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GNSS-IR Model of Sea Level Height Estimation
Combining Variational Mode Decomposition

Yuan Hu, Xintai Yuan, Wei Liu , Jens Wickert , Zhihao Jiang, and Rüdiger Haas

Abstract—The global navigation satellite system-reflections
(GNSS-R) signal has been confirmed to be useful for retrieving sea
level height. At present, the GNSS-interferometric reflectometry
(GNSS-IR) technology based on the least square method to process
signal-to-noise ratio (SNR) data is restricted by the satellite eleva-
tion angle in terms of accuracy and stability. This article proposes
a new GNSS-IR model combining variational mode decomposition
(VMD) for sea level height estimation. VMD is used to decompose
the SNR data into intrinsic mode functions (IMF) of layers with
different frequencies, remove the IMF representing the trend item
of the SNR data, and reconstruct the remaining IMF components
to obtain the SNR oscillation item. In order to verify the validity
of the new GNSS-IR model, the measurement data provided by
the Onsala Space Observatory in Sweden is used to evaluate the
performance of the algorithm and its stability in high-elevation
range. The experimental results show that the VMD method has
good results in terms of accuracy and stability, and has advan-
tages compared to other methods. For the half-year GNSS SNR
data, the root mean square error and correlation coefficient of
the new model based on the VMD method are 4.86 cm and 0.97,
respectively.

Index Terms—GNSS-interferometric reflectometry (GNSS-IR),
sea level height, signal-to-noise ratio (SNR), variational mode
decomposition (VMD).

I. INTRODUCTION

A S THE global temperature rises, the continuous melting
of glaciers has caused the average sea level height to rise,

which has brought many adverse effects to coastal countries.
Therefore, effective and accurate monitoring of sea level height
has important practical significance. Traditional sea level height
monitoring based on tide gauges has certain limitations, such
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as limited monitoring area, high cost, and susceptibility to
external environmental influences. The global navigation satel-
lite system-reflectometry (GNSS-R) signal proposed by Hall
and Cordey is a new branch of GNSS that has been gradually
developed since the 1990s and is one of the research hot spots in
the field of remote sensing detection and navigation technology
[1]. Since the discovery of the surface reflection signal, which
was originally a source of multipath error, can be used as a new
type of remote sensing signal source for the inversion of the
characteristic parameters of the surface reflection surface, many
scholars launched the research on GNSS-R signal [2]–[5]. At
present, the research of sea level height measurement based on
reflected signal mainly includes phase delay analysis method
[6]–[9] and SNR analysis method. SNR data only need to be
obtained by a single antenna [10], which has lower requirements
for geodetic receivers. At the same time, the SNR signal formed
by the interference of the direct signal and the reflected signal
has better robustness to wind and waves. Larson et al. pro-
posed GNSS-interferometric reflectometry (GNSS-IR) technol-
ogy and used it for surface monitoring, including soil moisture
[11] and height measurement [12]. GNSS-IR technology can
be used to detect the earth’s surface environment, and has the
characteristics of wide coverage, low cost, and multiple signal
sources, which provides a new possibility for monitoring the sea
level height [13]–[17]. Therefore, the sea level height inversion
method based on the GNSS-IR model has received widespread
attention [18]–[20].

In the study of the GNSS-IR model, Larson et al. [21] com-
bined the least square method and Lomb–Scargle Periodogram
(LSP) spectrum method to measure the sea level height of two
stations. They achieved the sea level heights with root-mean-
square error (RMSE) of 5–10 cm and the correlation coefficients
were greater than 0.97 [22]. Löfgren et al. [23] used SNR data to
measure the sea level height at five stations around the world, and
found that the inversion results were not systematically different
from the tide gauge measurements. Löfgren et al. [24] used SNR
analysis and phase delay analysis to measure the height of the
rough sea level height, and the results showed that SNR analysis
performed better. Larson et al. [25] pointed out the term dynamic
sea level height correction and applied it to Kachemak Bay
where the daily sea level height changes greater than 7 m, and
achieved the sea level heights with RMSE of 2.3 cm. Strandberg
et al. [26] proposed the B-spline method to measure sea level
height through GNSS combination to determine the parameters,
which further improved the measurement accuracy, reaching a
standard deviation of 1.4 cm at Onsala, Sweden, and 3.1 cm at
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Spring Bay, Tasmania. Santamaría-Gómez et al. [27] improved
the measurement accuracy by using an extended Kalman fil-
ter/smoothing algorithm and tropospheric refraction correction
processing, and obtained an average level difference of about
5 mm and an RMSE of about 3 cm. Zhang et al. [28] found
that the empirical mode decomposition (EMD) can be used to
detrend the SNR data, which improves the utilization of SNR
data, and can still obtain inversion results with higher accuracy in
high-elevation range [29]. Wang et al. [30] used a combination
of four-constellation multi-GNSS multipath reflection method
to estimate the sea level height of the BRST station, which
improved the accuracy by about 40%–75%. Wang et al. [31]
used wavelet decomposition to extract the frequency of SNR
data for sea level height measurement, and obtained inversion
results that are not much different from LSP spectrum analysis.
Jin et al. [32] first applied BDS-reflectometry to estimate sea
level height changes based on SNR data and triple-frequency
phase and code combinations, and they achieved good agreement
with the observation results of the tide gauge. The SNR-based
GNSS-IR technology mainly uses the least square method and
LSP spectrum analysis to invert the sea level height altimetry,
and the research focuses on improving the inversion accuracy
and stability. In addition, there are methods for processing SNR
data such as the B-spline method [26], the EMD method [29],
wavelet decomposition [33], and singular spectrum analysis
(SSA) [34]. Although SNR-based GNSS-IR technology has
gained a lot of progress, the existing GNSS-IR sea level height
estimation model still has insufficient accuracy, stability, and
utilization of GNSS data.

To solve this problem, this article proposes a new GNSS-IR
model of sea level height estimation based on variational mode
decomposition (VMD) [35] method. This new model uses the
VMD method to decompose the SNR data, and combines the
LSP spectrum analysis to extract the oscillation frequency of the
SNR. VMD can decompose SNR data into residual sequence
and intrinsic mode function (IMF) components representing
different local features. Through observation and comparison,
we can find the IMF component representing the trend of the
SNR data, and then reconstruct the remaining IMF components
to obtain the oscillation term of the SNR data, and then LSP
spectrum analysis extracts the oscillation frequency of the SNR
sequence to obtain the sea level height. Compared with the
traditional model, the new model improves the utilization of
SNR data and ensures that the algorithm always maintains high
stability and accuracy at high-elevation angles.

The rest of this article is organized as follows. Section II
presents the basic principle of the GNSS-IR model. Section III
introduces the VMD method. Following, in Sections IV and V,
the model verification test and discussion are presented. Finally,
Section VI concludes this article.

II. BASIC PRINCIPLE OF GNSS-IR MODEL

The basic GNSS-IR model of sea level height estimation is
shown in Fig. 1. The SNR data received by the GNSS antenna is
formed by the interference of the direct signal and the reflected
signal is a measurement of signal strength. In Fig. 1, h is

Fig. 1. GNSS-R sea level height altimetry geometric relationship.

the vertical reflection distance, which represents the vertical
distance from the center of the antenna to the sea surface, Δd is
the path delay between the reflected signal and the direct signal,
and θ is the angle between the direct signal and the sea surface.

According to a near-ground direct reflection combined signal
power expression proposed by Nevinski and Larson, SNR can
be expressed as [36]

SNR = A2
d +A2

r + 2AdAr cosφγ (1)

where A2
d and A2

r are the direct signal power and the reflected
signal power, respectively, and φγ is the phase delay between
the direct signal and the reflected signal. According to Fig. 1,
φγ can be expressed as

φγ =
4πhr

λ
sin θ (2)

where λ is the carrier wavelength, hr is the vertical reflection
distance, andθ is the satellite elevation angle. In the expression of
the SNR,A2

d +A2
r is the direct and multipath signal power trend

terms, and 2AdAr cosφγ is the SNR oscillation term caused by
direct and multipath signal interference.

In the coastal sea level height measurements, GNSS-IR tech-
niques based on SNR analysis can eliminate the Doppler effect
caused by receiver dynamics. At the same time, the polarization
component of the reflected signal changes with the elevation an-
gle. When the elevation of the navigation satellite is low, the pro-
portion of the right-handed polarization component contained
in the reflected signal is high, and the lower elevation, the more
coherent components of the reflected signal, and the smoother
the sea surface represented by the signal. Therefore, the SNR
sequence with elevation angles of 5°–12° is often processed
to invert surface parameters. However, sometimes enough time
series are needed for analysis. The SNR sequence with satellite
elevation angles between 5° and 30° have better inversion results,
and the algorithm must comprehensively consider the trajectory
of the navigation satellite and the location of the station.
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Fig. 2. Comparison of oscillation term obtained by least squares and VMD
(The black line is the result obtained by the least square method and the thick
red line is the result obtained by the VMD.).

The SNR data are composed of power trend terms and SNR
oscillation terms [37], and the oscillation amplitude, frequency
and phase of the SNR oscillation term have a direct corre-
spondence with the surface parameters. Therefore, in order to
obtain the GNSS multipath information caused by the surface
reflection in the SNR, some methods can be used to remove
the trend item of the SNR sequence in the low altitude range,
thereby providing the detrended SNR data. This phenomenon
can be easily observed in Fig. 2. As the elevation increases,
the amplitude of the oscillation will gradually decrease. The
frequency f of the SNR oscillation term can be obtained by
performing LSP spectrum analysis of the detrended SNR data,
and then the vertical reflection distance h reflecting the change
of sea surface height can be obtained by f = 2h/λ.

III. INTRODUCTION TO VMD

The innovation of the new GNSS-IR model proposed in this
article is to use the VMD method to decompose the SNR data
to provide high-quality SNR data for LSP spectrum analysis.
In the traditional GNSS-IR model, the detrend processing of
SNR data is very critical. The traditional method is to process
the SNR sequence through the least square method to obtain the
SNR oscillation term. In addition, common SNR data processing
methods include wavelet decomposition, EMD and SSA meth-
ods. In this article, we select an original SNR sequence on the
first day of 2016 of the Onsala Space Observatory, and extracted
the SNR observation data at an elevation angle of 5°–30°. It can
be seen that the SNR sequence in low-elevation angle range is an
oscillating sequence with a trend term. In Fig. 3, the horizontal
axis represents the satellite elevation angle, and the vertical axis
represents the corresponding SNR amplitude. Obviously, the
SNR oscillation term obtained by the least square method is quite
complicated, and contains a large number of high-frequency
and low-frequency signals, which will introduce errors in the

Fig. 3. Composition of the IMF component of the SNR sequence, high
frequency to low frequency from top to bottom.

spectrum analysis. Compared with the least square method,
the SNR oscillation term obtained by processing the SNR data
by the VMD method is quite smooth, which is beneficial to
the subsequent LSP spectrum analysis. Therefore, this article
proposes to use VMD to decompose the original SNR data to
obtain the SNR oscillation term corresponding to the frequency
of the coherent signal, and then compare the inversion accuracy
of different SNR data processing methods.

The VMD method is a completely nonrecursive decomposi-
tion model. In theory, any type of time series can be decomposed
into modes with different center frequencies by the VMD, in-
cluding nonstationary time and nonlinear time [38]. Therefore,
VMD can be summarized as

X(t) =

K∑
k=1

uk(t) + rn(t) (3)

where X(t) is the original time series; uk(t) is the IMF; rn(t)
is residual term.

The IMF of VMD is defined as an amplitude-modulated-
frequency-modulated signal [35]. The kth mode uk(t) is written
as

uk(t) = Ak(t) cos (φk(t)) (4)
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where Ak(t) is the instantaneous amplitude; φk(t) is the in-
stantaneous phase, and its derivative ωk(t) = φ′

k (t) is the
instantaneous frequency.

For each mode uk(t), VMD constructs the analytic signal
by means of Hilbert transform and calculate the unilateral fre-
quency spectrum. Then, the frequency spectrum of the modal
function is corrected to the estimated center frequency by Fourier
transform. In the following step, the bandwidth of the modal
component can be calculated by Gaussian smoothing. Therefore,
the variational constraint model that minimizes the sum of the
spectral widths of all IMFs can be obtained as

min
{uk},{ωk}

{
K∑

k=1

∂t

[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jωkt

2

2

}
(5)

s.t.
K∑

k=1

uk = f (6)

where {uk} is the set of all modes; {ωk} is the set of correspond-
ing center frequencies; K is the mode number; the constraint is
the sum of all modes, which is also equal to the original signal.

In order to solve the optimal solution of the abovemen-
tioned variational constrained problem, VMD introduces the
Lagrangian multiplication operator and the quadratic penalty
factor to convert the problem into a nonconstrained variational
problem as follows:

L ({uk} , {ωk} , λ)

= α

K∑
k = 1

∂t

[(
δ (t) +

j

πt

)
∗ uk (t)

]
e−jωkt2

2 + f (t)

−
K∑

k = 1

uk(t)
2
2 +

〈
λ (t) , f (t)−

K∑
k = 1

uk (t)

〉
(7)

whereα is the penalty parameter; λ is the Lagrangian multiplier;
〈 〉 is the vector inner product.

Before satisfying the iterative stop condition, VMD solves the
abovementioned nonconstrained variational problem iteratively
by introducing alternating direction method of multipliers, and
K IMFs components decomposed from the original signal finally
can be obtained.

The VMD method can decompose the original signal into a
limited number of IMFs that contain local characteristic signals
of the original signal. Therefore, by permuting and combining
the IMF components, the SNR oscillation term required for sub-
sequent spectrum analysis can be obtained. Generally speaking
the SNR oscillation term can be obtained by removing IMF
components with the same characteristics as the trend term of
the original SNR data, and then reconstructing the remaining
IMF components. Considering that the sea level height changes
greatly, the frequency change of the coherent signal may be more
complicated. In this case, using a combination of multiple IMF
components can ensure that more accurate inversion results can
be obtained through the VMD method.

In order to better illustrate the advantages of the VMD method
in the process of sea level height inversion, the satellite observa-
tion signal from the Onsala Space Observatory on the first day

Fig. 4. Environment map of GTGU station. We only used the data from the
zenith-looking antenna (GTGU) [41].

of 2016 is selected for analysis, and the SNR data at elevations
of 5°–30° is decomposed by VMD, as shown in Fig. 3.

In Fig. 3, the horizontal axis represents the elevation angle of
the satellite, and the vertical axis represents the signal amplitude.
From Fig. 3, we can clearly see that the VMD decomposes SNR
data into four layers of signals with different frequencies and
characteristics. The VMD method is improved based on the
EMD method, and can choose the number of decomposition
layers independently. Comparing the amplitude and frequency
of each IMF component with the original SNR data, it can be
found that the IMF 4 component is a low-frequency component
and the amplitude is basically the same as the original SNR
data. Therefore, the detrended SNR signal can be obtained by
reconstructing the remaining IMF components. In Fig. 4, it is
clear shown that the VMD method can effectively remove the
trend term of the SNR data. In addition, the VMD method is
based on each IMF component obtained by frequency decompo-
sition. The SNR oscillation term corresponding to the frequency
of the coherent signal can be obtained by reconstructing the
IMF component. Compared with the complex SNR sequence
trend item obtained by the least squares fitting method, the SNR
oscillation item obtained by the VMD method has less influence
on the spectrum analysis.

In previous studies, the traditional GNSS-IR models based
on the least squares method usually only achieve good results
at low-elevation angles. However, as the elevation increases,
the accuracy of the algorithm gradually reduction or even fail.
The VMD algorithm proposed in this article still maintains good
accuracy with high elevation. In order to verify the improvement
effect of the VMD algorithm in different elevation intervals, this
article conducted some experiments at the OSO of Chalmers
University of Technology in Sweden.
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Fig. 5. Satellite remote sensing images of GTGU station. We can see the GPS
L1 first Fresnel zone of GTGU station [41].

IV. MODEL VERIFICATION TEST IN GTGU, SWEDEN

To verify the feasibility of the new model, we conduct the
experiments at the GTGU station, and the GNSS-R data were
provided by the Onsala Space Observatory [39]. Many scholars
have conducted experiments at this GNSS station earlier, which
indirectly explained the appropriateness of the location selected
in this experiment [40]. But this article also gives some expla-
nations on this station. The GNSS station is located at the OSO
on the west coast of Sweden (57.4°N, 11.9°E). The equipment
at the site includes two Leica GRX1200 receivers and two Leica
AR 25 antennas, as shown in Fig. 4. The antenna is a part of
a two-antenna experimental installation for measuring sea level
height, with one zenith and one nadir-looking antenna. In this
study, we only used the data from the zenith-looking antenna
(GTGU). The GTGU is installed about 4 m above the MSL, and
the receiver is set to a sampling frequency of 1 s. In order to
maximize the number of satellite orbits, GTGU is installed in
the south direction. Fig. 5 shows the GPS L1 first Fresnel zone
that appeared in GTGU in the first week of 2016. Each color
represents a GPS satellite and the location of the GNSS station
is in the white circle in Fig. 5 [41].

The tide gauge is located about 300 m from the GNSS station
and records sea level height every minute. As this tide gauge
reports sea level height every minute and the location is sheltered
from breaking waves, it can be used as a references to compare
different algorithms. According to the sea level height data
obtained from the selected tide gauges, it can be found that the
sea level height fluctuations from January 2016 to June 2016 are
relatively stable. However, due to the proximity of the GTGU
station to the Arctic Circle, its tidal changes are irregular, the sea
level height curve is not smooth, and there are many burrs. In
order to better analyze the experiment, this article obtained the
rainfall, wind speed, and temperature of the experimental site

TABLE I
STATISTICS OF SEA LEVEL HEIGHT INVERSION RESULT OBTAINED BY

DIFFERENT METHODS FROM DOY 1, 2016 TO DOY 181, 2016 (DOY 85–88 IS

MISSING)

in 2016 from the Swedish Meteorological and Hydro logical
Institute (SMHI).

In order to verify the feasibility of the VMD method to process
SNR data in the sea level height inversion model, this article
combines the VMD method and the LSP spectrum analysis to
invert the sea level height in the first 6 months of 2016. The
satellite elevation range is 5°–30°. The VMD can choose a fixed
number of decomposition layers to decompose the original SNR
signal. The number of layers used in this article is all four layers
unless otherwise specified. As shown in Fig. 3, the VMD decom-
poses the original SNR data into four layers of IMF components.
By observing and comparing the consistency between the IMF
components and the SNR sequence, we can find that IMF 4 is
a local feature component that characterizes the trend of SNR
data. Therefore, accord to reconstruct the remaining three-layer
IMF components, the oscillation term of the SNR data can be
obtained, and then the LSP spectrum analysis can be performed.

Simultaneously, we also used the least square method, EMD
method, wavelet decomposition, and SSA for SNR data pro-
cessing. According to experience, the EMD method selects
the maximum number of decomposition layers as six layers,
and the wavelet decomposition method chooses the eight-layer
db5 wavelet function. For SSA, we chose to use reconstructed
component 1 of the original times series as the trend item signal.
In addition, we also conduct a comparative analysis with the
results of the first IAG intercomparison campaign. From the data
uploaded by the four participating teams, we selected sea level
height data consistent with our experimental time period [42].
Table I presents the statistics of sea level height inversion result
obtained by different methods from DOY 1, 2016 to DOY 181,
2016 (DOY 85–88 is missing). The satellite elevation range and
retrieval method selected by each solution are different, resulting
in different performance of each solution. For group a and group
b, they established a model that relied on sea level to determine
model parameters to improve the accuracy of the results and used
a moving window method to ensure that the retrieval was updated
every minute. The VMD method only needs to process the SNR
data and then obtain the measured reflector height through the
LSP to achieve the purpose of quality control. From the statistical
results, the SNR data processing method based on the VMD
method has achieved good accuracy results. The RMSE and



10410 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 6. Top is the time series of retrieval results for DOY 1–181, 2016; bottom is the sea level bias with respect to the tide gauge.

TABLE II
COMPARISON OF THE ACCURACY OF THE INVERSION RESULT OF FIVE METHODS

correlation coefficient are 4.86 cm and 0.97, respectively. The
VMD method does not have a specific target expression when
separating signals, so it can flexibly fit complex SNR data. Fig. 6
shows the sea level height retrieval results and sea level biases
obtained by different methods.

On the basis of observing the sea level inversion results of
the long-term series, we continue to study the monthly sea level
height inversion results of the VMD method and other com-
monly used SNR data processing methods. The statistical results
are recorded in Table II. It can be clearly seen that the VMD
method has advantages in accuracy, correlation coefficient, and

GNSS data utilization. The inversion result of the sea level height
of the VMD method in January is shown separately, as shown in
Fig. 7. Tables III and IV present the comparison of the inversion
accuracy of each method at a shorter period.

V. DISCUSSION

Experiments conducted at the GTGU station show that com-
pared with the traditional model, the new GNSS-IR model com-
bined with the VMD method has a considerable improvement in
the accuracy and the utilization of GNSS data of sea level height
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Fig. 7. Comparison of the sea level height change obtained by the tide gauge
station and GNSS-IR technology based on VMD method in January.

TABLE III
COMPARISON OF THE ACCURACY OF THE INVERSION RESULT OF FIVE

METHODS DURING THE FIRST SEVEN DAYS OF 2016 WITH THE ELEVATION

CHANGED FROM 5°–15° (LEFT) TO 5°–35° (RIGHT), FROM TOP TO BOTTOM

ARE VMD, SSA, LEAST SQUARES, EMD, AND WAVELET DECOMPOSITION

inversion. The superiority of the VMD method also is reflected
in the processing of SNR data with high-elevation angles.

In VMD, the value of the decomposition layer k is a custom
variable, the decomposition result will get different results as
the value of k changes when the value of k is selected. The
value directly affects the accuracy of the result. If the value
of k is too large or too small, it will affect the result. The
number of decomposed layers K and is selected empirically
based on experience and observation which impacts its adapt-
ability. In the experiment carried out in this article, the number
of decomposition layers selected by the VMD method is four
layers. According to the principle of the VMD method to pro-
cess data, different decomposition levels will affect the SNR
oscillation term obtained after reconstruction and thus affect the
inversion result [43]. In order to study the effect of the number
of decomposition layers of the VMD on the inversion results,

TABLE IV
COMPARISON OF THE ACCURACY OF THE INVERSION RESULT OF FIVE

METHODS WITH THE ELEVATION CHANGED FROM 5°–15° (LEFT) TO 5°–35°
(RIGHT) ON DOY 61–67, 2016

TABLE V
COMPARISON OF RMSE OF THE INVERSION RESULT OF DIFFERENT IMF

COMPONENT LAYERS, FROM 3 TO 7

we analyzed the effect of processing the SNR data of January
2016 with the IMF components of the three to seven layers.
In theory, the more decomposition layers, the more accurate
the local feature extraction of SNR data. However, due to the
influence of the surrounding environment of the receiver, the
SNR data is quite complicated. From the results in Table V, it
can be seen that as the number of decomposition layers increases,
the RMSE of the inversion result first becomes larger and then
smaller, but the correlation coefficient still maintains 0.98 and
the number of inversion points increases from 1736 to 2269.
However, we found that the best decomposition layers would be
different when we selected the different experimental intervals.
Therefore, different decomposition layers can be selected in
different experimental environments. Wu et al. [44] pointed out
a novel method based on kurtosis to select K, which may solve
this problem. The specific process is shown in Fig. 8. A positive
integer with k value of 2 − n is selected, starting from k being
2, the kurtosis of the component with the largest correlation
coefficient of the original signal under each k value is calculated.
If the kurtosis increases monotonously, calculate the k kurtosis as
n+1, and repeat the above steps. The maximum kurtosis is used
as the optimization criterion and k is the best when the kurtosis
is the maximum. The advantage of this model is that it only
needs to provide GNSS SNR data without resorting to TG data to
calculate the optimal number of decomposition layers. Choosing
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Fig. 8. Process of the VMD k value determination method.

TABLE VI
CORRELATION COEFFICIENTS OF IMF COMPONENTS UNDER DIFFERENT K

VALUES

Fig. 9. Peak kurtosis of different K values.

Fig. 10. Comparison of the climate and the sea level bias in GTGU. (a) Com-
parison of the rainfall and the sea level bias. (b) Comparison of the wind speed
and the sea level bias. (c) Comparison of the temperature and the sea level bias.

the best decomposition layer is beneficial to the improvement of
inversion accuracy.

We use the VMD method to decompose a piece of SNR data,
and calculated the correlation coefficient and kurtosis of each
IMF component corresponding to different K values. The results
are recorded in Table VI and Fig. 9, respectively.

The SNR of the received signal has an important influence on
the measurement accuracy. Earlier, Löfgren [45], Larson [22],
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and others talked about the influence of wind on the inversion
results. When the sea breeze produces obvious roughness due
to changes in the wind field, there are a large number of diffuse
reflection points around the points that satisfy the geometric
relationship of specular reflection. The existence of diffuse
reflection points will affect the power curve of the reflected
signal, thereby affecting the SNR. This article uses the SMHI
to query the climate data such as wind speed, rainfall, and air
temperature near the OSO, and analyze whether it has an impact
on the inversion results. In Fig. 10, we found that the error
distribution of the inversion results has no correlation with the
wind speed, rainfall, and air temperature in the monitored area,
which is consistent with the research conclusions of previous
scholars.

VI. CONCLUSION

This article proposes a GNSS-IR model combining VMD
for sea level height altimetry. Compared with the traditional
GNSS-IR model, the new model improves the accuracy and
stability of the inversion results. In this article, we used the VMD
method to remove the trend items of SNR data, and verified
its feasibility by comparing with other SNR data processing
methods. Experimental results show that the new GNSS-IR
model has improved both its accuracy and stability under high
satellite elevation angle ranges. In addition, the new GNSS-IR
model is also suitable for sea areas with extremely complicated
sea level height changes.

ACKNOWLEDGMENT

The authors would like to thank Onsala Space Observatory,
Chalmers University of Technology, Sweden, for providing the
tide gauge and GNSS-R data and Dr. M. Ramatschi from GFZ
for data processing and management. The tide gauge data can
be downloaded from the Zenodo repository, at https://doi.org/
10.5281/zenodo.2924308.

REFERENCES

[1] C. D. Hall and R. A. Cordey, “Multistatic scatterometry,” in Proc. Int.
Geosci. Remote Sens. Symp. ‘Remote Sens.: Moving Toward 21st Century’,
1988, pp. 561–562.

[2] M. Martín-Neira, “A passive reflectometry and interferometry system
(PARIS): Application to ocean altimetry,” ESA J., vol. 17, pp. 331–355,
1993.

[3] N. Rodriguez-Alvarez et al., “Land geophysical parameters retrieval using
the interference pattern GNSS-R technique,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 1, pp. 71–84, Jan. 2011.

[4] R. Shah and J. L. Garrison, “Application of the ICF coherence time method
for ocean remote sensing using digital communication satellite signals,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 5,
pp. 1584–1591, May 2014.

[5] Q. Yan, W. Huang, and C. Moloney, “Neural networks based sea ice
detection and concentration retrieval from GNSS-R delay-Doppler maps,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8,
pp. 3789–3798, Aug. 2017.

[6] J. Wu et al., “Sea surface height estimation by ground-based BDS GEO
satellite reflectometry,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 5550–5559, Sep. 2020.

[7] E. Cardellach, F. Fabra, A. Rius, S. Pettinato, and S. D’Addio, “Character-
ization of dry-snow sub-structure using GNSS reflected signals,” Remote
Sens. Environ., vol. 124, pp. 122–134, 2012.

[8] M. Song et al., “Study on the exploration of spaceborne GNSS-R raw data
focusing on altimetry,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 6142–6154, Oct. 2020.

[9] J. C. Kucwaj, G. Stienne, S. Reboul, J. B. Choquel, and M. Benjelloun,
“Accurate pseudorange estimation by means of code and phase delay
integration: Application to GNSS-R altimetry,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 10, pp. 4854–4864, Oct. 2016.

[10] A. Santamaria-Gomez, C. Watson, M. Gravelle, M. King, and G. Woeppel-
mann, “Levelling co-located GNSS and tide gauge stations using GNSS
reflectometry,” J. Geodesy, vol. 89, no. 3, pp. 241–258, 2015.

[11] N. Roussel et al., “Detection of soil moisture variations using GPS
and GLONASS SNR data for elevation angles ranging from 2 to 70,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 10,
pp. 4781–4794, Oct. 2016.

[12] K. M. Larson and E. E. Small, “Estimation of snow depth using L1 GPS
signal-to-noise ratio data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 9, no. 10, pp. 4802–4808, Oct. 2016.

[13] N. Rodriguez-Alvarez et al., “Review of crop growth and soil moisture
monitoring from a ground-based instrument implementing the interference
pattern GNSS-R technique,” Radio Sci., vol. 46, no. 6, pp. 1–11, Dec. 2011.

[14] G. Ruffini, F. Soulat, M. Caparrini, O. Germain, and M. Martín-Neira, “The
eddy experiment: Accurate GNSS-R ocean altimetry from low altitude
aircraft,” Geophysical Res. Lett., vol. 31, no. 12, 2004, Art. no. L12306.

[15] A. M. Semmling et al., “Detection of arctic ocean tides using interfero-
metric GNSS-R signals,” Geophysical Res. Lett., vol. 38, no. 4, 2011, Art.
no. L04103.

[16] K. M. Larson, E. D. Gutmann, V. U. Zavorotny, J. J. Braun, M. W. Williams,
and F. G. Nievinski, “Can we measure snow depth with GPS receivers?,”
Geophysical Res. Lett., vol. 36, no. 17, 2009, Art. no. L17502.

[17] N. Roussel et al., “Sea level height monitoring and sea state estimate using
a single geodetic receiver,” Remote Sens. Environ., vol. 171, pp. 261–277,
2015.

[18] K. D. Anderson, “Determination of water level and tides using interfer-
ometric observations of GPS signals,” J. Atmospheric Ocean. Technol.,
vol. 17, no. 8, pp. 1118–1127, 2000.

[19] A. Alonso-Arroyo, A. Camps, H. Park, D. Pascual, R. Onrubia, and F.
Martin, “Retrieval of significant wave height and mean sea surface level
using the GNSS-R interference pattern technique: Results from a three-
month field campaign,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6,
pp. 3198–3209, Jun. 2015.

[20] M. A. R. Fagundes, I. Mendonca-Tinti, A. L. Iescheck, D. M. Akos, and
F. Geremia-Nievinski, “An open-source low-cost sensor for SNR-based
GNSS reflectometry: Design and long-term validation towards sea-level
altimetry,” GPS Solutions, vol. 25, no. 2, Mar. 2021, Art. no. 73.

[21] J. T. VanderPlas, “Understanding the Lomb-Scargle periodogram,” Astro-
physical J. Suppl. Ser., vol. 236, no. 1, May 2018, Art. no. 16.

[22] K. M. Larson, J. S. Löfgren, and R. Haas, “Coastal sea level height
measurements using a single geodetic GPS receiver,” Adv. Space Res.,
vol. 51, no. 8, pp. 1301–1310, 2013.

[23] J. S. Löfgren, R. Haas, and H.-G. Scherneck, “Sea level height time series
and ocean tide analysis from multipath signals at five GPS sites in different
parts of the world,” J. Geodynamics, vol. 80, pp. 66–80, 2014.

[24] J. S. Löfgren and R. Haas, “Sea level height measurements using multi-
frequency GPS and GLONASS observations,” EURASIP J. Adv. Signal
Process., vol. 2014, no. 1, pp. 1–13, 2014.

[25] K. M. Larson, R. D. Ray, F. G. Nievinski, and J. T. Freymueller, “The
accidental tide gauge: A GPS reflection case study from Kachemak bay,
Alaska,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1200–1204,
Sep. 2013.

[26] J. Strandberg, T. Hobiger, and R. Haas, “Improving GNSS-R sea level
height determination through inverse modeling of SNR data,” Radio Sci.,
vol. 51, no. 8, pp. 1286–1296, 2016.

[27] A. Santamaría-Gómez and C. Watson, “Remote leveling of tide gauges
using GNSS reflectometry: Case study at Spring bay, Australia,” GPS
Solutions, vol. 21, no. 2, pp. 451–459, 2017.

[28] N. E. Huang et al., “The empirical mode decomposition and the hilbert
spectrum for nonlinear and non-stationary time series analysis,” Proc.
Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci., vol. 454, no. 1971,
pp. 903–995, 1998.

[29] S. Zhang, K. Liu, Q. Liu, C. Zhang, Q. Zhang, and Y. Nan, “Tide variation
monitoring based improved GNSS-MR by empirical mode decomposi-
tion,” Adv. Space Res., vol. 63, no. 10, pp. 3333–3345, 2019.

[30] X. Wang, X. He, and Q. Zhang, “Evaluation and combination of quad-
constellation multi-GNSS multipath reflectometry applied to sea level
height retrieval,” Remote Sens. Environ., vol. 231, 2019, Art. no. 111229.

[31] X. Wang, Q. Zhang, and S. Zhang, “Water levels measured with SNR using
wavelet decomposition and Lomb–Scargle periodogram,” GPS Solutions,
vol. 22, no. 1, pp. 1–10, 2018.

[32] S. Jin, X. Qian, and X. Wu, “Sea level height change from BeiDou naviga-
tion satellite system-Reflectometry (BDS-R): First results and evaluation,”
Glob. Planet. Change, vol. 149, pp. 20–25, 2017.

https://doi.org/10.5281/zenodo.2924308
https://doi.org/10.5281/zenodo.2924308


10414 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[33] P. Kumar and E. Foufoula-Georgiou, “Wavelet analysis for geophysical
applications,” Rev. Geophys., vol. 35, no. 4, pp. 385–412, 1997.

[34] P. L. Vu et al., “Identifying 2010 Xynthia storm signature in GNSS-R-
based tide records,” Remote Sens., vol. 11, no. 7, 2019, Art. no. 782.

[35] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE
Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2014.

[36] F. G. Nievinski and K. M. Larson, “Forward modeling of GPS multipath for
near-surface reflectometry and positioning applications,” GPS Solutions,
vol. 18, no. 2, pp. 309–322, 2014.

[37] F. G. Nievinski and K. M. Larson, “An open source GPS multipath
simulator in matlab/octave,” GPS Solutions, vol. 18, no. 3, pp. 473–481,
Jul. 2014.

[38] A. Bagheri, O. E. Ozbulut, and D. K. Harris, “Structural system identifi-
cation based on variational mode decomposition,” J. Sound Vib., vol. 417,
pp. 182–197, 2018.

[39] J. Strandberg, T. Hobiger, and R. Haas, “Input data for manuscript
‘SNR-based GNSS reflectometry for coastal sea-level altimetry—Results
from the first IAG inter-comparison campaign,” 2019, doi: 10.5281/zen-
odo.2924308.

[40] W. Liu et al., “Coastal sea-level measurements based on GNSS-R phase
altimetry: A case study at the onsala space observatory, Sweden,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5625–5636, Oct. 2017.

[41] F. Geremia-Nievinski et al., “SNR-based GNSS reflectometry for coastal
sea-level altimetry: Results from the first IAG inter-comparison cam-
paign,” J. Geodesy, vol. 94, no. 8, pp. 1–15, 2020.

[42] F. Nievinski, “Output data for manuscript ‘SNR-based GNSS reflectom-
etry for coastal sea-level altimetry—Results from the first IAG inter-
comparison campaign,” Zenodo, doi: 10.5281/zenodo.2925043.

[43] P. D. Achlerkar, S. R. Samantaray, and M. S. Manikandan, “Variational
mode decomposition and decision tree based detection and classification
of power quality disturbances in grid-connected distributed generation
system,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3122–3132, Jul. 2016.

[44] W. Wu, Z. Wang, J. Zhang, W. Ma, and J. Wang, “Research of the method
of determining k value in VMD based on kurtosis,” J. Mech. Transmiss.,
vol. 42, no. 8, pp. 153–157, 2018.

[45] J. S. Löfgren, R. Haas, H. G. Scherneck, and M. S. Bos, “Three months
of local sea level height derived from reflected GNSS signals,” Radio Sci.,
vol. 46, Nov. 2011, Art. no. Rs0c05.

Yuan Hu received the Ph.D. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2011.

She is currently an Associate Professor of electrical
engineering with Shanghai Ocean University, Shang-
hai, China. Her research interests include signal pro-
cessing, computer science, GNSS related application
studies, GNSS signal processing, GNSS reflectome-
try, and the earth deformation studies.

Xintai Yuan was born in Guangdong, China, in 1998.
He received the B.E. degree in mechanical engi-
neering from Shantou University, Shantou, China, in
2020. He is currently working toward the master’s de-
gree with the Department of Electrical Engineering,
Shanghai Ocean University, Shanghai, China.

His research interests include the use of marine re-
mote sensing techniques such as GNSS reflectometry
applied to global climate change, sea level, and earth
deformation studies.

Wei Liu received the B.Sc. and M.Sc. degrees in
automation and instrument engineering from North-
eastern University, Shenyang, China, in 2003 and
2006, and the Ph.D. degree from Shanghai Jiao Tong
University, Shanghai, China, in 2011.

He is currently an Associate Professor of com-
munication and navigation with Shanghai Maritime
University, Shanghai, China. From 2015 to 2016, he
was with the Department for Geodesy, German Re-
search Centre for Geosciences, Potsdam, Germany.
His research interests include global navigation satel-

lite systems (GNSS) signal processing, GNSS reflectometry, and GNSS related
interference studies.

Jens Wickert received the bachelor’s degree in
physics from Technical University Dresden, Dresden,
Germany, in 1989, and the Ph.D. degree in geo-
physics/meteorology from Karl-Franzens-University
Graz, Graz, Austria, in 2002..

He was a Principal Investigator of the pioneering
GPS Radio Occultation Experiment aboard the Ger-
man CHAMP, and he was also with several German
Geoscience Research Institutes. He is currently a
Joint Professor of Global Navigation Satellite Sys-
tems (GNSS) Remote Sensing, Navigation, and Po-

sitioning with the German Research Centre for Geosciences GFZ, Potsdam,
Germany, and with the Technical University of Berlin, Berlin, Germany. He
is also a Chair of the Science Advisory Group, GEROS-ISS Mission for
GNSS-Reflectometry. He is also the Deputy GFZ Section Head Space Geodetic
Techniques and the GFZ Speaker of the Atmosphere and Climate Research
Program, German Helmholtz Association. He has authored or coauthored more
than 160 ISI listed publications on GNSS Earth Observation.

Dr. Wickert was the recipient of several research awards.

Zhihao Jiang was born in Jiangsu, China, in 1998. He
received the B.Eng. degree in mechanical engineering
and automation from the Nanjing Institute of Technol-
ogy, Nanjing, China, in 2020. He is currently working
toward the master’s degree in electrical engineering
with Shanghai Ocean University, Shanghai, China.

His research interests include ocean remote sensing
by global navigation satellite system-reflectometry
signal and sea ice remote sensing using GNSS-
reflectometry.

Rüdiger Haas received the M.Sc. and Ph.D. degrees
in geodesy from Bonn University, Bonn, Germany, in
1992 and 1997, respectively.

He is currently a Professor of space geodesy with
the Chalmers University of Technology, Gothenburg,
Sweden. He is currently leading the Research Group
on Space Geodesy and Geodynamics with Chalmers
and is responsible for the geodetic VLBI activities
with the Onsala Space Observatory. His research
interests include space geodesy and global geophys-
ical phenomena, e.g., earth rotation, global reference

frames, changes in atmospheric water vapor, and sea level measurements.
Dr. Haas is the Scientific Leader of the Onsala Twin Telescope Project, the

Chair of the European VLBI Group for Geodesy and Astrometry, and a member
of both the Directing Boards of the International VLBI Service for Geodesy and
Astrometry, and the International Earth Rotation and Reference Frames Service.

https://dx.doi.org/10.5281/zenodo.2924308
https://dx.doi.org/10.5281/zenodo.2924308
https://dx.doi.org/10.5281/zenodo.2925043


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


