
UniSUF: a unified software update framework for vehicles utilizing
isolation techniques and trusted execution environments

Downloaded from: https://research.chalmers.se, 2022-07-02 09:29 UTC

Citation for the original published paper (version of record):
Strandberg, K., Kengo Oka, D., Olovsson, T. (2021). UniSUF: a unified software update framework
for vehicles utilizing isolation techniques and
trusted execution environments. 19th escar Europe : The World's Leading Automotive Cyber Security
Conference: 86-100. http://dx.doi.org/10.13154/294-8353

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



UniSUF: A Unified Software Update Framework
for Vehicles utilizing Isolation Techniques and

Trusted Execution Environments

Kim Strandberg1,2[0000−0003−0892−2600], Dennis Kengo
Oka3[0000−0003−2714−0882], and Tomas Olovsson2[0000−0001−9548−819X]

1 Volvo Car Corporation, Sweden kim.strandberg@volvocars.com
2 Chalmers University of Technology, Sweden firstname.lastname@chalmers.se

3 Synopsys, Japan dennis.kengo.oka@synopsys.com

Abstract. Today’s vehicles depend more and more on software, and can
contain over 100M lines of code controlling many safety-critical functions,
such as steering and brakes. Increased complexity in software inherently
increases the number of bugs affecting vehicle safety-critical functions.
Consequently, software updates need to be applied regularly. Current
research around vehicle software update solutions is lacking necessary
details for a versatile, unified and secure approach that covers various
update scenarios, e.g., over-the-air, with a workshop computer, at fac-
tory production or using a diagnostic update tool. We propose UniSUF,
a Unified Software Update Framework for Vehicles, well aligned with au-
tomotive industry stakeholders. All data needed for a complete software
update is securely encapsulated into one single file. This vehicle unique
file can be processed in multitudes of update scenarios and executed
without any external connectivity since all data is inherently secured.
To the best of our knowledge, this comprehensive, versatile and unified
approach cannot be found in previous research and is a contribution to
an essential requirement within the industry for handling the increasing
complexity related to vehicle software updates.

Keywords: Vehicle software update framework · Vehicle security.

1 Introduction

A vehicle can contain more than 150 ECUs (Electronic Control Units) and over
100M lines of code. The complexity of software within the automotive domain
is increasing and with it the risk for vulnerabilities. To address this, there are
ongoing activities for vehicle software updates, such as ISO/CD 24089 [1] and
UN Regulation No. 156 regarding vehicle software update requirements [2]. The
latter states, among other, requirements for vehicle manufactures to have a se-
cure software update process. While standards and regulations typically focus
on high-level requirements, technical design and implementation requirements
are left up to the automotive organizations. There is a risk that if the software



2 K. Strandberg et al.

update process is vulnerable, it can be exploited by attackers who could poten-
tially introduce malicious code at some stage into the software update process
that finally reaches in-vehicle systems causing life-threatening hazards such as
manipulated brakes, steering, or engine control.

A secure software update framework that can support numerous different up-
date scenarios, such as over-the-air, in workshops, and in factories, with or with-
out Internet access, is required for automotive organizations in order to apply
software updates to address vulnerabilities in a timely and regular manner. Our
approach is to provide a cost-effective, open architecture, with increased security
through isolation and separation of duties that is comprehensive to support nu-
merous use cases. Thus, we propose UniSUF, a versatile and unified approach for
secure vehicle software updates. By using multiple signing and encryption keys,
all data needed for a complete software update is securely encapsulated into one
single file, the Vehicle Unique Update Package (VUUP). This vehicle unique file
can be processed by a vehicle ECU, using a workshop computer, at factory pro-
duction or with a diagnostic update tool, hence considerably simplifying software
management processes. At the receiving vehicle side, this file is decapsulated and
validated layer by layer, where cryptographic material and sensitive operations
are isolated within a trusted execution environment to ensure both the integrity
and the confidentiality of the data. The main contributions of this paper are:

– We have analyzed and reviewed several software update use cases in the
automotive industry and as a result, defined a number of constraints and
conditions for a unified and versatile approach.

– Considering these constraints and conditions, we suggest an approach for ve-
hicle software updates, well aligned with automotive industry stakeholders.
In-depth details give a comprehensive overview for a possible secure imple-
mentation covering the whole software chain from producer to receiver.

– We have reviewed the suggested approach with automotive software update
architects to ensure that the proposed approach can be practically deployed
and efficiently adopted for vehicle software updates.

2 Problem Statement

Considering the different existing use cases for vehicle software updates, such as
over-the-air, using a workshop computer, at factory production, or with a diag-
nostic update tool, each use case typically has its own approach which causes
complexity. Moreover, new use cases for software updates need to be consid-
ered with future demands to support 3rd party component updates ([3], [4]).
Therefore, to simplify, reduce costs, allow flexibility, and to make the update
process manageable, all while considering security aspects, we propose a unified
and versatile approach to handle all the use cases.

After reviewing the above-mentioned use cases, the following constraints and
conditions are defined for a unified software update framework:

– Support for online updates (software update files and/or cryptographic cre-
dentials/operations require online access).



UniSUF: A Unified Software Update Framework for Vehicles 3

– Support for offline updates (software update files and cryptographic creden-
tials/operations are accessible offline).

– Should not rely on additional input for cryptographic keys or installation
instructions, e.g., from a diagnostic update tool (i.e., all data needed for a
complete software update is securely encapsulated into one single file and no
additional input is required).

– No dependency on the data distribution model (i.e., software update files
can be provided through different means and it does not matter how they
are distributed to the vehicle).

– No dependency on software update storage location (i.e., software update
files should be independently protected regardless of where they are stored).

– Flexible and modular to support 3rd party component updates.

We have taken these constraints and conditions into consideration when de-
signing a software update framework to allow for a unified and versatile approach
to support different use cases. Our proposed software update framework is de-
scribed in the next section.

3 UniSUF: A Unified Software Update Framework

In this section, we present the Unified Software Update Framework (UniSUF).
First, an overview of the involved entities in the framework is presented, followed
by a brief explanation on how to secure data distribution and data execution,
and finally, the procedure for preparing software update files is given.

3.1 Entities

There are three main entities involved in the software update process: the pro-
ducer, the consumer, and the repository. The producer is responsible for produc-
ing the software. The consumer is responsible for the download and installation
process of the software, and the repository is a storage point for software prefer-
ably located in various cloud sources, enabling both proximity and redundancy
for data in relation to the vehicle.

An overview of the data distribution in the backend handled by the Producer
Agent (PA) is shown in Figure 1. The main entities it contains are:

– Producer Security Agent (PSA) facilitates functionalities for secure key
generation using Secure Key Generator (SKG), secure storage for cryp-
tographic material using Cryptographic Material Storage (CMS) and
signing of data using Producer Signing Service (PSS).

– Version Control Manager (VCM) has control over available software
versions w.r.t. current vehicle status to create both download instructions
using Producer Download Agent (PDA) and installation instructions
using the Producer Installation Agent (PIA).

On the receiving side, Figure 4 shows the Consumer Agent (CA) handling
data distribution to the vehicle. The main entities it contains are:



4 K. Strandberg et al.

– Consumer Download Agent (CDA) downloads required data, e.g., in-
structions and software files, verifies the authenticity of the data and initiates
installation using the Consumer Installation Agent (CIA).

– CDA and CIA uses the Consumer Security Agent (CSA) which re-
quires a Trusted Execution Environment (TEE) in order to support secure
operations and store cryptographic keys securely.

By using isolation mechanisms and implementing each entity as a module
according to the principles of least privilege and separation of duties a potentially
compromised entity cause the least possible harm to the complete system. These
modules can be secured either locally or in the cloud.

3.2 Securing Data Distribution and Data Execution

To be able to secure the data distribution and data execution, we propose us-
ing signed asymmetric and symmetric keys in conjunction with key wrapping
mechanisms. Symmetric session keys are used to encrypt sensitive cryptographic
material needed for the update processes, such as keys for unlocking ECUs and
keys for decryption of software. The symmetric session keys are encrypted with
a public vehicle unique asymmetric key, ensuring the secure storage and transfer
of key material. Using an asymmetric key for key wrapping ensures that only
the vehicle with the corresponding private key can decrypt the encrypted session
keys.

Policies dictate rules for each individual encrypted session key, where policies
and keys in conjunction are signed i.e., giving rise to a Key Manifest (KM). KMs
are securely processed at the receiving side, where session keys are appointed to
certain trusted applications according to the stated policies. The functionality of
trusted applications can be decryption of software files, unlock ECUs for software
updates, and signing of installation reports and logs.

3.3 Preparation of Software Update Files

The individual files that contain the actual software need to be secured, ensuring
both confidentiality and authenticity. Considering the entities in the framework
the procedure to secure software files is as follows.
1. The producer of software signs software files with a supplier specific signing
certificate to provide authenticity. If supported, this signature is later validated
by end receivers (e.g., ECUs) before installation. Software files are uploaded to
the Producer Local Secure Storage, shown in Figure 1.
2. VCM receives the software files and validates the software supplier’s signature.
3. VCM requests a symmetric encryption key (hereafter called sw key) from PSA
and encrypts the software file with this key to provide confidentiality.
4. VCM requests a signature of the hash of the encrypted software file from PSS.
The signature is added to the encrypted file metadata to provide authenticity.
5. VCM performs mutual authentication towards the cloud software repository
and uploads the signed encrypted file to the cloud and stores the url to this file



UniSUF: A Unified Software Update Framework for Vehicles 5

in a database.
6. VCM securely stores the symmetric encryption key (i.e., the corresponding
sw key) in CMS to be retrieved later, and encrypted and included into a Secure
Key Array (SKA) for a future software update (cf. Step 6. in Section 4.1).

Fig. 1. Data distribution in the backend

4 The Software Update Process

In this section, we dive into the details of the complete software update process
in UniSUF. Explanations of the abbreviations used can be found in Table 1.

4.1 Encapsulating Data into a VUUP file

Producer Agent (PA): data distribution in backend. Figures 1, 2 and 3
describe the process of creating a complete VUUP file. The 11 steps described
below are indicated by numbers where relevant in the Figures 1, 2 and 3.
1. Order request. The Consumer Agent (CA) in the vehicle, local workshop,
or any other consumer, places a signed order on behalf of a Vehicle Identification



6 K. Strandberg et al.

Table 1. Abbreviations

Abbreviations

Vehicle Identification Number (VIN)
The VIN number is a vehicle unique fingerprint, and is composed of 17 char-
acters.

Producer Agent (PA)
Parent entity consisting of many children entities covering backend require-
ments.

Producer Security Agent (PSA) Responsible for handling cryptographic material in the backend systems.

Producer Signing Service (PSS)
Executes signing requests i.e., returns signatures of hash values requested by
authenticated entities.

Order Agent (OA) Responsible for managing software requests from consumers.

Secure Key Generator (SKG) PSA uses this module for the secure generation of key material.

Secure Key Array (SKA)
An array that PSA creates with cryptographic material related to a VIN
unique software package.

Version Control Manager (VCM)
Responsible for management of software versions related to unique vehicles
and for repackaging of data into the final VUUP file.

Producer Download Agent (PDA) Creates the instructions for the download of software for a certain VIN.

Producer Installation Agent (PIA)
Creates the diagnostic instructions for installation of software for a
certain VIN, including retrieving necessary cryptographic material.

VIN Database (VD) Stores VIN unique data related to software.

Cryptographic Material Storage (CMS) Secure storage of cryptographic material.

Download Key Manifest (DKM)
The manifest that contains the DKM session key with the policy for decryption
of the download instruction.

Installation Instruction Key Manifest (IKM)
Contains the IKM session key with policy for decryption of the instal-
lation instruction.

Master Key Manifest (MKM) Contains MKM session keys with policies for decryption of cryptographic data.

Vehicle Unique Update Package (VUUP)
The update package that includes information to perform a complete vehicle
software update, e.g., software download instructions, installation instructions
and cryptographic material.

Consumer Agent (CA)
The parent entity to the children entities covering vehicle requirements for
the software installation process. The localization for children entities can be
adapted to accommodate various use cases, e.g., OTA, workshop, and factory.

Consumer Download Agent (CDA)
Executes download instructions and retrieves required software files to local
storage.

Consumer Installation Agent (CIA)
A diagnostic client responsible for the execution of installation instructions
and requests to CSA for the execution of cryptographic material.

Consumer Security Agent (CSA)
A trusted execution environment (TEE), with pre-stored certificates between
vehicle manufacture and CSA; which enables secure transfer and execution of
cryptographic material from the backend to the vehicle.

Key Wrapping (KW)
The process of encrypting one key with the use of another symmetric or asym-
metric key, to securely store or transmit it over an untrusted channel.

Key Manifest (KM)
Used to define policies and relations for certain keys. Keys are secured with
KW, where encrypted keys and policies are signed, giving rise to a KM.

Number (VIN) (i.e., a Vehicle Signed Order (VSO)). A VSO should contain a
complete vehicle readout and be signed by the entity which creates the order.
VSOs are placed in the Order Cloud Service queue. Output: VSO n.signed;
2. Initiate VCM with VSO file. The Order Agent (OA) pulls VSOs from the
Order Cloud Service queue, verifies the CA signature of the VSO, and requests
initiation by VCM with this VSO.
3. VCM creates an SL file with VIN unique software information .
VCM receives a VSO from OA for a certain VIN. VCM validates the signature
of the VSO and retrieves the latest available software versions and VIN vehicle
data from the VIN Database (VD). VIN data in VD is compared with actual
vehicle software readout in the VSO. Software deviations are handled, and a
signed Software List (SL) is created from information in the VSO and VD and
is sent to PDA, PIA, and PSA. Output: SL.signed;
4. PDA creates download instructions. PDA verifies the SL and creates
download instructions (list of software urls) for all ECUs based on the SL. PDA



UniSUF: A Unified Software Update Framework for Vehicles 7

Fig. 2. Data distribution in the backend in relation to cryptographic material

requests a DKM (Download Instruction Key Manifest) session key from PSA
and encrypts the download instructions with this key. Next, this key is encrypted
with a vehicle unique public certificate retrieved from CMS, where the certificate
is validated for authenticity towards the Root CA and OCSP (Online Certificate
Status Protocol). The encrypted DKM session key and a policy that dictates
the association to the download instructions give rise to the DKM. A hash is
calculated of the encrypted download instructions and the DKM separately, and
signature requests are sent to PSS on behalf of PDA, which replies with two sep-
arate signatures. Output: download instruction.signed; DKM.signed; PDA cert;
5. PIA creates installation instructions. PIA verifies the signature of the
SL and creates installation instructions for all ECUs based on the SL.
Output: installation instruction;
6. PSA requests cryptographic material. PSA verifies the SL and retrieves
the required cryptographic material for software related to the received SL from
CMS, such as keys for unlocking ECUs, privileged diagnostic requests, and soft-
ware decryption keys. For each category of cryptographic material, PSA gener-
ates an MKM (Master Key Manifest) session key, where each key is associated
with that specific category policy. MKM keys are in turn encrypted separately
with a vehicle unique public certificate retrieved from CMS (same certificate
as in Step 4), where the vehicle unique certificate from CMS is validated for
authenticity towards Root CA and OCSP. The encrypted MKM keys with each
respective category policy give rise to the MKM. A key array named SKA is
created, which includes a sub-array for each category with separately encrypted
key data, encrypted with the MKM key which belongs to that specific category.
For example, SKA can include an array of encrypted symmetric keys used to



8 K. Strandberg et al.

encrypt/decrypt the relevant software update files, so called sw keys (cf. Sec-
tion 3.3), and an array of encrypted security access keys used for unlocking
relevant ECUs. A hash is calculated of the SKA and MKM, where after signa-
ture requests are sent to PSS which replies with two separate signatures. Output:
MKM.signed; SKA.signed;
7. PIA retrieves the signed MKM and SKA from the PSA, and en-
crypts/signs the installation instruction . PIA request the signed MKM
and the signed SKA from PSA. MKM and SKA signatures are validated where
after MKM and SKA are included as part of the installation instructions. PIA
requests an IKM (Installation Instruction Key Manifest) session key from PSA
and encrypts the installation instructions with this key. The IKM session key
is then encrypted with a vehicle unique public certificate retrieved from CMS
(same certificate as in Step 4.), where the certificate is validated for authenticity
towards the Root CA and OCSP. The encrypted IKM session key and a policy
that dictates the association to the installation instructions give rise to the IKM.
A hash is calculated of the encrypted installation instructions and the IKM sep-
arately, and signature requests are sent to PSS on behalf of PIA, which replies
with two separate signatures.
Output: installation instruction.signed; IKM.signed; PIA cert;
8. VCM creates the VUUP file.
Input: download instruction.signed; DKM.signed; installation instruction.signed;
IKM.signed; PDA cert; PIA cert;
VCM retrieves the generated data from PDA and PIA. Certificates are fetched
from CMS and validated for authenticity towards the Root CA and OCSP, signa-
tures are validated with the respective certificate and all the data is repackaged
into VUUP content. A hash is calculated of the VUUP content, and a signature
request is sent to PSS on behalf of VCM, which replies with a signature. The
signed VUUP is uploaded to the Vehicle Cloud Service together with its VCM
certificate. Output: VUPP n.signed; VCM cert;
9. VCM notifies OA. VCM notifies OA, that the order is ready and supplies
a signed URL to the VUUP file. Output: VUUP 1..n url.signed;
10. OA adds the url to the VIN unique VUUP in the Order Cloud
Service. The OA validates the signature of url and thereafter adds the url in
the Order Cloud Service.
11. CDA requests status. The CDA pulls status from the Order Cloud Ser-
vice (via the CA) to indicate that updates are available for download via the
signed VUUP n url. If no updates yet are available, the signed url will be empty.

4.2 Decapsulating the VUUP file

Consumer Agent (CA): data distribution to vehicle. For the CA, the
process can be considered as the PA process reversed. The 17 steps described
below are indicated by numbers where relevant in the Figures 4, 5 and 6.
1. The CDA requests software updates.
Input: VUUP n url.signed ; VCM cert;
If there are updates available, the CDA receives a signed VUUP n url and



UniSUF: A Unified Software Update Framework for Vehicles 9

Fig. 3. Data distribution in the backend in relation to signing

VCM cert, where the certificate is validated for authenticity towards the Root
CA and OCSP, where after the signature of VUUP n url is validated using the
received VCM cert.
2. Download of VUUP. Mutual authentication is performed towards the Ve-
hicle Cloud Service and the signed VUUP n is downloaded to Consumer Local
Storage. Output: VUPP n.signed;
3. Validate VUUP. The signature of VUUP n is validated with VCM cert,
and VUUP n is decapsulated to produce the signed contents of download instruc-
tions, DKM, installation instructions, IKM as well as the included PDA cert and
PIA cert. Output:
download instruction.signed; DKM.signed; installation instruction.signed;
IKM.signed; PDA cert; PIA cert;
4. Validate data within VUPP . Certificates are fetched for online cases or
retrieved from the VUUP file for offline cases. The signatures for the download
instructions and the DKM are validated with the PDA cert, and the signatures
for the installation instructions and the IKM are validated with the PIA cert.
5. DKM Key manifest initiation. The CDA requests the CSA to initialize
the DKM, by providing the DKM.signed and PDA cert.
Output: DKM.signed; PDA cert;
6. CSA associates DKM with TEE application. The signature of DKM
is validated with PDA cert. The DKM session key is decrypted with the pre-
stored vehicle unique private certificate and associated with the TEE application
according to the policy in the DKM manifest, i.e., for decrypting download in-
structions.
7. Request decryption of download instruction. The CDA provides the
signed download instructions to the CSA and requests decryption.
Output: download instruction.signed;



10 K. Strandberg et al.

Fig. 4. Data distribution to the vehicle

8. Perform decryption of download instruction. The CSA validates signa-
ture of the download instruction with PDA cert, decrypts with the DKM session
key from the DKM in accordance with policy (i.e., decrypting download instruc-
tions) and returns the decrypted download instructions to the CDA.
Output: download instruction;
9. Download of software files. The CDA performs mutual authentication
towards various software repository sources and downloads encrypted signed
software files to Consumer Local Storage using the download instructions. The
CDA validates signatures of all encrypted software files with the VCM cert.

Consumer Agent (CA): data execution in vehicle. After data distribution
to the vehicle has been completed, the following steps describe the installation
of the software update through data execution in the vehicle. These steps can
be performed completely offline.
10. Initiation of pre-state phase. The CDA requests to start installation
of software by sending the signed installation instructions, signed IKM, and the
PIA cert to the CIA.
Output: installation instruction.signed; IKM.signed; PIA cert;
11. Reboot to secure state. The CIA validates the PIA cert for authenticity
towards Root CA and OCSP. The signatures of the installation instructions and
IKM are then validated with the PIA cert. CIA then reboots to an offline secure
state; ready for pre-state installation processes. PIA cert is validated again after
reboot, against Root CA and an offline CRL list; and the signature of IKM is vali-
dated with PIA cert, where after the CIA requests IKM initialization by sending



UniSUF: A Unified Software Update Framework for Vehicles 11

Fig. 5. Data distribution to the vehicle in relation to cryptographic material

the signed IKM and PIA cert to the CSA. Output: IKM.signed; PIA cert;
12. IKM key manifest initiation. The CSA validates the PIA cert for au-
thenticity towards Root CA and an offline CRL. The CSA then validates the
IKM signature with PIA cert, where after the IKM session key within IKM is
decrypted with the pre-stored private asymmetric unique key and associated
according to policy in the IKM, i.e., to be used for decrypting installation in-
structions.
13. Request of decryption of installation instruction. The CIA provides
the signed installation instructions to the CSA and requests decryption.
Output: installation instruction.signed;
14. Decryption of installation instruction. The CSA validates the sig-
nature of the installation instructions with PIA cert, decrypts with the IKM
session key from the IKM in accordance with policy (i.e., decrypting installa-
tion instructions) and returns the decrypted installation instructions to the CIA.
Output: installation instruction;
15. Request MKM key manifest initiation. The CIA retrieves the encap-
sulated signed MKM and SKA, and PSA cert from the decrypted installation
instructions. The CIA validates the PSA cert for authenticity towards Root CA
and an offline CRL, and verifies signatures of the MKM and the SKA with the
PSA cert. CIA then requests MKM initialization by sending the signed MKM
and PSA cert to the CSA. Output: MKM.signed; PSA cert;
16. MKM key manifest initiation. The CSA validates the MKM signature
with the PSA cert. MKM session keys within the MKM are decrypted with the
pre-stored private asymmetric unique key and are associated with applications
according to policy in the MKM.
17. Secure CIA - CSA interface established. Peri-state. The CIA - CSA



12 K. Strandberg et al.

Fig. 6. Data distribution to the vehicle in relation to validation

communication interface is now initialized. The CIA can request decryption of
software from the CSA by sending the encrypted file (or path/link) together with
the corresponding encrypted sw key retrieved from the SKA. Before decryption
can start, the CSA validates the authenticity of software files with the VCM cert
and aborts the decryption request from the CIA if this fails. On the other hand,
if it is successful, the CSA then decrypts the encrypted sw key with the MKM
session key for software files from the MKM and uses the sw key to decrypt the
software file. This interface is also used for unlocking ECUs using, e.g., security
access to authorize the update. In this case, the challenge from the ECU is sent to
the CSA together with the corresponding encrypted security access key from the
array in SKA. CSA decrypts the encrypted security access key and processes the
challenge from the ECU and can provide the results to the CIA. This approach
allows the CIA to perform ECU unlock without exposing the security access key
outside of CSA. The CIA is after this step ready to stream out software to the
ECU.

4.3 Post-State Activities

CSA needs to have the possibility to sign post-state installation data, such as
installation reports and logs potentially affecting upcoming software updates.
A unique session signing key can be transported via MKM to CSA which can
handle signing requests within a trusted application isolated within the TEE.
The corresponding validation key can be stored in CMS. Part of post-state is
to perform a complete vehicle software version request (readout). To provide
authenticity, the readout can be signed by supported ECUs (e.g., if they contain
pre-stored private keys) and validated by CSA with the help of the correspond-



UniSUF: A Unified Software Update Framework for Vehicles 13

ing validation keys attached to the SKA. These responses are then attached to
the installation report. To provide confidentiality, CSA can encrypt installation
reports and logs by using keys in SKA.

5 Implementation Considerations

The CA (all consumer entities) can as shown in Figure 4 be located in an ECU
in the vehicle used for over-the-air updates or in a client workshop computer
with a separated CSA. CSA in this case can be implemented in a hardware
security device such as a Yubico key [5] or a smart card, with a pre-stored
encryption/decryption certificate and a pre-stored Root CA acting as a trust
anchor for validating certificates. Vehicle manufacturers can provide these hard-
ware security devices to workshops, and also have full control to manage and
revoke them. Depending on both security and performance requirements CSA
can also be placed in a workshop HSM or even located in the cloud. Because
of the proposed entity separation (implemented as modules), other approaches
are also possible, such as integrating CDA and CIA in an update tool with CSA
integrated in hardware or separated. It is also possible to use CDA separately
(outside the vehicle) and securely push the update package to the in-vehicle CIA
(e.g., via mutually authenticated communication). CIA then validates and ex-
ecutes the installation instructions and uses the ECU-internal CSA to perform
secure transfer and execution of cryptographic operations. The different entities
can be securely containerized out in the cloud or kept within vehicle manufacture
premises. This solution fulfills the constraints and conditions stated in Section 2
and is therefore highly adaptable to accommodate various scenarios within the
automotive industry.

6 Related Work

Samuel et al. suggest using a layered approach with the use of different roles
and keys called The Update Framework (TUF) to ensure the integrity of the
downloaded data, however, this approach does not consider the installation of
these updates and is not adapted for vehicles [6]. In [7] T. Kuppusamy, propose
an implementation and adaption of the TUF framework named Uptane for ve-
hicle over-the-air updates, where the authors add more metadata to improve its
resilience. Another approach proposed by Idress et al. [8] suggests deploying a
new architecture where all in-vehicle ECUs use HSMs for over-the-air updates.
In [9] Mahmud et al. propose an architecture that relies on sending multiple
copies to secure the software update, an approach which we believe is not re-
alistic due to infrastructure constraints. M. Steger et al. propose a framework
named SecUp which uses handheld devices to wirelessly connect and update
vehicles over an IEEE 802.11s mesh network for local environments (i.e. fac-
tory and workshop) [10]. In [11] Nilsson et al. present an approach for securing
firmware updates over-the-air by combining encryption, hashing, and signing
of firmware by chaining fragments. In [12] Nilsson et al. continue their work



14 K. Strandberg et al.

on hash-chain verification and suggest an over-the-air update framework that
validates firmware after it is flashed to the ECUs, however, this requires all in-
vehicle ECUs to be adapted to this approach and that integrity verification of
the download is solved by other means.

However, the aforementioned solutions lack necessary details for a unified
and versatile approach that supports updates over-the-air; from a workshop
computer; at the factory production; use of diagnostic update tools; and third-
party vehicle platform users e.g., using the vehicle as a base controlled by other
autonomous systems. As a case in point, Uber is using the Volvo Cars platform
in their fleet of cars [3]; a scenario which most likely will become more prevalent
in the future due to increased sustainability requirements. Thus, solutions such
as ride-sharing will probably be more common where collective fleets of cars
require integrating 3rd party hardware and software which are dependent on a
unified software update framework. UniSUF supports 3rd party components by
appending its related data to the VUUP file i.e., adding additional instructions
and at the same time keeping the VUUP file intact. Moreover, other details are
missing in current solutions such as required installation instructions including
handling of necessary pre-, peri- and post-state phases and secure transport and
secure execution of ECU-specific cryptographic keys. UniSUF considers all these
three states, and ensures a secure transport to a trusted execution environment,
following a secure execution for all sensitive data. Many existing solutions also
consider changes to all ECUs which usually is not possible; something which is
not required by UniSUF. The mentioned versatility of UniSUF can keep required
adaptions of the vehicle as well as the required cost to a minimum.

7 Future Work and Conclusion

We have contributed with a comprehensive and novel unified software update
framework named UniSUF, well aligned with industry stakeholders. As part of
future work, we have already begun defining an attacker model and started a
security analysis of our proposed solution. We aim to perform a more detailed
evaluation of UniSUF, including a discussion on the fulfilled requirements as well
as a comparison to other approaches, in a future paper.

UniSUF is made to accommodate various scenarios for the automotive do-
main by encapsulating needed data into one single file, a Vehicle Unique Update
Package (VUUP). This vehicle unique file can be processed within a vehicle
ECU, using a workshop computer, at factory production, with a diagnostic up-
date tool, or in other compositions. Moreover, the complete update process can
be performed without any external communication dependencies, since all files
are inherently secured. A continuous secure software update process is a pre-
requisite for facilitating vehicle resilience towards cyber attacks in a rapidly
changing environment. We believe our contributions in this paper can facilitate
further research in this area, towards securing the connected car.



UniSUF: A Unified Software Update Framework for Vehicles 15

Acknowledgment. This research was supported by the CyReV project
(2019-03071) funded by VINNOVA, the Swedish Governmental Agency for In-
novation Systems.

References

1. for Standardization, I.O.: Road vehicles — Software update engineering.
https://www.iso.org/standard/77796.html (2021), accessed: 2021-06-02

2. for Europe (UNECE), U.N.E.C.: UN Regulation No. 156 -
Software update and software update management system.
https://unece.org/transport/documents/2021/03/standards/un-regulation-
no-156-software-update-and-software-update (2021), accessed: 2021-06-02

3. Corp., V.C.: Volvo Cars and Uber present first autonomous drive-ready pro-
duction car. https://group.volvocars.com/news/future-mobility/2019/volvo-and-
uber-present-autonomous-drive-ready-xc90 (2019), accessed: 2021-06-02

4. Corp., V.C.: Volvo Cars teams up with world’s leading mobility technology plat-
form DiDi for self-driving test fleet. https://www.media.volvocars.com/global/en-
gb/media/pressreleases/280668/volvo-cars-teams-up-with-worlds-leading-
mobility-technology-platform-didi-for-self-driving-test-flee (2021), accessed:
2021-06-07

5. yubico: Protect your digital world with YubiKey. https://www.yubico.com/ (2021),
accessed: 2021-06-02

6. Samuel, J., Mathewson, N., Cappos, J., Dingledine, R.: Survivable key compromise
in software update systems. pp. 61–72 (12 2010)

7. Karthik, T., Brown, A., Awwad, S., McCoy, D., Bielawski, R., et al.: Uptane:
Securing software updates for automobiles. 14th ESCAR Europe (2016)

8. Idrees, M.S., Schweppe, H., Roudier, Y., Wolf, M., Scheuermann, D., Henniger, O.:
Secure automotive on-board protocols: A case of over-the-air firmware updates. In:
Strang, T., Festag, A., Vinel, A., Mehmood, R., Rico Garcia, C., Röckl, M. (eds.)
Communication Technologies for Vehicles. pp. 224–238. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

9. Mahmud, S., Shanker, S., Hossain, I.: Secure software upload in an intelligent
vehicle via wireless communication links. In: IEEE Proceedings. Intelligent Vehicles
Symposium, 2005. pp. 588–593 (2005)

10. Steger, M., Boano, C.A., Niedermayr, T., Karner, M., Hillebrand, J., Roemer, K.,
Rom, W.: An efficient and secure automotive wireless software update framework.
IEEE Transactions on Industrial Informatics 14(5), 2181–2193 (2018)

11. Nilsson, D.K., Larson, U.E.: Secure firmware updates over the air in intelligent
vehicles. In: ICC Workshops - 2008 IEEE International Conference on Communi-
cations Workshops. pp. 380–384 (2008)

12. Nilsson, D.K., Sun, L., Nakajima, T.: A framework for self-verification of firmware
updates over the air in vehicle ecus. In: 2008 IEEE Globecom Workshops. pp. 1–5
(2008)


