏+𝑤, balances not only the driving pressure gradient
ut also the drift term. As a result, 𝜏+𝑤 increases and 𝜏+𝑡𝑜𝑡 < 1 at the
all. Xiao et al. (2013) also report that the drift term affects the shear

tresses. Fig. 7 presents the forces acting in the streamwise momentum
quation, i.e. the gradient of the resolved, modeled and viscous shear
tresses, the driving pressure gradient – and for NZ S-DES , see Fig. 7(b)
also the drift term, 𝑆𝐷𝐸𝑆

1 , see Eq. (6). Here we see the effect of the
rift term in the DES equations. The drift term drives (increases) – as
t should – the time-averaged DES velocity, ⟨𝑣̄1⟩𝑇 , towards the RANS
elocity. The drift term is mainly balanced by the modeled shear stress
orce (close to the wall it is balanced by the viscous shear stress force).
t may be noted that they are very large; the modeled shear stress force
s much larger than when using the standard DES (see Fig. 7(a)). It
hould, however, be recalled that the large drift term is active only in
thin region close to the walls.

Actually, the total shear stress balance equation (Eq. (14)) should
nclude also the integral of the drift term, 𝐷, i.e.

=
(

𝑢2𝜏 −𝐷
)

(

1 −
𝑦
ℎ

)

(15)

o that

+ =

(

1 − 𝐷
𝑢2𝜏

)

(

1 −
𝑦
ℎ

)

(16)

where

𝐷(𝑦) = ∫

𝑦

0
𝑆𝐷𝐸𝑆
1 (𝜂)𝑑𝜂 (17)

Fig. 8(a) presents the total shear stress according to Eqs. (14) and (15)
and it can be seen when the drift term is included (Eq. (15)), we retrieve
𝜏+𝑤 = 1 at the lower wall; at the upper wall the total shear stress is equal
to 𝐷∕𝑢2𝜏−1. Note, that the slope of −𝜏+ is not equal to one, but it is given
by Eq. (16). The question why the drift term is so large still remains.
The drift term (see Eq. (6)) is the product of the difference in the
RANS and DES velocities and the inverse of the relaxation time scale,
𝜏𝑟. Fig. 8(b) presents the velocity differences between the RANS and
DES solvers, which are either normalized with 𝑢 or non-normalized.
5

𝜏

Fig. 9. Channel flow. Streamwise normal stresses scaled with 𝑢2𝜏 . 𝛥𝐷𝐸𝑆 is used (see
q. (12)). Vertical black dashed lines show predicted RANS-LES interface. :

resolved; : modeled; : total. : modeled in RANS solver (EARSM)
in NZ S-DES ; ◦: DNS at 𝑅𝑒𝜏 = 5200 (Lee and Moser, 2015).

Fig. 10. Channel flow. Velocity. Different values of the coefficient, 𝐶𝑟, in the relaxation
time (see Eq. (7)). 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). : DES solver in NZ S-DES ;

: RANS solver in NZ S-DES ; + : Reichardt’s law, 𝑈+ = 1
𝜅
ln(1 − 0.4𝑦+) +

7.8
[

1 − exp
(

−𝑦+∕11
)

− (𝑦+∕11) exp
(

−𝑦+∕3
)]

.

he difference in the normalized velocities is small; this was seen also
n Fig. 5. But the difference in the non-normalized velocities is large
ecause the friction velocities predicted by the RANS and DES solvers
re different (below we show how this differences decreases as 𝐶𝑟
Eq. (7)) is decreased). This explains the large drift term. Finally, it
hould be pointed out that the drift term has no physical meaning:
ts object is simply to make the time-averaged DES velocity match the
ANS profile, see Eq. (6). The fact that it is large indicates that it is
oing its job.

The streamwise normal stresses are shown in Fig. 9. We find that
he resolved stress with NZ S-DES is much smaller than with standard
ES. The reason is the drift term (Fig. 7(b)) which balances the eddy-
iscosity diffusion force. As a consequence the resolved shear stress
orce for NZ S-DES is much smaller than for standard DES, see Fig. 7(a).
his gives a smaller (absolute) shear stress for NZ S-DES where the drift
orce is active (𝑦+ ≲ 200). The small −⟨𝑢̄′𝑣̄′⟩ with NZ S-DES decreases

the production term,

− ⟨𝑢̄′𝑣̄′⟩
𝜕⟨𝑢̄⟩
𝜕𝑦

(18)

in the ⟨𝑢̄′𝑢̄′⟩ equation which explains the small ⟨𝑢̄′𝑢̄′⟩ in Fig. 9(b). It can
also be seen in Fig. 9(b) that the RANS EARSM stress is much larger
than the LES eddy-viscosity stress (as expected).

Above we found that the non-normalized velocity difference be-
tween the DES and RANS solvers (Fig. 8(b)) is large. Now we will
investigate what happens if we decrease the relaxation time, 𝜏𝑟 (see
Eqs. (6) and (7)) by decreasing 𝐶𝑟. The baseline value is 𝐶𝑟 = 0.1. Now
we will test 𝐶𝑟 = 0.02 and 𝐶𝑟 = 0.01. Figs. 10, 11, 12 and 13 show the
streamwise velocity, the shear stress, the force balance and the RANS-
DES velocity difference. It is found that a change of the relaxation time
by an order of magnitude has very little influence. The largest impact is
the decrease in the non-normalized RANS-DES velocity difference as the
time scale is decreased (cf. Fig. 8(b)). The drift term does not change
which shows that the increase of 1∕𝜏𝑟 is compensated by the decrease
in the RANS-DES velocity difference, see Eq. (6).
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Fig. 11. Channel flow. Shear stress, −𝜏+, and drift term. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)).
Different values of the coefficient, 𝐶𝑟, in the relaxation time (see Eq. (7)). : total
shear stress (Eq. (14)); : viscous + modeled; : total shear stress plus 𝐷
(Eq. (15)).

Fig. 12. Channel flow. Forces in the ⟨𝑢̄1⟩ equation (normalized with 𝑢2𝜏∕𝛿). 𝛥𝐷𝐸𝑆 is
sed (see Eq. (12)). Thick black dashed line shows the predicted RANS-LES interface.

: − 𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑥2

; : 𝜕
𝜕𝑥2

⟨(

𝜈𝑡𝑜𝑡
𝜕𝑢̄
𝜕𝑥2

)⟩

; : Drift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

Fig. 13. Channel flow. Velocity difference between the RANS and DES solvers. 𝛥𝐷𝐸𝑆 is
sed (see Eq. (12)). : ⟨𝑢̄𝑅𝐴𝑁𝑆

⟩ − ⟨𝑢̄𝐷𝐸𝑆
⟩; :

⟨

𝑢̄𝑅𝐴𝑁𝑆∕𝑢𝑅𝐴𝑁𝑆
𝜏

⟩

−
⟨

𝑢̄𝐷𝐸𝑆∕𝑢𝐷𝐸𝑆
𝜏

⟩

.

Fig. 14. Channel flow. 𝛥𝐼𝐷𝐷𝐸𝑆 is used (see Eq. (12)). NZ S-DES compared with
tandard 𝐷𝐸𝑆. : DES solver in NZ S-DES ; : RANS solver in NZ
-DES ; : Standard DES; + : Reichardt’s law, 𝑈+ = 1

𝜅
ln(1 − 0.4𝑦+) +

.8
[

1 − exp
(

−𝑦+∕11
)

− (𝑦+∕11) exp
(

−𝑦+∕3
)]

.

The results presented so far were obtained using the DES length
cale, 𝛥𝐷𝐸𝑆 , see Eq. (12). Next, we present the results where we use
he IDDES length scale, 𝛥𝐼𝐷𝐷𝐸𝑆 , see Eq. (12). The IDDES length scale is
sed both for standard DES and NZ S-DES . Fig. 14 presents the velocity
rofiles. It is seen that NZ S-DES gives much better agreement with
6

Fig. 15. Channel flow. Shear stresses scaled with 𝑢2𝜏 . 𝛥𝐼𝐷𝐷𝐸𝑆 is used (see Eq. (12)).
Vertical black dashed lines show predicted RANS-LES interface. : resolved;

: viscous + modeled; : total.

Fig. 16. Channel flow. Forces in the ⟨𝑢̄1⟩ equation (normalized with 𝑢2𝜏∕𝛿). 𝛥𝐼𝐷𝐷𝐸𝑆 is
used (see Eq. (12)). Thick black dashed line shows the predicted RANS-LES interface.

: − 𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑥2

; : 𝜕
𝜕𝑥2

⟨(

𝜈𝑡𝑜𝑡
𝜕𝑢̄
𝜕𝑥2

)⟩

; : Drift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

the experiments than standard DES which predicts too large a velocity
for 𝑦+ > 100. Fig. 15 shows the shear stresses. The main difference
compared to Fig. 6 (in which 𝛥𝐷𝐸𝑆 was used) is that the resolved shear
stresses are much larger for both models; the NZ S-DES actually gives a
slightly larger shear stress near the wall than standard DES. For NZ S-
DES , the predicted total shear stress now closely follows the theoretical
linear behavior (which it did not with 𝛥𝐷𝐸𝑆 , see Fig. 6(b)); the reason
is that the region in which the drift term is active is much smaller.
Also, contrary to Fig. 6(b), the resolved fluctuations are not killed in
the URANS region; the reason is – again – that the URANS region
is much thinner with 𝛥𝐼𝐷𝐷𝐸𝑆 than with 𝛥𝐷𝐸𝑆 . Another difference –
closely related to the large shear stresses – is that, for both models, the
RANS-LES interface is located much closer to the wall. This fact reduces
the modeled shear stress (since the URANS region is much smaller) and
increases the resolved part (since Eq. (14) or (15) must be satisfied).
When the RANS-LES interface is moved closer to the wall (compared
to Fig. 5), the agreement with experiments deteriorate for standard
DES whereas it is not affected for NZ S-DES . This indicates that the
NZ S-DES is insensitive to the location of the interface which is a great
advantage. Fig. 16 presents the forces in the 𝑥 direction and it is seen
that they are larger than in Fig. 7. The reason is that the gradients of
the resolved stresses are larger (and hence also the balancing modeled
stresses). One major difference for the 𝑁𝑍𝑆−𝐷𝐸𝑆 model compared to
when 𝛥𝐷𝐸𝑆 length scale is used, is that the resolved shear stress gives
an important contribution in the URANS region; with the 𝛥𝐷𝐸𝑆 length
scale that contribution is close to zero, see Fig. 7, because the resolved
turbulence in the URANS region is close to zero.

Above we have found that changing the relaxation tine, 𝜏𝑟 (Eq. (7)),
by an order of magnitude or changing the LES length scale (from 𝛥𝐷𝐸𝑆
to 𝛥𝐼𝐷𝐷𝐸𝑆 ) – which moves the RANS-LES interface from 𝑦+ ≃ 200 to
𝑦+ ≃ 20 – have very small influence on the performance of NZ S-DES .
This is an indication of the robustness of the method. We will now
make a final sensitivity check by changing the Reynolds number and
changing the RANS turbulence model from EARSM to the 𝑘−𝜔 model.
Two additional Reynolds number flows are simulated, one of 𝑅𝑒𝜏 = 950
and one of 𝑅𝑒𝜏 = 16 000. For 𝑅𝑒𝜏 = 16 000 the same mesh is used as

for 𝑅𝑒𝜏 = 8000. For 𝑅𝑒𝜏 = 950, the number of cells in the 𝑦 direction is
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reduced to 80 and stretching factor of 1.1 is used. Fig. 17(a) presents the
streamwise velocity and good agreement is obtained for both Reynolds
numbers as well as with the 𝑘−𝜔 model. Fig. 17(b) shows the resolved
treamwise fluctuation; they increase with increasing Reynolds number
s expected. It may also be noted that the 𝑘 − 𝜔 in the RANS solver

performs at least as good as the EARSM (cf. Fig. 9(b))

4.2. Flat-plate boundary layer

The second test case is developing boundary layer along a flat plate,
see Fig. 18. The mean inlet profiles are taken from a 2D RANS solution
at 𝑅𝑒𝜃 = 6100. The mesh has 1024 × 160 × 64 cells (𝑥, 𝑦, 𝑧) with
𝛥𝑡 = 0.002. 𝛥𝑧+𝑖𝑛 = 85 and 𝛥𝑥+𝑖𝑛 = 280. The far-field mean velocity is
one, i.e. 𝑈𝑓𝑟𝑒𝑒 = 1. The spanwise extent of the domain is 𝑧𝑚𝑎𝑥 = 2𝛿𝑖𝑛.
Twice that, i.e. 4𝛿𝑖𝑛, has been evaluated which confirms that 𝑧𝑚𝑎𝑥 is
sufficiently large. Anisotropic synthetic fluctuations are superimposed
to the mean inlet velocity profiles. It involves the following steps.

1. A pre-cursor 2D RANS simulation is made using the PDH model
(Peng et al., 1997).

2. After having carried out the pre-cursor RANS simulation, the
Reynolds stress tensor is computed using the EARSM model
(Wallin and Johansson, 2000).

3. The Reynolds stress tensor is used as input for generating the
anisotropic synthetic fluctuations. The integral length scale is set
to 𝐿𝑡 = 0.3𝛿.

4. Since the method of synthetic turbulence fluctuations assumes
homogeneous turbulence, we can only use the Reynolds stress
tensor in one point. We need to choose a relevant location
for the Reynolds stress tensor. In a turbulent boundary layer,
the Reynolds shear stress is by far the most important stress
component. Hence, the Reynolds stress tensor is taken at the
location where the magnitude of the turbulent shear stress is
largest.

5. The synthetic fluctuations are scaled with
(

|𝑢′𝑣′|∕|𝑢′𝑣′|𝑚𝑎𝑥
)1∕2

𝑅𝐴𝑁𝑆
,

which is taken from the 2D RANS simulation.
6. Commutation terms in the 𝑘 and 𝜔 equations are used at the

inlet (Davidson, 2017; Arvidson et al., 2018).

The only constant we use when generating these synthetic simulations
is the prescribed integral length scale which is set to 0.3𝛿𝑖𝑛. For more
detail, see Davidson (2016), Arvidson et al. (2018). The time,  , to
reach fully developed condition and sampling time are both set to
̂ ≡  𝑈𝑓𝑟𝑒𝑒∕𝛿𝑖𝑛 = 210. The averaging time is set to 𝑇 = 2, see Eq. (8).

Fig. 19 presents the skin friction and the mean velocities which
are both much better predicted with the NZ S-DES model than the
standard DES model. The reason why the standard DES performs that
poor is partly found in Fig. 20 which shows the location of the predicted
location of the RANS-LES interface which is located close to the wall. It
was found also in Deck et al. (2014) that when the interface is located
too close to the wall, the standard DES gives poor results. In the channel
flow, it was found that – dependent on 𝐶𝑟, see Eq. (7) – there may be
a difference between the velocity in the URANS region predicted by
the DES and RANS solvers. In this flow, the DES velocity (blue solid
lines) and the RANS field (dashed red lines) are very close, see Fig. 19.
The streamwise and shear stresses are presented in Figs. 20 and 21. We
find that both resolved stresses are much larger for the standard DES
than for NZ S-DES . The reason is – as in the channel flow – the drift
term, which is shown in Fig. 22(b). The drift term balances the eddy-
viscosity diffusion force and as a consequence the resolved shear stress
force is much smaller than for standard DES, see Fig. 22(a). This gives
a smaller (absolute) shear stress for NZ S-DES – as in the channel flow
– where the drift force is active (𝑦+ ≲ 100). The small |⟨𝑢̄′𝑣̄′⟩| with NZ
S-DES decreases the production term in the ⟨𝑢̄′𝑢̄′⟩ equation, see Eq. (18).
Finally, it should also be noted that the RANS EARSM stress ⟨𝑢̄′𝑢̄′⟩, is

as in the channel flow simulation – much larger than the modeled
7

tress, as expected (see Fig. 20(b)).
Fig. 17. Channel flow. : 𝑘 − 𝜔 model in the RANS solver; : 𝑅𝑒𝜏 = 16 000,
EARSM; : 𝑅𝑒𝜏 = 950, EARSM.

Fig. 18. Boundary layer flow. The domain. 𝑧𝑚𝑎𝑥 = 2.1𝛿𝑖𝑛.

Fig. 19. Boundary layer flow. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). : NZ S-DES ; :
Standard DES; : RANS solver in NZ S-DES .

Now we will investigate the sensitivity to spanwise resolution, a
change in relaxation time (Eq. (7)) and RANS turbulence model. The
spanwise resolution is coarsened by reducing the number of cells by
a factor of two, i.e. 𝑁𝑘 = 32. The coefficient in the relaxation time
is reduced to 𝐶𝑟 = 0.02. The RANS model is changed from EARSM to
𝑘 − 𝜔. Fig. 23 presents the skin friction and the streamwise velocity
profiles. The small relaxation time scale, 𝐶𝑟 = 0.02, gives a slightly
worse skin friction than the other two cases, but still acceptable. With
𝐶𝑟 = 0.02, the flow reaches fully developed flow quicker than the other
two cases; the reason seems to be smaller resolved turbulence in the
initial, developing region. Both the coarse spanwise resolution and the
𝑘 − 𝜔 model give quite good skin friction. Fig. 24 shows the shear
stresses which are quite similar for all three cases. Again, it is noted
that the 𝑘−𝜔 model in the RANS solver performs as well as the EARSM.
Finally, the forces in the streamwise momentum equation are presented
in Fig. 25 for the small relaxation time scale (𝑁𝑘 = 64 and 𝐶𝑟 = 0.02).
The drift force is very similar to that for the baseline value 𝐶𝑟 = 0.1,
see Fig. 22.

Next, we change the SGS length scale and instead of 𝛥𝐷𝐸𝑆 , we use
𝛥𝐼𝐷𝐷𝐸𝑆 , see Eq. (12). Fig. 26 presents the skin friction and the velocity
profiles. Both NZ S-DES and the standard DES show a good skin friction,
but the standard DES predicts a poor velocity profile. The reason for this
poor prediction is found in Fig. 27(b) where we find that the RANS-

+
LES interface is located very close to the wall (𝑦 ≃ 25). As for the
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Fig. 20. Boundary layer flow. Streamwise normal stresses scaled with 𝑢2𝜏 . 𝛥𝐷𝐸𝑆 is used
(see Eq. (12)). 𝑥∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 500. + DNS at 𝑅𝑒𝜃 = 8000. : resolved;

: viscous plus modeled; : total; : viscous plus modeled in RANS
solver (EARSM) in NZ S-DES .

Fig. 21. Boundary layer flow. Shear stresses scaled with 𝑢2𝜏 . 𝛥𝐷𝐸𝑆 is used (see Eq. (12)).
𝑥∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 200. : resolved; : viscous plus modeled; :
otal; : viscous plus modeled in RANS solver (EARSM) in NZ S-DES ; + DNS
t 𝑅𝑒𝜃 = 8000.

ig. 22. Boundary layer flow. Forces in the ⟨𝑢̄1⟩ equation (normalized with 𝑢2𝜏∕𝛿).
∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 500. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). Thick black dashed line shows

he predicted RANS-LES interface. : − 𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑥2

; : 𝜕
𝜕𝑥2

⟨(

𝜈𝑡𝑜𝑡
𝜕𝑢̄
𝜕𝑥2

)⟩

; :

rift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

ig. 23. Boundary layer flow. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). : NZ S-DES , 𝑁𝑘 = 32;
: NZ S-DES , 𝑁𝑘 = 64, 𝐶𝑟 = 0.02; : 𝑁𝑘 = 32, 𝑘−𝜔 model in the RANS solver;
: RANS solver in NZ S-DES𝑁𝑘 = 64, 𝐶𝑟 = 0.02.

hannel flow, we find the NZ S-DES is insensitive to the location of the
nterface. It should be mentioned that the standard DES with the IDDES
ength scale does give good results if the RANS-LES interface is set at a
8

ig. 24. Boundary layer flow. Shear stresses scaled with 𝑢2𝜏 . 𝛥𝐷𝐸𝑆 is used (see Eq. (12)).
𝑒𝜃 = 10 200. : resolved; : viscous plus modeled; : total; :

viscous plus modeled in RANS solver (EARSM) in NZ S-DES ; + DNS at 𝑅𝑒𝜃 = 8000.

Fig. 25. Boundary layer flow. NZ S-DES , 𝑁𝑘 = 64, 𝐶𝑟 = 0.02. Forces in the ⟨𝑢̄1⟩ equation
(normalized with 𝑢2𝜏∕𝛿). 𝑥∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 500. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). Thick

black dashed line shows the predicted RANS-LES interface. : − 𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑥2

; :

𝜕
𝜕𝑥2

(

⟨𝜈𝑡𝑜𝑡⟩
𝜕⟨𝑢̄⟩
𝜕𝑥2

)

; : Drift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

ig. 26. Boundary layer flow. 𝛥𝐼𝐷𝐷𝐸𝑆 is used (see Eq. (12)). : NZ S-DES ;
: Standard DES; : RANS solver in NZ S-DES ; + DNS at 𝑅𝑒𝜃 = 8000.

fixed wall-parallel grid line further away from the wall (Arvidson et al.,
2018).

Fig. 28(b) presents the shear stress and it is seen that with NZ S-
DES – contrary to when 𝛥𝐷𝐸𝑆 is used – the resolved shear stresses in
the URANS region are not killed. The reason is that the RANS region in
which the drift term is active – which dampens resolved fluctuations –
is much thinner than with 𝛥𝐷𝐸𝑆 . As a result, the resolved shear stress
is much larger near the RANS-LES interface.

The forces are shown in Fig. 29 and for NZ S-DES they are found to
be much larger than for the case with 𝛥𝐷𝐸𝑆 (cf. Fig. 22). The reason
is that the interface is located in a region where the modeled stresses
are much larger. Although the resolved shear stresses are very large at
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Fig. 27. Boundary layer flow. Streamwise normal stresses scaled with 𝑢2𝜏 . 𝛥𝐼𝐷𝐷𝐸𝑆 is
sed (see Eq. (12)). 𝑥∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 500. : resolved; : viscous plus
odeled; : total; : viscous plus modeled in RANS solver (EARSM) in NZ

-DES ; + DNS at 𝑅𝑒𝜃 = 8000.

Fig. 28. Boundary layer flow. Shear stresses scaled with 𝑢2𝜏 . 𝛥𝐼𝐷𝐷𝐸𝑆 is used (see
q. (12)). 𝑥∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 500. : resolved; : viscous plus modeled;

: total; : viscous plus modeled in RANS solver (EARSM) in NZ S-DES ; +
DNS at 𝑅𝑒𝜃 = 8000.

Fig. 29. Boundary layer flow. NZ S-DES . 𝛥𝐼𝐷𝐷𝐸𝑆 is used (see Eq. (12)). Forces in the
𝑢̄1⟩ equation (normalized with 𝑢2𝜏∕𝛿). 𝑥∕𝛿𝑖𝑛 = 75, 𝑅𝑒𝜃 = 10 500. Thick black dashed line

shows the predicted RANS-LES interface. : − 𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑥2

; : 𝜕
𝜕𝑥2

(

⟨𝜈𝑡𝑜𝑡⟩
𝜕⟨𝑢̄⟩
𝜕𝑥2

)

;

: Drift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

𝑦+ = 20 in Fig. 29, at 𝑦+ = 200 they are actually somewhat smaller (not
shown) than those in Fig. 22.

The drift term in NZ S-DES (Fig. 29(b)) is negative (somewhat
similar to Fig. 22(b) where it exhibits a negative peak at 𝑦+ ≃ 10)
and it completely changes the behavior of the modeled diffusion term
in the URANS region compared to standard DES (Fig. 29(a)); the
modeled diffusion term takes the role of balancing the drift term which
makes it positive near the wall whereas it for standard DES is negative
(Fig. 29(a))

We have shown that – as for the channel flow – the NZ S-DES is
insensitive to location of the RANS-LES interface, spanwise resolution
and RANS turbulence model.

4.3. Hump flow

The third test case is the flow over a two-dimensional hump, see
9

Fig. 2. The Reynolds number of the hump flow is 𝑅𝑒𝑐 = 936 000, based
Fig. 30. Hump flow. Grid and grid spacing.

Fig. 31. Hump flow. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). : NZ S-DES ; : standard
DES; + : expts (Greenblatt et al., 2004, 2005).

Fig. 32. Hump flow. Velocities. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). + : predicted RANS-
LES interface; : NZ S-DES , DES solver; : NZ S-DES , RANS solver;

: standard DES; + : expts (Greenblatt et al., 2004, 2005).

on the hump length, 𝑐 = 1, and the inlet mean velocity at the centerline,
𝑈𝑖𝑛,𝑐 = 1. The inlet is located at 𝑥 = −2.1 and the outlet at 𝑥 = 4.0, see
Fig. 2. The mesh has 650 × 110 × 66 cells (𝑥, 𝑦, 𝑧) and it is based
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Fig. 33. Hump flow. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). Location of RANS-LES interface, see
Fig. 1(b). : NZ S-DES ; : standard DES.

Fig. 34. Hump flow. Total (resolved, modeled and viscous) shear stresses. 𝛥𝐷𝐸𝑆 is
sed (see Eq. (12)). : NZ S-DES , DES solver; + : predicted RANS-LES interface;

: NZ S-DES , RANS solver (EARSM); : standard DES; + : expts (Greenblatt
t al., 2004, 2005).

n the mesh from the NASA workshop1 but it is refined upstream of
he hump and in the outlet region, see Fig. 30(a). The spanwise extent
f the domain is set to 0.3 so that 𝛥𝑧 = 𝑧𝑚𝑎𝑥∕𝑛𝑘 = 0.3∕64 = 0.0047.

The required resolution for an LES away from the wall (in the log-
region) is 𝛿∕𝛥𝑥 ≃ 10, 𝛿∕𝛥𝑧 ≃ 20. The streamwise spacing, 𝛥𝑥, near
he wall is shown in Fig. 30(b). The inlet boundary layer thickness
s 𝛿𝑖𝑛 = 0.08 which means that the resolution in the inlet region is
easonable (𝛿𝑖𝑛∕𝛥𝑥 ≃ 10, 𝛿𝑖𝑛∕𝛥𝑧 ≃ 17). The boundary layer thickness

in the recovering region downstream of the reattachment (𝑥 > 2) is
≃ 0.13 (see Fig. 32) so that 𝛿∕𝛥𝑥 ≃ 3 which is somewhat too small; this

region is, however, believed to be less critical than the inlet and hump
regions. The time,  , to reach fully developed condition and sampling
time are both set to ̂ ≡  𝑈𝑓𝑟𝑒𝑒∕ℎ = 100 (ℎ denotes the height of the
hump, see Fig. 2). The averaging time is set to 𝑇̂ = 1, see Eq. (8).

The inlet profiles are taken from a separate 2D RANS simulation
with the same momentum thickness as the boundary layer in the

1 https://turbmodels.larc.nasa.gov/nasahump_val.html
10
Fig. 35. Hump flow. Forces in the ⟨𝑢̄⟩ equation. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). Thick

black dashed line shows the predicted RANS-LES interface. : − 𝜕⟨𝑢̄′ 𝑣̄′⟩
𝜕𝑦

; :

𝜕
𝜕𝑦

(

⟨𝜈𝑡𝑜𝑡⟩
𝜕⟨𝑢̄⟩
𝜕𝑦

)

; : − 𝜕⟨𝑝⟩
𝜕𝑥

; : Drift term, 𝑆𝐷𝐸𝑆
1 , see Eq. (6).

Fig. 36. Hump flow. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). : NZ S-DES , 𝑁𝑘 = 32;
: NZ S-DES , 𝐶𝑟 = 0.02, 𝑁𝑘 = 32, DES solver; : NZ S-DES , 𝐶𝑟 = 0.02, 𝑁𝑘 = 32,

RANS solver; : 𝑘−𝜔 in the RANS solver; + : expts (Greenblatt et al., 2004, 2005).

experiments (Greenblatt et al., 2004, 2005). Anisotropic synthetic fluc-
tuations are superimposed to the inlet velocity profile in the same way
as for the boundary-layer simulations. Periodic boundary conditions are
used in the spanwise direction (𝑧). The interface between the URANS
and the LES region as well at that between the steady RANS solver
and the DES solver is – as in the channel flow and the boundary-layer
simulations – defined by Eq. (11). The 𝛥𝐷𝐸𝑆 length scale is used, see
Eq. (12). The 𝛥𝐼𝐷𝐷𝐸𝑆 is not used for this flow since it produces poor
results; the reason is most likely that the switch takes place very close
to the wall.

The pressure coefficient and skin friction are presented in Fig. 31.
As can be seen, the agreement with experiments is good for both NZ
S-DES and standard DES. The most obvious discrepancy is the large
skin friction predicted by NZ S-DES at 𝑥 ≃ 0.17 and that the standard
DES predicts slightly too low a skin friction upstream of the hump
(as was also seen for the boundary layer flow, Fig. 19(a)). These two
discrepancies are probably connected: the under-predicted skin friction
by the standard DES gives a smaller velocity on the upstream part of

https://turbmodels.larc.nasa.gov/nasahump_val.html
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Fig. 37. Hump flow. Velocities. 𝛥𝐷𝐸𝑆 is used (see Eq. (12)). : NZ S-DES ,
𝑁𝑘 = 32; : NZ S-DES , 𝐶𝑟 = 0.02, 𝑁𝑘 = 32, DES solver; : NZ S-DES , 𝐶𝑟 = 0.02,

𝑘 = 32, RANS solver; : 𝑘 − 𝜔 in the RANS solver.

he hump and hence a smaller skin friction than NZ S-DES . Hence, the
act that the skin friction is better predicted than NZ S-DES at 𝑥 ≃ 0.17 is

probably fortuitous, due to a poor predicted in-coming boundary layer.
Fig. 32 compares the predicted velocity profiles with experiments.

The NZ S-DES and standard DES give virtually identical velocity pro-
files. The NZ S-DES predicts somewhat too strong a backflow (see
Fig. 32(b)). The velocity profiles of the RANS solver are also included.
The RANS solver velocity profiles in the URANS region match those
of the DES solver as they should. The locations of the interface is
shown with a red plus sign. It may be noted that the location of the
interface at 𝑥 = 1.3 is further away from the wall compared to at
𝑥 = 0.65,… , 𝑥 = 1.1. This is confirmed in Fig. 33 where the location
of the RANS-LES interface is shown. It can be seen that for 𝑥 ≳ 1.3, the
nterface moves away from the wall as 𝑥 increases. That is because the
treamwise grid size is larger in this region, see Fig. 30(b).

Fig. 34 presents the predicted (sum of resolved, modeled and vis-
ous) and measured shear stresses. The agreement between the shear
tresses and the measured is good for 𝑥 ≥ 1.0. Both NZ S-DES and the

standard DES over-predicts the magnitude of the shear stress at 𝑥 =
0.65, but the latter much more; the resolved part of the predicted shear
stress with the standard DES is approximately twice as large as the
modeled part (not shown). Such large – and even larger – magnitudes
of shear stresses at 𝑥 = 0.65 are presented in Garbaruk et al. (2018)

here they used the IDDES model. Similar magnitude as in Fig. 34(a)
s also seen in Friess and Davidson (2020) using the IDDES and a new
DD-PANS model. It was seen in Fig. 32(b) that the standard DES model
redicts an accurate velocity profile, but that is maybe fortuitous and
ue to incorrect predicted turbulence at 𝑥 = 0.65.

Fig. 35 presents the forces due to resolved and modeled (including
iscous) shear stresses and the drift terms. It is seen that the drift term
s usually – as for the channel flow and the boundary layer flow –
alanced by the modeled shear stresses (the viscous force is negligible
xcept in the vicinity of the wall). Whereas the drift term for the
hannel flow and the boundary-layer flow is positive – when using
𝐷𝐸𝑆 – it is here both positive and negative. But in the attached region
𝑥 > 1) it is positive as in the channel flow and the boundary-layer flow.

As for the boundary-layer flow, we make three additional simula-
ions. In one simulation we coarsen the spanwise resolution (𝑧𝑚𝑎𝑥 = 0.2,
𝑘 = 32), in the second one we replace the EARSM turbulence model

y the 𝑘−𝜔 model and in the third one we reduce the relaxation time
11

i

oefficient to 𝐶𝑟 = 0.02 (see Eq. (7)). In all cases we use the coarse
panwise resolution (𝑧𝑚𝑎𝑥 = 0.2, 𝑁𝑘 = 32). Figs. 36 and 37 present
he pressure coefficient, skin friction and velocity profiles for the three
imulations. As can be seen, very good results are obtained. The largest
iscrepancies are seen in the velocity profiles in the recovery region
𝑥 ≥ 1.1). Actually, the 𝑘 − 𝜔 model gives the best results. So, once
gain, it is found that the 𝑘−𝜔 model in the RANS solver gives at least
t good results as the EARSM.

. Conclusions

The paper presents a new non-zonal model based on a steady RANS
olver in the URANS region coupled with a DES solver which covers
he entire region. The steady RANS solver is called very 10th timestep.
t could probably be called less frequently. The RANS solver dictates
he flow in the wall region, i.e. the URANS region. A drift term in the
RANS region in the DES solver forces the time-averaged DES flow to
atch that of the RANS flow. This term is often large. It should be

tresses that the drift term has no physical meaning. Its only object is
o force the time-averaged LES field to agree with the steady RANS field
n the URANS region,

The steady RANS solver velocity field is by a large source term
orced to be equal to the time-averaged DES flow in the off-wall region,
.e. the LES region. The only object of the steady RANS field in the LES
egion is to transport the modeled turbulent quantities (𝑘 and 𝜔) into
he URANS region. They – 𝑘 and 𝜔 – could instead be transported by
he time-averaged DES flow.

The new model is evaluated in fully developed channel flow, flat-
late boundary layer and the hump flow. The new model gives very
ood agreement with experiments. It is found to substantially improve
he predicting capability of the standard DES for the channel flow and
he boundary layer flow; for the hump flow the two methods give both
ood agreement with experiments. It is found that the new model is
nsensitive to the location of the RANS-LES interface which is a great
dvantage.

Two SGS length scales have been evaluated, 𝛥𝐷𝐸𝑆 and 𝛥𝐼𝐷𝐷𝐸𝑆 .
hey both give good results in channel flow and boundary-later flow.
ith 𝛥𝐼𝐷𝐷𝐸𝑆 , the RANS-LES interface is located at 𝑦+ ≃ 50 and 20 in

he channel and boundary-layer flow, respectively. The corresponding
alues with 𝛥𝐷𝐸𝑆 are 200 and 100. With 𝛥𝐷𝐸𝑆 the resolved turbulence
ith NZ S-DES is in the URANS region close to zero whereas with
𝐼𝐷𝐷𝐸𝑆 the resolved turbulence is substantial. Nevertheless, the NZ
-DES produces very accurate results with both length scales. For the
ump flow, however, the 𝛥𝐼𝐷𝐷𝐸𝑆 length scale does not give good
esults (not shown). Hence, we recommend to use the 𝛥𝐷𝐸𝑆 length scale
n NZ S-DES .

The influence of the relaxation time, 𝜏𝑟 (Eq. (7)), was investigated.
t was varied up to a factor of ten in the channel flow and a factor
f five in the boundary-layer and the hump flow and it was seen that
he variation had negligible effect on the predicted results. Even the
agnitude of the drift term was not affected because the increase in
∕𝜏𝑟 was compensated by a decrease in the difference between the
ime-averaged LES and the RANS flow fields.

One potential advantage of the present method is that it should pay
ff to use advanced RANS turbulence models in the RANS solver; the
eason is that we solve the steady RANS flow equations for which all
ANS turbulence models in the literature have been developed. The
xplicit algebraic stress model (EARSM) has been used in the present
ork but it is found that the standard 𝑘−𝜔 model gives at least as good

esults.
DES is used in present study instead of DDES. The reason is that the

uthor prefer that a large part of the boundary layer should be treated
n LES mode. Using DDES would certainly be an option which would
e interesting to investigate in future work.

The disadvantage of the present method is of course the complexity
t entails to use two solvers and the additional CPU time. Since the
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time-averaged flow for all test cases in the present work are two
dimensional, a two-dimensional RANS solver was employed and hence
the additional CPU time was negligible. In three-dimensional flows,
one could consider to use the RANS solver only in the URANS region
(maybe solve a simplified set of momentum equations with a prescribed
pressure gradient (Bäckar and Davidson, 2017)), and solve the 𝑘 and 𝜔
equations using the time-averaged LES velocities, ⟨𝑢̄𝑖⟩𝑇 , see Eq. (8).
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