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We report and discuss, by means of pore-scale numerical simulations, the possibility of achieving a directional-
dependent two-phase flow behavior during the process of invasion of a viscous fluid into anisotropic porous
media with controlled design. By customising the pore-scale morphology and heterogeneities with the adoption
of anisotropic triangular pillars distributed with quenched disorder, we observe a substantially different invasion
dynamics according to the direction of fluid injection relative to the medium orientation, that is depending
if the triangular pillars have their apex oriented (flow aligned) or opposed (flow opposing) to the main flow
direction. Three flow regimes can be observed: (i) for low values of the ratio between the macroscopic pressure
drop and the characteristic pore-scale capillary threshold, i.e., for �p0/pc � 1, the fluid invasion dynamics is
strongly impeded and the viscous fluid is unable to reach the outlet of the medium, irrespective of the direction
of injection; (ii) for intermediate values, 1 < �p0/pc � 2, the viscous fluid reaches the outlet only when the
triangular pillars are flow-opposing oriented; (iii) for larger values, i.e., for �p0/pc > 2, the outlet is again
reached irrespective of the direction of injection. The porous medium anisotropy induces a lower effective
resistance when the pillars are flow-opposing oriented, suppressing front roughening and capillary fingering. We
thus argue that the invasion process occurs as long as the pressure drop is larger then the macroscopic capillary
pressure determined by the front roughness, which in the case of flow-opposing pillars is halved. We present a
simple approximated model, based on Darcy’s assumptions, that links the macroscopic effective permeability
with the directional-dependent front roughening, to predict the asymmetric invasion dynamics. This peculiar
behavior opens up the possibility of fabrication of porous capillary valves to control the flow along certain
specific directions.

DOI: 10.1103/PhysRevE.104.045103

I. INTRODUCTION

Capillary valves are nonmechanical valves that make use
of interfacial tension forces to control the fluid flows. They
find important applications in microfluidic systems, where
such control is crucial for enabling the desired distribution
of reagents in order to regulate chemical and biological
processes, among which the fabrication of point-of-care di-
agnostic devices [1,2]. Examples of capillary valves are, e.g.,
capillary burst valves, where an abrupt change in geometry
provides a capillary resistance that acts as a barrier to the flow
along specific directions, and hydrophobic valves, where the
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wetting properties of the microfluidic walls can be tuned for
regulating the fluid motion [3,4].

Porous elements may be designed and adapted to control
the spatial and temporal distribution of the flows for different
purposes. As an example, because of their versatile wicking
properties, paper-based porous materials are a promising tech-
nology for the fabrication of microfluidics [5]. Porous media
are also used as fuel cell electrodes, where they are hydropho-
bically treated to better control the water spatial and temporal
distribution at the microscale [6]. The wetting property of the
medium is known to be an important parameter to determine
the water flow intensity in soil porous substrates [7], and it can
be altered to obtain materials with directional fluid transport
features [8]. While flow regulation through the alteration of
the porous material wetting properties is under current de-
velopment, less is know about fluid control by means of the
tailoring of the porous microstructure.

The microstructure of a porous medium, intended as the
small-scale structure characterising its geometrical features,
plays an important role in determining the fluid invasion
process when a viscous fluid invades a porous medium ini-
tially filled with a less-viscous one. The spatial configuration

2470-0045/2021/104(4)/045103(12) 045103-1 Published by the American Physical Society

https://orcid.org/0000-0001-5287-1981
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.045103&domain=pdf&date_stamp=2021-10-14
https://doi.org/10.1103/PhysRevE.104.045103
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


MAGGIOLO, PICANO, AND TOSCHI PHYSICAL REVIEW E 104, 045103 (2021)

and dynamics of the two-phase interface is determined by
the fluid-fluid displacements occurring at the pore scale,
the so-called invasion events, which are stochastic, often
simultaneous, pore-by-pore invasion processes related to
the geometrical disorder of the microstructure. Among the
properties that define a porous microstructure, pore-scale
heterogeneities, i.e., small-scale deviations in the regular geo-
metrical patterns, can greatly impact mass transport in porous
media, e.g., in diffusion and surface reactions problems [9].
Furthermore, pore morphology, its form and shape, is directly
linked to the minimum capillary pressure (capillary threshold)
that determines the minimum interfacial energy required for
a fluid to invade a pore passing through a preceding con-
strictions (pore throat), because it experiences an increase of
surface area. The capillary thresholds to access a pore can be
tweaked via pore morphology design in order to, e.g., control
the emergence of three-dimensional structure in micropillar
scaffolds [10]. Anisotropy is know to greatly affect the per-
meability and dispersion of the medium in single phase flow
[11] and it has been observed to have a significant impact on
multiphase flow properties of stratified rock formations [12].

Throughout this paper, for the sake of simplicity, we refer
to the injected fluid phase 1 (invading fluid), as to the viscous
phase, which presents a higher dynamic viscosity compared to
the fluid 2 that initially fills the medium (the displaced fluid),
i.e., μ1 � μ2. In such a situation, the collective dynamics
of invasion events is usually referred as stable displacement,
since the viscous forces dominates the invading fluid dynam-
ics inducing a lower pressure at the tip of the invading front;
consequently, the rougher the interface and the farther down-
stream the tip is found compared to the average front position,
the lower is the tip probability of overcoming the capillary
thresholds at the contiguous pore throats, for successive in-
vasion events [13,14]. A stable displacement process thus
tends to compact the front and limit the front roughness. For
example, in Fig. 1(b) a stable displacement would promote the
configuration depicted in the lower panel rather than the one
in represented in the upper one.

However, such a stabilizing mechanism, which mainly
depends on the fluid-fluid dynamic viscosity ratio, can be
opposed by other relevant factors, such as the instability gen-
erated at the pore scale with high values of the advancing
contact angle of the invading fluid [15], inertial forces [16,17],
or geometrical configurations that provides a positive perme-
ability gradient along the fluid invasion direction [14]. The
latter mechanism of instability, which promotes the kinetic
roughening of the invading front, has been observed both in
porous materials reconstructed via x-ray computed tomogra-
phy [18] and in polydimethylsiloxane (PDMS) microfluidic
devices manufactured with controlled pore size gradients [19].

In this study we present pore-resolved lattice Boltzmann
simulations to further understand the relationship among pore
morphology, pore-scale heterogeneity, and two-phase flows.
We make use of a simple two-dimensional geometrical con-
figuration, where the porous microstructure is tweaked by
introducing anisotropic solid elements (triangular pillars) and
defects (missing pillars), to define medium anisotropy and het-
erogeneity. We show that, by combining this two geometrical
elements, it is possible to construct porous capillary valves
(i.e., a device where, for a given pressure gradient, the mean

FIG. 1. (a) A sketch of the porous capillary valve exhibiting
asymmetric invasion dynamics. The viscous phase (invading fluid)
is injected aligned (red) or opposing (blue) to the pillars, leading to a
different front displacement, with the former case inducing capillary
fingering and unstable displacement, see the sketch in (b). For certain
values of the dimensionless forcing �p0/pc, with �p0 the pressure
drop and pc being the characteristic capillary threshold, the valve
acts asymmetrically, i.e., conducting the flow primarily along one
direction. Panel (c) depicts the average front position m (dashed
lines) and the maximum and minimum penetration depth (the shaded
area) at breakthrough time, computed in number of invaded pore
rows, for aligned (red) and opposing (blue) injections. As the forcing
increases, the medium becomes penetrable in both directions and
the front stands at a maximum position max(m) > 4 which denotes
that the viscous phase has somewhere invaded the fourth row and
reached the outlet. In panel (d) the characteristic invasion rate t0/tb

is plotted for the different cases, with tb and t0 = μ1/�p0 being the
breakthrough and characteristic times, respectively.

flows along one and the other directions are substantially
different), whose versatile functioning can be adapted in order
to regulate the flow retention along a specific direction.

II. A POROUS CAPILLARY VALVE WITH ASYMMETRIC
FLUID CONDUCTANCE

We build up a porous medium that acts as a capillary valve:
A system of flow control for which the magnitude of the flow
resistance depends on the specific direction of injection of the
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viscous phase and on the driving force applied to the fluid. Tri-
angular pillars compose the structure of the porous medium.
We distinguish two configurations: When the viscous fluid is
injected along the direction oriented with the triangular pil-
lars, we refer the pillars as flow aligned, in the sense that their
cross section diminishes along the flow direction and that,
during invasion, the viscous phase encounters first the triangle
base and then its apex. In the opposite case, the viscous fluid
is injected along the opposite direction we refer the pillars
as flow-opposing oriented, with the fluid firstly encountering
the apex of the triangle. In the former case, the pore throat
along the direction of injection presents a sudden constriction
and a gradual enlargement. In the latter case, the pore throat
size is gradually reducing and then a sudden enlargement is
encountered.

The conceptualization of this system is sketched on
Fig. 1(a) and 1(b): When the flow is directed opposing to the
pillars, the two-phase flow structure exhibits a rather compact
uniform front and the drainage dynamics is slow but contin-
uous. On the contrary, when the flow is directed aligned to
the pillars the flow structure follows a dynamic roughening,
with the formations of ramified fingers, and the drainage dy-
namics degrades rapidly, till a stable situation of equilibrium
is reached. In the former case the viscous phase is often able
to reach the outlet whereas, in the latter case, it can remain
trapped in the medium, unable to reach the outlet.

Figures 1(c) and 1(d) depict the asymmetric fluid behavior
observed in the performed numerical simulations. In Fig. 1(c),
we report the average front position at the time instant where
the viscous fluid reaches the outlet or it has reached equilib-
rium, as a function of the driving force. The average front
position m is expressed in terms of units of invaded pore rows,
where the total number of pore rows in this case is M‖ = 4
[see also Eq. (5)]. The driving force is expressed in terms of
maximum hydraulic pressure, or pressure drop, achievable in
the system �p0 = −∇x p0 L0, where −∇x p0 is the applied
body force that mimics the effect of a pressure gradient (see
Sec. III), L0 is the total domain length along the direction
of injection, and pc = σ/r is the characteristic pore-scale
capillary threshold (with σ the surface tension and r a charac-
teristic radius of curvature of the two-phase interface, whose
measurement will be discussed on Sec. IV D). In Fig. 1(c)
the shaded areas indicates the maximum and minimum values
of the front position along the direction of injection, so that
when max(m) > 4, the viscous injected phase has reached
the outlet. The instant corresponding to such a situation is
addressed as breakthrough time tb, whereas t0 = μ1/�p0 is
a characteristic viscous time. Thus the ratio t0/tb represents a
measure of the invasion rate and it is inversely related to the
retention of the medium (i.e., the average amount of time that
the viscous phase spends in the medium). The invasion rate
t0/tb is reported with varying the dimensionless driving force
�p0/pc in Fig. 1(d).

We observe a twofold functioning of the medium. The
magnitude of the force driving the fluid determines the in-
tensity of the flow, which significantly differs along the two
directions of injection. The microstructural design of the
porous system allows it to function as a valve that control
the flow along specific directions, and, more specifically, as a
system that conducts flows primarily in one direction. We can

FIG. 2. A sketch of the crystal-like anisotropic porous medium
composed of triangular pillars with regularly distributed defects.
All the characteristic lengths are given in dimensionless form, as
functions of the characteristic pore size �p. The porous domain
is composed of M = M‖ M⊥ pores. The representative elementary
volume has the following length scales: the transversal length 1/ζ ,
the transversal distance between defects on contiguous rows �d , and
the periodicity of the system along the streamwise direction 1/(ζ�d ).
The characteristic pore throat size and the pillars size are 2r/�p and
�t/�p, respectively. Note that the same geometrical lengths and sizes
are used for characterizing the random configurations investigated in
Sec. IV, an example of which is given in Fig. 3(a).

address such a peculiar functioning as asymmetric flow con-
ductance, following the analogy with electronic components,
and adopting a well-known terminology in hydraulics engi-
neering to define a directional-dependent permeability of the
medium (i.e., the ratio between flow rate and pressure drop)
[20]. Three flow regimes can be distinguished from Figs. 1(c)
and 1(d): (i) For very low values of the fluid driving force the
flow is impeded along both directions; (ii) as we increase the
forcing the porous medium acts asymmetrically and a com-
plete invasion is allowed only with flow-opposing orientation;
and (iii) for high values of the driving force, the difference
between the two flow behaviors is reduced and the fluid flows
through the medium along both directions (eventually with a
higher transport rate with flow-aligned pillars). Such behavior
unveils the possibility of regulating not only the allowed direc-
tion of the flow but also the directional-dependent retention.

We stress that the system is not subjected to gravity, the
medium is neutrally wetted (contact angle = 90◦) and the
observed asymmetric behavior is purely induced by the mi-
crostructural design of the porous medium. The porous capil-
lary valve design is based on two simple geometric principles:
(i) to introduce anisotropy in the pore shape by changing its
morphology and (ii) to tailor the pore-scale heterogeneities
with the insertion of defects. The schematic Fig. 2 illustrates
the involved geometrical parameters. The representative el-
ementary volume is made up of equilateral triangle-shaped
rigid solid pillars. By choosing such shapes we introduce an
element of anisotropy at the pore scale. Let us indicate with
the symbols i =‖,⊥, the directions connecting two pores sep-
arated by a pore throat along the streamwise x and transverse y
directions, respectively. During an invasion event the viscous
phase passing through the throat will exhibit a curved inter-
face, whose radius of curvature is ri (see, e.g., Fig. 7, which we
will discuss later in the paper). Then, we note that, in such a
porous medium, the spatial distribution of capillary thresholds
surrounding a pore pc,i = σ/ri (i.e., the minimum capillary
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pressures required to invade the pores accessible through the
contiguous pore throats) may be not isotropic.

For obtaining the capillary valve functioning, we choose a
crystal-like configuration of the porous medium (we will also
investigate random configurations later in the manuscript):
The pillars are placed regularly at a distance �p in both x and
y direction. The defects are identified by specific positions
where such pillars are missing. We choose a percentage of
defects ζ over the total number of pillars N : Such defects
are distributed regularly, in a staircase configuration, with �d

the minimum transverse distance between defects of two con-
tiguous rows (measured in number of pores or, equivalently,
in number of distances �p). The elementary representative
volume is thus represented by a dimensionless transversal
and a longitudinal characteristic lengths 1/ζ and 1/(ζ�d ),
respectively, as depicted in Fig. 2.

With this geometrical configuration we are able to re-
produce the valve behavior depicted in Fig. 1. The intuitive
reason lies in the anisotropic and heterogeneous displacement
of capillary thresholds provided by such a configuration. In
the next sections we will present a numerical analysis able
to explain the anisotropic and heterogeneous effects induced
by the tuning of pore morphology and heterogeneity in such
porous media.

III. NUMERICAL METHODOLOGY

We make use of the lattice Boltzmann methodology to
simulate the two-phase flow. The simple form of the numer-
ical algorithm based on this methodology allows us to deal
with a great number of statistical realisations at a reasonable
computational cost. The methodology accurately models the
pore-scale two-phase invasion mechanisms given its ability
to represent surface tension forces. The streaming-collision
computation is performed according to:

fξ (x + cξ δt, t + δt ) − fξ (x, t )

= −δt

τ

[
fξ (x, t ) − f eq

ξ (ρ, u)
] + Fξ δt, (1)

where ξ labels the lattice direction in the D2Q9 lattice that
we use, x = (x, y) is the position vector, t is the simulation
time, τ the relaxation time, cξ the discrete speed, and δt = 1
the simulation time step. The kinematic viscosity reads as
ν = c2

s (τ − 0.5), with cs the speed of sound (c2
s = 1/3 for

our lattice) We make use of the formulation based on a shift
of the equilibrium velocity, i.e., ρueq = ρu + (τ − 1/2)Fρ , to
define the equilibrium distribution function f eq

ξ , as indicated
in Ref. [21], with Fρ the Shan-Chen intermolecular force.
Following the procedure described in Ref. [22], with the
forcing term in Eq. (1), Fξ ∝ −∇x p0, we mimic a constant
pressure gradient through the application of a body force
acting along the streamwise direction, −∇x p0 = �p/L. To
represent surface tension forces, we instead make use of the
Shan-Chen approach [23], which mimics the intermolecular
interaction through the computation of the density-dependent
pseudopotential function �(ρ) = 1 − e−ρ and the effective
intermolecular force Fρ :

Fρ (x, t ) = −G�(x, t )
∑

ξ

wξ�(x + cξ , t )cξ , (2)

where wξ represents the lattice weighting coefficient along
the ξ th direction. By choosing an appropriate value of the
parameter G = −5.5 the interaction strength is sufficient to
allow the separation of phases described by the nonideal equa-
tion of state P(ρ) = ρc2

s + G/2 c2
s �(ρ)2. At the fluid-solid

boundaries we follow [24] to set the equilibrium contact angle
as θ = 90◦. The fluid density and momentum are determined
via statistical averaging of the distribution functions as:

ρ =
∑

ξ

fξ (x, t ), (3)

ρu =
∑

ξ

fξ (x, t )cξ + δt

2

�p

L
+ 1

2
Fρ. (4)

For further details regarding the methodology, the specific
algorithm and a series of validation test cases the reader is
referred to Refs. [25–27].

IV. TWO-PHASE FLOW SIMULATIONS

A. Simulations set-up

We perform numerical simulations of pore invasion dy-
namics during the injection of a viscous fluid within a medium
initially filled with a less viscous one, so that the dynamic
viscosity ratio is μ1/μ2 = 35 � 1. To better explain and un-
derstand the meaning of the results presented in Sec. II, we
investigate different geometrical configurations, represented
by the characteristic length scales sketched in Fig. 2. We
first investigate three random configurations, characterized
by a fraction of defects ζ = 0.03, 0.06, and 0.10. In these
three configurations, the defects are introduced by randomly
placing the percentage ζ of triangular pillars according to a
uniform distribution. The other [(1 − ζ )N] pillars are regu-
larly placed at a constant distance �p. See Fig. 3(a) for an
example of such random configuration. To increase the sta-
tistical accuracy of our data, for each of the three random
configurations we perform numerical simulations in four dif-
ferent random realizations of the geometry.

To the characteristic pore length �p and characteristic size
of the triangular pillar �t , correspond 28.6 and 13.4 compu-
tational discretized elements, respectively. We found in these
values a good compromise between numerical accuracy and
computational cost required to perform several simulations
carrying sufficient statistical information. The typical simu-
lation set-up comprises an area of the viscous fluid 1, whose
length and width are L and H , respectively, placed just above
or below a porous medium of the same size. The porous
medium and the viscous fluid area are contained within a
biperiodic domain of length L0/�p = 14.7 > 2L/�p. Periodic
boundary conditions are imposed along the streamwise, x,
and transverse, y, directions. After the initial time instant the
viscous phase is injected into the medium under the action
of the body force −∇x p0 acting along the positive (flow
aligned pillars) or negative (flow-opposing oriented pillars) x
direction.

We also perform numerical simulations in three crystal-like
structures, where the solid pillars composing the medium are
regularly distributed in the lattice and the defects are intro-
duced by simply removing the pillars at specific locations. The
last crystal-like configuration is the one that provides the valve
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FIG. 3. An example of a random configuration of the anisotropic medium. The investigated system consists of a fluid invading a porous
medium composed of N solid pillars initially filled with a less viscous fluid. The pillars composing the medium are (1 − ζ )N equilateral
triangles uniformly distributed with interpillar distance �p and ζN randomly distributed. In the upper panel (a), a porous medium composed
of triangular-shaped pillars with a percentage of defects ζ = 0.06 randomly distributed is depicted. In the lower panels, the dynamics of the
invading front with flow-aligned (b) and flow-opposing oriented (c) pillars is presented. The shading colors indicate the position of the interface
at different invasion times t∗ = t/tc. It is interesting to notice that, when the pillars are flow-opposing oriented (c), successive invasion events
often occurs along a serpentine-wise direction, with a streamwise invasion when the front reaches a defect and jumps to the successive pore
row, followed by many transversal invasion events.

behavior sketched in Fig. 1. The comparison between the first
(random) and second (crystal-like) set of simulations allows
us to quantify the difference between a stochastic and a fully
deterministic geometrical configurations. A list of the geomet-
rical lengths and parameters characterizing the geometries is
provided in Table I.

B. Pore invasion dynamics and kinetic roughening

We first focus our attention on the pore invasion dynamics
occurring in the random samples. In Fig. 3 the front position
at different dimensionless time t∗ = t/t0 is depicted, for the
case ζ = 0.06, where t0 = μ1/�p0 is a characteristic time of
our system. We anticipate here that �p0 = −∇x p0 L0 is the
maximum pressure drop achievable in the system or, equiva-
lently, the maximum hydraulic head. We further discuss later
the significance of this quantity.

In the investigated two-phase system, two competing
forces are determining the fluid displacement and the pore
invasion events. We expect viscous forces contributing to
stabilize the front. On the other hand, the geometrical mi-
crostructure can counteract such a stabilizing mechanism and,
under certain conditions, promote unstable displacement and
capillary fingering phenomena. We observe from Fig. 3 that

indeed these two mechanisms are both playing a role in
determining the front configuration. We note that the pres-
ence of defects affects the spatial distribution of the viscous
phase; indeed, defects provide sites with higher probability

TABLE I. The geometrical parameters that characterize the in-
vestigated cases. The dimensions of the medium are L and H that,
computed in terms of number of pores, correspond to M‖ = L/�p

and M⊥ = H/�p along the longitudinal and transverse directions,
respectively. The last crystal-like structure listed in the table and
denoted with an asterisk is the one that provides the capillary valve
functioning described in Sec. II. To the characteristic pore length �p

correspond 28.6 lattice units (l.u.), so that, e.g., M⊥ = 1200 l.u. for
the three random cases.

Case ζ 1/ζ �d 1/(ζ�d ) M‖ M⊥

Random 0.03 33 9.3 3.6 6 42
Random 0.06 16 7.6 2.2 6 42
Random 0.10 10 6.9 1.5 6 42
Crystal-like 0.03 32 16 2 6 32
Crystal-like 0.06 16 8 2 6 16
Crystal-like* 0.06 16 4 4 4 16
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FIG. 4. Dynamics of the cumulative number of pore invaded over the average number of pores per row, m(t ) (solid lines), and number
of pore throats at the liquid-gas interface over the average number of pores per row, C(t ) (dashed lines). The dynamics is represented for
flow-aligned (a) and flow-opposing (b) oriented triangular pillars. In the insets, the cases with regularly placed defects are shown (crystal-
like structures). The solid lines refer to the average value between different statistical realisations, the shaded areas represent the statistical
uncertainty, estimated via the standard error (the standard deviation divided by the square root of the number of realization). The color gradient
of the solid lines is related to different fractions of defects ζ , with darker lines denoting a higher fraction. We notice that when the pillars
are flow-opposing oriented, the roughness of the front, C, is reduced while the number of pore invaded (saturation), m(t ), is enhanced at long
times, for both the random and crystal-like configurations.

of invasion, being them connected with a higher number of
contiguous pores. We also immediately notice that, depend-
ing on the medium orientation relative to the flow direction,
i.e., with flow-aligned or flow-opposing oriented pillars, the
two-phase interface structure changes, with the former case
being characterized by a rough front with fingers of the size
of few pores. In such a case we intuitively recognize a form
of instability that promotes kinetic roughening and dominates
over the stabilising viscous forces for a length comparable
with few pores. We will come back later in the next section
to discuss this competitions between stabilizing and destabi-
lizing mechanisms.

Following the aforementioned observation, we compute
the dynamics of two important quantities, the number of pores
invaded and occupied by the viscous fluid s(t ) and the number
of pore throats lying along the two-phase interface c(t ), at a
time instant t :

m(t ) = s(t )

M⊥
, (5)

C(t ) = c(t )

M⊥
. (6)

These two quantities are nondimensionalized with the average
number of pores per row M⊥ = M/M‖, where M is the total
number of pores identifiable in each configuration and M‖ =
L/�p is the thickness of the medium measured in units of pore
size (see Table I). The former quantity, m(t ), is a measure of
the saturation of the porous medium whereas the latter, C(t ),
quantifies the roughness of the interface.

From Fig. 4 we can confirm the qualitative observation
we have previously pointed out. The case with flow-aligned
pillars is shown on the left panel of Fig. 4: The medium satu-
ration initially increases rapidly in time and then slows down
significantly after less than three rows are fully invaded, i.e.,

m < 3. At the same time, the roughness of the surface follows
a similar dynamics and eventually reaches C ∼ 2. On the other
hand, when the pillars are flow-opposing oriented (downward
injection, right panels), the medium saturation, m(t ), increases
in a more continuous manner, eventually reaching m > 3, and
the roughness after the initial stage is stabilized at a value
C(t ) ∼ 1. The latter value of the dimensionless roughness
indicates that the number of pores lying at the two phase
interface approximately equals the average number of pores
per row, i.e., c(t ) ∼ M⊥, and thus that the two-phase front is
flat, as we can intuitively observe also from Fig. 3.

We recognize that for a lower value of the front roughness
(flow-opposing oriented pillars), a higher number of invasion
events occurs at long times and the porous media is more
easily filled. On the contrary, an excessive increase of the
front roughness appears to slow down the invasion process.
We observe these two opposite behaviors for all the random
cases investigated and for the crystal-like structures (insets
on Fig. 4), without noticing any substantial and quantitative
difference. This consideration suggest us a very important
insight: In such conditions, the effects of the anisotropy of
the pore shape (pore morphology) are dominant whereas the
amount of defects and their spatial random arrangement (pore-
scale heterogeneity) have a small effect on the front roughness
and temporal fluid-fluid displacement.

C. Capillary pressure distribution and anisotropic unstable
two-phase displacement

The capillary pressure distribution at the two-phase in-
terface are important observables to analyze the invasion
dynamics. Since the invading fluid is more viscous than the
invaded one, the stabilizing effect of viscous forces should
induce a pressure drop along the invading fluid structure, e.g.,
along an invading finger [14]. We recognize that defects are a
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FIG. 5. Sketch of an invading fluid structure after a burst event
(the full invasion of a defect). The base of the invading fluid structure
is located in correspondence of the defect (blue square). Each square
of the sketch in the panel (a) corresponds to a unitary pore space
composing the medium (b). The tips of the front are defined as the
invaded pore at the two-phase interface that are connected with at
least two not invaded pores (red squares). To each tip, the closest
defect is identified and the Cartesian components of the base-tip
distance h‖ and h⊥ are measured and used for the computation of
the dimensionless pressure gradients defined in Eq. (7).

more probable source of invasion events since, on average,
they are connected with a higher number of adjacent not
invaded pores. We can thus conjecture that a defect represents
the source site for a cascade of successive invasion events,
i.e., the base of an invading fluid structure or, equivalently,
the pore site that separates the invasion process of a pocket of
connected pores with similar morphological properties.

When the two-phase interface crosses a pore throat to
rapidly invade a large pore site, such as a defect, the pressure
measurement of the invading fluid shows a local minimum,
a phenomenon usually referred as a burst event [28]. After
this process, the pressure at the invaded defect experiences an
increase until it overcomes again the capillary threshold for
invading a neighboring pore. We can thus define the invading
fluid structure as the dynamic invasion process of pore sites
occurring between burst events.

To characterize such an invasion process, we measure the
pressure at the tip and base of the invading fluid structure. A
tip is defined as the pore site invaded by the viscous fluid,
at a given time instant, that is connected with a relative higher
number of not invaded pores (growth sites). As a consequence,
in such a pore, the probability for successive invasion events
should be relatively higher compared to other pore sites con-
nected with a lower number of growth sites. We choose to
define the tips as the pores with a minimum of two neighbor-
ing growth sites. After a tip is identified, we search for the
closest invaded defect (base). The base-tip distance is iden-
tified by h = (h2

‖ + h2
⊥)1/2, where with hi and the subscript

i =‖,⊥ we label the streamwise and transverse Cartesian
components of such a distance, respectively. A schematic of
the method used for the identification of the base and tip pore
sites is presented in Fig. 5.

During the invasion process of a fluid structure, we expect
the pressure at the defect, pd , to be higher than the one

computed at the tip, pt . Indeed, the invading fluid moves
within the two-dimensional porous structure, viscous forces
acts between the fluid and solid phases and a pressure gradient
between base and tips is established. Such a pressure gradient
quantifies the velocity of invasion events along the invading
fluid structure defined between the base and the tips. It also
conveys information about the distribution of capillary pres-
sures. Since the viscous pressure drop on the invaded phase
is much smaller (μ2 	 μ1), we can consider its pressure p2

rather constant and thus we can have an approximate measure
of the difference between capillary pressures in the vicin-
ity of the base and tips of such an invading fluid structure,
�pc f , through the computation of pd − pt . The dimensionless
pressure gradients of the invading fluid structure, along the
streamwise and transverse direction, are defined in the two-
dimensional space as:

−∇∗
i p∗ = p∗

d − p∗
t

|h∗
i |

∼ �pc f

|hi|
�p

pc
, (7)

where the dimensionless pressures are p∗
d = pd/pc and p∗

t =
pt/pc. The pressure difference p∗

d − p∗
t in Eq. (7) is divided by

the dimensionless absolute value of the Cartesian components
of the base-tip distance h∗

i = hi/�p, and with the symbols i =‖
,⊥ we label the streamwise and transverse directions.

In Fig. 6 the probability distribution functions of the fluid
structure pressure gradients are showed. The probabilities re-
fer to all time instants and thus they well depict the global
functioning of the invasion dynamics as a function of the
spatial capillary pressure distributions. The occurrence of a
low value of −∇∗

i p∗ implies that the tip and base of the
invading front have a very similar value of pressure, despite
the relative long distance that separates them. In an equivalent
perspective, the viscous pressure drop between base and tip
of the front is relatively low for that distance. Such a low
value of −∇∗

i p∗ thus corresponds to an unstable two-phase
displacement, because it suggests that the capillary pressures
at the pores in the vicinity of the base and in the vicinity of
the tip are similar, as well as their percolation probability for
successive invasion events.

On the other hand, the occurrence of stable two-phase fluid
displacement is instead indicated by high values of −∇∗

i p∗,
which suggest a significant pressure drop between bases and
tips for relatively short distances. As a consequence the capil-
lary pressure at the tip of the fluid structure is much lower than
that at the base, implying a lower probability of successive
invasion events at the front of the invading fluid structure.

The probability distribution functions showed in Fig. 6 ex-
hibit a rather similar shape. They present a peak in proximity
of zero, an indication of a significant amount of unstable dis-
placements, a rapid decay for negative values, which possibly
addresses the rare occurrence of uncorrelated pressures, and
a right heavy tail for larger positive values, which depicts
the presence of a wide distribution of fluid structures stabi-
lized by viscous forces. The striking difference between the
distributions is found when comparing the two cases with
different medium orientation relative to the direction of injec-
tion. When the triangular pillars composing the medium are
flow aligned, Fig. 6(a), the distributions of base-tip pressure
gradients are similar, irrespective of the chosen Cartesian
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FIG. 6. Probability distribution functions P of the pressure gra-
dients established between bases and tips of the invading fluid
structures, −∇∗

i p∗, as defined in Eq. (7), with i =‖, ⊥ indicating a
pressure gradient along the streamwise and transverse directions, re-
spectively. We report the case of flow-aligned (a) and flow-opposing
oriented (b) triangular pillars with random defect distributions. The
probabilities are computed at the simulation times 102 < t∗ < 104.
We observe a substantial difference between streamwise and trans-
verse pressure gradients for the case with flow-opposing oriented
pillars (b).

components, h‖ or h⊥, through which they are computed.
This observation indicates that fluid invasion events occurs
similarly in the streamwise and transverse direction and that
the probability of stable-unstable events is evenly distributed
in the two-dimensional space.

On the contrary, when the triangular pillars composing the
medium are flow-opposing oriented, Fig. 6(b), we observe that
along the transverse direction the base-tip pressure gradients
decays more rapidly compared to the streamwise direction.
Such a striking difference points to an anisotropic two-phase
flow behavior, where a less stable mechanism of invasion
occurs along the transverse direction.

D. Anisotropic distribution of capillary thresholds

The asymmetry and anisotropy of the invasion process in
the porous medium is the key to interpret the observed dif-
ferences in the growth of the interface roughness and average
front position, when changing the medium orientation with
respect to the direction of injection. Such a characteristic
can also unveil the possible design of capillary-valve porous
media, as the one described at the beginning of the present
manuscript.

We have already intuitively observed that the peculiar mor-
phology of the pore, induced by the presence of specifically
oriented triangular pillars, affects the spatial distribution of
capillary thresholds. Since in our simulations the solid sur-
faces are neutrally wetted (contact angle 90◦), we can estimate
the capillary threshold, i.e., the minimum pressure needed to
invade an adjacent pore, on the basis of the radius of curvature
of the meniscus when the viscous fluid crosses a pore throat:

pc,i ∼ σ

ri
, (8)

where again i =‖,⊥ indicates the streamwise and transverse
directions, respectively, according to the direction of invasion,
and ri represents the minimum radius of curvature of the
moving meniscus at the corresponding pore throat. Such an
estimation lead us to compute an isotropic distribution of cap-
illary thresholds when the pillars are flow aligned, Fig. 7(a).
On the contrary, we must recognize that the distribution of
capillary thresholds is markedly anisotropic in the case of
flow-opposing oriented pillars, Fig. 7(b). In particular, for
such a case, the capillary threshold characterising transversal
invasion events is much lower than that encountered along the
streamwise direction.

As a consequence, for the case of flow-aligned pillars, we
observe a rather isotropic invasion dynamics, with the forma-
tion of short fingers triggered by defects, together with a rough
interface and an even spatial distribution of stable and unstable
invasion events (see Fig. 6). Albeit their amount affects only
slightly the invasion dynamics (see Fig. 4), defects are still
important in inducing the observed fingering. When the pillars
are flow-opposing oriented, we observe instead a marked and
unstable displacement of fluid along the transverse direction
and a less probable invasion along the streamwise one, which
is limited by the high values of the capillary thresholds and
viscous forces that contributes to stabilise the front. We are not
surprised thus to also observe in such a case a flat front of the
invading fluid and a reduced two-phase interface roughness.

In order to further corroborate our observations, in Fig. 8
we calculate the number of invasion events occurring along
the transverse and streamwise directions, for all the inves-
tigate cases. This calculation indeed confirm that, after the
initial invasion stage, the dynamic rate of the invasion events
occurs similarly along the streamwise �‖ and transverse �⊥
directions for the flow-aligned pillars, with a slightly more
pronounced streamwise invasion triggered by defects. On the
contrary the invasion occurs almost exclusively along the
transverse direction for the flow-opposed pillars, marking a
strong anisotropic and serpentine-wise fluid invasion mecha-
nism (see, e.g., Fig. 4). We also observe that the large majority
of the invasion events occur crossing pore throats charac-
terized by the lower capillary threshold. Thus, the invasion

045103-8



ASYMMETRIC INVASION IN ANISOTROPIC POROUS … PHYSICAL REVIEW E 104, 045103 (2021)

FIG. 7. Pore invasion events depends on the isotropic or
anisotropic distribution of capillary thresholds. In the case of flow-
opposing oriented pillars (b), a marked anisotropic pore invasion
mechanism is observed. The capillary threshold at the pore throat
connecting two pores longitudinally or transversally is pc,i ∼ σ/ri,
with i =‖, ⊥ indicating the streamwise and transverse directions,
respectively. Here ri represents the minimum radius of curvature of
the moving meniscus at the pore throat. Since the medium is neutrally
wetted, the two-phase interface must form a contact angle of 90◦ at
the three-phase contact point while invading a pore throat. Using
simple geometrical consideration we obtain for the flow-aligned
pillars (a) r‖ ∼ r⊥ ∼ �t , marking an isotropic spatial distribution
of percolation threshold. On the other hand, for the flow-opposing
pillars (b) it results instead r‖ ∼ r⊥/2 ∼ �t/2, which denotes a lower
capillary threshold for invasion along the transverse direction.

dynamics is dominated by a characteristic capillary threshold
pc = σ/r, with r ∼ �t (see Figs. 7 and 8).

E. The role of front roughness in determining the
invasion dynamics

The anisotropic distribution of capillary thresholds trig-
gers different invasion dynamics according to the medium
orientation, resulting in substantially different invading fluid
structures and configurations of the front roughness. We rec-
ognize that such different scenarios can lead to different rates
of invasion, as we have seen in Fig. 4, and possibly impede
the full invasion of the medium in some cases. This reason-
ing suggests that the quantification of an effective resistance
related to the front roughness, or, equivalently, an effective
capillary pressure induced by the microstructure, can support
the mathematical description of the two-phase flow transport
equations in the porous medium. The quantification of the ef-

fective capillary pressure is indeed commonly used for closing
the system of equations of two-phase flows in porous media
[29].

Here with pc,eff we thus indicate the effective capillary
pressure contribution related to the curvature of the two-phase
interface in the medium. To close the transport equation for
the invading phase we need to draw up few assumptions:
(i) We postulate that the transport equation of the invading
phase can be described by a Darcy-like formulation where
(ii) we approximate the pressure gradient driving the invading
phase on the basis of the balance between effective pressure
drop and viscous forces, which are proportional to the front
penetration depth m(t ). In particular, we write the pressure
gradient driving the invading fluid along the streamwise di-
rection, averaged between each parallel pore column, as:

−∇x p1(t ) ∼ 1

m(t )�p
[−pc,eff (t ) + �p0], (9)

where �p0 = −∇x p0 L0 is the maximum hydraulic pressure,
or pressure drop, achievable in the system, in each parallel
pore column. In writing Eq. (9), we have neglected the effects
of the displaced fluid motion, since μ2 	 μ1. The meaning
of Eq. (9) is to estimate the average pressure gradient acting
on the invading fluid portion m(t )�p through the quantification
of the maximum pressure drop reduced by the contribution of
the macroscopic effective capillary pressure pc,eff . In an dif-
ferent but equivalent perspective, Eq. (9) represents the energy
budget available to the invading fluid, which is given by the
difference between the total energy provided to the system and
the energy partially spent to create the two-phase interface. In
the limit case pc,eff = �p0, the two-phase interface is blocked,
because it cannot overcome the effective capillary threshold,
the flow velocity is null, and the pressure exhibits the hy-
draulic distribution for a quiescent fluid. Following Eq. (9), we
can write a Darcy-like formulation for the invasion process:

dm(t )

dt
= K∗

m(t )

�p0

μ1

[
1 − pc,eff (t )

�p0

]
, (10)

where K∗ = K/�2
p is a characteristic dimensionless permeabil-

ity and the product K∗(1 − pc,eff/�p0) can be interpreted as
an effective medium permeability or flow conductance.

The exact quantification of pc,eff (t ) is not trivial, since it
depends on the local distribution of capillary pressures along
the advancing two-phase interface. Let us assume that each
invasion event occurs when the local microscopic capillary
pressure overcomes the corresponding pore-scale capillary
threshold. Since, as we have seen, the large majority of the
invasion events occurs along pore constrictions characterized
by pc = σ/�t , we can estimate the local capillary pressure at
the advancing two-phase interface via pc. The macroscopic
capillary pressure pc,eff (t )M⊥ represents the sum of each
capillary pressure contribution at the pore scale. We thus
compute pc,eff (t )M⊥ ∼ c(t ) pc and pc,eff (t ) ∼ C(t ) pc, where
we remind that C(t ) = c(t )/M⊥ is the fraction of pore throats
belonging to the two-phase interface at a time instant t , with
respect to the average number of pores in a row.

Following the same reasoning, we define C0 as the max-
imum number of possible pore throats belonging to the
two-phase interface, when the fluid is subjected to a pressure
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FIG. 8. Dynamics of the cumulative number of pore invaded transversally, �⊥(t ) (solid lines), and along the streamwise direction, �‖(t )
(dashed lines), over the average number of pores per row M⊥. The case of flow-aligned (a) and flow-opposing oriented (b) pillars are
represented. In the insets, the cases with regularly placed defects are shown. We observe a similar invasion rate d�i(t )/dt∗, for i =‖, ⊥ in
the case of flow-aligned pillars (a), since along both directions the capillary thresholds are similar, i.e., pc,i = σ/�t , as depicted in Fig. 7. On
the contrary, when the pillars are flow-opposing oriented (b), the invasion rate is substantially higher along the transverse direction for which
the capillary threshold is substantially lower, i.e., pc,⊥ = σ/�t . In both cases, at the initial stage, for very short dimensionless times, the viscous
fluid invades the first pore row along the streamwise direction, subjected to inertial forces.

difference �p0. It follows that �p0 = C0 pc and integrating
and rewriting Eq. (10) we obtain:

m(t )2 = K∗
∫ t∗

0
1 − C(t )

C0
dt∗, (11)

where t∗ = t/t0 and t0 = μ1/�p0. In the limit case C(t ) = 0,
Eq. (11) provides the scaling m(t ) ∝ t∗1/2, thus recovering
Lucas-Washburn solution for forced imbibition [30] and the
solution of Richards equation for constant sorptivity [31].
Equation (11) states that invasion events occur as long as
C(t ) < C0 and there is still available energy for sustaining
them. As the roughness increases, such a budget diminishes
reducing the invasion rate. The application of such a model,
which makes use of the characteristic capillary threshold pc,
leads to C0 ∼ �p0/pc ∼ 2 for the random and crystal-like
configurations investigated in this Sec. IV. We eventually
observe from Fig. 4 that, in the case of flow-aligned pillars, the
invasion occurs isotropically in the two-dimensional space,
forming a rough front that eventually leads to C(t ) ∼ C0 and
then the invasion dynamic stops, as predicted by Eq. (11). On
the contrary, when the pillars are flow-opposing oriented, the
invasion occurs preferentially along the transverse direction,
the front is rather compact and C(t ) 	 C0 so that the invasion
events take place until the viscous fluid eventually reaches the
outlet.

V. THE MICROSTRUCTURAL DESIGN OF THE POROUS
CAPILLARY VALVE

The design of the simple apparatus presented in Fig. 1 is
thus motivated by the analysis presented in the previous sec-
tions. We chose a medium, with a longitudinal size M‖ = 4,
as thin as possible to obtain a fast invasion with flow-opposed
pillars, but also thick enough to allow the front roughening
along the other direction of injection. We placed the solid
triangular pillars regularly in order to mimic the fabrication of

a microfluidic system. The characteristic capillary threshold
is again pc and we trigger a similar front roughening. We
arbitrarily chose a percentage of defects ζ = 0.06. As a last
expedient, we set the longitudinal characteristic length, i.e.,
the longitudinal distance between two defects belonging to
the same pore column, as 1/(ζ�d ) = 4, a value sufficiently
high to prevent the formation of preferential channels along
contiguous defects in the streamwise direction.

As we have discussed in the previous Sec. IV D the
quantity C0 = �p0/pc measures the maximum roughness
achievable by the system. We also have observed that when
the pillars are flow aligned, the front roughness achieves a
value C ∼ 2 at long times, while for the flow-opposing ori-
ented pillars C ∼ 1. Thus, following Eq. (11), for low values
of the abscissa in Fig. 1, i.e., for C0 � 1, the invasion process
is impeded after the first inertial stage, irrespective of the
medium orientation. For intermediate values, 1 < C0 � 2, the
fluid is able to reach the outlet only for the medium orientation
that keeps the front flat, which reduces the effective capillary
resistance (flow-opposing pillars, C ∼ 1), while for larger val-
ues, i.e., C0 > 2, the fluid reaches the outlet irrespective of the
medium orientation.

VI. CONCLUSIONS

By means of lattice Boltzmann two-phase flow simu-
lations, we have investigated the possibility of achieving
asymmetric flow conductance within porous media, through
the application of anisotropic microstructural design. We have
shown how the change in pore morphology, which yields
anisotropy at the pore scale, together with the introduction
of design defects, allows the creation of porous systems with
a twofold functioning: If a viscous fluid is injected along a
certain direction with respect to the medium orientation, then
it passes through the medium reaching the outlet, while it is
blocked within the medium when injected along the opposite

045103-10



ASYMMETRIC INVASION IN ANISOTROPIC POROUS … PHYSICAL REVIEW E 104, 045103 (2021)

direction. Such an asymmetric mechanism of transport can
be a desired feature for the fabrication of porous capillary
valves, devoted to the directional-dependent control of the
flow.

The microstructural design of the porous medium that al-
lows the asymmetric flow conductance consists of triangular-
shaped pillars with randomly or regularly placed defects.
Through the analysis of results of numerical simulations, we
have assessed that such a specific configuration of the mi-
crostructure induces an invasion dynamics that depends on the
medium orientation with respect of the direction of injection.
When the triangular pillars are flow aligned, the microscopic
capillary thresholds determining the probability of invasion
are isotropically distributed. As a consequence, the probabili-
ties of invasion along the streamwise and transverse directions
are rather balanced. We have confirmed such an observation
through the quantification of the distributions of streamwise
and transverse pressure gradients, which, in the case of flow-
aligned pillars, result similar along the two directions. Thus,
the fluid invades isotropically the two-dimensional space,
forming ramified fluid structures triggered by defects and a
rough two-phase interface. We have also clarified that the
higher the roughness of the two-phase interface, the higher
the effective capillary resistance acting adversely to the flow,
because it is larger the number of pore throats subjected to the
microscopic capillary pressures related to the characteristic
capillary threshold of the system pc. The rough nature of the
interface with this medium orientation, measured through the
dimensionless parameter C ∼ 2, limits the invasion dynamics
at long times.

On the contrary, when the triangular pillars are flow-
opposing oriented, the probability of invasion along the
transverse direction is higher than the one along the stream-
wise direction. We have indeed observed lower pressure
gradients acting along the transverse direction, a measure
of the presence of a large number of unstable fluid-fluid
displacements at the pore scale and higher probabilities of
invasion events. The invasion dynamics with such a medium
orientation is thus following a serpentine pattern, mainly in-
vading transversally all pores belonging to a row and, just
in rare cases when the interface encounters a defect, invad-
ing along the streamwise direction. Such a mechanism of
invasion dynamics keeps the invading front flat, minimize
the two-phase interface roughness, measured through the di-
mensionless parameter C ∼ 1, and allows a more probable
invasion of the viscous phase into the medium, until the fluid
reaches the outlet. In the last part of the paper, we have trans-
lated such a concept into a Darcy-like model that predicts the

asymmetric permeability and flow conductance, on the basis
of the structure and roughness of the invading viscous phase.
The asymmetric functioning of the capillary valve is predicted
for values of the ratio between maximum pressure drop and
characteristic capillary threshold contained in the range 1 <

�p0/pc < 2.
For the first time we have shown how the directional-

control of a fluid can be achieved by introducing simple
anisotropic elements in a system, making this result signifi-
cant not only from a technological point of view, i.e., in many
applications where such a control is desirable, but also from a
theoretical perspective, since it provides a new point of view
for the interpretation of two-phase flow in porous media. A
possible validation of the present result may be achieved with
a PDMS device similar to our geometry, and homogeneous
along the third direction, provided that the wetting conditions
at the PDMS walls along such a direction are tuned to mimic
free-slip conditions.

We anticipate similar but possibly more complex invasion
patterns in three-dimensional anisotropic materials. Having
in mind that transverse invasion would then take place on a
two-dimensional plane, we can expect an even slower inva-
sion dynamics along such a direction [32]. Future simulations
should investigate the impact of three-dimensional invasion
dynamics on the extent of the asymmetric functioning range
currently observed. Furthermore, to elucidate the effect of
random orientations of the pillars would be desirable in order
to predict the behavior of more realistic materials. In this
perspective, an interesting possibility could be to consider
a porous medium made of triangular-shaped cross-section
fibers, whose main axial orientation is placed preferentially
along a plane transverse to the flow (as possibly encoun-
tered, e.g., in thin fibrous electrodes), and whose cross-section
orientation is controlled to represent the flow-aligned and
flow-opposing configurations here investigated.
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