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Quantum state tomography (QST) is a challenging task in intermediate-scale quantum devices. Here, we
apply conditional generative adversarial networks (CGANs) to QST. In the CGAN framework, two dueling
neural networks, a generator and a discriminator, learn multimodal models from data. We augment a
CGAN with custom neural-network layers that enable conversion of output from any standard neural
network into a physical density matrix. To reconstruct the density matrix, the generator and discriminator
networks train each other on data using standard gradient-based methods. We demonstrate that our
QST-CGAN reconstructs optical quantum states with high fidelity, using orders of magnitude fewer
iterative steps, and less data, than both accelerated projected-gradient-based and iterative maximum-
likelihood estimation. We also show that the QST-CGAN can reconstruct a quantum state in a single
evaluation of the generator network if it has been pretrained on similar quantum states.

DOI: 10.1103/PhysRevLett.127.140502

Introduction.—The ability to manipulate and control
small quantum systems opens up promising directions
for research and technological applications: quantum
information processing and computation [1–5], simulations
of quantum chemistry [6–10], secure communication
[11,12], and much more [6,13–22]. A prominent example
is the recent demonstration of a 53-qubit quantum com-
puter performing a computational task in a few hundred
seconds that was anticipated to take much longer on a
classical supercomputer [5]. Such speedup is possible
partly due to the exponentially large state space that can
be used for storage and manipulation of information in
quantum systems [23–25]. However, this large size of the
state space also brings challenges for the characterization
and description of these systems.
The process of reconstructing a full description of a

quantum state by measuring its properties is called quantum
state tomography (QST) [26–28]. Tomography is funda-
mentally a data processing problem, trying to extract
meaningful information from as few (noisy) measurements
as possible [29–39]. There exist many cleverly crafted QST
techniques apart from general maximum likelihood esti-
mation (MLE) [40,41], e.g., diluted MLE [42], compressed

sensing [43], Bayesian tomography [44,45], projected-
gradient descent [46], matrix-product-state and tensor-
network tomography [31,47,48], and permutationally
invariant tomography [49,50]. However, these techniques
are often restricted to specific types of quantum states,
lacking versatility [51].
Recently, machine-learning methods have been applied

to QST, yielding promising results [52–64]. In particular,
generativemodels [51,65–67], usually restricted Boltzmann
machines (RBMs), have been used as Ansätze with few
parameters to represent a quantum state and learn the
probability distribution of outputs expected from that
state [48,52,68]. There are also examples of deep neural
networks being used for QST [57,69–73], enabling phys-
icists to take advantage of the rapid progress in such
machine-learning techniques.
One interesting recent development in machine learning

is generative adversarial networks (GANs) [74,75]. Such
networks have led to an explosion of new results that were
previously thought futuristic: generation of photorealistic
images [76–78], conversion of sketches to images [76], text
generation in different styles [79,80], text-to-image gener-
ation [81], generating and defending against fake news
[82,83], and evengame design learned fromobserving video
[84]. An improvement of standard GANs that led to many of
these results is conditional generative adversarial learning
[85], which enabled increased control of the output of
generative models. Recently, such GANs have been applied
to tomography of materials structure with synchrotron
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radiation [86,87] and computed tomography of soft tissue in
medicine [88].
In this Letter, we introduce QSTwith conditional GANs

(QST-CGAN). Leveraging a CGAN architecture, comple-
mented by custom layers for representing a quantum state
in the form of a density matrix, we show that adversarial
learning can be a powerful tool for QST. The QST-CGAN
is different from RBM-based methods since it learns a map
between the data and the quantum state instead of a
probability distribution. The custom layers we introduce
bridge a gap between machine learning and quantum
information processing; they enable many further applica-
tions beyond the QST-CGAN presented here. We bench-
mark the QST-CGAN on reconstruction of optical quantum
states from simulated data and show an example with real
experimental data. The QST-CGAN performance is supe-
rior to that of maximum-likelihood reconstruction methods
in terms of reconstruction fidelity, number of iterative steps,
and amount of measurement data required. We also show
that a QST-CGAN can reconstruct quantum states in a
single pass through the network if it has been pretrained on
simulated data.
Our reconstruction method is versatile, general, and

ready to be applied for QST of intermediate-scale quantum
systems, which are widely explored in current experiments
[4]. In Refs. [89,90], we provide more details on our
implementation (including data and code) and also discuss
classification of quantum states with neural networks.
Quantum state tomography with maximum likelihood

estimation.—Quantum state tomography estimates the
quantum state (a state vector jψi or a density matrix ρ)
from measurements of Hermitian operators O [28,91]. The
operators are usually positive-operator-valued measures
(POVMs), a set of positive semidefinite matrices fOig
that sum to identity,

P
k
i Oi ¼ I, representing a measure-

ment with k possible outcomes. The probability of each
outcome is given by trðOiρÞ. A set of operators that allows
for the complete characterization of a quantum state is
called informationally complete [92].
In an experiment, single-shot measurements are repeated

over an ensemble of identical states to collect statistics: the
frequencies di of POVM outcomes. These frequencies give
an estimate of the expectation values trðOiρÞ, where ρ is the
density matrix describing the state. The outcomes of many
different POVMs can be combined to form a linear system
of equations d ¼ Aρf, where ρf is the flattened density
matrix and A is the “sensing matrix” determined by the
choice of POVMs [93]. Solving this system of equations by
linear inversion methods to obtain ρ can fail, either due to
the statistical nature of the (noisy) measurement or due to a
high condition number for A [93].
An alternative to linear inversion methods is maximum

likelihood estimation. In MLE, the likelihood function
[40,94] Lðρ0jdÞ ¼ Q

i½trðρ0OiÞ�di is maximized to find the
best estimate ρ0 for reproducing the experimental data.

In this Letter, we take a different approach by applying
CGANs to find ρ0.
Conditional generative adversarial networks.—In gen-

erative adversarial learning, a generator G and a discrimi-
nator D compete to learn a mapping from some prior noise
distribution to a data distribution [74]. The generator and
the discriminator are parametrized nonlinear functions
[parameters ðθD; θGÞ], usually multilayered neural net-
works. The generator takes an input z ∼ pzðzÞ from the
noise distribution pzðzÞ and generates an output Gðz; θGÞ.
The discriminator takes an input q and outputs a probability
Dðq; θDÞ that it belongs to the data distribution pdata.
The parameters of G and D are optimized alternatively

such that the generator produces outputs that resemble the
data and thus fool the discriminator, and the discriminator
becomes better at detecting fake (generated) output. In each
optimization step, θD is updated to maximize the expect-
ation value

Ey∼pdata
½lnðDðy;θDÞÞ� þEz∼pz

fln½1−DðGðz;θGÞ;θDÞ�g;
ð1Þ

where y denotes samples from the data. Then, θG is updated
to minimize

Ez∼pz
fln½1 −DðGðz; θGÞ; θDÞ�g: ð2Þ

In this way, the generator learns to map elements from a
noise distribution to data as G∶z → y [74,76].
However, since the generator input is random, we have

no control over the output. This issue is solved by using a
conditional generative adversarial network [76,85]. In a
CGAN, the generator and discriminator output is condi-
tioned on some variable x. This conditioning allows the
generator to learn the mapping G∶x; z → y [76]. The
optimization of parameters for the CGAN is done as
before, by maximizing Eq. (1) and minimizing Eq. (2);
the only difference is that the outputs now are Dðx; y; θDÞ
and Gðx; z; θGÞ. This CGAN approach is very flexible and
can be used to find complex maps between inputs and
outputs. The flexibility stems from using the discriminator
network for evaluation instead of, or in addition to, a
simpler loss function.
Quantum state tomography using conditional generative

adversarial networks.—We now adapt the CGAN frame-
work to the problem of QST. In our approach, illustrated in
Fig. 1, the conditioning input to the generator is the
measurement statistics and the measurement operators
(x → d; fOig). The generated output is a density matrix
ρG. We find that we do not need to provide any input noise
z, consistent with the results in Ref. [76].
The discriminator takes as input the experimental meas-

urement statistics d (as the conditioning variable) and
generated measurement statistics calculated from trðOiρGÞ.
The output from the discriminator is a set of numbers
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describing how well the generated measurement statistics
match the data. This partitioning of the evaluation of the
generated statistics is inspired by the PATCHGANarchitecture
of Ref. [76]. If the generator has managed to learn the correct
density matrix, the discriminator will not be able to distin-
guish the generated statistics from the true data.
The adaption of the CGAN architecture to QST

requires us to introduce two custom layers at the
end of the generator neural network. First, we add a
“DensityMatrix” layer, which takes the unconstrained
intermediate output of the generator, molds it into a lower
triangular complex-valued matrix TG with real entries on
the diagonal, constructs T†

GTG, and normalizes the resulting
matrix to have unit trace. This method is inspired by the
Cholesky decomposition [40]. It ensures that the output ρG
is a valid density matrix: Hermitian, positive, and having
unit trace. A similar idea was found independently
in Ref. [73].
Second, we add an “Expectation” layer that combines the

output ρG with the given measurement operators fOig to
compute the generated measurement statistics for each
measurement outcome as trðOiρGÞ. These two custom
layers do not have any trainable parameters. They are only
present to enforce the rules of quantum mechanics in the
neural networks. This is akin to regularization [95] and
normalization [96] in neural networks. We note that our two
custom layers could be used to augment any deep-learning
neural-network architecture for QST, e.g., Refs. [72,73].
We train the QST-CGAN using standard gradient-based

optimization techniques, e.g., Adam [97] with learning-rate
scheduling, starting from random initial values for the
parameters ðθD; θGÞ. In this way, data from one experiment
can be used to estimate the density matrix of the state in
that experiment. However, when reconstructing ρ from
another experiment, the QST-CGAN must start from
zero again. We can avoid this reset by pretraining on
simulated data corresponding to the type of state(s) and
noise that is expected to be present in the experiment. The

reconstruction from experimental data then requires less
additional training; it even becomes possible to do “single-
shot reconstruction” with a single evaluation by the
pretrained generator.
We note that adding L1 loss to Eq. (2) as suggested in

Ref. [76] proved helpful in training the QST-CGAN [89]
and was used for all results displayed below, but was not
necessary to obtain good results. Similarly, adding a
gradient penalty [98] to Eq. (1) improved results for
single-shot reconstruction.
Benchmarking CGAN quantum state tomography.—To

benchmark the QST-CGAN method, we test it on
reconstruction of optical quantum states and compare its
performance to two MLE methods—iterative MLE (iMLE)
[41] and accelerated projected-gradient-based MLE (APG-
MLE) [94]. In iMLE, projection operators determined by
the measurement statistics are iteratively applied to a
random initial density matrix until convergence. The final
result is an estimated density matrix ρ0 that maximizes the
likelihood function Lðρ0jdÞ. In the APG-MLE method,
ideas from convex optimization are used to enable faster
convergence.
Optical quantum states describe quantized single-mode

electromagnetic fields (harmonic oscillators). Our choice of
optical quantum states for testing the QST-CGAN was
motivated by the existence of visual representations, e.g.,
Wigner functions [99], for these states, seeing how CGANs
have mainly been applied to image processing. However,
we stress that the QST-CGAN approach is general and can
be applied to any type of quantum system with any type of
observable [89].
Some of the common observables for optical quantum

states are instances of a displace-and-measure technique. For
example, the photon-number distribution obtained after
applying a displacement β is the generalized Q function
[100]:Qβ

n ¼ tr½jnihnjDð−βÞρD†ð−βÞ�, where jni is theFock
state with n photons, DðβÞ ¼ eβa

†−β�a is the displacement
operator, and aða†Þ is the bosonic creation (annihilation)
operator of the electromagneticmode.TheHusimiQ function
(photon field quadratures) is ð1=πÞQβ

0 and the Wigner
function (photon parity) is WðβÞ ¼ ð2=πÞPnð−1ÞnQβ

n.
The measurement data we consider in the following are
samples ofQβ

0 andWðβÞ at certain β, as illustrated in Fig. 2.
A state ρ in a truncated Hilbert space with size N is

specified by up to N2 − 1 real numbers [93,101] (we use
N ¼ 32). Thus, in general, informational completeness
requires displacements and measurements to be carried
out such that d has at least N2 − 1 elements. However, note
that the required number of elements in d for reconstruction
can be lower, ∝rN, if ρ has low rank r [102].
Results.—In Fig. 3(a), we compare the reconstruction

fidelity for the QST-CGAN and MLE methods as a
function of the number of iterations. One iteration is one
update of all the weights ðθD; θGÞ for the QST-CGAN

FIG. 1. Illustration of the CGAN architecture for QST. Data d
sampled from measurements of a set of measurement operators
fOig on a quantum state is fed into both the generator G and the
discriminator D. The other input to D is the generated statistics
from G. The next to last layer of G outputs a physical density
matrix and the last layer computes measurement statistics using
this density matrix. The discriminator compares the measurement
data and the generated data for each measurement operator and
outputs a probability that they match.
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(a single gradient-descent step), one application of the
projection operators in iMLE, and one update of the density
matrix for APG-MLE. We find that the QST-CGAN
converges to a fidelity >0.999 in about 2 orders of
magnitude fewer iterations than the MLE methods. Note
that the choice of network architecture and training
parameters will affect the speed of convergence and the
computational cost of one iteration for the QST-CGAN.
Next, we investigate, in Fig. 3(b), how many data points

are required as input to reach high reconstruction fidelity.
We find that the QST-CGAN approach starts outperforming
the MLE methods around N ¼ 32 data points and reaches
fidelities close to unity already with <100 data points,
while the MLE methods require ∼1000 data points to
attain good fidelity (an RBM-based reconstruction of a
similar state also requires thousands of data points to reach

high fidelity [68]). Note that the rank r ¼ 1, since ρ is a
pure state.
Experimental state reconstruction from parity

measurements.—The benchmarking of the QST-CGAN
so far has been on simulated data. We now demonstrate,
in Fig. 4, that our QST-CGAN can reconstruct a noisy state
from experimental data. In this particular experiment, a
superconducting transmon qubit was used to generate
a Wigner-negative state in a resonator [103], by applying
a selective number-dependent arbitrary phase [104,105]
of π to j0i and j1i of a coherent state jα¼1i. Despite
significant state-preparation-and-measurement noise, the
QST-CGAN still manages to reconstruct the data well
from measurements of the Wigner function, even when
using only ∼15% of the measurement data.
Single-shot reconstruction with pretraining.—We now

pretrain the QST-CGAN on a dataset with several thousand
cat states similar to Fig. 2 by selecting jαj ∈ ½1; 3� randomly

(a) (b)

FIG. 3. QST-CGAN performance. The data are the Husimi Q
function of the cat state in Fig. 2(b). (a) Reconstruction fidelity
Fðρ; ρ0Þ ¼ trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

ρ0
ffiffiffi
ρ

pp Þ2 as a function of iterations for the QST-
CGAN (red), iMLE (blue), and APG-MLE (dashed black). We
use 1024 displacements β in a 32 × 32 grid. The weights of the
QST-CGAN and the starting density matrix of the iMLE are
randomly initialized. The APG-MLE runs 13 iterations of
conjugate-gradient line search from the maximally mixed state
before switching to APG. The solid lines show the mean F for
100 runs; the shaded areas show one standard deviation from the
mean. (b) Average F as a function of the number of β. For each
number, 10 sets of displacements are randomly selected from
within a disk with jβj ≤ 5 for the state in Fig. 2. We show the
average F reached after 1000 iterations for QST-CGAN and
iMLE and 10 000 iterations for APG-MLE.

(a) (b)

FIG. 4. (a) Reconstruction of a Wigner-negative state by a QST-
CGAN from (b) noisy experimental data. Inset: the target state.
The reconstruction uses 4281 data points of the Wigner function
measured for β inside the dashed circle. The data outside the
circle, e.g., the Wigner-negative region in the top left, are not as
reliable due to measurement calibration problems at higher
photon numbers. We also attempt reconstruction with a subset
of the data points inside the circle and find that ∼600 data points
are enough to achieve a fidelity ∼0.9 with the full reconstruction.

(a) (b)

FIG. 5. Single-shot reconstructions of 200 cat states (cf. Fig. 2,
jαj ∈ ½1; 3�, up to six coherent states in superposition), using a
pretrained QST-CGAN. (a) Fidelity distribution of the recon-
structions after training on a 32 × 32 grid of data points.
(b) Average fidelity (solid line) within one standard deviation
(shaded region) after further iterations.

(a) (b)

FIG. 2. Observables for an optical quantum state, the “cat state”
jαi þ j − αi (up to a normalization), with coherent amplitude
α ¼ 2. (a) The Wigner function. (b) The Husimi Q function. The
stars mark specific β used to sample the data used as input to the
QST-CGAN.
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with up to six coherent states in superposition. As shown in
Fig. 5(a), this pretrained network is then able to perform
single-shot reconstructions for different cat states with a
high average fidelity ∼0.98. It turned out to be difficult to
find a learning strategy enabling further improvement of the
fidelity with just a few more iterations for each state, but
with tens of iterations a clear improvement is observed
[Fig. 2(b)]. The pretrained network thus does not have to
iterate many times from an initial random guess for each
state, as is the case for the results in Fig. 3 and most other
reconstruction methods in use today, resulting in a 4 orders
of magnitude faster reconstruction than in Fig. 3(a).
Conclusion and outlook.—In this Letter, we have

adapted the CGAN architecture for use in quantum state
tomography. The adaption relies on the introduction of two
custom layers, which enforce the properties of a density
matrix and allows calculation of expectation values of
measurements. We showed that our QST-CGAN clearly
outperforms MLE reconstruction methods: the QST-CGAN
consistently reconstructs states with higher fidelity, need-
ing ∼100× fewer iterations and ∼10× fewer data points
to do so in the examples we showed. Furthermore, we
showed that we can pretrain the QST-CGAN on classes of
quantum states and achieve high fidelity for single-shot
reconstruction.
Looking to the future, we note that the custom layers we

introduced could be included into other types of neural
networks, e.g., transformers [72], for both QST and other
applications in quantum information processing. Any QST
method that reconstructs the full density matrix will scale
poorly since we must determine exponentially many
density matrix elements. Future work could therefore use
custom density matrix layers to output reduced quantum
state representations with the CGAN approach. The CGAN
approach has potential for denoising measurement data by
pretraining on simulated noisy data. We further envisage
the application of QST-CGAN for adaptive tomography
[30,59], by choosing next measurements around the points
where the discriminator finds that the reconstructed data do
not match the experimental data well [67].
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