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Abstract — In a previous paper by Pázsit and Pál [“Multiplicity Theory Beyond the Point Model,” Ann. 
Nucl. Energy, Vol. 154 (2021)], a general transport theory calculation of the factorial moments of the 
number of neutrons emitted spontaneously from a sample was elaborated. In contrast to the original 
derivations by Hage and Cifarelli [“On the Factorial Moments of the Neutron Multiplicity Distribution 
of Fission Cascades,” Nucl. Instrum. Meth. Phys. Res. A, Vol. 236 (1985)] and Böhnel [“The Effect of 
Multiplication on the Quantitative Determination of Spontaneously Fissioning Isotopes by Neutron 
Correlation Analysis,” Nucl. Sci. Eng., Vol. 90 (1985)], also referred to as the point model, in the transport 
model the spatial and angular dependence of the internal fission chain is taken into account with a one- 
speed transport theory treatment. Quantitative results were given for a spherical item, and the bias of the 
point model regarding the estimation of the fission rate as compared to the more exact space-dependent 
model was estimated as a function of the size of the sphere and the α factor.

In the present paper the formalism and the quantitative work are extended to the treatment of items with 
cylindrical shapes, which are more relevant in many practical applications. Results are presented for both 
square cylinders (D ¼ H) and for tall (H=D > 1) and flat (H=D < 1) cylinders. This way the differences 
between the cylinder and the sphere on one hand and those between the various cylinder shapes on the 
other hand can be estimated. The results show that the bias depends on the geometry of the cylinder quite 
moderately, but similarly to the case of the sphere, the bias of the point model is quite significant for larger 
item sizes and α values, and it is nonconservative (underestimates the fissile mass) as well.

Keywords — Multiplicity counting, factorial moments, transport calculations, cylindrical item, collision 
number expansion. 

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

The multiplicity moments (often referred to as the 
Böhnel moments) were calculated originally in the so- 
called point model,1,2 in which the spatial transport and the 
energy degradation of the neutrons in the internal cascade 

are neglected. Application of the point model is naturally 
a simplification whose deficiencies have long been 
known.3,4 On the other hand, it has the usual advantage of 
the simplified models, such as the infinite homogeneous 
system model of the Feynman-alpha and Rossi-alpha for
mulas for determining the subcritical reactivity; namely, it 
contains only the essential parameters, which are the matter 
of interest (the reactivity in the latter case) in a closed 
analytical form, and hence, it is well suited for diagnostic 
purposes, i.e., the extraction of the parameters of interest by 
an analytical inversion of the corresponding expressions.

With current computational resources, the multipli
city moments can be readily calculated for any sample 
composition and geometrical shape, including even 
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energy dependence, by a Monte Carlo simulation of the 
neutron transport and multiplication inside the item. Such 
calculations have a high fidelity in that they do not rely 
on any simplification of the physical process.5,6 However, 
this methodology also shows the entailing difficulties: the 
numerical results depend on a large number of parameters 
in a fully quantitative manner, in which the effect of the 
important single parameter is concealed completely. 
Hence, the task of extracting the few parameters becomes 
rather complicated. Indeed, such calculations have been 
performed, but they simply show the results and the 
differences in comparison with the point model without 
giving a working recipe of how to utilize the results to 
extract the desired information.3,4

It is, however, possible to find a strategy by which 
the generality of the Monte Carlo method can be reduced 
and that yet supplies values of the multiplicity moments 
that are more realistic than those given by the point 
model. This is achieved by the extension of the master 
equation–based approach of the point model to the calcu
lations of the multiplicity moments in one-speed transport 
theory. In this approach all aspects of the spatial transport 
of the neutrons are taken into account, although energy 
dependence is still neglected. This approach was cur
rently developed and used to calculate the multiplicity 
moments in a spherical item.7 The calculations showed 
the power of determining the multiplicity moments 
by deterministic methods (i.e., not by Monte Carlo 
simulations).

The purpose of the present paper is to extend the 
quantitative work for the calculation of the moments to an 
item with cylindrical shape. Naturally, this requires devel
opment of the formalism for cylindrical geometry. The 
motivation comes from the fact that a cylindrical shape is 
more realistic in practical cases. From the computational 
side this is a challenge since cylindrical geometry obeys 
fewer symmetry properties; hence, the formalism will 
include more variables. In contrast to the two- 
dimensional (2-D) phase space of the sphere (the radial 
and azimuthal variables), a cylindrical geometry has 
a four-dimensional phase space; i.e., one has to handle 
two more variables and perform correspondingly two 
more nested integrals in the collision number expansion 
used for the quantitative solution. From the methodology 
point of view, spheres have a simple shape characterized 
by only one single parameter (radius) whereas cylinders 
can have a different H=D ratio; i.e., they can be flat or 
square ðD ¼ HÞ or have tall shapes. This way not only 
the difference between the sphere and a cylinder as such 
but also the difference among the different cylindrical 
geometries can be investigated.

II. GENERAL PRINCIPLES

Before turning to the calculation of the multiplicity 
moments for the cylinder, the general theory, valid for 
any sample shape, will be briefly summarized from 
Ref. 7. It is assumed that the only reaction for the source 
neutrons [spontaneous fission and (α; n) neutrons] is 
induced fission,a and we will use the neutron mean free 
path as the length unit (optical path units). Then, the 
probability distribution pðn ¼ njr;ΩÞ of the number n 
of neutrons leaving the sample due to one starting neutron 
with coordinates ðr;ΩÞ obeys the backward-type master 
equation,b

pðn ¼ njr;ΩÞ;pðnjr;ΩÞ ¼ e� ,ðr;ΩÞδn;1

þ

ð,ðr;ΩÞ

0
dse� s

X1

0
prðkÞ

X

n1þn2þ...þnk¼n

ð

4π

dΩ1

4π
dΩ2

4π
. . .

dΩk

4π

� pðn1jrþsΩ;Ω1Þpðn2jrþsΩ;Ω2Þ . . . pðnkjrþsΩ;ΩkÞ ;

ð1Þ

where ,ðr;ΩÞ is the distance to the boundary of the item 
from r along Ω in dimensionless optical path units and 
prðkÞ is the probability distribution of the number of 
neutrons per induced fission.

Converting Eq. (1) to an equation for the generating 
function,

gðzjr;ΩÞ ¼
X1

n¼0
zn pðnjr;ΩÞ ; ð2Þ

one obtains a substantially more compact equation:

gðzjr;ΩÞ ¼ ze� ,ðr;ΩÞ

þ

ð,ðr;ΩÞ

0
dse� sqr

1
4π

ð

4π
dΩ0 gðzjrþ sΩ;Ω0Þ

� �

;

ð3Þ

where qrðzÞ is the generating function of prðkÞ and the 
quantity in the brackets is its argument.

Further, the number distribution PðN jSÞ due to one 
source event S is given as

a Scattering and absorption can be included without significant 
complications, but they were neglected here for simplicity and 
transparency of the derivations.
b We use here the same convention as in Ref. 8; that is, a bold 
symbol like n stands for a random variable, and n is a concrete 
realization of it.
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P ðN jSÞ ¼
1
V

ð

V
dr
X1

0
psðkÞ

X

N1þN2þ...þNk¼N

ð

4π

dΩ1

4π
dΩ2

4π
. . .

dΩk

4π

� pðN1jr;Ω1Þ pðN2jr;Ω2Þ . . . pðNkjr;ΩkÞ;

ð4Þ

where psðkÞ is the number distribution of the source neu
trons from spontaneous fission and (α; n) reactions. As is 
described in the literature,7,9,10 psðkÞ is the weighted aver
age of the distribution psf ðkÞ of the number of neutrons 
from spontaneous fission and the distribution δk;1 of the 
single neutrons emitted by (α; n) reactions. The weights are 
the relative intensities of the spontaneous fission and (α; n) 
reactions, the ratio of which is unknown in a given case, 
and it is one of the parameters to be determined by the 
multiplicity counting. It is customary to express this 
unknown ratio by the so-called α factor, which is defined as

α ¼
Qα

F νsf ;1
; ð5Þ

where 

Qα = intensity of (α; n) reactions

F = intensity of the spontaneous fission events

νsf ;1 = expectation of the number of neutrons from 
spontaneous fission, i.e., the first moment 
of psf ðnÞ.

The total intensity Q ¼ F þ Qα of the source events 
is the sum of the respective intensities, which can be 
expressed by the definition of the α factor as

Q ¼ F ð1þ ανsf ;1Þ : ð6Þ

The generating function GðzÞ of PðN jSÞ obeys Eq. (7):

GðzÞ ¼
1
V

ð

V
drqs

1
4π

ð

4π
dΩgðzjr;ΩÞ

� �

; ð7Þ

where qsðzÞ is the generating function of the distribution 
psðkÞ of the source neutrons, and similarly to Eq. (3), the 
quantity in the brackets is its argument.

Introducing the scalar (angularly integrated with 
respect to the direction of the starting neutron) single- 
particle–induced generating function,

gðzjrÞ ¼
1
4π

ð

4π
dΩgðzjr;ΩÞ ; ð8Þ

one has

gðzjrÞ ¼ zg0ðzjrÞ

þ
1
4π

ð

4π
dΩ
ð,ðr;ΩÞ

0
dse� s qr gðzjr0ðsÞÞ½ � ; ð9Þ

where

g0ðzjrÞ ¼
1

4π

ð

4π
dΩe� ,ðr;ΩÞ ð10Þ

and

r0ðsÞ ; r þ sΩ : ð11Þ

In a similar way, the expression for the generating 
function of the source event–induced distribution 
reads as

GðzÞ ¼
1
V

ð

V
drqs gðzjrÞ½ � : ð12Þ

It is seen from Eqs. (9) and (12) that for the calculation of 
the factorial moments of the source event–induced emis
sions, one does not need to calculate the angularly depen
dent generating functions; it is sufficient to know the scalar 
generating function. Further, only the single- 
particle–induced generating function (and hence its factor
ial moments) obeys an integral equation that has to be 
solved directly. In possession of these, the distribution of 
the source event–induced emissions is obtained by a simple 
quadrature. Hence, the computational burden is only asso
ciated with solving Eq. (9) for the factorial moments.

The factorial moments can be obtained by differen
tiating Eqs. (9) and (12) with respect to z, solving the 
arising integral equations for the moments of the single- 
neutron–induced distributions from Eq. (9), and integrat
ing them in the expressions obtained from Eq. (12). 
These will not be given for the general case; they can 
be found in Ref. 7. They will be derived here for the 
particular case of a cylindrical item, which will be 
described in Sec. III.

III. EQUATIONS FOR CYLINDRICAL GEOMETRY

Let the radius of the cylinder be R and its height be H , 
measured in units of mean free path. In cylindrical 
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coordinates, the position of the neutron is defined byc 

r ¼ fr; ϕ; hg, and its velocity direction is defined by 
Ω ¼ fμ;φg, where μ ¼ cos#, where # is the polar angle. 
Because of the azimuthal symmetry of the cylindrical geo
metry, all quantities, such as the distribution pðnjr;ΩÞ and 
hence also the generating functions gðzjr;ΩÞ and gðzjrÞ as 
well as their moments, will not depend on the azimuthal 
coordinate ϕ of the position vector. Hence, all quantities 
will depend on only the four variables fr; h; μ;φg.

Although the integrals in the equations derived from 
Eqs. (9) and (12) will be performed in cylindrical coor
dinates, calculating the radial and axial coordinates of 
r0ðsÞ of Eq. (1) and the distance ,ðr; h; μ;φÞ to the bound
ary (the surface of the cylinder) is simpler with the help 
of Cartesian coordinates. Regarding the expression 
,ðr; h; μ;φÞ as a function of its arguments, one notes 
that the cylinder is defined through its boundaries as

x2 þ y2 � R2 and 0 � h � H : ð13Þ

Because of the azimuthal symmetry, the starting point of 
the neutron can always lie at y ¼ 0; hence, one has x ¼ r. 
The Cartesian components of Ω are given, as usual, as

Ωx ¼ sin# cos φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � μ2

p
cos φ ; ð14Þ

Ωy ¼ sin# sin φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � μ2

p
sin φ ; ð15Þ

and

Ωz ¼ cos# ¼ μ ; ð16Þ

with dΩ ¼ dμdφ. The Cartesian coordinates of r0ðsÞ are 
given as

x0ðsÞ ¼ r þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � μ2

p
cos φ ; ð17Þ

y0ðsÞ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � μ2

p
sin φ ; ð18Þ

and

z0ðsÞ ¼ hþ sμ ; ð19Þ

from which one obtains

r0ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0ðsÞ2 þ y0ðsÞ2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s2 ð1 � μ2Þ þ 2rs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � μ2

p
cos φ

q

ð20Þ

and

h0ðsÞ ¼ hþ sμ: ð21Þ

From the above, the distance ,ðr; h; μ;φÞ to the boundary 
is found as the maximum value of s with which both 
conditions

r0ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þs2 ð1 � μ2Þþ2rs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � μ2

p
cos φ

q

� R

ð22Þ

and

0 � h0ðsÞ ¼ hþ sμ � H ð23Þ

are fulfilled. As soon as either of the above two inequal
ities is violated, it means that the path crossed either the 
side or the top/bottom of the cylinder. This value can be 
found as follows:

1. Find the positive roots s1 and s2, which are 
solutions of Eqs. (24) and (25):

r0ðs1Þ ¼ R ð24Þ

and

if μ < 0 : h0ðs2Þ ¼ 0; if μ > 0 : h0ðs2Þ ¼ H : ð25Þ

2. If μ�0 and μ�� 1! ,ðr; h; μ;φÞ ¼ minðs1; s2Þ.

If μ ¼ 0! ,ðr; h; μ;φÞ ¼ s1.
If μ ¼ �1 ! ,ðr; h; μ;φÞ ¼ s2.

The roots of Eqs. (24) and (25) can be analytically 
calculated with the help of Eqs. (22) and (23). The first 
will be the root of the second-order algebraic equation,

s2
1 ð1� μ2Þþ s1 2r

ffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
cos φþ r2 � R2¼0 ; ð26Þ

for the cases when

μ�� 1 : ð27Þ

c The axial coordinate of the position vector will be denoted by h to 
avoid confusion with the auxiliary variable z of the generating 
function.
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When μ ¼ �1, then s1 will diverge, and s2 will be the 
root that is equal to ,ðr; h; μ;φÞ. The second root is 
given as

if μ < 0 : s2 ¼ �
h
μ

;

if μ > 0 : s2 ¼
H � h

μ
: ð28Þ

Here again, for μ ¼ 0, s2 diverges; hence, ,ðr; h; μ;φÞ ¼ s1.
With the above, everything is fixed for the concrete 

representation of Eqs. (9) and (12) in cylindrical geome
try. The equation for the scalar generating function,

gðzjr; hÞ ¼
1
4π

ð1

� 1
dμ
ð2π

0
dφ gðzjr; h; μ;φÞ ; ð29Þ

of the single-neutron–induced distribution reads as

gðzjr; hÞ¼ zg0ðzjr; hÞ

þ
1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� sqr½gðzjr0ðsÞ; h0ðsÞ� ;

ð30Þ

with

g0ðzjr; hÞ ¼
1

4π

ð1

� 1
dμ
ð2π

0
dφe� ,ðr;h;μ;φÞ : ð31Þ

The equation for the generating function of the source 
event–induced distribution is given as

GðzÞ ¼
2

R2 H

ðR

0
rdr
ðH

0
dhqs½gðzjr; hÞ� : ð32Þ

III.A. Equations for the Moments

The equations for the moments can be derived by 
taking the derivatives of the generating functions gðzjr; hÞ
and GðzÞ of Eqs. (30) and (32) at z ¼ 1, respectively. The 
procedure goes exactly on the same lines as the corre
sponding derivation of the moments for a spherical item 
in Ref. 7; hence, the details of the derivations will not be 
given here. For consistency, the same notations will be 
used for the various moments as well as the conventions 
of Ref. 8 in that the first, second, and third factorial 
moments of the single-neutron–induced distribution will 
be denoted as nðr; hÞ, mðr; hÞ; and wðr; hÞ, respectively. 
These will read as

nðr; hÞ ; hnðr; hÞi ¼
¶ gð z j r; hÞ

¶ z

�
�
�
�

z¼ 1
; ð33Þ

mðr;hÞ;hðnðr;hÞðnðr;hÞ� 1Þi¼
¶

2gðzjr;hÞ
¶z2

�
�
�
�
�
z¼1

; ð34Þ

and

wðr; hÞ ; hðnðr; hÞðnðr; hÞ� 1Þðnðr; hÞ� 2Þi

¼
¶

3 gðz j r; hÞ
¶ z3

�
�
�
�
�

z¼ 1

:
ð35Þ

Likewise, the first three factorial moments of the source 
event–induced distribution will be denoted as N , M ; and 
W . With these notations, the following Eqs. (36) through 
(44) are obtained for the moments.

First Moments
Single-neutron–induced expectation: 

nðr; hÞ ¼ n0ðr; hÞ

þ
νr;1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� snðr0ðsÞ; h0ðsÞÞ ;

ð36Þ

with

n0ðr; hÞ ¼
1

4π

ð1

� 1
dμ
ð2π

0
dφe� ,ðr;h;μ;φÞ : ð37Þ

Source event–induced expectation: 

N ¼
2νs;1

R2 H

ðR

0
rdr
ðH

0
dhnðr; hÞ : ð38Þ

Second Moments 
mðr; hÞ ¼ Aðr; hÞ

þ
νr;1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� s mðr0ðsÞ; h0ðsÞÞ ;

ð39Þ

with

Aðr; hÞ ¼
νr;2

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� s n2ðr0ðsÞ; h0ðsÞÞ

ð40Þ

and
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M ¼
2

R2H

ðR

0
rdr
ðH

0
dh νs;2 n2ðr; hÞ þ νs;1 mðr; hÞ
� �

:

ð41Þ

Third Moments 
wðr; hÞ ¼ Bðr; hÞ

þ
νr;1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� s wðr0ðsÞ; h0ðsÞÞ ;

ð42Þ

with

Bðr; hÞ ¼
1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� sfνr;3n3ðr0ðsÞ; h0sÞÞ

þ 3νr;2nðr0ðsÞ; h0ðsÞÞmðr0ðsÞ; h0ðsÞÞg
ð43Þ

and

W ¼
2

R2H

ðR

0
rdr
ðH

0
dh νs;3 n3ðr; hÞ
�

þ 3 νs;2 n ðr; hÞ m ðr; hÞ þ νs;1 w ðr; hÞg : ð44Þ

In the following, the above expressions for the factorial 
moments, Eqs. (36) though (44), will be evaluated quantita
tively for a particular item with given material composition 
and varying size. The solution method is described in Sec. IV, 
and the quantitative results together with a comparison with 
that of the point model are given in Sec. V.

IV. NUMERICAL SOLUTION

As mentioned earlier, only the single-neutron–induced 
moments need to be determined from an integral equation; 
the source event–induced moments can be obtained from 
the former by simple integration. Similarly to Ref. 7, these 
equations will be solved numerically by a collision number 
(i.e., Neumann series) expansion.11 The procedure goes 
along the same lines as for the sphere except that because 
of the reduced symmetry in the case of the cylinder, the 
iterations require the execution of more nested integrals. 
This will make the computational burden significantly 
higher than for the sphere.

The procedure will be outlined here for the first 
moment only; it is the same for the higher-order 
moments. Thus, taking the uncollided part n0ðr; hÞ of 
Eq. (37) as the starting (zeroth) term of the expansion, 

the next term n1ðr; hÞ, which is the expectation of the 
number of neutrons that leave the cylinder after the first 
collision, will be given as

n1ðr; hÞ¼
νr;1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� s n0ðr0ðsÞ; h0ðsÞÞ ;

ð45Þ

and in general, the k’th term, the contribution from neu
trons having collided exactly k times, is given as

nkðr; hÞ¼
νr;1

4π

ð1

� 1
dμ
ð2π

0
dφ
ð,ðr;h;μ;φÞ

0
dse� snk� 1ðr0ðsÞ; h0ðsÞÞ :

ð46Þ

The full solution is obtained by summing up the contri
butions for all collision numbers:

nðr; hÞ ¼
X1

k¼0
nkðr; hÞ : ð47Þ

Having obtained nðr; hÞ, it can be used in Eq. (38) to 
calculate the source event–induced expectation N .

The procedure is the same for the higher-order 
moments. The only difference is that the Aðr; hÞ and 
Bðr; hÞ of Eqs. (40) and (43), respectively, will replace 
n0ðr; hÞ as the starting term of the iteration. Since Aðr; hÞ
contains nðr; hÞ and since Bðr; hÞ contains both nðr; hÞ
and mðr; hÞ, the moment equations have to be solved 
sequentially, starting from the lowest-order moments.

A comparison shows that for the cylinder, generation of 
each term of the iteration requires the calculation of 
a threefold integral as compared to the twofold integral in 
the case of a sphere. This is because for the cylinder, there is 
an additional integration with respect to the azimuthal vari
able φ. Besides, whereas the scalar expectation nðxÞ (x 
being the radial coordinate in optical units) for the sphere 
had to be calculated on a one-dimensional grid of xi points, 
here, nðr; hÞ has to be calculated on a 2-D grid of ri; hj 
points. Hence, roughly, the computational demand for the 
cylinder is Nh � Nφ times larger than for the sphere. Typical 
values of the grid points are Nh ¼ Nφ ¼ 100; thus, the 
calculations take about 104 times longer than for the sphere.

For the calculations, the high-performance clusters 
VERA and Tetralith of the Swedish National 
Infrastructure for Computing (SNIC) were used. 
Whereas the calculations for the sphere in Ref. 7 were 
performed by Mathematica, the present calculations were 
made by Matlab.
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V. QUANTITATIVE ANALYSIS AND COMPARISON WITH THE 
POINT MODEL

The numerical work again will go along the same lines 
as in our previous paper for the sphere.7 For the sake of 
easy comparison between the sphere and the cylinder, the 
same material composition of the item and corresponding 
factorial moments of the spontaneous and induced fission 
from Ref. 6 will be used, and the same two cases α ¼ 0 and 
α ¼ 0:5 will be considered, where the factor α expressing 
the fraction of the mean number of neutrons generated in 
ðα; nÞ reactions is defined in Eq. (5). As in the previous 
work, it is assumed that the presence of light atomic num
ber materials in the case of α ¼ 0:5 does not affect the 
statistics of the spontaneous and induced fission neutrons. 
The factorial moments of the source and induced fission 
neutron numbers for the two α values are shown in Table I.

Regarding the quantitative analysis, it will be more 
extensive than in the case of the sphere. In the latter case, 
the mass of the item was determined by the only geome
trical parameter, i.e., the radius R of the sphere. In the 
present case, the situation is more involved due to the 
cylinder having two parameters, its height H and dia
meter D ¼ 2R. Cylinders of the same volume (mass) 
can have different shapes with different H=D ratios 
(= aspect ratios), which also has an effect on the results.

In order to simplify and structure the presentation of 
the quantitative work such that the dependence of the 
results on both the mass (volume) of the item as well as 
its shape could be discerned, we selected to present 
results for three characteristic cases (shapes): a square 
cylinder (H=D ¼ 1), a long cylinder (H=D ¼ 2:5), and 
a flat cylinder (H=D ¼ 0:2). Calculations were made for 
all three shapes by changing the radius, with the shape 
(aspect ratio H=D) being unchanged. For each shape, the 
dependence of the first three factorial moments of the 
source event–induced number distribution will be shown, 
as for the sphere in Ref. 7. However, since the same radii 
for the three shapes would correspond to different masses 
(volumes), in order for a correct comparison of the 

results, these will be plotted as a function of the so- 
called effective radius Reff . This latter is defined as the 
radius of an equivalent square cylinder with the same 
volume as the actual long and flat cylinders, respectively. 
In the formula, one has

Reff ¼ R
H
D

� �1
3

; ð48Þ

where R is the actual radius of the cylinder and H=D is 
the fixed aspect ratio of the particular shape. Obviously, 
for a square cylinder, one has Reff ¼ R whereas for the 
long and the flat cylinders, one has Reff > R and Reff < R;
respectively.

Before turning to the quantitative work, there is one 
more point to consider. Similarly to the discussion in Ref. 7, 
the results will be compared with those of the point model. 
For a correct comparison of the results of the space- 
dependent transport theory results with those of the point 
model, the first collision probability must be the same for 
both models. To this order, the first collision probability p is 
needed for each particular cylinder geometry. This was easy 
to obtain in the case of spherical geometry since a simple 
analytic expression exists for the first collision probability 
as a function of the radius of the sphere.12,13 For cylinders, 
there also exists an analytical expression,14 but it is rather 
complicated, and it contains singular integrals.

Therefore, a direct numerical calculation was found 
to be much simpler. One notes that the average escape 
probability pesc of neutrons for the case of 
a homogeneously distributed isotropic source is equal to

pesc ¼
1
V

ð

V
drn0ðrÞ ; ð49Þ

where n0ðrÞ is shorthand for the uncollided term, 
Eq. (37). Hence, the first collision probability p is equal to

p ¼ 1 � pesc ¼ 1 �
1
V

ð

V
drn0ðrÞ ; ð50Þ

TABLE I 

The First Three Factorial Moments of Spontaneous and Induced Fission and Those of a  
Source Event with α ¼ 0:5 in a Sample of 20 wt% 240Pu and 80 wt% 239Pu 

Type of Source Event First Moments Second Moments Third Moments

Spontaneous fission νsf ;1 ¼ 2:1538 νsf ;2 ¼ 3:7912 νsf ;3 ¼ 5:2146
Source event with α ¼ 0:5 νs;1 ¼ 1:5554 νs;2 ¼ 1:8254 νs;3 ¼ 2:5108
Induced fission νr;1 ¼ 3:135 νr;2 ¼ 8:1162 νr;3 ¼ 17:0028
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which for cylindrical geometry using Eq. (37) leads to

p ¼ 1 �
1

2πR2 H

ðR

0
rdr
ðH

0
dh
ð1

� 1
dμ
ð2π

0
dφe� ,ðr;h;μ;φÞ :

ð51Þ

This formula can be easily evaluated numerically. The 
first collision probability will be calculated by this for
mula when the results of the transport theory calculations 
are compared with the results of the point model.

The dependence of the first collision probability p on 
the effective radius for the three chosen cylinder shapes is 
shown in Fig. 1. It is seen from Fig. 1 that the smooth shapes 
of the dependence of the first collision probability on the 
effective radii are similar to each other and also quite similar 
in shape to that of the sphere.15 It is also seen that for the 
same effective radius, it is the largest for the square cylinder 
(aspect ratio H=D ¼ 1) and the smallest for the flat cylinder. 
This might appear obvious since for the same effective 
radius, the square cylinder has the minimum surface (max
imum volume/surface ratio) and in reactor physics terms is 
expected to have the least leakage and hence the largest keff .

However, as it was pointed out by van Dam16 and 
Arzhanov,17 despite what intuition would suggest, the 
minimum of the volume/surface ratio (aspect ratio = 1) 
for an item does not result in the maximum of the keff or 
minimum of the leakage. The situation is the same for the 
first collision probability, as is illustrated in Fig. 2, which 
shows the dependence of the first collision probability p 
on the aspect ratio H=D for three different effective radii.

Figure 2 shows that for all three cases the maximum 
of the first collision probability p is at an aspect ratio 
H=D < 1. The exact values of H=D that yield the max
imum of p for the three different cases are not easily seen 
in Fig. 2. As Table II shows, the aspect ratio yielding the 
maximum of p is at H=D ¼ 0:88 for all three effective 
radii, indicating that the position of the maximum does 
not depend on the volume of the cylinder. It is worth 
noting that this value of the aspect ratio is not the same as 
the H=D ¼ 0:924 given by van Dam16 for the aspect ratio 
yielding the maximum of keff of a homogeneous cylinder 
in diffusion theory. However, they both deviate from the 
ratio H=D ¼ 1 into the same direction (less than unity 
aspect ratio), showing a consistency. The reason for the 
difference in the actual value is understandable in view of 
the fact that the keff does not solely depend on the first 
collision probability but also depends on the higher-order 
collision probabilities, which differ from p: Also, the 
calculation of the keff of a homogeneous cylinder in 

Fig. 1. First collision probability as function of cylinder 
effective radius Reff for the square (H = D), long 
(H/D = 2.5), and flat (H = 0.2D) cylinders. 

Fig. 2. First collision probability as function of the 
aspect ratio H=D for three different cylinder effective 
radii Reff ¼ 0:1; 0:2; and0:3; respectively. 

TABLE II 

The Maximum Value of First Collision Probability as Function 
of Cylinder Geometry H

D for Different Cylinder Effective Radii 

Cylinder Effective 
Radius, Reff H=D Maximum p1

Reff = 0.1 0.88 0.079
Reff = 0.2 0.88 0.149
Reff = 0.3 0.88 0.2112
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Ref. 16 is based on diffusion theory whereas our calcula
tions here are based on transport theory.

With these preliminaries, everything is available for 
the quantitative analysis of the moments of the number of 
emitted particles per source event.

V.A. First Moments

The dependence of the mean values (first factorial 
moments) on the radius (in optical units) of a square cylin
der R ¼ Reff is shown in Fig. 3 for both the point model 
and the space-dependent model for the cases α ¼ 0 
(Fig. 3a) and α ¼ 0:5 (Fig. 3b). The tendencies are very 
similar to those observed for the sphere. For obvious rea
sons, which are independent of the geometry, for very 
small values of R, the point model and space-dependent 
model values are both equal to the mean values of source 
emission particles for both values of α. As Table I shows, 
this value is smaller for the case α ¼ 0:5, and hence, the 
values of the first moment remain systematically lower 
than those for α ¼ 0 for all values of Reff . With increasing 

radius, the mean values of both the point model and the 
space-dependent model start to increase, and similarly to 
the case of the sphere, the mean values by the space- 
dependent model increase faster than those by the point 
model. The difference increases with increasing radius. 
The quantitative values are of course different from those 
of the sphere; among others, they are larger for the cylinder 
than for the sphere with the same radius for the simple 
reason that a cylinder with the same radius has a larger 
volume (mass) than the sphere.

The dependence of the mean values predicted by the 
point model and the space-dependent model for α ¼ 0 
and α ¼ 0:5 for the long and the flat cylinders is shown 
as a function of the effective radius in Figs. 4 and 5, 
respectively. These are again similar in character to 
both the square cylinder and the sphere. Although it is 
not well seen in Figs. 4 and 5, they all start at R ¼ 0 from 
the same values since these values are geometry 
independent. The values predicted by the space- 
dependent model here again increase faster with increas
ing effective radius than those by the point model, but the 

Fig. 3. Mean value of emitted particles as function of cylinder effective radius for square cylinder, H = D for the cases (a) α ¼ 0 
and (b) α ¼ 0:5. 

Fig. 4. Mean value of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, long cylinder, 
H/D = 2.5. 

TRANSPORT CALCULATION OF MULTIPLICITY MOMENTS FOR CYLINDERS · PÁZSIT and DYKIN 9

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2021                                                                         



rates of the rise are different from each other and from 
that of the square cylinder. For both the long cylinder and 
the flat cylinder, at the same effective radius, the mean 
values are lower than those of the square cylinder; the 
values from the long cylinder are larger than those of the 
flat cylinder. This is in agreement with Fig. 1, which 
shows that for the shapes investigated here, for a given 
effective radius the first collision probability is the largest 
for the square cylinder and the smallest for the flat 
cylinder.

V.B. Second Moments

Quantitative values for the second factorial moments 
(doubles) for the square, long, and flat cylinders are 
shown in Figs. 6, 7, and 8, respectively. As expected, 
the same tendencies as well as similarities and differ
ences can be observed for the second moments as for the 
first moments. As for the sphere, the differences between 
the space-dependent and point model values became 
larger with increasing effective radius. In addition, the 
differences between the second moments corresponding 

to the various shapes are also larger than for the first 
moment, again those corresponding the square cylinder 
being the largest and those of the flat cylinder being the 
smallest.

V.C. Third Moments

The quantitative values for the third factorial moments 
(triples) for the square, long, and flat cylinders are shown 
in Figs. 9, 10, and 11, respectively. As could be expected, 
the trends observed in the foregoing Figs. (3) through (8) 
continue. The third moments themselves and the differ
ences between both the space-dependent and point model 
values as well as those between the cylinders with different 
shapes increase even faster with increasing radius than for 
the first and second moments. At Reff ¼ 0:3, for the square 
cylinder, the difference between the space-dependent 
model and the point model exceeds 50% considerably. 
Actually, because of the intense internal multiplication 
and hence several collisions before the neutrons leave the 
item, for such values of Reff ; the calculations of the higher 
moments with the collision number expansion become 

Fig. 5. Mean value of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, flat cylinder, 
H/D = 0.2. 

Fig. 6. Second moment of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, square cylinder, 
H = D. 
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computationally rather demanding, requiring long running 
times.

The reason for the space-dependent model predicting 
higher values for all the moments was analyzed for the 
sphere in Ref. 7, and the same is valid for the cylinder. 
Namely, the space-dependent model predicts a larger 
internal multiplication and hence also a larger leakage 
multiplication than the point model.

V.D. The Bias of the Point Model

It is worth investigating what effect the difference in 
the space-dependent and point model values has on the 
accuracy on the determination of the fissile mass of the 
item, which is the main purpose of multiplicity counting. 
On the assumption that the space-dependent moments, 
based on one-speed transport theory, give a better 

Fig. 7. Second moment of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, long cylinder, 
H/D = 2.5. 

Fig. 8. Second moment of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, flat cylinder, 
H/D = 0.2. 

Fig. 9. Third moment of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, square cylinder, 
H = D. 
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estimation of the factorial moments than the point model, 
the former can be accepted as the true values. Then, using 
the point model formulas for the unfolding of the fission 
rate when the measured multiplicity rates (i.e., those 
given by the space-dependent model) do not correspond 
to those given by the point model for the same fission rate 
will lead to a bias in the estimation of the fission rate. In 
possession of the point model formulas and hence the 
numerical values of the singles, doubles, and triples rates, 
as well as the numerical values of the factorial moments 
given by the space-dependent model for the same mate
rial properties and fission rate, the bias can be quantified.

The procedure is described in detail in Ref. 7 in 
connection with the calculation of the moments for the 
sphere in the space-dependent model; hence, only a brief 
summary is given here. First, the factorial moments need 
to be converted into multiplicity rates (singles, doubles 
and triples rates) by introducing the fission rate F of 
240Pu. With the factorial moments N , M ; and W , these 
are given by

Ssp ¼ F ð1þ ανsf ;1ÞεN ; ð52Þ

Dsp ¼
F ð1þ ανsf ;1Þε2 fd

2
M ; ð53Þ

and

Tsp ¼
F ð1þ ανsf ;1Þε3 ft

6
W ; ð54Þ

where ε is the detector efficiency and fd and ft are the so- 
called doubles and triples gate factors, respectively.9,10 

The actual values of all of these factors do not affect the 
bias since they appear in both the point model and the 
space-dependent model exactly the same way. Hence, 
they can be assumed to be unity in the quantitative 
work. They have been given here only for completeness 
and easy identification with the literature.

On the other hand, because in the point model the 
factorial moments and hence also the corresponding S; D;
and T rates are analytical functions of the fission rate, the 
factorial moments of the spontaneous and induced fission, 
and that of the α factor, the fission rate can be expressed by 

Fig. 10. Third moment of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, long cylinder, 
H/D = 2.5. 

Fig. 11. Third moment of emitted particles as function of cylinder effective radius for (a) α ¼ 0 and (b) α ¼ 0:5, flat cylinder, 
H/D = 0.2. 
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an inversion of these formulas. This is done by determining 
first the so-called leakage multiplication M (Refs. 9 and 10) 
from a third-order algebraic equation, which reads as

aþ bMþ cM2 þM3 ¼ 0 ; ð55Þ

with

a ¼
� 6T νsf ;2ðνr;1 � 1Þ

ε2ftS νsf ;2νr;3 � νsf ;3νr;2
� � ; ð56Þ

b ¼
2D νsf ;3ðνr;1 � 1Þ � 3νr;2νsf ;2
� �

εfd S νsf ;2νr;3 � νsf ;3νr;2
� � ; ð57Þ

and

c ¼
6νr;2νsf ;2 D

εfdS νsf ;2νr;3 � νsf ;3νr;2
� � � 1 ; ð58Þ

where the boldface notation of the multiplicity rates is 
meant to indicate that in an application, these are taken 
from the measurement and not from the theory. In pos
session of M, the fission rate is obtained as

F;Fpoint ¼

2D
ε fd �

MðM � 1Þνr;2 S
νr;1 � 1

� �

ε M2 νsf ;2
: ð59Þ

The bias can then be estimated as follows. One substi
tutes the values Ssp, Dsp; and Tsp of Eqs. (52), (53), and 
(54) for S, D; and T in Eqs. (56), (57), and (58) and then 
uses the M so obtained from Eq. (55) in Eq. (59) to 
obtain Fpoint. The bias C is then given as

C ¼
Fpoint

F
: ð60Þ

The bias of the point model was calculated according to 
the above procedure for the three cylinder shapes and for 
the cases α ¼ 0 and α ¼ 0:5. The results are shown in 
Fig. 12. Once again, the results show a considerable 
resemblance to those by the sphere. The bias is noncon
servative; i.e., the application of the point model leads to 
an underestimation of the fissile mass, and this under
estimation increases with the fissile mass. Moreover, it is 
considerably larger for the case α ¼ 0:5 than for α ¼ 0. 
As is mentioned in Ref. 7, these results are also consistent 
with other studies of the bias of the point model.3

The reasons for the bias, and in particular the under
estimation of the fission rate, are also discussed in Ref. 7, 
and the considerations are also valid for the results here. 
In essence, the underestimation could be lead back to the 
fact that the third moment by the space-dependent model 
exceeds that of the point model more significantly than 
for the first moment. This fact can also be observed in the 
results for the cylinder, shown in this paper.

VI. CONCLUSIONS

An earlier work concerning the calculation of the multi
plicity moments from a sample containing fissionable and 
fissile material with one-speed transport theory for 
a spherical item was extended to cylinders. Equations were 
derived for the first three factorial moments of the number of 
neutrons emitted from the sample by one source event 
(spontaneous fission), and they were solved numerically by 
a collision number expansion method. In addition to the 
study of the dependence of the moments on the size of the 
sample, the influence of the shape of the cylindrical item also 
was investigated. Three characteristic cases, i.e., a square, 

Fig. 12. Bias between the point and the space-dependent models as function of cylinder effective radius Reff for (a) α ¼ 0 and (b) 
α ¼ 0:5. 
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a long cylinder, and a flat cylinder, were investigated quanti
tatively, and the bias of the point model was evaluated.

It was found that the results showed considerable resem
blance to those obtained for the sphere regarding both tendencies 
and quantitative values. The deviation of the results from those 
obtained for a sphere as well as among the various cylinder 
shapes could be quantified. The quantitative differences are 
relatively modest; however, in many practical cases one has to 
handle cylindrical items, for which the present work supplies 
better estimates than the point model, or the space-dependent 
values calculated for a sphere.

One might also ask how the results presented in this 
paper can be used in practical applications to unfold the 
unknown fissile mass instead of using the biased point 
model formulas. This is not completely trivial since 
unlike in the case of the point model, the moments and 
hence also the multiplicity rates are not given by simple 
closed analytical formulas, and hence, an analytical inver
sion similar to that given in Eqs. (55) through (59) is not 
available. As is described in Ref. 7, for the case when 
α ¼ 0, i.e., pure metallic items, a simple correction factor 
can be given to reconstruct the true fission rate from the 
biased one obtained from the point model. In the case 
when α�0, such a simple procedure is not available since 
the unfolding of the true fission rate requires multivariate 
fitting techniques. As is also mentioned in Ref. 7, one 
possibility is to use machine learning methods similar to 
those used for the inversion of the joint neutron-gamma 
measurements,18 for which training data can be generated 
by the method demonstrated in this paper. Such 
a possibility will be explored in future work.
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