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Convolutional neural network-based 
automatic heart segmentation and quantitation 
in 123I-metaiodobenzylguanidine SPECT 
imaging
Shintaro Saito1* , Kenichi Nakajima2* , Lars Edenbrandt3, Olof Enqvist4,5, Johannes Ulén5 and Seigo Kinuya6 

Abstract 

Background: Since three-dimensional segmentation of cardiac region in 123I-metaiodobenzylguanidine (MIBG) 
study has not been established, this study aimed to achieve organ segmentation using a convolutional neural net-
work (CNN) with 123I-MIBG single photon emission computed tomography (SPECT) imaging, to calculate heart counts 
and washout rates (WR) automatically and to compare with conventional quantitation based on planar imaging.

Methods: We assessed 48 patients (aged 68.4 ± 11.7 years) with heart and neurological diseases, including chronic 
heart failure, dementia with Lewy bodies, and Parkinson’s disease. All patients were assessed by early and late 
123I-MIBG planar and SPECT imaging. The CNN was initially trained to individually segment the lungs and liver on early 
and late SPECT images. The segmentation masks were aligned, and then, the CNN was trained to directly segment 
the heart, and all models were evaluated using fourfold cross-validation. The CNN-based average heart counts and 
WR were calculated and compared with those determined using planar parameters. The CNN-based SPECT and 
conventional planar heart counts were corrected by physical time decay, injected dose of 123I-MIBG, and body weight. 
We also divided WR into normal and abnormal groups from linear regression lines determined by the relationship 
between planar WR and CNN-based WR and then analyzed agreement between them.

Results: The CNN segmented the cardiac region in patients with normal and reduced uptake. The CNN-based SPECT 
heart counts significantly correlated with conventional planar heart counts with and without background correction 
and a planar heart-to-mediastinum ratio (R2 = 0.862, 0.827, and 0.729, p < 0.0001, respectively). The CNN-based and 
planar WRs also correlated with and without background correction and WR based on heart-to-mediastinum ratios of 
R2 = 0.584, 0.568 and 0.507, respectively (p < 0.0001). Contingency table findings of high and low WR (cutoffs: 34% and 
30% for planar and SPECT studies, respectively) showed 87.2% agreement between CNN-based and planar methods.

Conclusions: The CNN could create segmentation from SPECT images, and average heart counts and WR were reli-
ably calculated three-dimensionally, which might be a novel approach to quantifying SPECT images of innervation.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

*Correspondence:  shintaro1515@stu.kanazawa-u.ac.jp; nakajima@med.
kanazawa-u.ac.jp
1 Department of Nuclear Medicine, Kanazawa University Graduate School 
of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
2 Department of Functional Imaging and Artificial Intelligence, 
Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, 
Kanazawa 920-8640, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0948-1715
http://orcid.org/0000-0001-7188-8746
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13550-021-00847-x&domain=pdf


Page 2 of 11Saito et al. EJNMMI Res          (2021) 11:105 

Introduction
Estimating sympathetic nervous activity using 123I-meta-
iodobenzylguanidine (MIBG) is a valuable adjunct for 
assessing the severity, prognosis, and effects of treatment 
for heart failure, arrhythmogenic disease, and neurologi-
cal diseases such as dementia with Lewy bodies and Par-
kinson’s disease [1–8].

The heart-to-mediastinum ratio (HMR) and wash-
out rate (WR) in planar images are common indicators 
of sympathetic nervous activity [9]. Some studies have 
shown good reproducibility using 123I-MIBG planar 
images [9–11]. However, depending on the method of 
regions of interest (ROI) definition, up to about 40% of 
results might located lying in a gray zone around the cut-
off, through which normal and abnormal innervation are 
differentiated in the clinical context [12]. In Japan, the 
HMR and WR have been calculated from planar images 
using smartMIBG, a semiautomated ROI setting soft-
ware developed under collaboration with FUJIFILM Toy-
ama Chemical Co. Ltd., Tokyo, Japan [9], whereas ROI 
has also been set manually according to American Soci-
ety of Nuclear Cardiology and European recommenda-
tions [13–15].

Single-photon emission computed tomography 
(SPECT) generates three-dimensional (3D) images that 
are potentially useful to discriminate organ and back-
ground activities that overlap the heart. Degrees of seg-
mental defects can also be scored using the 17-segment 
model applied in myocardial perfusion imaging (MPI) 
[1]. However, 3D 123I -MIBG distribution seemed to be 
heterogeneous based on SPECT studies [16]. Besides, 
segmental uptake differs among 123I-MIBG SPECT 
images of individuals. The normal database for 123I-MIBG 
sympathetic imaging shows relatively decreased activity 
in the inferior wall, and this was more prominent in late 
images [17]. To set three-dimensional ROI using the con-
ventional method is difficult in practice.

Here, we present an artificial intelligence (AI) method 
based on convolution neural networks (CNNs) to define 
cardiac lesions and calculate heart counts without a 
manual setting. Deep learning algorithms, in particular 
CNNs, have become the methodology of choice for ana-
lyzing medical images [18]. The deep learning approach 
has been applied to assess conditions such as cardiovas-
cular diseases and prostate cancer using radiology and 
nuclear medicine [19, 20]. The CNN can directly identify 
patterns in 3D SPECT images, which allows the classifi-
cation of each pixel into anatomical components in the 

image. However, 3D CNN segmentation and automatic 
calculation of heart counts for 123I-MIBG SPECT have 
not been reported because cardiac uptake is quite vari-
able and sometimes significantly reduced in patients with 
severe heart failure and dementia with Lewy bodies.

The present study aimed to create a segmenta-
tion method and to calculate heart counts and WR in 
123I-MIBG SPECT images using CNN. We also compared 
this novel approach with conventional quantitation based 
on planar images.

Methods
Patients
We assessed 51 consecutive patients with heart and neu-
rological diseases by 123I-MIBG planar and SPECT imag-
ing at Kanazawa University Hospital during 2018 and 
2019. We selected data from 48 patients with visible lung 
and liver uptake to evaluate standard organ segmentation 
of 123I-MIBG images. One patient had low accumulation 
in the liver parenchyma due to a giant liver cyst, and two 
others had low accumulation in the lungs partly due to 
leakage at antecubital injection sites. Table  1 shows the 
characteristics of the 48 patients (male, n = 32; female, 
n = 16; average age, 68.4 ± 11.7; range, 26–84  years; 
weight, 61.1 ± 13.5; range, 28.8–101 kg; body mass index, 
23.0 ± 4.1; range, 16–33). Neurological diseases in 27 
patients comprised Parkinson’s disease (n = 4), dementia 

Keywords: Artificial intelligence, Myocardial sympathetic imaging, Innervation, Heart-to-mediastinum ratio, Washout 
rate

Table 1 Clinical characteristics of the patients

Data are shown as n, n (%), means ± standard deviation unless otherwise 
indicated.

Patients (n = 48)

Male 32 (67)

Age (years) 68.4 ± 11.7

Body weight (kg) 61.1 ± 13.5

Body mass index (kg/m2) 23.0 ± 4.1

Neurological diseases 27 (56)

  Parkinson’s disease 4

  Dementia with Lewy bodies 2

  Familial amyloid polyneuropathy 6

  Other neurological diseases including progressive 
supranuclear palsy

15 (44)

Heart diseases 21

  Chronic heart failure 13

  Arrhythmia 5

  Cardiomyopathy 3

Reduced cardiac uptake 17 (35)

Left ventricular ejection fraction 56.1 ± 17.3
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with Lewy bodies (n = 2), familial amyloid polyneuropa-
thy (n = 6), and other neurological diseases including 
progressive supranuclear palsy and related movement 
disorders (n = 15). Heart diseases in 21 patients com-
prised chronic heart failure (n = 13), arrhythmia (n = 5), 
and cardiomyopathy (n = 3). Cardiac 123I-MIBG uptake 
was considerably reduced to HMR of < 1.5 in 17 patients. 
The left ventricular ejection fraction (EF) measured by 
echocardiography (n = 38) was 56.1% ± 17.3% (24–77%), 
whereas EF was not available in 10 patients with neuro-
logical diseases.

123I‑MIBG imaging
Anterior planar and SPECT images were acquired using 
an Anger camera (Siemens Healthcare, Tokyo, Japan) 
equipped with a low-medium-energy (LME) collima-
tor from 15–20 (early phase) and 180–240 (late phase) 
min after the patients received an intravenous injection of 
123I-MIBG (111  MBq, FUJIFILM Toyama Chemical Co. 
Ltd., Tokyo, Japan). The 123I energy was centered at 159 keV 
with a window of 15% or 20%.

Planar images were acquired for 5 min under conditions 
of a 256 × 256 matrix, 2.4-mm pixels, and zoom factor 1.0, 
and SPECT images were acquired for 30 s per view under 
conditions of a 64 × 64 matrix, 6.6-mm pixels, zoom factor 
1.45, 60 projections, 360° circular orbit (radius of rotation 
24 cm), and rotation radius 24 cm. The SPECT data were 
reconstructed using filtered back projection (FBP).

Planar image analysis
Early (E) and late (L) average heart counts in planar images 
(planar  HE and  HL, unit counts/pixel) and average medi-
astinal counts (planar  ME and  ML, unit counts/pixel) were 
calculated using semiautomated smartMIBG software to 
set ROI as described in detail elsewhere [9]. In brief, the 
software algorithm uses a circular heart ROI and a medias-
tinal ROI that was 10% of the width of the body and a 30% 
of the height of the mediastinum. After pointing into the 
center of the heart, all processing is automated, and manual 
modifications can be added as required.

Early and late heart counts in planar images were calcu-
lated using the following formulae for planar  HBC, planar 
H, and planar HMR.

Planar  HBC and planar H were divided by a decay correc-
tion factor (DCF) and injected dose (MBq)/ kg body weight 
(BW). The DCF was calculated as 0.5^ (time [h] between 
early and late imaging/13). If the interval between early and 
late was 3 h, the DCF was 0.85. The timing of early imaging 
was then set at zero (namely DCF = 1).

PlanarHBC, with background correction (BGC)

= (PlanarH - M)/DCF/(injected dose/kg BW),

Washout rates (WR, %) were calculated using the follow-
ing formulae for planar  WRBC, planar  WRNC, and planar 
 WRHMR as:

Segmentation based on CNN
We used the following two-step model:

1. Early and late images were registered using uptake 
in the liver and lungs that is highly visible in both 
images.

2. The heart was directly segmented using both images 
as input and a single volume as output. All models 
were trained and evaluated using fourfold cross-val-
idation.

Registration
We trained the CNN to segment the lungs and liver 
on early and late SPECT images using ADAM [21] 
and a negative log-likelihood loss with an initial learn-
ing rate of 0.001. Images in each cross-validation fold 
were divided 80%/20% into training and validation sets, 
respectively, using the CNN architecture described in 
Fig.  1. The batch size was 150 and the model stopped 
training when the validation loss remained stable for 10 
epochs. The resulting segmentations were converted to 
binary masks and used to register early and late images 
with Elastix [22]. The advanced mean square metric 
was used with the full image sampler and 200 iterations 
of gradient descent.

Heart segmentation
To create a target segmentation for a given early and 
late image pair, manual heart segmentation masks were 

PlanarH, without BGC

= PlanarH/DCF/(injected dose/kg BW),

PlanarHMR = PlanarH/PlanarM.

PlanarWRBC, with background correction (BGC)

= [(PlanarHE −ME)− (PlanarHL −ML)/DCF]/

(PlanarHE −ME)× 100

PlanarWRNC without BGC

= (PlanarHE − PlanarHL/DCF)/PlanarHE × 100

PlanarWRHMR = (PlanarHE/ME − PlanarHL/ML)/

(PlanarHE/ME) × 100
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aligned using the transformation computed above. The 
result was fractional labeling with heart probabilities 
between 0 and 1 depending on whether or not the two 
aligned segmentations agreed. Using this target volume, 
the CNN was trained taking the two aligned SPECT 
volumes as input. We used the same training pipeline 
as described [23], but to avoid excluding uptake from 
the heart due to under-segmentation, the background 
loss was set to 0 for all pixels within 1.2  cm (2 pixels) 
from the heart that did not overlap with lungs or the 
liver in either of the aligned masks.

CNN‑based calculation of average heart counts and WR
We calculated SPECT early and late average heart counts 
per pixel (Early  HCNN and Late  HCNN) and SPECT wash-
out rate  (WRCNN) using CNN-based heart segmentation. 
The SPECT  HCNN and  WRCNN were determined by tak-
ing the average counts in the heart VOI from early and 
late images without background or reference volumes. 
The SPECT  HCNN and  WRCNN were calculated as:

Comparison of CNN‑based and conventional quantitation
We investigated correlations between SPECT  HCNN and 
planar  HBC, planar H, and planar HMR for each early and 
late image. We also investigated correlations between 
SPECT  WRCNN and planar  WRBC, planar  WRNC, and 
planar  WRHMR. Cutoff values for planar WR parameters 
to distinguish normal from abnormal determined from 

SPECTHCNN without BGC = HCNN/DCF/(Injected dose/kg BW)

SPECTWRCNN without BGC = (EarlyHCNN−LateHCNN/DCF)/EarlyHCNN× 100

standard values created using JSNM working group 
databases (n = 62) were: planar  WRBC 34.0%, planar 
 WRNC 30.1%, planar  WRHMR = 14.2% [24]. The cutoff for 
SPECT  WRCNN was determined from linear regression 
lines determined by the relationship between planar and 
SPECT WR. We divided images into normal and abnor-
mal groups, according to the cutoff values for SPECT 
 WRCNN and planar WR parameters, and then analyzed 
agreement between them.

Statistical analysis
Data are expressed as means and standard deviation (SD). 
Differences in average heart counts and WR between 
SPECT and planar images regarding were analyzed using 
t tests and two-way analysis of variance. Differences 
among WR were also analyzed by Bland–Altman plot 
[25]. Relationships between SPECT and planar methods 
were assessed by linear regression analysis. Agreement 
between automated and manual segmentations was esti-
mated using the Sørensen–Dice (Dice) index as numbers 

of overlapping voxels. All data were statistically analyzed 
using JMP version 14 (SAS Institute Inc., Cary, NC, 
USA). Values with p ≤ 0.05 were considered statistically 
significant.

Fig. 1 Architecture of CNN used to segment lungs and liver. Convolution layers do not use padding. Input shape to network is 72 × 72 × 72 pixel 
cube; output shape is 8 × 8 × 8 pixel cube.
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Fig. 2 CNN-based segmentation images with 123I-MIBG SPECT data. Patients with normal (A) and reduced (B) uptake. Heart segmentation is 
correctly identified without anatomical CT images. Liver and lungs are naturally segmented as original organs. Contrast-enhanced X-ray CT images, 
which were performed for different purposes, are shown as an anatomical reference. H, heart; LL, left lung; Lv, liver; RL, right lung.
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Results
Segmentation on images using CNN
Figure  2 shows examples of CNN-based segmentation. 
The CNN method correctly identified cardiac regions in 
patients with normal and reduced uptake. Additionally, 
the heart, liver, and lungs were appropriately segmented 
in a natural anatomical form as the original organs. The 
CNN method did not generate sub-diaphragmatic arti-
facts, and liver and heart segmentation did not overlap 
in any patients. However, the CNN did not appropri-
ately segment these organs due to high accumulation in 
an expanding renal pelvis in one patient, and these data 
were excluded from further statistical analysis. The auto-
matic segmentation had a Sørensen–Dice (Dice) index 

for early and late SPECT images of 0.63 ± 0.15, recall of 
0.82 ± 0.15, and precision of 0.54 ± 0.19.

SPECT HCNN versus planar HBC, planar H, and planar HMR
The average heart counts were compared between SPECT 
images using CNN and planar images using the conven-
tional method for early and late imaging. The correlation 
between SPECT  HCNN and planar  HBC with background 
correction was close (SPECT  HCNN = 10.3 + 4.25 × pla-
nar  HBC; R2 = 0.862, p < 0.0001; Fig.  3A). Correlations 
were also good between SPECT  HCNN and planar H 
without background correction, and between SPECT 
 HCNN and planar HMR (R2 = 0.827 and 0.729, p < 0.0001, 
respectively; Fig.  3B and C). Correlations were positive 
between SPECT  HCNN and the planar parameters  HBC, 

Fig. 3 Relationship of average heart counts calculated from SPECT images using CNN and from conventional early and late planar images. SPECT 
 HCNN vs. planar  HBC (A), planar H (B), and planar HMR (C). Red circles and blue squares, early and late images, respectively. Shaded area, confidence 
of fit.
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H, and HMR even in patients with reduced myocardial 
123I-MIBG uptake with HMR < 1.5, (R2 = 0.460–0.498, 
p < 0.0001 for all; Additional file 1: Figure S1).

SPECT WRCNN versus planar WRBC, planar WRNC, and planar 
WRHMR
We compared washout rates in SPECT images deter-
mined using CNN and in planar images determined 
using the conventional method. Correlations were sig-
nificant between SPECT  WRCNN and planar WR param-
eters (R2 = 0.584, 0.568 and 0.507, p < 0.0001; Fig. 4). The 
systematic error between SPECT  WRCNN and planar 
 WRBC was on the borderline of significance as shown 
in Bland–Altman plots (p = 0.052). The SPECT  WRCNN 
showed systematically higher values compared with pla-
nar  WRNC and planar  WRHMR (p = 0.006 and p < 0.0001, 
respectively). The cutoff value of SPECT  WRCNN deter-
mined by linear regression with the upper limit of the 
normal range (34%) by the planar WR [24], was 30%. We 
assigned the patients to groups with normal and abnor-
mal WR based on these cutoff values of SPECT  WRCNN 
and planar WR parameters (Table 2). Although six out-
liers remained, agreement between SPECT  WRCNN and 

planar  WRBC was good at 41 (87.2%) of 47 (Table  2A). 
The agreement rates between SPECT  WRCNN and planar 
 WRNC and planar  WRHMR were 78.7% and 72.3%, respec-
tively (Table 2B and C).

Discussion
While 3D quantitation for sympathetic nerve imaging is 
potentially useful, the feasibility of artificial intelligence 
for 123I-MIBG studies has not been verified. Therefore, 
the present study aimed to achieve segmentation and 
accurate quantitative values using CNN. The CNN seg-
mented organs in 3D and calculated heart counts even 
when cardiac accumulation was low. The method pre-
sented herein could serve as a good foundation for 3D 
quantitative assessments.

Advantages of SPECT over planar image acquisition
Although sympathetic nervous activity associated 
with 123I-MIBG has usually been estimated using pla-
nar imaging, the usefulness of HMR for diagnosis and 
prognosis has been confirmed. However, since HMR is 
a crude parameter based simply on cardiac and medias-
tinal regions, the planar method has inherently limited 

Fig. 4 Relationships between washout rates calculated from SPECT images using CNN and planar images using conventional methods: linear 
regression lines (upper panels) and Bland–Altman plots (lower panels). SPECT WR vs. planar  WRBC (A), planar  WRNC (B), and planar  WRHMR (C). Shaded 
area, confidence of fit; dotted lines, 95% confidence intervals
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objectivity. Since anatomical structures including the 
heart are three-dimensional, the data obtained from 
two-dimensional images cannot perfectly separate these 
structures. In contrast, the 3D approach is fundamen-
tally more appropriate for evaluating actual myocardial 
activity because it avoids organ overlap, and the myo-
cardial wall excluding the LV cavity can be identified. 
We compared the new approach using SPECT images 
with conventional planar quantitation, but we could not 
strictly define myocardial walls. Since perfusion studies 
with 99mTc-labeled tracers and X-ray CT studies were not 
included in the protocol for this study, the whole heart 
was segmented by the CNN algorithm. Further develop-
ment will be required to strictly segment the myocardial 
wall.

The SPECT approach is also feasible as more institu-
tions now have cadmium-zinc telluride SPECT cameras. 
Solid-state SPECT is capable of 3D evaluation with high-
resolution and sensitivity, image acquisition is rapid, 
and radiation exposure is low due to a low injected dose, 
whereas planar images are not readily available. There-
fore, the determination of total tracer uptake in organs 
using 3D images is an essential step and might lead to 
improved objectivity and diagnostic accuracy.

Comparison with literature
Chen et al. assessed global quantitation of cardiac uptake 
using 123I-MIBG SPECT [26]. They calculated the SPECT 
HMR using a ratio of mean counts between cardiac and 
mediastinal volumes of interest (VOI), determined on 
transaxial images, and then compared them with the pla-
nar HMR. However, defining heart VOI using the SPECT 
quantitation tool includes some manual procedures. The 
shape of the heart VOI is an oval that does not precisely 
reflect the contour of the heart under examination. Here, 
we did not use a predefined heart model but automati-
cally segmented the location of the heart and measured 
counts using the CNN. Since the CNN was trained on 
manual organ segmentation, the heart VOI was deter-
mined in a naturally shaped heart. Although the shape 
of heart cannot be traced in patients with extremely low 
cardiac activity, the CNN-segmented heart was placed on 
the approximate location of the cardiac region, and the 
average counts would not have significantly differed from 
those determined using a manually traced heart region.

Heart segmentation and quantitation
The most crucial issue with heart segmentation using 
only SPECT images is the prevalence of low cardiac 

Table 2 Washout rates determined from SPECT and planar images using CNN-based and standard methods, respectively

Planar WRBC, planar washout rate with background correction; Planar WRHMR, planar washout rate heart-to-mediastinum ratio; Planar WRNC, planar washout rate 
without background correction; SPECT WRCNN, SPECT washout rate using CNN.

Planar  WRBC Total

< 34% ≥ 34%

(A)

SPECT  WRCNN

 ≤ 30% 23 (48.9%) 1 (2.1%) 24 (51.1%)

 > 30% 5 (10.6%) 18 (38.3%) 23 (48.9%)

Total 28 (59.6%) 19 (40.4%) 47

Planar  WRNC Total

< 30.1% ≥ 30.1%

(B)

SPECT  WRCNN

 ≤ 30% 18 (38.3%) 1 (2.1%) 19 (40.4%)

 > 30% 9 (19.2%) 19 (40.4%) 28 (59.6%)

Total 27 (57.5%) 20 (42.5%) 47

Planar  WRHMR Total

< 14.2% ≥ 14.2%

(C)

SPECT  WRCNN

 ≤ 30% 18 (38.3%) 1 (2.1%) 19 (40.4%)

 > 30% 12 (25.5%) 16 (34.0%) 28 (59.6%)

Total 30 (63.8%) 17 (36.2%) 47
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uptake in early images. We used a two-step approach to 
overcome this. Registration and final segmentation can 
be achieved using different methods, but we believe the 
two-step approach makes the model more robust and 
ensures consistent heart volumes for the two images.

The accumulation of 123I-MIBG is usually high in scin-
tigraphy of the liver and heart, and moderate in the lungs. 
Since the distribution profile of 123I-MIBG is similar 
regardless of camera types, the CNN constructed herein 
will probably be applicable to other vendors, but further 
study will be required for confirmation.

Automated segmentation failed for one of our patients 
due to high tracer retention in an expanding renal pelvis. 
Unusually high or low accumulation in other locations, 
for example, the renal pelvis, large liver defects, extraor-
dinary anatomical structures, can result in segmentation 
error. Although we already confirmed useful segmenta-
tion methods in most situations, adjustments might be 
required to minimize the frequency of errors. Training 
models on patients with atypical distribution might also 
improve performance. That is, the results will become 
more stable when the CNN is trained more on the ana-
tomical locations of organs, as well as variations includ-
ing regions of high accumulation outside the liver and 
heart.

The correlation of heart counts between CNN-based 
SPECT and conventional planar images was good 
(r2 = 0.73–0.86), whereas the correlation between CNN-
based WR and planar WR parameters was lower than the 
CNN-based SPECT and planar heart counts (r2 = 0.51–
0.58). Since WR is calculated as the subtraction and 
ratio of small values in reduced myocardial 123I-MIBG 
uptake, fluctuations in quantitation might have occurred 
at the higher range of WR. This variation resulted in the 
lower correlations between the CNN-based WR and pla-
nar WR parameters compared with normal 123I-MIBG 
uptake. However, the patients were separated well into 
normal and abnormal groups according to cutoff values 
for CNN-based WR and planar WR parameters.

Future directions for 123I‑MIBG imaging
Since the data obtained from this study are relative 
quantitation, an absolute quantitation method using 
CNN should be established. For example, the standard-
ized uptake value (SUV) can be calculated if data can be 
acquired with SPECT-CT and appropriate reconstruc-
tion method. To obtain better segmentation, additional 
anatomical information incorporating X-ray computed 
tomography with SPECT might be useful. Thereafter, a 
new three-dimensional index for globally measuring the 
total amount of 123I-MIBG might be developed. Such a 
novel quantitative approach will improve the uncertainty 
of the conventional method regarding two-dimensional 

quantitation and could be the next step towards absolute 
quantitation using the CNN. Including data from differ-
ent cameras and reconstruction methods in CNN train-
ing would also improve the accuracy of segmentation.

Limitations
This study had some limitations. Since we included a 
relatively small patient cohort, further investigations of 
larger patient cohorts are needed to develop more accu-
rate segmentation. This study included patients with car-
diac and neurological diseases, and some of them have 
yet to be finally diagnosed and/or their prognoses have 
yet to be confirmed. Clinical 123I-MIBG innervation stud-
ies in Japan have included both neurological and cardiac 
diseases. The present study aimed to create a methodol-
ogy for 3D heart segmentation and the quantitation of 
both types of diseases. Therefore, consecutive patients 
with various backgrounds were selected to ensure that 
the CNN methods are broadly applicable, although dis-
ease-specific analyses, final diagnoses, and prognoses 
could not be included. To create the CNN architecture, 
three patients with indistinguishable lungs and liver were 
not included because the method relies on visualizing the 
contours of organs. Poor segmentation in one patient was 
due to excessive accumulation at another location. Such 
circumstances might be addressed by fusing SPECT-CT 
imaging with novel CNN-based segmentation. How-
ever, since X-ray CT has not been routinely applied for 
sympathetic nerve imaging at our institution, modifica-
tions of the study protocol will be required for further 
investigation.

Conclusions
The CNN can be trained to determine organ contours 
and to automatically calculate heart counts and washout 
rates in 123I-MIBG SPECT images. Average SPECT heart 
counts calculated by CNN significantly correlated with 
those determined by conventional quantitation of planar 
images in patients with cardiac and neurological diseases. 
Washout rates also significantly correlated between 
SPECT with CNN segmentation and planar parameters. 
Automatic quantitation with CNN might have excellent 
potential and provide a foundation for the development 
of an absolute quantitative method.
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using CNN-based segmentation; WRNC: Washout rates without background 
correction.
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