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Abstract
We present a three-way catalyst (TWC) cold-start model, calibrate the model based on experimental data from multiple
operating points, and use the model to generate a Pareto-optimal cold-start controller suitable for implementation in standard
engine control unit hardware. The TWC model is an extension of a previously presented physics-based model that
predicts carbon monoxide, hydrocarbon, and nitrogen oxides tailpipe emissions. The model axially and radially resolves
the temperatures in the monolith using very few state variables, thus allowing for use with control-policy based optimal
control methods. In this paper, we extend the model to allow for variable axial discretization lengths, include the heat of
reaction from hydrogen gas generated from the combustion engine, and reformulate the model parameters to be expressed
in conventional units. We experimentally measured the temperature and emission evolution for cold-starts with ten different
engine load points, which was subsequently used to tune the model parameters (e.g. chemical reaction rates, specific heats,
and thermal resistances). The simulated cumulative tailpipe emission modeling error was found to be typically −20% to
+80% of the measured emissions. We have constructed and simulated the performance of a Pareto-optimal controller using
this model that balances fuel efficiency and the cumulative emissions of each individual species. A benchmark of the optimal
controller with a conventional cold-start strategy shows the potential for reducing the cold-start emissions.

Keywords Optimal control · Real-time control · Three-way catalyst · Nonlinear state feedback

1 Introduction

The Three-Way Catalyst (TWC) is used in nearly all con-
ventional vehicles with spark-ignited (SI) engines to reduce
the level of harmful emissions generated by the combustion
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engine that would otherwise exit the tailpipe. The toxic
emissions generated by the combustion engine, broadly
categorized as nitrogen oxides (NOx), carbon monoxide
(CO), and residual hydrocarbons (THC), are in the TWC
converted to primarily form non-toxic nitrogen gas (N2),
carbon dioxide (CO2), and water (H2O) [12, 13]. Modern
TWCs are very effective at removing emissions, with
conversion efficiencies of over 95% being commonplace
[12] and in some cases significantly higher, as was found
in the experimental results in this paper. However, the TWC
must be sufficiently hot to function, which is in ordinary
operation maintained by virtue of the hot exhaust gases
passing through it from the combustion engine. However,
when a vehicle is cold-started (i.e. started after the TWC
has had sufficient time to cool to the ambient temperature)
the tailpipe emissions are much larger until the TWC is
heated to its ordinary operation temperature, an interval
typically taking on the order of 40–100 s [12]. These cold-
start emissions are very significant, and for many regulatory
test procedures are responsible for 60–80% of the emissions
generated from an entire test (which are for reference on the
order of 30 min).
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Several methods for reducing cold-start emissions have
been studied from a multiple perspectives. These range from
methods of constructing the TWC that reduces the cold-start
time [27], methods for preheating the TWC before starting
the combustion engine [11], and control schemes that focus
on controlling the combustion engine’s operation to limit the
emissions generated during the cold-start [10, 12, 15, 23, 29].

In this paper, our goal is to develop a model-based opti-
mal TWC cold-start controller that can be feasibly be imple-
mented in a standard engine control unit (ECU). We will
consider a conventional SI engine and TWC, where the
engine’s load point can be freely controlled during the cold-
start, making the controller suitable for e.g. hybrid vehicles.
More specifically, we view the TWC cold-start problem as
determining the optimal engine speed, load, and spark tim-
ing to apply over time while balancing the conflicting goals
of maximizing fuel efficiency and minimizing the cumula-
tive emissions. Generating a Pareto-optimal controller will
therefore both require a dynamic thermal model of the TWC
as well as a suitable optimal control design method. This
paper can naturally be divided into two parts, one where we
develop a TWC cold-start model, and one where we evalu-
ate the performance of an optimal controller generated using
said model.

The model presented in this paper extends on a TWC
model previously developed by the authors [16]. In the
previous work, we derived a thermal model of the TWCwith
very few state variables suited for fast off-line simulation
or on-line control systems. The model resolved both axial
and radial temperature variations from a first-principles
perspective. In this paper, we extend the previous model by
allowing the axial discretization to vary along the TWC’s
length, model the heat generation caused by oxidation of
hydrogen in the exhaust gas, and reformulate the tuning
parameters (heat capacity, thermal conductivity, etc) to be
expressed in well-known units (J K−1 kg−1, Wm−1 K−1,
etc). Furthermore, we expand on our previous work by here
considering a TWC consisting of two separate monoliths
and use separate training and validation datasets for tuning
and evaluation.

Table 1 Table of used abbreviations

CAbTDC Crank Angle before Top Dead Center
CO Carbon Monoxide
ECU Engine Control Unit
SI Spark Ignited
NOx Nitrogen Oxides
SA Spark Angle
THC Total Hydrocarbon
TWC Three Way Catalyst
TWC1 The first monolith in the TWC
TWC2 The second monolith in the TWC

In this paper, we will first briefly discuss categories
of existing models and their strengths, weaknesses, and

Table 2 TWC parameters

Parameter Unit Description

L m Total TWC length

R m TWC radius

Ln m Length of axial slice n

Ln−1,n m Distance between slices n − 1, n

tw m TWC wall thickness

lc m TWC channel width

OFA – TWC open frontal area

mTWC kg Monolith mass

cp J K−1 kg−1 Net monolith specific heat

ṁexh kg s−1 Exhaust massflow

cp,exh J K−1 Exhaust gas specific heat

Tamb
◦C Ambient temperature

Texh
◦C Temperature of gas feeding TWC

kax Wm−1 K−1 Effective axial thermal conductivity

krad Wm−1 K−1 Effective radial thermal conductivity

kamb Wm−1 K−1 Effective thermal conductivity to ambient

tamb m Thickness of insulation to ambient

N – Number of axial TWC segments

M – Number of resolved radial TWC channels

T ◦C Temperature state vector

Tn
◦C Central temperature in axial slice n

ΔT
◦C Center/periphery temperature difference

ks
n,m mol s−1 Reaction rate, species s in cell n, m

As – Pre-exponential factor, species s

Es
a Jmol−1 Activation energy of emission species s

ys
n,m – Mole fraction, species s in cell n, m

ṁ
s,conv
n,m kg s−1 Mass conversion, species s, cell n, m

ṁ
s,in
n,m kg s−1 Incoming mass, species s, cell n, m

ṁ
s,conv
n,m kg s−1 Outgoing mass, species s, cell n, m

ṁs
tp kg s−1 Tailpipe massflow, species s

tr,n s Gas residence time in slice n

pTWC Pa Absolute pressure in TWC

Pctr W Heating power, radial center

Pper W Heating power, radial periphery

Pax W Heating power, axial conduction

Prad W Heating power, radial conduction

Pcon,ctr W Heating power, convection, center

Pcon,per W Heating power, convection, periphery

Pn,m W Exothermic power generated in cell n, n

Pexo,ctr W Weighted central exothermic power

Pexo,per W Weighted peripheral exothermic power

Pamb W Heating power, loss to ambient

qax Wm−2 Axial heat flux

qrad Wm−2 Radial heat flux

qamb Wm−2 Heat flux to ambient
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relevant applications. Following this, we will introduce our
extended model and the experimental setup used to calibrate
the model. Finally, we will study the experimental results
and evaluate the simulated performance of the optimal
control scheme using the calibrated model. A listing of all
abbreviations is shown in Table 1, while all model para-
meters and their units are presented in Table 2.

1.1 Literature Survey

The topic of modeling the TWC for cold-start purposes has
been considered from a wide range of perspectives. Some
authors derive fully three-dimensional or two-dimensional
models that capture many of the fundamentally complex
chemical kinetics, transport dynamics, and temperature
dynamics [6, 9, 35]. Though accurate, models of this caliber
are very computationally demanding and primarily suited
for in-depth analysis.

One commonly used method of reducing the computa-
tional demand is to exploit the characteristic structure of
modern TWCs, which consist of a large number of parallel
channels. Assuming each channel’s construction and com-
position is identical it is sufficient to study the behavior of
a single channel and afterwards scale the result by the num-
ber of channels in the TWC. This approximation is typically
referred to as the single channel approximation or single
channel model, and results in models with significantly
reduced computational demands.

Several authors [2, 5, 21, 25, 26, 28, 33] model the TWC
with the single channel approximation, and depending on
the number of modeled chemical phenomenon and the level
of spatial resolution some models can approach realtime
simulation speeds on powerful PC’s (i.e. where generating
1 s worth of data requires 1 s of computation time). Beyond
modeling the temperature dependence of the TWC, many
of these models also include terms to capture a TWC
phenomenon where oxygen is absorbed and released in the
TWC. The stored oxygen greatly influences the TWC’s
capacity to convert emissions, where CO and THC are more
effectively oxidized when the stored level of oxygen is large,
while NOx is more effectively reduced when the level is low.

These models allow for simulating either the whole TWC
or a representative channel to a fairly high degree of accu-
racy. However, they are primarily of use for analyzing the
performance of the TWC in an off-line manner, for instance
in a TWC design process. In this paper, we instead focus on
on-line TWC control, and in particular consider the cold-
start problem. This requires a model that is significantly
simpler computationally, both as optimal control methods
place specific demands on the complexity and structure of
the system models, and as the ECU has a very limited
computational capacity. There are several classes of control-
oriented models, ranging from models that approximate the

spatially varying temperature distribution as a scalar tempe-
rature [10, 23, 29, 30], to more complex models that axially
resolve the TWC temperature and/or include oxygen-
storage terms [1, 19, 34]. The simpler models are fairly well
suited for direct use with on-line optimal control methods,
while most of the more complex models are used primarily
as a starting point for creating a suboptimal controller.

The model presented in this paper (an extension of [16])
has been constructed for the specific purpose of subse-
quently being implemented for optimal control in conven-
tional ECUs. More specifically, it is well-suited to control-
policy based optimal control methods, where the optimal
control signal (e.g. engine speed, load, spark angle, and so
on) is precomputed in an offline phase and stored in a table
for a discrete set of TWC temperatures. A subsequent real-
time controller can ultimately determine the optimal control
signal by consulting the table of stored temperatures and
associated optimal control signals [4, 7]. Controllers of this
class are very powerful, as they allow for nearly arbitrarily
nonlinear model dynamics, costs, and constraints, but are
limited in that their memory demand scales exponentially
with the number of state variables and require the states vari-
ables to either be measured or estimated. In an effort to limit
the number of state variables we have chosen to not dynam-
ically model the stored oxygen in the TWC as this is not as
significant as the temperature dynamics during a cold-start
[16, 30].

2 TWCModel

We will in this section introduce the TWC model. This mo-
del is based on and extends a model previously presented
by the authors [16]. The model is extended by allowing the
size of the axially discretized slices to vary over the length
of the catalyst, reformulated so all parameters are based
on easily determined physical parameters, and we consider
the case where two separate TWC monoliths are placed in
series.

The model can naturally be divided into three distinct
subsections; one modeling the chemical kinetics, one mod-
eling the temperature dynamics, and one that interpolates
the low-dimensional state variables to a higher-dimensional
temperature distribution using a physics-based method. We
will initially consider a single TWC monolith, and later
return to the case where two are placed in series.

An illustration of the assumed TWC geometry is shown
in Fig. 1a and b. Specifically, we assume that the TWC is cy-
lindrical with radius R and length L. We make the modeling
choice of dividing the TWC intoN different axial slices, and
extend the previously presented model [16] that assumed
equally sized slices by allowing the associated lengths
L1, L2, . . . , LN (where

∑
Ln = L) to be different for each
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Fig. 1 Illustration of geometry and measurement definitions for a
single TWC monolith

slice. We also define the lengths L1,2, L2,3, . . . , LN−1,N as
the axial distances between the midpoints of neighboring
slices. Finally, we assume the TWC has a monolithic
structure with square, axially traversing channels of wall
thickness tw and channel length lc, as illustrated in Fig. 1b.

Importantly, we make the approximation of axially dis-
cretizing the TWC temperature. More specifically, we mo-
del the TWC temperature in the radial center of slice n as
Tn. This implies that the temperature in the radially central
channel is modeled as N segments of constant temperature.
Furthermore, we model the difference in temperature
between the radial center and radial periphery of each slice
as as ΔT . Note that ΔT is not axially resolved, i.e. we assu-
me that ΔT is identical for all axial slices, i.e. the periphery
temperature of slice 1 is T1 +ΔT , slice 2 is T2 +ΔT , and so
on. Finally, as is described in more detail in Section 2.1, we
use an interpolation scheme to approximate the temperature
atM different radial locations ranging from the radial center
to the periphery. Ultimately, a single TWC monolith is at
any given instance in time characterized by the state variable
vector

T =

⎡

⎢
⎢
⎢
⎢
⎣

T1
T2
. . .

TN

ΔT

⎤

⎥
⎥
⎥
⎥
⎦

. (1)

In the following subsections, we will detail the individual
parts of the model. First, we define how the state variable
is used to generate a dense representation of the TWC
temperature that is axially and radially resolved. This is
followed by the chemical kinetics model that determines the
conversion efficiency of the TWC as well as the heating
power generated by the exothermic reactions. Finally, we
introduce the thermal model that generates the state variable
derivative and define the interface between the two separate
TWC monoliths.

2.1 Radial Temperature Interpolation

The model presented in this work uses the single-channel
approximation for fundamental TWC material properties,
while resolving the radial temperature profile by simulating
several parallel channels corresponding to different radial
positions with different associated temperatures. This
allows for capturing the experimentally observed behavior
where the periphery of the TWC is significantly colder than
the radially central sections (as we will be discussed in
Section 4.2).

More specifically, we model the radial temperature pro-
file T̂ (t, r), at time t and radius r , as a solution to the tran-
sient heat equation in a flat circular disc with radius R and
an initial temperature of zero, i.e. T̂ (0, r) = 0, r = [0, R].
Note that T̂ has no relation to the state variable T or the
axial slice temperatures Tn despite the similar notation.
Furthermore, we assume a Dirichlet boundary condition,
i.e. T̂ (t, R) = 0, and assume that the plate develops a con-
stant homogeneous power. This power is intended to be
analogous to the power delivered to a slice in the TWC by
convection, axial conduction, and exothermic heat gener-
ation. Solving the time-evolution of T̂ (t, r) is a textbook
problem (e.g. [18, p. 148]) with a solution that can be
expressed as a Fourier-Bessel series. Solving this numer-
ically over time and radii can also be done easily (for
instance with MATLAB’s pdepe function), generating the
radially varying time evolution of the plate’s temperature.
Normalized solutions (where T̂ (t, r) is scaled to the range
[0, 1], and R = 1) are shown in Fig. 2.

In this paper, we interpolate the radial TWC temperature
profile by using precomputed solutions to the above flat-
plate problem. More specifically, we assume that the radial
temperature profile in slice n is given by A1T̂ (t ′, r) + A2

for a given time instant t ′. Here, A1 and A2 are selected
so that T̂ (t ′, 0) = Tn and T̂ (t ′, R) = Tn + ΔT (i.e. T̂

is scaled and offset to match the known radial center
and periphery temperatures), and t ′ is selected to give a
radial temperature profile that matches the experimentally
measured temperature profile for a given engine operating
point (more on this in Section 4.1). In summary, we
interpolate the radial temperature distribution using the
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Fig. 2 Representative solutions to the transient heat equation in a
flat disc with a homogeneous power term and a Dirichlet boundary
condition T̂ (R) = 1. The displayed temperatures and radii have been
normalized to the range [0, 1]. Figure reused from [16]

known radially central and peripheral temperatures and the
instantaneous engine operating point. Letting M denote the
number of independent single-channel models we wish to
resolve, this interpolation scheme allows us to convert the
N + 1 state variables to a representation with M single-
channel models of N segments. This is illustrated in Fig. 3,
where cells ([1 . . . M], 1) are fed with the incoming gas,
cell (m, n + 1) is fed with the output of cell (m, n), and the
output from cells ([1 . . . M], N) are combined to form the
total exhaust from the TWC.

As the TWC is assumed to be circular, regions near the
periphery have a larger associated area than regions near
the axial center. This is taken into account in our model
by approximating the massflow in the physical TWC as
equal at all locations, and scaling the proportion of gas
passing through each channel to match. Letting ṁexh be the
total exhaust massflow from the engine and scaling by the
relative area of an annular ring with a major radius of m/M

Fig. 3 Fully resolved TWC, here shown for N = 3 and M = 4. Figure
reused from [16]

and a minor radius of (m − 1)/M gives the massflow into a
given cell as

ṁm,1 = π(m2 − (m − 1)2)

πM2
ṁexh (2a)

= (2m − 1)

M2
ṁexh

ṁm,n+1 = ṁm,n . (2b)

2.2 Chemical Kinetics

The total range of chemical reactions occurring in the TWC
are very complex and involve a wide range of compounds.
However, there are fewer that contribute to the legislated
emissions or significant heat generation. We will therefore
limit our scope to net reactions (i.e. without considering
intermediary steps). This is done both for simplicity, and as
a detailed approach would require the addition of numerous
state variables that track the concentration of the emission
species and their intermediaries in the TWC. [5, 16, 24] give
the most significant reactions (apart from Eq. 3b) as

2 CO + O2 − > 2 CO2 (3a)

2 H2 + O2 − > 2 H2O (3b)

2 NO + 2 CO − > N2 + 2 CO2 (3c)

2 NO2 − > N2 + 2 O2 (3d)

2 C3H6 + 9 O2 − > 6 CO2 + 6 H2O (3e)

C3H8 + 5 O2 − > 3 CO2 + 4 H2O . (3f)

We will assume all reactions are balanced, i.e. for a TWC
with 100% conversion efficiency all CO, H2, C3H6, and
C3H8 emitted from the engine are fully oxidized and all NO
and NO2 are fully reduced.

In this paper, we include the heat generated by the oxida-
tion of hydrogen gas, i.e. Eq. 3b, which is generated in the
engine by the water-gas shift reaction. As H2 is not typically
experimentally measured we will instead estimate its mole-
fraction from the measured mole-fractions of CO and CO2,
as given by [13, eq. (4.68)]

yH2 = yH2OyCO

KyCO2

(4a)

where

yH2O = m′

2n′ · yCO + yCO2

1 + yCO/(KyCO2 ) + (m′/2n′)(yCO + yCO2 )
. (4b)

Here, y corresponds to the mole-fraction of each
corresponding compound, K is a constant value set to 3.8
[13, eq (4.63)], and n′ and m′ correspond to the number of
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carbon and hydrogen atoms respectively1 in each molecule
of the fuel. With the RON95 E10 fuel studied in this paper
we used the supplier-specified value of m′/2n′ = 0.258.

Typically, nitrogen oxides (NO and NO2) and hydrocar-
bon (C3H6 and C3H8) emissions are lumped together and
denoted as NOx and THC respectively [13, pp. 572–597].
We will in this paper assume a constant ratio of 99:1 for
NO to NO2 as indicated by [13, p. 578], and by [31, 32] a
constant ratio of 3:1 for C3H6 to C3H8.

We model the reaction rate ks
n,m of an emissions species

s in any given cell n, m using an Arrhenius expression of
form

ks
n,m = Ase

−Es
a

RTn,m , (5)

where R is the ideal gas constant, Tn,m is the temperature of
cell n, m, Es

a is the activation energy of emission species s,
and As is the apparent pre-exponential factor for species s.
Letting ys

n,m indicate the mole fraction of emission species s

in cell n, m, we model the evolution of the mole fraction as

dys
n,m

dt
= −ks

n,mys
n,m . (6)

Note that we do not include an inhibition factor in Eq. 6
in order to limit the complexity of the model and the
model tuning process. However, including an inhibition
term (e.g. as in [26]) is viable and would not interfere
with the optimal control method that will be described in
Section 5. Furthermore, note that Eq. 6 does not include
an oxygen concentration term. As the engine is operated
stoichiometrically the O2 concentration is fairly constant,
implying that it can be lumped into ks

n,m. This is beneficial
as we avoid the need to explicitly measure or model the O2

concentration.
Though (2.2) allows for generating an estimate of the

hydrogen gas concentration for a given CO and CO2

concentration (quantities which are easily measured with
conventional emissions-measurement equipment), as yH2 is
not typically measured it is difficult to tune the associated
reaction rate parameters. By [26, 31] we have chosen to
instead model the reaction rate of Eq. 3b as identical to that
of Eq. 3a, i.e. we assume E

H2
a = ECO

a and AH2 = ACO.
Finally, as H2 is not typically viewed as a problematic
emission species, we will in the remainder of this paper only
consider (3b) from the perspective of determining the heat
of reaction, in contrast to CO, THC, and NOx emissions
which both contribute with their associated heat of reaction
and whose tailpipe emissions are important to track.

1[13] indicates in (4.68) that n′ and m′ correspond to hydrogen
and carbon respectively. Consulting the previous derivations instead
indicates that n′ and m′ correspond to carbon and hydrogen.

As described in more detail in [16], the gas residence
time in each axial slice is short enough for the monolith
temperature to be close-to constant. Using this constant-
temperature approximation we can explicitly solve (6) as

ys
n,m(tr,n) = ys

n,m(0)e−ks
n,mtr,n (7)

for a residence time in slice n of tr,n. We will approximate
the residence time by assuming a plug-flow reactor model
(i.e. assuming there is no axial dispersion), giving

tr,n = Vslice,n

ν
(8)

where Vslice,n is the gas volume of slice n and ν is
the volumetric flow-rate of the exhaust gases. Using the
geometry of the TWC as defined in Fig. 1, and using the
ideal gas law we can approximate (8) as

tr,n = OFA · LnπR2

ṁexhRspecificTn,mp−1
TWC

(9)

where OFA is the open frontal area of the TWC, defined by

OFA = (lc − tw)2l−2
c . (10)

In this paper, we extend [16] to use physically meaningful SI
units for all parameters. Here, ṁexh is the exhaust massflow
(kg s−1), P is the absolute pressure (Pa) in the TWC, which
is typically close to the ambient pressure, and Rspecific is
the specific gas constant (J K−1 kg−1) for tailpipe ratio of
N2, CO2, O2, and H2O that was experimentally measured
for a hot TWC. This specific gas constant is used as it is
easily determined and the remaining gases only marginally
contribute to Rspecific.

Ultimately, Eqs. 5–10 give a simple physics-based model
of the most significant reactions that occur in the TWC that
takes temperature, gas composition, and residence time into
account.

Note that we have implicitly assumed that the incoming
gas composition is time-invariant, as this significantly redu-
ces the number of required state variables. (Explicitly mode-
ling a time-varying incoming gas concentration can require
an additional 3N state variables, one for each emission
species concentration in each slice.) This implies that the
model is suited for quasi-static combustion engine opera-
tion, where the engine-out emission species and massflow
varies slowly with respect to the residence time in the TWC.
Fortunately, as the residence time in the entire TWC is fairly
short (on the order of 0.05 – 0.1 s) [23, p. 64] we hypothesize
that moderately varying dynamic operation with transitions
on the order of 0.5 – 1 s will show accuracy similar to that
of constant engine operation.

By Eq. 7, we can compute the massflow emitted from cell
n, m as

ṁs,out
n,m = ṁs,in

n,me−ks
n,mtr,n (11)
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and, by the conservation of mass, the converted massflow is
trivially

ṁs,conv
n,m = ṁs,in

n,m − ṁs,out
n,m . (12)

This lets us model the tailpipe emissions of emission
species s as the sum of the outputs from each individual cell
in the last axial segment, i.e.

ṁs
tp =

M∑

m=1

ṁs
m,N . (13)

For convenience, we also define the conversion efficiency
of the entire TWC for a given emission species as

ηs = 1 − ṁs
tp

ṁs
exh

(14)

which we can view as the proportion of emissions converted
in the TWC.

We generate an estimate of the exothermic reaction
power generated by the above reactions by computing the
(temperature-dependent) heat of reaction for each mole of
reactant species as

dHCO = H0,CO2 − H0,CO − 1/2H0,O2 (15a)

dHH2 = H0,H2O − H0,H2 − 1/2H0,O2 (15b)

dHNO = 1/2H0,N2 + H0,CO2 − H0,NO − dHCO (15c)

dHNO2 = 1/2H0,N2 + H0,O2 − H0,NO2 (15d)

dHC3H6 = 3H0,CO2 + 3H0,H2O − H0,C3H6 − 9/2H0,O2 (15e)

dHC3H8 = 3H0,CO2 + 4H0,H2O − H0,C3H8 − 5H0,O2 . (15f)

For brevity, we have not explicitly stated the temperature
dependence of the above terms but include their temperature
dependence in the numerical model. We use the Shomate
equation and reference constants given by the NIST (avai-
lable at https://webbook.nist.gov) to compute the numerical
values of the above terms. Using the previous concentration
ratios for the lumped terms gives the effective reaction
power

dHNOx = (99dHNO + dHNO2)/100 (16a)

dHT HC = (3dHC3H6 + dHC3H8)/4 . (16b)

By Eqs. 15a, 15b, 16a, and 16b the total temperature-
dependent heat of reaction generated in each cell is thus

Pn,m = ṁCO,conv
n,m · dHCO + ṁH2,conv

n,m · dHH2

+ṁNOx ,conv
n,m · dHNOx + ṁT HC,conv

n,m · dHT HC . (17)

2.3 Temperature Dynamics

We model the temperature dynamics using a heat balance
ODE. Introducing the relative length-weighting matrix

WL =

⎡

⎢
⎢
⎢
⎣

L1/L 0 . . . 0
0 L2/L . . . 0
...

. . .
...

0 0 . . . LN/L

⎤

⎥
⎥
⎥
⎦

, (18)

we can define the heat-balance ODEs as

mTWCWLcp

dTctr
dt

= Pctr (19a)

mTWCWLcp

dTper
dt

= Pper (19b)

where

Pctr = Pax − Prad + Pcon,ctr + Pexo,ctr (20a)

Pper = Pax + Prad + Pcon,per + Pexo,per − Pamb . (20b)

Here, mTWC is the mass of the TWC, cp is its specific
heat, Pctr and Pper are N × 1 vectors corresponding
to the total power developed in the radial center and

periphery respectively, and dTctr
dt and

dTper
dt are N × 1 vectors

representing the temperature derivative in the radial center
and periphery. With these terms, we can construct the total
state vector ODE as

dT

dt
=

[
dTctr
dt

Nmean(WL(
dTper
dt − dTctr

dt ))

]

, (21)

where mean([x1, x2, . . . , xn]) corresponds to the arithmetic
mean of the elements in x, i.e. 1/n

∑n
i=1 xi . Note that we

can interpret Nmean(WL(
dTper
dt − dTctr

dt )) as corresponding
to the average difference between radially central and
peripheral powers, weighted by the relative length of each
slice.

The power terms in the right hand side of Eqs. 20a and
20b are separated into axial, radial, convection, exothermic,
and ambient loss terms respectively, which we will define
below. This extends on our previous work [16], which
used lumped-element parameters without an explicit power-
balance formulation.

2.3.1 Axial Conduction

The axial heat conduction power Pax is modeled by
Fourier’s heat law [18]. Using conventional notation, the

https://webbook.nist.gov
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heat flux between two materials of constant temperature
separated by a material of thickness l is in general

q = k
T2 − T1

l
, (22)

where q is the heat flux (W/m2), T1 and T2 are two known
temperatures (K), and k is the thermal conductivity of the
material (Wm−1 K−1), as illustrated in Fig. 4.

In this paper, we extend our previous model [16] by
modeling the axial flux between successive axial slices as

qax = kax

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T2−T1
L1,2

T3−T2
L2,3
...

TN−TN−1
LN−1,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)

where kax is the axial thermal conductivity and Ln,n+1 is the
distance between the center of axial slice n and n + 1, as
illustrated in Fig. 1a. Note that for N axial slices we thus
have N − 1 axial fluxes between slices.

We model the power associated with each flux term by
scaling by the surface area of the solid mass of the TWC, i.e.
qax(1 − OFA)R2π . We can then model the total developed
power in each axial slice due to conduction as the difference
in incoming and outgoing power fluxes, i.e.

Pax =
[

0
qax(1 − OFA)R2π

]

−
[

qax(1 − OFA)R2π

0

]

.

(24)

2.3.2 Radial Conduction

The radial heat conduction is modeled in a manner similar
to the axial heat conduction. The radial flux is modeled as

qrad = krad
ΔT

R/2
(25)

i.e. a temperature difference of ΔT and separation of R/2.
Approximating the surface area conducting heat as that of a

Fig. 4 Heat flux between two materials of known temperature

cylinder with half the radius of the TWC and length equal
to the TWC’s length gives a developed radial conduction
power of

Prad = qradπRL1 (26)

where 1 is the ones vector of size N × 1.

2.3.3 Convection

The convection heat powers Pcon,ctr and Pcon,per are modeled
under the assumption that each cell is sufficiently long and
narrow for the gas temperature to reach the cell temperature,
i.e. the gas travels slowly enough to reach thermal
equilibrium with the TWCwalls. This was considered in our
previous model [16], where we found that five axial slices
was a suitable upper limit. As we now also allow for the
slice lengths to vary, it is thus reasonable to require that
Ln ≤ L/5 ∀n.

This gives the convection powers as

Pcon,ctr = ṁexhcp,exh

⎡

⎢
⎢
⎢
⎣

Texh − T1
T1 − T2

...
TN−1 − TN

⎤

⎥
⎥
⎥
⎦

(27)

Pcon,per = ṁexhcp,exh

⎡

⎢
⎢
⎢
⎣

Texh − (T1 + ΔT )

(T1 + ΔT ) − (T2 + ΔT )
...

(TN−1 + ΔT ) − (TN + ΔT )

⎤

⎥
⎥
⎥
⎦
(28)

where ṁexh is the exhaust massflow (kg s−1), cp,exh is
the constant-pressure specific heat of the exhaust gases
(J kg−1 K−1), and Texh is the temperature of the exhaust gas
fed into the TWC (K).

2.3.4 Exothermic Power

The exothermic power terms Pexo,ctr and Pexo,per are
modeled by weighting the densely resolved single-channel
exothermic power into an effective central and peripheral
powers. Here, we use a linear weighting scheme as a first
approximation, given as

Pexotherm, ctr =
M∑

m=1

Pn,m

(

1 − m − 1

M − 1

)

(29)

Pexotherm, per =
M∑

m=1

Pn,m

m − 1

M − 1
. (30)

Note that the term m−1
M−1 varies from 0 to 1 as m varies from

1 to M .
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2.3.5 Ambient Losses

The heat losses to the ambient environment are modeled as
conductive, with a total flux of

qamb = kamb

⎡

⎢
⎢
⎢
⎣

(T1 + ΔT − Tamb)t
−1
amb

(T2 + ΔT − Tamb)t
−1
amb

...
(TN + ΔT − Tamb)t

−1
amb .

⎤

⎥
⎥
⎥
⎦

(31)

Here, kamb is the effective thermal conductivity of the
insulating material and tamb is its associated thickness.
Modeling the exposed surface area as a cylinder with radius
and length equal to the whole TWC (and thus neglecting
heat loss through the circular ends of the cylinder) gives the
power loss to the ambient environment as

Pamb = qamb2πRL . (32)

2.4 Two-Monolith Structure

In this paper, we extend the model previously presented
in [16] by studying a TWC with series-coupled monoliths.
More specifically, we consider two physically separated
TWCs, where the gas leaving the first is assumed to be
completely mixed and then fed into the second, as illustrated
in Fig. 5. We model this by assuming two completely
independent sets of TWC parameters (as listed in Table 2),
and let the exhaust gas first travel from the engine through
the first TWC. As a first approximation, the gas leaving
the first TWC is assumed to be perfectly mixed (both with
respect to temperature and emission species concentrations)
and then fed through the second TWC, which then finally
exits to the tailpipe.

Ideal mixing implies that the temperature of the gas
feeding the second TWC is given as

Texh,TWC2 =
MTWC1∑

m=1

m2 − (m − 1)2

M2
TWC1

TN,m,TWC1 (33)

where, i.e. the gas leaving the first TWC (TWC1) is
combined and scaled by the its relative flow rate. Trivially,

Table 3 Engine parameters

Engine type VEA Gen I, VEP4 MP

Number of cylinders Four, in-line

Displaced volume 1969 cc

Bore/stroke 82mm/93.2mm

Compression ratio 10.8:1

Valve train DOHC, 16 valves

Intake camshaft Variable 0-48◦ CA advance

Exhaust camshaft Variable 0-30◦ CA retard

Ignition system DCI, standard J-gap spark plugs

Fuel system/Injection pressure DI/200 bar

Fuel Gasoline RON95 E10

Start of injection 308-340 CAbTDCf

Boosting system Turbocharger

Rated power/rated torque 187 kW/350Nm

Stoichiometric air/fuel ratio 14.01:1

we also have that the emission species concentration
entering TWC2 is

ṁ
s,in
1,m,TWC2 = m2 − (m − 1)2

M2
TWC2

ṁs
tp,TWC1 (34)

i.e. we use the same weighting scheme previously defined
in Eq. 2a.

3 Experimental Setup

As in our previous study in [16], the experimental setup
consisted of a production Volvo Cars 2-l in-line four-
cylinder direct injected spark ignited turbocharged engine
rated for 187 kW and 350Nm, as listed in Table 3. The
engine was connected to an electrical dynamometer that
regulated the engine speed and measured the generated
torque. A prototyping ECU was used to sample and change
engine parameters. The TWC was close-coupled to the
turbocharger outlet.

The TWC was instrumented with 28 thermocouples (14
in each monolith) and three exhaust gas sampling locations.
The thermocouples, 0.5mm type-K with a grounded hot

Fig. 5 The series-connected
TWC is modeled as two
independent TWC’s with the gas
exiting the first being mixed and
fed into the second



Emiss. Control Sci. Technol.

Fig. 6 The instrumented TWC, with exposed ceramic (left) and
metallic (right) sections. The exhaust gas flow is shown with the
highlighted arrow. The cover to the left is open here for illustrative
purposes and tightly connected to the main body during operation

junction,2 were inserted into a TWC channel and held by
friction. A close-up of the instrumented TWC is shown in
Fig. 6, which also shows the direction of gas flow through
the two monoliths. A more detailed drawing of the TWC
construction and the thermocouple locations is shown in
Fig. 7.

Several thermocouples failed during the experimental
campaign. We believe this to be due to the combination of
fairly sharply bending the thermocouples in order to reach
the required monolith channels and a high level of vibration
in an initial TWC mounting fixture. Fortunately, the most
critical sensors (in slices 1, 3, 4, and 6) were fully functional
and only sensors in slices 2 and 5 were damaged. We exclu-
ded data from the damaged sensors in our analysis.

An auxiliary air feed was added to the exhaust manifold,
which allowed for flushing the entire exhaust subsystem
with room-temperature air. By running the engine in fuel-
cut mode (i.e. disabling fuel injection and motoring the en-
gine with the dynamometer) and injecting auxiliary air into
the exhaust manifold the exhaust aftertreatment system
could be cooled to under 100◦ C in approximately 5 min.
The auxiliary airflow was set to 1000Lmin−1 STP, which
was the maximum flow-rate supported by the mass flow
controller. The auxiliary airflow was completely disabled
during normal operation (i.e. when fuel injection was
enabled). A photograph of the experimental setup is shown
in Fig. 8, where the engine is visible and the TWC is
highlighted. A schematic representation of the experimental

2Manufacturer: RS PRO, model number: 847-1110

Fig. 7 Detailed cross-section of the TWC structure and thermocouple
locations. A total of six axial positions were measured (three per
monolith) as indicated. Each axial position was sampled in one of
two configurations, A and B, as indicated. Each specific sensor is
referenced as TSXYZ, where X is the slice number (1-6), Y is the slice
type (A/B), and Z is the sensor position (A/B or A-J)

set-up and gas flows is shown in Fig. 9, which also high-
lights the auxiliary air feed, exhaust gas flow, and gas sam-
pling locations.

The emission sampling points after TWC1 and after
TWC2 measured the emissions exiting the radially central
channel of each respective TWC. As both TWCs at times
displayed a large radial temperature differential, this implies
that the average emissions leaving each TWC can be
significantly different from the emissions measured at the
radial center.

3.1 Data Acquisition

Emissions signals from instruments, fuel consumption, and
dynamometer readings were sampled with a National Ins-
truments DAQ and an associated LabVIEW program. En-
gine temperatures, pressures, and the air-fuel ratio was sam-
pled using acquisition units over a CAN ETAS module.
All thermocouples were of type K. Fuel massflow was
measured with a Coriolis meter. All parameters were
sampled at a 10Hz rate.

Exhaust gases were sampled from three different loca-
tions (as illustrated in Fig. 9). All sampled gases were
extracted with a heated hose (180 ◦C), followed by a heated
conditioning unit (190 ◦C) with a heated filter and pump.
Emissions concentrations were measured with separate
instruments. THC emissions were measured using a flame



Emiss. Control Sci. Technol.

Fig. 8 The experimental setup, with the TWC housing and heat shield
highlighted. The turbocharger is just visible to the right of the TWC.
The exhaust from the TWC is fed down through the visible ducting

ionization detector, NOx using a chemiluminescence analy-
zer, and CO using a non-dispersive infrared detector. The
propagation delay and axial dispersion in hoses and instru-
ments was identified by recording the measured engine-out

Fig. 9 Schematic representation of the experimental setup, with
exhaust gas passing through the turbocharger, through monolith 1
(M1), monolith 2 (M2), and finally exiting to the tailpipe. Exhaust
gases were sampled at three locations; directly after the turbocharger,
between the monoliths, and after monolith 2

emissions during the transition from fuel-cut operation to
normal operation (as will be described in Section 3.2). With
this data we compensated for the propagation delay and
applied a first-order high-pass filter to mitigate some of
the axial dispersion. This compensation was applied to the
remaining two sampling locations, allowing for studying
transient emission concentration changes moderately well
using an instrument rack primarily intended for steady-state
analysis.

As our experimental set-up only allowed for measuring
the emissions at one location at any given time it was crucial
for the engine-out emissions to be consistent between
different runs. Due to this we chose to run the combustion
engine in stationary operation, with the goal of maximizing
the exhaust gas composition repeatability. We hypothesize
that using hardware that measures the emission species at
every sample point simultaneously would allow for non-
stationary engine operating during cold-start tests.

3.2 Measurement Procedure

The emission measurement equipment was calibrated
before measurements using calibration gases and the engine
was heated to its working temperature by operating it
at a moderate load until the coolant reached its working
temperature. The engine was kept warm during the entire
test procedure, implying that the cold-starts studied in this
paper refer to the case where the TWC is initially cold while
the engine is at operating temperature. Furthermore, the
TWCwas instrumented with heated lambda sensors, and the
engine operated with the conventional closed-loop lambda
control scheme during TWC cold-start tests.

3.2.1 Steady-State Analysis

The goal of this test was to identify the steady-state
engine-out emissions and the associated steady-state radial
temperature distribution in the TWC. This was performed
by statically running the engine at a given speed and BMEP
and sweeping the spark angle from the default value and
retarding it to the edge of combustion stability. Table 4 lists
the tested speeds, BMEPs, and spark angles tested.

3.2.2 TWC Cold-Start Characterization

The goal of this test was to characterize the cold-start
parameters of the two TWCs. The combustion engine was
kept at a warm and constant temperature throughout these
tests, i.e. we evaluated the behavior of a cold TWC and
warm engine. We performed this experiment by

– disabling fuel injection (i.e. motoring the engine with
the dynamometer) and opening the auxiliary air valve
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Table 4 Tested steady-state engine operating points

Speed [RPM] BMEP [bar] SA [CAbTDC]

1000 2 [12, 14, 16, 18, 20, 22, 24]

1000 5 [6, 8, 10, 12, 14, 16, 18]

1000 8 [-2, 2, 4]

1500 2 [12, 14, 16, 18, 20, 21, 22, 24]

1500 5 [6, 8, 10, 12, 14, 16, 18]

1500 8 [-2, 2, 4, 6, 8, 10]

2000 2 [16, 18, 20, 22, 24, 26, 28]

2000 5 [8, 10, 12, 14, 16, 18, 20]

2000 8 [2, 4, 6, 8, 10, 12]

2000 10 [-4, 4]

2000 12 [-2, 2, 4]

2000 14 [-2, 2]

2500 2 [14, 16, 18, 20, 22, 24, 26]

2500 5 [12, 14, 16, 18, 20, 22, 24]

2500 8 [8, 10, 12, 14, 16]

2500 13 [4, 6]

3000 8 [8, 10, 12, 14, 16, 18]

The listed speeds, loads, and spark angles (SA) are setpoint values

until all the TWC thermocouples reported a temperature
of under 100 ◦C,

– first closing the auxiliary air valve, and then immedi-
ately enabling ordinary fuel injection until the TWC
reached near-equilibrium temperature and emissions.

This procedure was repeated for each emission sample
point for each of the load points listed in Table 5. These
test points were chosen so that some generated a heating
profile that gave a long time to light-off (primarily load
points 1–5), while others reached light-off more quickly
(load points 6–10). The low-load points gave a longer data
stream and reduced the relative error due to axial dispersion

Table 5 TWC cold-start load points

Index Speed [rpm] BMEP [bar] SA [CAbTDC]

1 1000 2 24

2 1000 5 18

3 1500 5 18

4 1500 2 24

5 2000 2 28

6 2000 5 20

7 3000 8 18

8 1000 8 4

9 1500 8 10

10 2000 8 12

SA set to ECU default value

in the emission sampling lines. The remaining load points
(points 6–10) were more representative of a conventional
heating strategy, where light-off is reached more quickly.
Furthermore, the load points were characterized by BMEP
rather than IMEP due to limitations in the measurement
equipment. The engine was kept at a warm and constant
temperature to ensure that the exhaust gas composition was
not influenced by changes in friction from one load point
to the next. It is plausible that regulating for a given IMEP
would give an exhaust gas profile that is less sensitive to
engine temperature.

4 Experimental Results

4.1 Steady-State

The steady-state experimental results were used to generate
a table of the mean equilibrium TWC temperatures, engine-
out emissions, exhaust massflow, and engine BSFC for each
of the load points listed in Table 4. Representative data is
shown in Table 6 for TWC1. The parameters T T0, T TR/3,
T T2R/3, and T TR correspond to the mean thermocouple
temperature for thermocouples in slice 2 at radius r = 0,
r = R/3, r = 2R/3, r = R respectively (i.e. T TR/3

is the mean of TS2BB, TS2BG, TS2BJ). Importantly, we
also also use this experimental data to determine the radial
interpolation profile outlined in Section 2.1, i.e. for each
load point we generate an associated interpolated radial
temperature profile. More specifically, for each load point
we assume an interpolation function of form

finterp = T̂ (t ′, r) (35a)

where

t ′ = argmin
t

3∑

n=0

|T̂ (t, nR/3) − T TnR/3| (35b)

i.e. we let finterp be the optimal solution in the one-norm
sense that minimizes the deviation between the measured
temperatures and the solution to the heat equation over all
time t ′. The one-norm is consistently used in this paper
in an effort to reduce the effect of outliers. Measured
temperatures and the associated interpolation function is
shown Fig. 10 for two representative load points.

4.2 Cold-Start

Figure 11 shows a representative cold-start temperature
evolution, here for 1000RPM and 2 bar BMEP. We show
this specific load point as it gives the longest system
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Table 6 TWC1 steady-state data for representative load points (speed, BMEP, and spark advance)

Speed BMEP SA ṁexh BSFC CO NOx THC T T0 T TR/3 T T2R/3 T TR

[RPM] [bar] [CAbTDC] [g/s] [g/kWh] [ppm] [ppm] [ppm] [◦C] [◦C] [◦C] [◦C]

1010 6.9 10 13 257 3580 2500 427 568 567 566 537
3000 7.9 18 41 259 7620 2550 284 839 839 832 813
1000 1.8 12 5 410 6090 391 548 620 615 609 569
1000 2.0 24 5 384 6650 1150 684 498 497 491 442
1000 4.7 6 9 299 5950 1200 459 525 526 519 472
1000 5.0 18 9 280 6550 2070 533 552 552 545 503
1570 4.8 6 16 313 7720 533 345 726 725 719 684
1570 5.1 19 15 279 9070 1350 459 668 667 661 627
2000 5.0 8 21 316 6730 279 325 715 716 710 674
2000 5.2 21 19 274 9150 686 442 696 697 693 664
3000 8.1 8 46 277 7060 1610 195 893 893 884 864
3010 8.2 19 43 258 7560 2590 328 803 805 797 773

Figures shown with measured values

Fig. 10 Measured normalized radial temperature distribution and least-
squares interpolation for M = 100 at two representative load points

dynamics. We can draw several useful conclusions from this
test;

– The radial temperature distribution is significant
throughout both TWCs, with a temperature difference
between the radial center and periphery of up to 100 ◦C
near light-off.

– The first TWC shows no major azimuth temperature
variation.

– The second TWC does show variations along the azi-
muth, with the hottest regions nearer the bottom section
of the cross-section (see Fig. 12). We hypothesize that
this is due to increased massflow near the lower sec-
tions, as the sharp bend in the TWC housing causes
an uneven pressure distribution across the inlet to the
second TWC.

– TWC2 shows less pronounced axial temperature varia-
tions when compared to TWC1. This could plausibly be
due to the length of TWC2, which is only half of TWC1.

These results are consistent for the other load points, which
display similar results.

Based on these results we have chosen to model TWC1
as consisting of three axial slices, while TWC2 is modeled
with a single axial slice. This gives a total of 3+1
state variables for the TWC1 and 1+1 state variables for
TWC2, i.e. a total of six state variables. Though additional
slices would have the benefit of improving accuracy, the
dynamic-programming based optimal control method we
use in Section 5 is suited for no more than 4–6 state
variables. We have chosen to allocate more slices to the first
TWC as it displays the most significant axial temperature
variations.
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Fig. 11 Representative cold-start temperature evolution. Here shown for load point 1 in Table 5 (1000RPM, 2 bar BMEP). Thermocouple locations
listed in Fig. 7. Damaged thermocouples (TS2BE, TS2BH, TS2BI, TS5BC, TS5BE, TS5BH, TS5BJ) excluded from plots

4.3 Model Tuning

The primary goal of the experimental work is to generate
measurement data that is used to tune the TWC model. The

tuning process was divided into two distinct sections where
we first tuned the reaction rate parameters, and afterwards
tuned the temperature dynamics parameters. The problem
was divided into two sections to reduce the number of
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Fig. 12 Projection of TS5Bx thermocouples onto the plane. Approxi-
mate gas flow shown by gray arrows. The thermocouple closest to the
bottom (TS5BF) reaches the highest temperature in Fig. 3, while the
thermocouple closest to the top (TS5BD) reaches the lowest

degrees of freedom in each optimization step. Furthermore,
as the temperature dynamics depends on the exothermic
power, it is prudent to first determine the reaction rate
parameters.

Of the 10 cold-start simulations listed in Table 5, we
designated operating points itrain = [1, 3, 5, 7, 9] as a
training set, and ivalid = [2, 4, 6, 8, 10] as a validation set.
All model tuning was done solely using itrain, allowing us
to later study the model’s accuracy by studying results of
applying the model to the validation set’s operating points.

4.4 Reaction Rate Parameters

Here, we consider tuning the per-species reaction-rate
parameters As and Es

a , giving a total of six parameters to
tune per TWC. With the experimental setup as described in
Section 3, the gas composition entering and leaving TWC1’s
radially central channel is well-measured. However, the gas
composition entering TWC2 is not as well characterized, as
the gas composition leaving TWC1 is inhomogeneous (due
to the large radial temperature gradient) and partially mixed
before entering TWC2. Due to this, we have chosen to first
tune the reaction rate parameters for TWC1, and afterwards
make use of the identical precious metal composition of
TWC1 and TWC2 (which differ only in their washcoat
thickness and loading). This allows us to estimate TWC1’s

reaction rate parameters using experimental data and then
compute the equivalent parameters for TWC2.

With respect to TWC1, for a given set of reaction-rate
parameters we used the (measured) temperature evolution
of each axial slice to simulate the outgoing emission
concentration. More specifically, we let the measured state
evolution for each operating point be

Tmeas, TWC1 = [T1, T2, T3, ΔT ] (36a)

where

T1 = TS1AA (36b)

T2 = TS2BA (36c)

T3 = TS3AA (36d)

ΔT = mean([TS1AB − TS1AA,TS2BD − TS2BA,

TS3AB − TS3AA]) (36e)

i.e. the measured radially central temperatures and the
mean difference between the radial center and periphery
respectively. This gives a state vector time-evolution
T (k)meas, TWC1, where k = 0, 1, 2, . . . indicates the time-
sample of the state vector, sampled at a rate of 10Hz. In
this and later stages we simulated 100 radial channels. We
chose to simulate a relatively large number of channels as
the kinetics submodel was implemented in a semi-parallel
manner that did not require significantly longer to evaluate
than for instance 10 channels.3

We started the tuning process by first determining an
initial guess, where we selected Es

a as determined by
[26] and As was selected to give a light-off temperature
near the experimentally measured behavior. We then used
MATLAB’s patternsearch utility (a zero’th order
gradient-descent optimization method) to minimize the 1-
norm penalty

J ∗ = min
Es

a,TWC1,A
s
TWC1

∑

i∈itrain

K∑

k=1

|ṁ(k)
s,out
3,1,TWC1,i

−ṁ(k)smeas,TWC1 out,i| (37)

using the MADSPositiveBasis2N polling method
and with the UseCompletePoll flag set. Here,
ṁ(k)

s,out
3,1,TWC1,i is the simulated concentration of emis-

sion species s emitted by the third (i.e. last) axial slice
at the radial center at sample k and operating point i,
ṁ(k)smeas,TWC1 out,i is the measured emissions at the same

3This was in part due to the nature of our model implementation in
MATLAB. As the chemical kinetics submodel consists of only basic
arithmetic operations we could implement the model in a manner
that effectively makes use of MATLAB’s numerically efficient matrix
operations. This gave a model implementation whose execution time
was dominated by the the number of function calls, i.e. the sample rate
and simulation time, rather than the number of radial channels.
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time instance and operating point, and i iterates over the
operating points in the training dataset.

With the kinetics parameters for TWC1 determined, we
estimate the parameters for TWC2 by assuming an identical
activation energy and with the pre-exponential term scaled
by the amount of catalytically active material. This gives the
estimates

Es
a,TWC2 = Es

a,TWC1 (38a)

As
TWC2 = twash,TWC2 · wTWC2

twash,TWC1 · wTWC1
As
TWC1 (38b)

where twash and w are the washcoat thickness and loading
respectively for each TWC.

Table 7 lists the identified parameters for both TWCs,
which are on the same order of magnitude as literature
suggests [14, 26]. Note that the patternsearch method
is similar to gradient-descent methods, and as the problem is
non-convex is therefore not guaranteed to return a globally
optimal solution.

Time-resolved plots of the measured and simulated
emissions profiles and the simulated conversion efficiencies
are shown in Fig. 13 for the lowest-load operating point. The
simulated outgoing emissions are shown for the simulated
radially central channel, which corresponds to the location
of the measured emissions. The most significant deviations
are seen at t ∈ [0, 30] for NOx and at t ∈ [0, 50] for THC.
We hypothesize that the former is due to adsorption and the
latter due to the poor transient response of the measurement
equipment.

4.5 Temperature Dynamics Parameters

With the reaction rate parameters determined we consider
the temperature dynamics parameters kax, kra, kamb, cp, and
Ln separately for each TWC. Note that as TWC2 is modeled

Table 7 Tuned reaction rate parameters

Parameter Value Unit

ECO
a,TWC1,2 84.0 · 103 Jmol−1

E
NOx

a,TWC1,2 82.1 · 103 Jmol−1

ET HC
a,TWC1,2 51.0 · 103 Jmol−1

ACO
TWC1 59.5 · 109 –

A
NOx

TWC1 27.6 · 106 –

AT HC
TWC1 11.2 · 109 –

ACO
TWC2 23.8 · 109 –

A
NOx

TWC2 16.1 · 106 –

AT HC
TWC2 5.63 · 109 –

Fig. 13 Emissions profiles for 1000 rpm, 2 bar BMEP load point. See
Fig. 11 for the associated measured temperature evolution and Fig. 14a
for the associated state evolution

with only a single axial slice, there is no modeled axial
conduction and kax and Ln therefore have no meaning. We
tuned each TWC to the measured data by assigning the
initial state to the measured temperature at the start of the
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cold-start test and then applying a 1-norm penalty to the
deviation between the simulated and measured states, i.e.

J ∗ = min
kax,kra,kamb,cp,Ln

∑

i∈itrain

K∑

k=1

|T (k)meas,i −T (k)sim,i | (39)

where Tsim is the simulated state evolution generated by
solving Eq. 21 using an explicit fourth-order Runge-Kutta
solver with a fixed time-step of 0.1 s, T (0)sim is initialized
as T (0)sim = T (0)meas, Tmeas is defined by Eq. 36 for
TWC1, and for TWC2 defined as

Tmeas = [T1, ΔT ] (40a)

where

T1 = mean([TS4AA,TS5BA,TS6AA]) (40b)

ΔT = mean([TS4AB − TS4AA,

TS5BD − TS5BA,TS6AB − TS6AA]) . (40c)

As in the reaction rate parameters, we used the
patternsearch method to determine the optimal
parameters. We supplied the initial guess for kax, kra, kamb,
and cp by setting them to the values specified by the TWC
manufacturer, and Ln to geometrically ideal values, where
we assume the thermocouples are placed in the center of
each slice. Referencing Fig. 7 gives the initial guess L1 =
20 · 10−3 m, L2 = 102 · 10−3 m, and L3 = 20 · 10−3 m.
Table 8 lists the parameter values found after tuning, as well
as the known (i.e. assigned) fixed model parameters.

An illustration of a representative temperature evolution
is shown in Fig. 14a and b. Though the first slice of TWC1
and TWC2 capture the measured temperature evolution
well, the second and third slices of TWC1 do not capture
the characteristic delay shown in the measured data. We
hypothesize that this is independent of the chosen tuning
parameters and an inherent limitation of our modeling
assumption of a small number of axial slices. More
specifically, as a general discrete-time delay of n samples
(trivially) requires storing the values of the n samples,
our shown model can only represent a true delay of three
samples, i.e. an insignificant 0.3 s, before the last axial
segment starts displaying a positive temperature derivative.
This can be alleviated somewhat either by increasing the
number of axial segments or by considering cold-starts with
a less prominent delay, as is shown in Fig. 15.

4.6 Cumulative Emissions Accuracy

With the model tuned, we will now turn to quantitatively
evaluating the TWC model’s accuracy. Here, we consider
the relative difference between the cumulative measured
and simulated emissions (i.e. cold-start “bag emissions”) for

Table 8 Tuned and fixed temperature dynamics parameters

Value Unit

Tuned parameter

kax, TWC1 319 Wm−1 K−1

kra, TWC1 46.6 Wm−1 K−1

kamb, TWC1 0.421 Wm−1 K−1

cp,TWC1 2318 JK−1 kg−1

L1,TWC1 32.1 · 10−3 m

L2,TWC1 48.2 · 10−3 m

L3,TWC1 41.8 · 10−3 m

kra, TWC2 4.53 Wm−1 K−1

kamb, TWC2 0.602 Wm−1 K−1

cp,TWC2 2360 JK−1 kg−1

Fixed parameter

OFATWC1 0.935 –

OFATWC2 0.846 –

mTWC1 0.418 kg

mTWC2 0.248 kg

cp,exh 1050 JK−1 kg−1

tamb, TWC1 10 · 10−3 m

tamb, TWC2 10 · 10−3 m

Tamb 25 ◦C

each emission species and TWC. Using the notation where
Δs

i corresponds to the i’th TWC for emission species s

gives

Δs
1 =

∑K
k=0 ṁ(k)

s,out
3,1,TWC1

∑K
k=0 ṁ(k)smeas,TWC1 out

− 1 (41a)

Δs
2 =

∑K
k=0 ṁ(k)

s,out
1,1,TWC2

∑K
k=0 ṁ(k)smeas,TWC2 out

− 1 . (41b)

An illustration of the simulated and measured cold-start
emissions is shown in Fig. 16 for the 1000 rpm, 2 bar
BMEP load point, along with the associated cumulative
simulation error. The figure indicates that one significant
contribution to the cumulative error is due to inaccuracies
in the measurement equipment (which is primarily designed
for analyzing stationary operation). This is most clearly
seen during the first 20 s of operation for THC, where the
measured emissions are significantly larger than than the
engine-out emissions. It is possible that the NOx emissions
are also incorrectly measured, as the measured emissions
are only half of the engine-out emissions after 3–4 s (while
light-off occurs after approximately 60 s at this load point).
However, it is also plausible that the low NOx emissions
are correctly measured and this anomaly is instead due to
unmodeled adsorption in the TWC.
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Fig. 14 Temperature evolution for 1000 rpm, 2 bar BMEP operating
point

A table listing the relative cumulative tailpipe error is
shown in Table 9 for each load point. The validation dataset
(the lower half) displays an accuracy comparable to the
training dataset (the upper half), indicating that the model
is not overfitted. Furthermore, though there is a significant
degree of variability between the measured and predicted
cumulative emissions this is only somewhat worse than a
significantly more complex model [26] which displays a
typical cumulative error on the order of ±20% to ±50%.
Furthermore, we hypothesize that the most significant
outliers (e.g. the 1500 rpm, 2 bar load point) are to some
extent due to process variability and/or measurement error.
Consulting the time evolution for this load point (Fig. 17,
here shown for CO emissions) indicates that this can be a
factor, as the majority of the modeling error arises after 10 s
when the engine-out emissions significantly increase but a
similar increase is not seen in the measured emissions.

Fig. 15 Increasing the number of resolved slices (Fig. 15a) and/or
heating the TWC more quickly (Fig. 15b) reduces the modeling error
caused by the limited ability to represent a delay

5 Optimal Control

We will here illustrate optimal cold-start control as
one application of the presented model. Specifically, we
generate an optimal state-feedback controller suitable for
on-line operation that balances the combustion engine’s fuel
efficiency and tailpipe emissions. We model the combustion
engine exhaust using a static mean-value engine model, and
allow the controller to freely choose the engine’s speed,
BMEP, and spark angle [8]. We will then use the controller
to generate simulated cold-start temperature and emission
trajectories and compare the results for different weightings
of fuel efficiency and tailpipe emissions.
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Fig. 16 Measured and simulated emissions for each emission species
at a 1000 rpm, 2 bar BMEP load point

Table 9 Relative model accuracy for training (upper half) and
validation (lower half) load points

Speed BMEP ΔCO
2 Δ

NOx

2 ΔT HC
2

[RPM] [bar] [–] [–] [–]

997 1.99 −11.6% −11.6% −39.6%

1500 4.84 +106.5% −20.8% +66.0%

2000 2.07 +44.8% +34.2% −7.8%

3000 8.17 +39.5% +38.9% −18.2%

1500 8.09 +72.7% +56.4% −10.7%

998 4.93 +2.0% −19.5% −23.4%

1500 2.07 +38.6% +41.7% −10.8%

2010 4.93 +73.3% +75.8% +13.1%

999 7.96 +81.2% +65.8% −13.8%

2000 8.08 +63.0% +48.6% −26.7%

5.1 Problem Formulation

We introduce the optimal control problem as

J ∗ = min
u

lim
K→∞

K∑

k=0

BSFC(k) + ΛT ·
⎡

⎢
⎣

ṁCO
tp (k)

ṁ
NOx
tp (k)

ṁTHC
tp (k)

⎤

⎥
⎦ (42a)

subject to

x(k + 1) = fd(x(k), u(k)) (42b)

g(x(k), u(k)) ≤ 0 . (42c)

Here, x is a state vector corresponding to both TWCs
(i.e. [TTWC1; TTWC2]), u is a discrete control variable corre-
sponding to the requested operating point of the combustion

Fig. 17 Measured and simulated emissions for CO emissions at the
1500 rpm, 5 bar BMEP load point. Note the large increase in engine
emissions after 10 s, giving rise to an increase in simulated emissions
without an associated increase in measured emissions
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engine (i.e. an integer value that indexes the operating points
in Table 4), BSFC(k) is the mean BSFC associated with
operating point u(k), Λ is a 3× 1 tuning parameter that bal-
ances the relative weight given to fuel-efficient operation
and minimizing emissions (where smaller Λ prioritizes the
BSFC and larger Λ prioritizes the level of emissions), fd is
the system dynamics given by solving (21) for a given sam-
ple time for each TWC, and g is a constraint function that
bounds u to the integer values that index the tested operating
points and bounds x to safe TWC temperatures.

The cost function (42a) is specifically formulated to be
of form a + ΛT · b, as this is equivalent to minimizing a

while limiting b ≤ B, i.e. minimizing the average BSFC
while limiting the vector of cumulative emissions to a given
level. The same structure is also commonly seen in Equiva-
lent Consumption Minimization Strategy (ECMS) control-
lers [20, 22] for the equivalent purpose balancing fuel con-
sumption and electric energy consumption. We here notatio-
nally use Λ rather than λ to avoid confusion with conven-
tional notation where λ is used to denote the air-fuel ratio.

Note that Eq. 42a is formulated as an undiscounted
infinite-horizon problem, as this penalizes the BSFC and
emissions without requiring time to heat the TWC to be
explicitly specific or known beforehand. Furthermore, by
permitting the engine to operate at any of the points in
Table 4 we also allow the engine power to freely vary.
The hybrid vehicle cold-start problem is one example of an
application that is well-suited to this cost formulation, as
the electric machine can typically either supply or consume
the difference between the combustion engine power and
traction power.

We have solved (5.1) using a method developed by
the authors [17] based on approximate dynamic program-
ming and similar to policy iteration methods. The method,
Undiscounted Control Policy generation by Approximate
Dynamic Programming (UCPADP) extends on existing
approximate dynamic programming policy iteration meth-
ods by allowing for undiscounted problem formulations,
i.e. infinite-horizon problems where the cost function does
not decay with increasing k. In principle, we can solve (5.1)
without using the above method by setting K to a suffi-
ciently large value and using a conventional ADPmethod [3,
4] to generate a solution. However, it is difficult to manually
determine a sufficiently but not excessively large value K .
Conveniently, the UCPADP method also returns a sufficient
horizon, which for the specific TWC and cost formulation
studied here was found to be 145 s.

One major benefit with UCPADP and other policy
iteration methods is that the optimal control signal can be
represented as a control law, i.e. the optimal control signal
can be simply tabulated by the state values. This implies
that a controller can be implemented by simply looking
up the optimal control for the current state. However, this

does require knowledge of the current system state, either
by direct measurement or by a state observer that estimates
the system state. Furthermore, note that the selection of the
engine’s operating point is not formulated as a dynamic
problem, which in principle implies that there is no cost
associated with rapidly changing the engine’s operating
point. Though our solutions did not exhibit very impractical
operating point changes, we have in our presented results
applied a 5-s rolling average filter to the engine’s target
speed, BMEP, and spark angle. Though this makes for
solutions that are not optimal with respect to Eq. 42, we
believe that this results in more suitable engine behavior
with somewhat damped transients.

Solving (5.1) using an ADP methods first requires the
state and control variables to be discretized. As u is inhe-
rently discrete (indexing the operating points in Table 4) we
only need to discretize the states x. A denser discretization
will give a solution closer to the true optimal solution, but at
cost of increased memory and computational demand. We
have chosen to discretize the states in TWC1 as

T1 = [0, 25, 50, 75, . . . , 900] (43a)

T2 = [0, 100, 200, . . . , 900] (43b)

T3 = [0, 100, 200, . . . , 900] (43c)

ΔT = [−200, 100] (43d)

and for TWC2 as

T1 = [0, 100, 200, . . . , 900] (43e)

ΔT = [−200, 100] (43f)

i.e. we resolve the first axial slice in TWC1 with fairly high
detail, while the remaining slices and ΔT is more coarsely
resolved.

5.2 Optimal Results

We have solved (5.1) for a range of different normalized
weights Λn, defined element-wise as

Λs
n = Λs

minBSFC/min ṁs
exh

(44)

with results listed in Table 10. We use the normalizedΛn for
ease of reference as Λn = [1, 1, 1] in some sense equally
weighs the fuel consumption and engine-out emissions. As
tailpipe emissions approach zero when the TWC heats up
we can thus view Λn = 1 as a lower bound of relevant
values to consider.

We have simulated the performance of the optimal con-
troller and list the cumulative emissions, fuel efficiency,
and consumed fuel in Table 10 for several different Λn

and two initial conditions. As expected, with increasing Λn
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Table 10 Performance of
optimal controller for varying
Λn during a cold-start (25 ◦C,
no radial distribution) and
half-warm start (200 ◦C some
radial distribution)

Green-colored cells indicate cases where Λn penalizes only one emission species, while other are ignored
(red), and can be compared with the equally penalized case (blue)

the sum of penalized emissions decrease, while the mean
BSFC increases. This data also indicates that the potential
for reducing NOx emissions is significantly larger than CO
and THC emissions, as shown in the last 3 rows where NOx

emissions are reduced by 94% compared to the unpenalized

case, while CO and THC emissions are reduced by 35%
and 41% respectively. Furthermore, there seems to be some
degree of conflict with respect to the individual emissions,
as penalizing one species tends to increase the production of
others. This indicates that the solutions shown in Table 10
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are Pareto optimal, i.e. a given emission species mass cannot
be reduced without either increasing another species’ or the
BSFC.

An illustration of the controller’s time-evolution is shown
in Fig. 18 for Λn = [102, 102, 102]. The cold-start
trajectory can be divided into three sections;

t < 5: Initial heating phase The engine-out species
massflow is kept low (reducing tailpipe emissions) and
the BSFC is not prioritized. At the end of this phase, the
first axial slice is hot enough to convert emissions at low
mass-flows.

5 < t < 25: Intermediary phase. With increasing con-
version efficiency the engine-out emissions are gradually

allowed to increase, allowing for the BSFC to be increas-
ingly prioritized. At the end of this phase the first two
axial slices are hot enough to convert emissions at the
massflow associated with the minimum-BSFC operating
point.

t > 25: Sufficiently heated phase. Here the TWC
is sufficiently hot for operation at the minimum-BSFC
operating point, which the engine is statically operated at
while the TWC converts virtually all emissions. Note that
the entire TWC is well above light-off after 40 s, i.e. a
relatively short heating interval [12].

These sections can largely be seen for other values of Λn,
with shorter times allocated to the initial- and intermediary

Fig. 18 Simulated trajectories
for Λn = [102, 102, 102]. SA
indicates the spark angle, MF the
engine-out emissions (solid) and
tailpipe emissions (dashed), and
η the net conversion efficiency
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heating phases as Λn decreases and longer times with larger
Λn.

Though an open-loop control scheme could be easily
implemented, i.e. by “playing back” the speed, BMEP,
and spark angle trajectory shown in Fig. 18 without any
temperature feedback, this type of controller is potentially
sensitive to system variations. This includes both the initial
temperature of the TWC (where a hotter initial condition
will reach light-off more quickly) as well as variations in
the exhaust gas temperature due to the fuel’s composition,
combustion variability, and so on. We found that the optimal
control trajectory for half-warm starts is for some values of

Λn nearly identical to a time-shifted version of Fig. 18, as
exemplified in Fig. 19, while others displayed significant
differences. This indicates the potential for implementing a
quasi-optimal open-loop heating strategy for some Λn.

5.3 Comparison to Suboptimal Control

We have compared the optimal controller with a traditional
suboptimal heating strategy. The suboptimal controller was
defined such that combustion engine is run at a constant
operating point for t ′ seconds, and then switches to the
minimum-BSFC operating point. The initial operating point

Fig. 19 Simulated trajectories
for Λn = [102, 102, 102] with
an initial condition T1−3,TWC1 =
T1,TWC2 = 200 ◦C,
ΔT,TWC1 = ΔT,TWC2 = −50 ◦C
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Table 11 Comparison of the optimal (here shown for Λn =
[102102102]) and sub-optimal controllers and the relative reduction in
emissions for the optimal controller

Cont CO THC NOx BSFC mfuel

[-] [mg] [mg] [mg] [g/kWh] [g]

Optimal 526 35.0 41.0 262 130

Suboptimal 525 34.9 62.9 262 143

Difference −0.2% −0.3% 34.8% – –

was chosen to be the same as the point chosen by the
optimal controller at t = 0, and t ′ selected to give the
same average BSFC as the case for Λn = [102, 102, 102].

A comparison of the optimal and suboptimal controllers
is listed in Table 11, and the time-evolution is shown in
Fig. 20. The CO and THC emissions are virtually identical,
but the NOx emissions are reduced by 35% in the optimal
controller. We can see the source of this in Fig. 20, where
there is significant NOx slip at t ∈ [9, 13] when the
engine transitions from the heating phase to the minimum-
BSFC operation phase. Though the heating phase could be
extended, this would be at cost of reduced average BSFC.

We can also compare the optimal and suboptimal control-
lers for the half-warm start case. It we consider the same
optimal and suboptimal controllers, Table 10 indicates that
the optimal controller attains a mean BSFC of 258 g/kWh,
in comparison to the suboptimal controller’s 262 g/kWh.

Fig. 20 Simulated trajectory for
the suboptimal controller. Note
the significant NOx slip at
t = 10 s, which is not present in
Fig. 18
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This difference corresponds to a 33% reduction relative to
the minimum BSFC of 250 g/kWh, indicating the potential
for fuel savings by using a closed-loop cold-start strategy.

5.4 Memory Footprint

Though manageable in a PC, the memory demand associa-
ted with the discretization in
Eq. 43e (with 148,000 permuta-
tions) can be problematic in an ECU that has a wide range
of other tasks to perform. However, we can apply a simple
space reduction scheme to significantly reduce the used
memory. Rather than store the full discretization, we can
reduce the number of stored elements by letting successive
axial slices only be resolved for temperatures equal to or
below the preceding slices (rounded up to the nearest discre-
tized value), i.e. storing a table of form similar to that in
Table 12.

Furthermore, we can reduce the resolution of T1 for
temperatures significantly below and above light-off by
resolving T1 with 100 ◦C increments for temperatures below
100 ◦C and above 400 ◦C, i.e.

T1 = [0, 100, 125, 150, . . . , 350, 375, 400, 500, . . . , 900] .
(45)

Reducing the range of considered values in this manner
reduces the number of stored states to 9500 permutations.
Each state permutation is associated with an optimal
engine speed, BMEP, and spark angle. Assuming 4 bits
of information are allocated for each parameter (allowing
resolving the speed, BMEP and spark angle to 16 different

Table 12 Representative table of stored states. Here sorted from first
to last column in ascending order

TWC1 TWC2

T1 T2 T3 ΔT T1 ΔT

0 0 0 −200 0 −200

0 0 0 −200 0 100

0 0 0 −200 100 −200
...

...
...

...
...

...

250 300 300 100 200 −200

250 300 300 100 200 100

250 300 300 100 300 −200

250 300 300 100 300 100

275 0 0 −200 0 −200

275 0 0 −200 0 100

275 0 0 −200 100 −200
...

...
...

...
...

...

900 900 900 100 900 100

and independent values) gives a total storage requirement
of 12 bits per state permutation, for a total non-volatile
memory requirement of 12/8 · 9500 ≈ 13.9KiB, which is
feasible with existing ECU hardware. More sophisticated
compression schemes have the potential to further reduce
the required memory, for instance by using decision trees
to avoid the need to exhaustively storing every state per-
mutation in regions where the optimal control is constant.

6 Conclusions

In this paper, we have extended a physics-based TWC
model previously presented by the authors [16] suited for
on-line optimal control. The previously presented model
resolves both axial and radial temperature variations while
limiting the number of state variables, allowing for use
with optimal control methods that construct an optimal
control policy (e.g. nonlinear state-feedback and explicit
MPC). In this paper we extended the model to support
varying axial discretization lengths, use tuning parameters
expressed in well-known SI units, model heat generation by
the oxidation of hydrogen, consider a TWC consisting of
two separate monoliths of different construction, and use
a more rigorous evaluation method with separate tuning
and validation datasets. Finally, we have used the model to
generate a near-optimal controller [17] that can easily be
implemented in existing ECU hardware, requiring no more
than 13.9KiB (14250 bytes) of nonvolatile memory and
at virtually no computational cost (as the optimal control
is given by a simple linear interpolation operation and a
linear rolling average filter). The specific construction of
the cost function allows for systematically trading off fuel
consumption and each individual emission species, giving
the ability to tune the cold-start controller to minimize fuel
consumption while individually limiting the specific level
CO, THC, and NOx emissions.

Our experimental study, though limited by the mea-
surement equipment, shows the potential for use both for
off-line simulation as well as for generating a near-optimal
cold-start controller. Though we experimentally studied the
case of a warm engine and a cold TWC for improved exper-
imental repeatability, we hypothesize that the controller can
be extended to the cold engine case by a suitable update
to the combustion engine exhaust model. Though the mea-
sured predictive accuracy is fairly low (with cumulative
cold-start emissions typically estimated at −20% to +80%
of the measured emissions), it is likely that the experimen-
tal setup significantly contributes to this error. The second
monolith is situated after a sharp bend, giving a tempera-
ture distribution that is not particularly well-captured with
an axi-radial model. However, as the majority of the emis-
sions can be converted in the first monolith for low to
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moderate load-points this inaccuracy might not be of great
importance. It may therefore be a prudent design decision
to solely model and control the first monolith dynamics in
an effort to further reduce the memory requirements of the
controller.

We have simulated the performance of the Pareto-optimal
cold-start controller for several different relative weightings
of fuel efficiency (BSFC) and cumulative emissions for each
emissions species, i.e. different points on the Pareto front.
For one representative weighting the optimal controller
gives NOx emissions that are 35% lower than a traditional
cold-start controller with otherwise identical BSFC and
CO and THC emissions. This indicates that an optimal
controller that is generated using the presented model has
the potential to reduce the cold-start emissions, as well as
allowing for systematically adjusting the trade-off between
each emission species and fuel consumption. Furthermore,
for some regions on the Pareto-front the optimal controllers
display similar speed, load, and spark angle trajectories for
varying initial TWC temperatures (up to a shift in time). It
is therefore plausible that a close-to optimal controller could
be implemented with only a single temperature sensor by
“playing back” a section of the temporally resolved optimal
control trajectory based on the measured temperature.

Relevant future work includes performing an experi-
mental study using measurement equipment more suited to
transient conditions and that is capable of measuring emis-
sions at two locations simultaneously. Furthermore, it would
be prudent to experimentally validate the performance of
the presented controller, which in turn requires a method
for measuring or estimating the temperatures in the TWC.
Additionally, we hypothesize that characterizing the engine
emissions for different average air-fuel ratios near stoi-
chiometry could allow for the optimal controller to gain
an additional degree of freedom in balancing the ratio of
CO and THC emissions to the NOx emissions during a
cold-start.
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