

Automated Comfortable Docking at Bus Stops

Amal Elawad, PhD student | Systems and Control Division, Electrical Engineering Department | 26.05.2021

Project Team

Amal Elawad

Doctoral student

Nikolce Murgovski Associate Professor

Mats Jonasson Senior Researcher

Bengt J H Jacobson Full Professor

Jonas Sjöberg Full Professor

- Project description.
- Problem statement.
- The comfort model.
- Optimization problem formulation.
- Results: simulations and experiments.

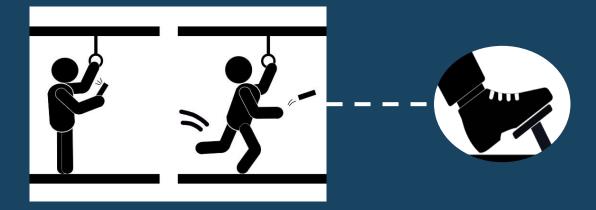
Project Description

Bus stop docking

1

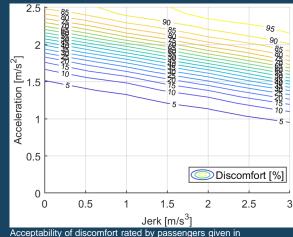
1.1. Autonomous docking (geometric constraints): accepted paper at ECC21.

1.2. Automated comfortable docking (comfort constraints)



- Project description.
- Problem statement.
- The comfort model.
- Optimization problem formulation.
- Results: simulations and experiments.

Why optimizing comfort?


- System performance (e.g., fuel consumption, parking time) can be improved by higher acceleration/deceleration than normal.
- However, the risk of passengers losing their balance is increased, especially for standing passengers.

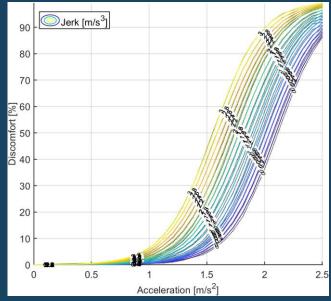
Why optimizing comfort?

- System performance (e.g., fuel consumption, parking time) can be improved by accelerating/decelerating.
- However, the risk of passengers losing their balance is increased, especially for standing passengers.
- Ride comfort is a combined effect of acceleration and jerk (coupled).
- A comfort model is needed.

Acceptability of discomfort rated by passengers given in percentage. The higher is the least acceptable. [1]

- Project description.
- Problem statement.
- The comfort model.
- Optimization problem formulation.
- Results: simulations and experiments.

The comfort model



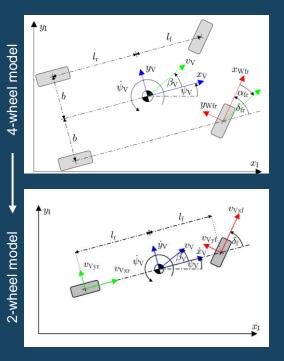
- Derived by fitting the data in [1] to a curve.
- Resulting curve: a function that couples the effect of acceleration and jerk:

$$dis(s, a, j) = \frac{A_2 Q_1}{A_2 Q_2 + e^{-(A_1 Q_3).q_2}}$$

 $A_{1} = \begin{bmatrix} \mathbf{1} , j, j^{2} \end{bmatrix}$ $A_{2} = \begin{bmatrix} \mathbf{1} , j, j^{2}, j^{3} \end{bmatrix}$

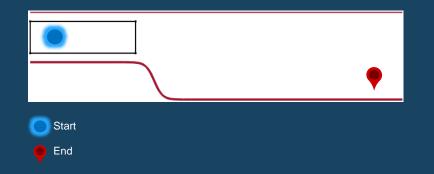
 Q_1, Q_2, Q_3 : constant coefficient vectors s, a, j: point on path, acceleration, and jerk

Acceptability of discomfort rated by passengers given in percentage [1]



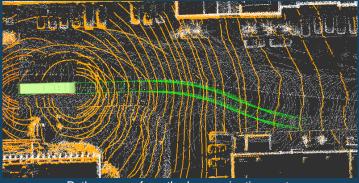
- Project description.
- Problem statement.
- The comfort model.
- Optimization problem formulation.
- Results: simulations and experiments.

The Vehicle model


- Kinematic bicycle model.
- Assumptions: front-steered (city bus), no tire slip (simplification).

The bus stop geometry

• Location: at Arendals Skans bus charging station.



The bus stop geometry

Arendals Skans bus stop (Google maps)

Path as seen from the bus navigation system

The Optimal Control Problem (OCP)

• The objective function minimizes:

$$J(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{z}) = \left\| \boldsymbol{x}(s_f) - \boldsymbol{x}_f \right\|_{Q_f}^2 + \boldsymbol{z} + \int_0^{s_f} \|\boldsymbol{u}(s)\|_R^2 \cdot ds$$

Deviation from
a target final state Discomfort

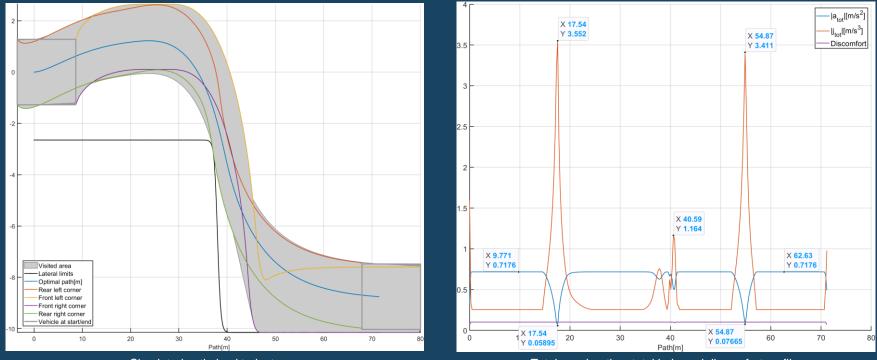
 Q_f , R: weighting matrices

The Optimal Control Problem (OCP)

- The objective function.
- The nonlinear control problem (NLP)

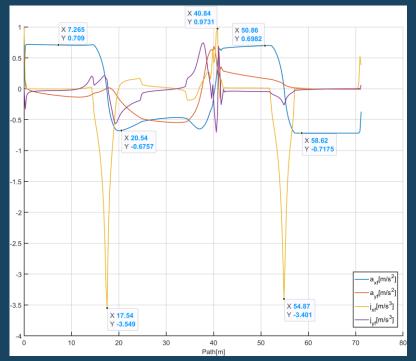
 $\min_{u} \tilde{J}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{z})$

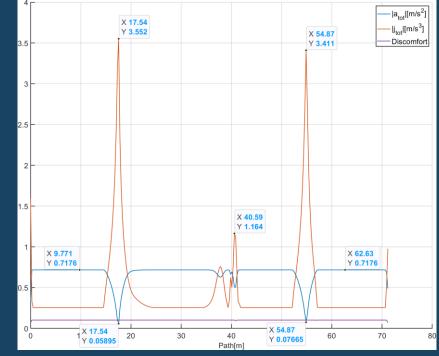
subject to


Dynamics	←	$x(k+1) = \tilde{f}(x(k), u(k)),$	$k = 0, \dots kf - 1$
Road geometry		$g(x,k) \leq 0,$	$k = 1, \dots kf$
tates and inputs		$x_{min}(k) \le x(k) \le x_{max}(k),$ $u_{min}(k) \le u(k) \le u_{max}(k),$	$k = 1, \dots kf$
		$u_{min}(k) \le u(k) \le u_{max}(k),$	$k = 0, \dots kf - 1$
Discomfort	←	$\xi_{min}(k) \le \xi(k) \le \xi_{max}(k),$	$k = 0, \dots kf - 1$
Initial states	←	$x(0) = x_0$	

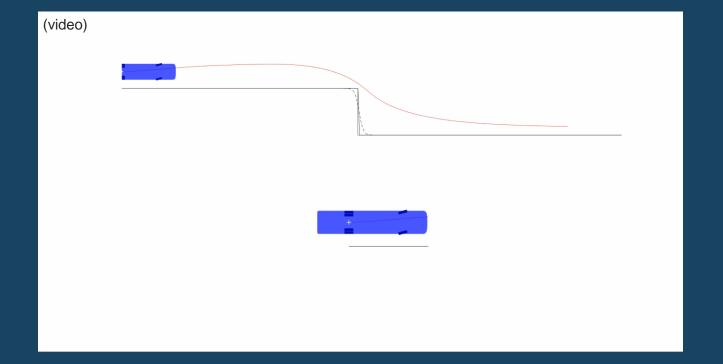
- Project description.
- Problem statement.
- The comfort model.
- Optimization problem formulation.
- Results: simulations and experiments.

Simulation results

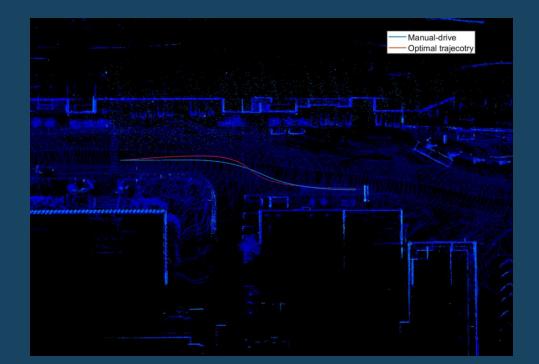



Total acceleration, total jerk, and discomfort profile

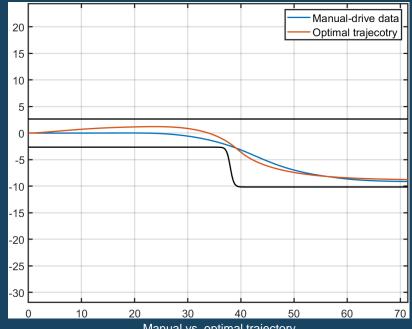
Simulation results


Acceleration and jerk (longitudinal and lateral)

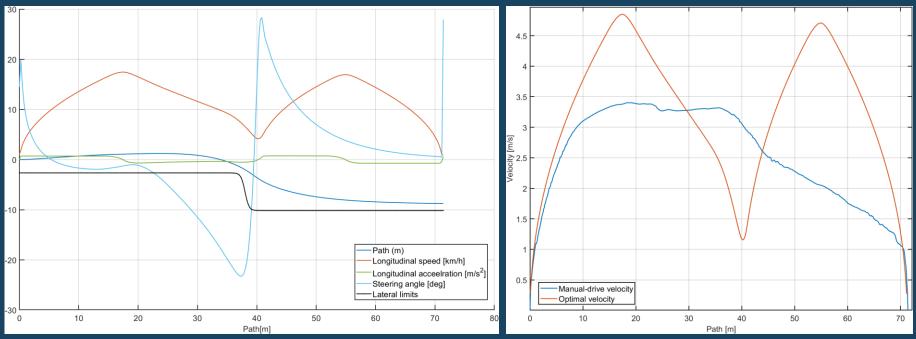
Total acceleration, total jerk, and discomfort profile


Simulation results

Experiments


The autonomous trajectory was loaded, and comfort was assessed by 2 passengers standing approximately at the middle of the bus. (see the video)

(video)


Optimal vs. manual drive

Optimal vs. manual drive

Simulation: notice the speed profile around the beginning of the bus stop

Speed profile of manual vs. optimal trajectory

How to proceed from here?

- Plans are made for further tests at Volvo, to log the acceleration data.
- A quantitative evaluation of the discomfort is needed, to compare simulations to experimental data.

Acknowledgements

- This project is supported by the Swedish State Innovation Agency, VINNOVA and Region Västra Götaland.
- Special thanks to **Joakim Jonasson** from Volvo Buses for technical support and bus operation.

CHALMERS UNIVERSITY OF TECHNOLOGY

Thank you! amal.elawad@chalmers.se