
thesis for the degree of doctor of philosophy

Modular Learning and Optimization for
Planning of Discrete Event Systems

Fredrik Hagebring

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2021

Modular Learning and Optimization for Planning of Discrete Event
Systems

Fredrik Hagebring
ISBN 978-91-7905-555-4

© 2021 Fredrik Hagebring
All rights reserved.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5022
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Printed by Chalmers digitaltryck
Gothenburg, Sweden, October 2021

Modular Learning and Optimization for Planning of Discrete Event
Systems
Fredrik Hagebring
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Optimization of industrial processes, such as manufacturing cells, can have
great impact on their performance. Finding optimal solutions to these large-
scale systems is, however, a complex problem. They typically include multiple
subsystems, and the search space generally grows exponentially with each
subsystem. This is usually referred to as the state explosion problem and
is a well-known problem within the control and optimization of automation
systems.
This thesis proposes two main contributions to improve and to simplify the

optimization of these systems. The first is a new method of solving these
optimization problems using a compositional optimization approach. This in-
tegrates optimization with techniques from compositional supervisory control
using modular formal models, dividing the optimization of subsystems into
separate subproblems. The second is a modular learning approach that alle-
viates the need for prior knowledge of the systems and system experts when
applying compositional optimization.

The key to both techniques is the division of the large system into smaller
subsystems and the identification of local behavior in these subsystems, i.e.
behavior that is independent of all other subsystems. It is proven in this
thesis that this local behavior can be partially optimized individually without
affecting the global optimal solution. This is used to reduce the state space in
each subsystem, and to construct the global optimal solution compositionally.

The thesis also shows that the proposed techniques can be integrated to
compute global optimal solutions to large-scale optimization problems, too
big to solve based on traditional monolithic models.

Keywords: Compositional optimization, large-scale optimization, automa-
tion, modular learning, active learning, discrete event systems, discrete opti-
mization.

i

ii

List of Publications
This thesis is based on the following publications:

[A] Fredrik Hagebring, Bengt Lennartson, “Compositional optimization of
discrete event systems”. Proceedings of the 14th IEEE Conference on Au-
tomation Science and Engineering, 2018.

[B] Fredrik Hagebring, Bengt Lennartson, “Time-optimal control of large-
scale systems of systems using compositional optimization”. Discrete Event
Dynamic Systems: Theory and Applications, Sep. 2019.

[C] Ashfaq Farooqui, Fredrik Hagebring, Martin Fabian, “Active learning of
modular plant models”. Proceedings of the 15th IFAC Workshop on Discrete
Event Systems, 2020.

[D] Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian, “Modular super-
visory synthesis for unknown plant models using active learning”. Proceedings
of the 15th IFAC Workshop on Discrete Event Systems, 2020.

[E] Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian, Bengt Lennartson,
“On optimization of automation systems: integrating modular learning and
optimization”. Submitted for possible publication in IEEE Transactions on
Automation Science and Engineering, 2021.

Other publications by the author, not included in this thesis, are:

[F] Fredrik Hagebring, Oskar Wigström, Bengt Lennartson, Simon Ian
Ware, Rong Su, “Comparing MILP, CP, and A* for multiple stacker crane
scheduling”. Proceedings of the 13th International Workshop on Discrete
Event Systems, 2016, Xi’an, China.

[G] Sabino Francesco Roselli, Fredrik Hagebring, Sarmad Riazi, Martin
Fabian, Knut Åkesson, “On the use of equivalence classes for optimal and sub-
optimal bin covering”. Proceedings of the 15th IEEE International Conference
on Automation Science and Engineering, 2019, Vancouver, Canada.

[H] Sabino Francesco Roselli, Fredrik Hagebring, Sarmad Riazi, Martin
Fabian, Knut Åkesson, “On the use of equivalence classes for optimal and

iii

suboptimal bin packing and bin covering”. IEEE Transactions on Automation
Science and Engineering, 2020, Early access.
DOI: 10.1109/TASE.2020.3022986.

[I] Ashfaq Farooqui, Fredrik Hagebring, Martin Fabian, “MIDES: A Tool
for Supervisor Synthesis via Active Learning”. Accepted to IEEE CASE, 2021.

iv

Acronyms

MILP: Mixed Integer Linear Programming

LP: Linear Programming

CP: Constraint Programming

SCT: Supervisory Control Theory

CompOpt: Compositional Optimization

DES: Discrete Event System

DFA: Deterministic Finite Automata

NFA: Non-deterministic Finite Automata

PTWS: Partial Time-Weighted Synchronization

PSH: Plant Structure Hypothesis

MPL: Modular Plant Learner

MSL: Modular Supervisor Learner

MOL: Modular Optimization Learner

MAL: Modular Active Learning

MDP: Markov Decision Process

v

vi

Contents

Abstract i

List of Papers iii

Acronyms v

I Overview 1

1 Introduction 3
1.1 Background . 4
1.2 Research questions . 5
1.3 Contributions . 7
1.4 Outline . 8

2 Compositional optimization 9
2.1 Motivating example . 10
2.2 Challenges . 13
2.3 CompOpt – an Optimal Compositional Optimization Technique 14

Local optimization reduces each subsystem individually 15
Integrated synchronization and optimization 16
Compositional computation of a global optimal solution 20
Strengths and limitations of the approach 21
Applying compositional optimization in industry 22

vii

3 Modular active learning 25
3.1 Background . 25
3.2 Defining the modular structure as a PSH 27

Example on the formulation of a PSH 28
3.3 The exploration and reduction of the search space 30

Coordinating shared transitions 34
3.4 Applying modular learning in industry 37

4 Compositional optimization of an unknown system 39
4.1 Learning locally optimal reductions 40
4.2 Avoiding concurrent operations using MAL 41
4.3 Completing the compositional optimization framework 41
4.4 Applications in industry . 42

5 Summary of included papers 43
5.1 Paper A . 43
5.2 Paper B . 44
5.3 Paper C . 44
5.4 Paper D . 45
5.5 Paper E . 45

6 Concluding Remarks 47

References 51

II Papers 55

A Compositional Optimization of Discrete Event Systems A1
1 Introduction . A3
2 Preliminaries . A5
3 Method . A6

3.1 Basic Idea . A6
3.2 Local Optimization . A7
3.3 Compositional Optimization A12
3.4 Computational Complexity A14

4 Result . A15
4.1 Modelling of the example A16

viii

4.2 Evaluation of actual complexity A19
5 Conclusion . A22
References . A24

B Time-Optimal Control of Large-Scale Systems of Systems B1
1 Introduction . B3
2 Preliminaries . B7

2.1 Weighted automata . B8
3 Motivating example . B9
4 Compositional Optimization . B12

4.1 Local Optimization of Subsystems B14
4.2 Compositional Optimization B22

5 Synchronization of Time-Weighted Systems B24
5.1 Synchronization of time-weighted systems using extended

state names . B26
5.2 Heuristic for partial time-weighted synchronization . . . B29
5.3 Implementation of PTWS B33

6 Application . B37
6.1 Modelling of the example B38
6.2 Evaluation of actual complexity B41
6.3 Comparison with previous work B44

7 Conclusion . B46
References . B48

C Active Learning of Modular Plant Models C1
1 Introduction . C3
2 Prerequisites . C5
3 Towards Learning a Modular Plant C6

3.1 Running Example . C6
3.2 The Simulation . C7
3.3 Plant Structure Hypothesis C9
3.4 Learning a Modular Plant C12

4 Illustrative Example . C14
5 Conclusion . C20
References . C20

ix

D Modular Supervisory Synthesis for Unknown Plant Models D1
1 Introduction . D3
2 Prerequisites . D5

2.1 Deterministic Finite State Automaton (DFA) D5
2.2 Supervisory Control Theory D6

3 The Modeling Framework . D7
3.1 The Simulation . D7
3.2 Plant Structure Hypothesis D8
3.3 Specifications . D9

4 The Modular Supervisory Learner D10
4.1 Calculating the modules D10
4.2 Checking Controllability D11
4.3 The MSL algorithm . D13
4.4 On Controllability and Non-blocking D14
4.5 Notes on Efficiency . D14

5 Case Study:The Cat and Mouse Problem D16
6 Conclusion . D19
References . D20

E Integrated Modular Learning and Optimization E1
1 Introduction . E4
2 Preliminaries . E6
3 Introducing the Example . E9

3.1 Defining a specific instance of the example E10
4 Modular learning and optimization E13

4.1 Simulator . E13
4.2 Plant Structure Hypothesis E15
4.3 Local optimization of modules E17

5 Learning Modular Optimization Models E18
5.1 The main controller and global variables E19
5.2 The ExpandSource coroutine E20
5.3 Example of the learning process E24
5.4 Explicit modelling of concurrent operations E30

6 Complexity of the generated models E31
7 Conclusions . E34
References . E35

x

Part I

Overview

1

CHAPTER 1

Introduction

Automation is the technology by which a process or procedure is performed
with minimum human assistance [1]. This is something that we find every-
where in today’s society, within production, logistics, communication and
countless other areas. Moreover, the level of automation in these areas is
continuously increasing with new, more advanced tasks being automated in a
pursuit of an increased performance of the system. However, with an increased
level of automation comes an increased complexity. To design a controller for
a single automated task can be tricky enough, and to derive a plan that co-
ordinates hundreds of tasks is not a trivial problem.
The planning of an automation system can, for simplicity, be described in

two parts: (i) to ensure that all tasks are performed correctly and that the
goal is finally achieved, and (ii) to maximize the performance of the complete
process such that it can be executed as fast or as cheap as possible. The
second part is an extension of the first, and implies that it is no longer enough
to reach the goal state. Instead, the plan needs to be optimized to ensure that
the process can be executed in the best way possible.

A wide range of efficient methods for solving this type of optimization prob-
lems have been explored over the years. There are a wide range of different

3

Chapter 1 Introduction

optimization techniques. For further references we recommend Passino and
Antsaklis [2], Brandin and Wonham [3], Huang and Kumar [4], Kobetski and
Fabian [5] and Hagebring et al. [6]. Many of these techniques have been proven
efficient with respect to computational complexity and typically scale poly-
nomially with the size of the system [2]–[6]. Moreover, the type of problems
that are addressed can typically be perceived to relate directly to other large
fields of optimization research, such as planning and scheduling. For exam-
ple, markov decision process theory (MDP), which is the most basic modeling
tool for stochastic scheduling, is claimed in the textbook by Cassandras and
Lafortune [7] as a formal DES framework. Regardless of the modelling tool
or the solution method, all methods suffer from the well-known state explo-
sion problem, also called the curse of dimensionality [8], [9]. The problem of
addressing this task has of course been investigated in a large number of publi-
cations. For further references we recommend Powell [10], Cao [11], Bertsekas
and Tsitsiklis [12] and Bertsekas [13].
The work presented in this thesis introduces a novel optimization technique

for large-scale automation systems. It is specifically designed to be used for
planning of systems that are separable into subsystems (systems of systems),
and exploits this property to divide the optimization into multiple independent
subproblems. The thesis also presents work on a learning technique that allows
the planning to be conducted without the existence of any predefined formal
models. The work focuses mainly on production and logistics systems, where
multiple robots collaborate to perform certain tasks. The same theories could,
however, be applied to any automation system that is modeled similarly.

1.1 Background
The journey began in 2015 when I was asked to help with the optimization
of a logistics system, including three stacker cranes that should collaborate to
perform a number of tasks [6]. Though the problem was simplified, the com-
plexity of the optimization problem was proved to be hard to solve efficiently.
This problem is not caused mainly by the formulation of the optimization
model or the choice of solver. Instead, the problem with the optimization
of automation systems is that the size of their state space suffers from the
state explosion problem. Consequently, it is not enough with methods that
scales polynomially with the size of the system if the size of the system scales

4

1.2 Research questions

exponentially with the number and size of its subsystems.
To mitigate this problem I started to look for viable methods do decrease

the complexity of the system even before the optimization took part. A back-
ground in supervisory control theory (SCT) lead me to investigate if efficient
methods from verification and synthesis could be used to prune all infeasi-
ble solutions so that they do not have to be considered by the optimization.
While this alone could probably reduce the complexity enough to solve slightly
larger systems, it also raised the question if the modular or compositional al-
gorithms from SCT [14], [15] could be applied also in the optimization. These
algorithms operate on a modular model in which the model of the complete
system has been divided into multiple smaller models, modules, that repre-
sent different subsystems in the system. The synchronous composition [7]
of all the modules results in the complete behaviour of the system. Com-
positional supervisory control can efficiently verify and synthesize controllers
for large-scale systems [16], [17]. In recent years a few modular or compo-
sitional approaches to optimization have also been presented, but these are
either very restrictive in their reduction of the subsystems or offer only ap-
proximative solutions [18]–[20]. This became the inspiration to my research
project Integrated Verification, Optimization and Learning, in which I wanted
to further evaluate compositional approaches to optimization of large-scale
automation systems.

1.2 Research questions
The strength of a compositional approach comes from the ability to reduce
each module individually while synchronizing them compositionally into one
final system model. The goal is to remove as many states and transitions as
possible in each iteration without altering the final solution. Compositional
supervisory synthesis constructs maximally permissive controllers for a given
set of specifications [7]. These controllers should ensure that something bad
never happens, while leaving everything else unchanged. In this case, the
individual modules are reduced by removing all “bad states”, in which the
specifications are not satisfied. It is easy to see how this reduction leaves the
final solution unchanged, since the final supervisor must prevent something
bad from happening in all included subsystems. Thus, since a “bad state” in
an individual module represents something bad happening in the correspond-

5

Chapter 1 Introduction

ing subsystem, it will either be removed automatically in the synchronization
of the modules or will have to be removed in a later stage of the synthesis. In
optimization, this synthesis is equivalent to the removal of all infeasible solu-
tions. This can of course be useful, but applying a compositional approach
to optimization implies that the reduction of the modules also removes sub-
optimal behavior, such that the synchronous composition corresponds to the
globally optimal solution. Proving what parts of an individual module that are
suboptimal is, however, not trivial, which leads to the first research question:

1. Can optimization of system of systems be done compositionally and still
guarantee a global optimal solution?

This question became the inspiration to Compositional Optimization (Comp-
Opt) presented in Papers A and B, which uses modular automata models [14]
to identify which parts that can be optimized locally. While this technique
is considered a major contribution of the thesis, its applicability in indus-
try is limited by its reliance on existing formal models of the system. Many
industries have yet to adopt model-based techniques, thus often lack both
the expertise and the system knowledge required to formulate the modular
models needed for the compositional approaches in SCT and CompOpt. This
motivated the the second research question:

2. Can a modular model be learnt automatically for a system of systems?

Answering this question led to the discovery of a modular active learning
(MAL) technique. This was first demonstrated by the two methods: Modular
Plant Learner (MPL) in Paper C that learns modular plant models, and Mod-
ular Supervisor Learner (MSL) in Paper D that learns modular supervisors
for the system using a set of predefined specifications (MSL). My personal
interest in the development of MPL was to relieve CompOpt of the reliance
on existing plant models, and instead letting the necessary models be learnt
automatically. This work did, however, raise the question of whether an inte-
grated MAL and CompOpt approach could further improve the efficiency of
the optimization, compared to a sequential computation. That is:

3. Can a combination of MAL and CompOpt yield a synergy that allows
for efficient optimal planning of large-scale automation systems without
the existence of formal models?

6

1.3 Contributions

This led to the most recent and final contribution presented in this thesis –
the Modular Optimization Learner (MOL) in Paper E – that learns modular
optimization models to be used in CompOpt.

1.3 Contributions
The main contributions presented in this thesis are:

1. The Compositional Optimization framework (CompOpt) that special-
izes in the optimization of large-scale systems of systems. Similarly to
compositional synthesis in SCT, CompOpt reduces each module indi-
vidually using a local optimization technique, while synchronizing them
compositionally into the global optimal solution. Its strength comes
from the ability to identify suboptimal paths in the individual subsys-
tems. These can then be removed to reduce the state spaces of the
modules, and consequently, mitigating the state explosion of their syn-
chronous composition. Results in Papers A and B show that CompOpt
drastically reduces the search space during the optimization of a realistic
large-scale example and, hence, improves the computational complexity.

2. The Modular Active Learning technique (MAL) that learns modular
formal models of systems of systems. Similarly to CompOpt, MAL is
inspired by techniques in SCT to divide large systems into modules that
represent individual subsystems. The strength of a modular represen-
tation is that: (i) the learning algorithm in many cases can learn a
complete system model while only exploring fractions of the state space
and (ii) it allows for a compact modelling of large-scale systems that
otherwise would include millions of states. It is shown in Papers C, D
and E that MAL can be customized to learn models with specific proper-
ties such as maximally permissive plant models, controllable supervisors,
and modular optimization models, respectively.

3. The Modular Optimization Learner (MOL), specifically designed to learn
efficient modular optimization models for CompOpt. This integrates
MAL with a greedy search heuristic that identifies suboptimal solu-
tions, which can then be removed from the final modular optimization
model. The result in Paper E shows that this drastically reduces the

7

Chapter 1 Introduction

state space of the models and, consequently, the search space of the
subsequent optimization. This completes the CompOpt framework, al-
lowing for optimal scheduling of large-scale systems of systems, even
with minimal prior system knowledge.

1.4 Outline
This thesis is divided into two parts. The first part aims to give the reader an
overview of the field of research and a better understanding of the concepts
discussed in the included papers. The included papers constitute the second
part.
The introduction provides the background and research questions that have

been the inspiration for the work. Chapter 2 focuses on the concept of mod-
ular/compositional optimization. Chapter 3 introduces the modular active
learning in MAL and discusses the properties of a modular system model.
Chapter 4 presents the integration of MAL and CompOpt into a joint frame-
work. A summary of the included papers is provided in Chapter 5. Finally,
concluding remarks and a direction for future work are provided in Chapter 6.

8

CHAPTER 2

Compositional optimization

The aim of this chapter is to explain the concept of compositional optimization
in general, the challenges and the potential it presents, and finally to give the
reader a better understanding of CompOpt (the compositional optimization
method presented in this thesis) through a set of examples that illustrate the
key properties of the technique.
The main goal of compositional optimization is to minimize the state explo-

sion problem for the optimization of systems consisting of multiple subsystems.
The basic concept is to reduce each subsystem individually by exploiting lo-
cal behaviour and then construct the global solution compositionally using
their reduced models. This enables a global optimization of the complete
automation system without considering the complete monolithic state space.
The benefit is that this has the potential to reduce the overall complexity,
since the computation of a monolithic model typically results in a state ex-
plosion, where the state space scales exponentially with the size and number
of subsystems.

9

Chapter 2 Compositional optimization

Figure 2.1: Illustration of a simple logistics system consisting of two delivery
trucks, A and B, operating in adjacent neighbourhoods, that should
pick-up and deliver a total of nine packages. The pick up and delivery
location of a package i is marked iP and iD respectively.

2.1 Motivating example
This section provides a motivating example to illustrate the impact of the
state explosion problem and the potential benefits and challenges of using a
compositional optimization approach. The example depicts a simple logistics
system, consisting of two delivery trucks that pick up and deliver packages
in separate zones. Every day, there are a list of packages that should be
picked up and delivered within there operation area. One could argue that
this motivating example does not really depict the optimization of a large-
scale system of systems, but the example is in fact already large enough for
the purpose of this illustration. The system is illustrated in Fig. 2.1.
The figure shows the two trucks and their respective zones. In the center

of the area there is a warehouse, which is where the trucks must start and
end each day. The figure also includes an example of a scenario where nine
packages should be picked up and delivered during the day. The pick up and
delivery location of these packages are marked with dots on the map, where
the labels iP and iD represent the pick up and delivery locations of package i,
respectively. Some packages should be picked up in one zone but delivered
in another. In these cases the truck that picks up the package has to bring
it back to the central warehouse where it can be moved over to the delivery
truck. These types of switches between the trucks are assumed to occur only
once a day. The objective in this example is to deliver all packages as quickly
as possible, that is, the goal is to minimize the time it will take the last truck
to return to the warehouse in the afternoon. The weights to be considered by

10

2.1 Motivating example

Figure 2.2: An automata model of the possible behavior of truck A, when assigned
the tasks to pick up packages 1, 2 and deliver package 1. States rep-
resent the physical locations, while edges represent operations in these
locations and travel in between. The state W represents the central
warehouse, which is both the initial and the accepting state of the
model.

the cost function should in this case represent the time it takes to perform
each task. The tasks include the pick up and delivery of packages, as well as
the travel between these locations.
The physical position of each truck, can be modelled as a strongly connected

graph, where nodes represent the locations of the warehouse and the pick
up/delivery tasks, while the edges represent the travel in between. The actual
pick up and delivery operations can be modelled as self loops in the nodes
of the graph, indicating that a task is performed but the physical location
does not change. In favor of readability, a reduced example where truck A
only has to pick up and deliver package 1 and pick up package 2 is modelled
using a simple automaton in Fig.2.2. The markings of the transitions are: (i)
the self loops marked by 〈x〉 illustrating the different operations that can be
performed in each location, including 〈W 〉, which represents that the trucks
switch packages at the central warehouse, and (ii) the edges between different
locations marked by 〈x, y〉 representing the travel between two locations x
and y. The central warehouse is marked green to illustrate that this is the
desired goal state, the accepting state.

In addition to a model of the possible behavior, there are of course also
models of the desired behavior. These are specified in Fig. 2.3. The specifi-

11

Chapter 2 Compositional optimization

i P i D

(a)

 P W D

(b)

Figure 2.3: Generalized models of individual specifications for the route of each
package. (a) applies to packages that are picked up and delivered by
the same truck, (b) applies to packages that should be picked up by
one truck and delivered by another.

cation in Fig. 2.3(a) is applied to all packages that should be picked up and
delivered by the same truck. It specifies that the package has to be picked up
and then delivered to its final delivery location exactly once. The specification
in Fig. 2.3(b) is similar to 2.3(a) but should be applied whenever a package
is to be picked up in one zone by truck X and delivered to another zone by
truck Y . It is then required that the package is switched from one truck to
the other in the central warehouse. Individual specifications like these have
to be included for each package.
To evaluate the example, the scenario from Fig 2.1 is modelled as a system of

systems, using plant models for each truck and specifications for each package
to represent the subsystems, such as shown in Fig. 2.2 and Fig. 2.3. Any
optimization applied using a monolithic approach would have to consider a
search space spanning the complete synchronized behavior of all subsystems.
This is true regardless of the optimization paradigm that is used. Advanced
paradigms, such as MILP, CP, might be able to perform clever pruning of
the search space in an early stage, but initially all possible combinations of
states and transitions have to be considered. This is a potential problem since
the size of the search space grows exponentially due to the state explosion
problem. The search space of the simple example shown here includes 342 144
states and 6 329 115 transitions, representing the synchronous composition of
all subsystems.
When solving the same example using CompOpt, the optimization problem

is partitioned into multiple subproblems but the sum of states in the search
spaces of all subproblems combined only adds up to 16 396 states. The reason
that CompOpt is able to perform so much better than the monolithic approach

12

2.2 Challenges

is the ability to reduce the subsystems even before they are synchronized. The
full search space is never computed, therefore no unnecessary states have to be
pruned away or evaluated. It is worth noting that CompOpt only represents
one specific compositional approach, which most certainly can be further en-
hanced, but the purpose of this example is just to illustrate that there is much
to gain from the ability to optimize systems of systems compositionally.
One could argue that there might exist more efficient models of this system

than what is shown here. To a human it is for example obvious that the
trucks can be partially optimized individually, since they drive in separate ar-
eas, have separate lists of tasks and so on. It is, however, not obvious exactly
how this problem can be partitioned since there still exist dependencies be-
tween the trucks. Without digging into the details of exactly which tasks that
can be considered local, there is no way to partition this problem manually.
One benefit of using CompOpt is that it reduces the need of smart manual
partitioning of the optimization problem, since it already exploits the local
behavior maximally.

2.2 Challenges
Discrete optimization problems are considered NP-hard or NP-complete [21]
in general. Therefore, there cannot exist any general method to solve all of
these in polynomial time. There is simply no way to completely solve the
state explosion problem. To solve large-scale optimization problems one must
instead exploit the properties of the problem. Efficient solution methods have
been presented over the years for several classes of discrete optimization prob-
lems, such as traveling salesman, graph coloring, job-shop and minimum cut
problems. All of these solution methods are, however, efficient mainly for
the specific problem class that they are meant to address. When the specific
problem at hand deviates from the standardized class, the solution method
typically becomes less efficient. The same is true also for compositional op-
timization, which exploits knowledge about the local behavior of subsystems
to reduce the global state space.
Compositional SCT exploits the fact that if a certain sequence of events

leads to something bad in one of the subsystems, then it is bad for the entire
system and should be prevented. This makes sense since a correct execution of
the full system requires all subsystems to function individually. In contrast to

13

Chapter 2 Compositional optimization

Figure 2.4: A simple illustration of a railway system with two trains driving in
opposite directions.

SCT, compositional optimization can not use such a simplification. There is
no guarantee that the quickest or cheapest sequence of events in a subsystem
is part of the quickest or cheapest sequence of events for the whole system.
This can be illustrated with a simplified example of a railway system, shown
in Fig 2.4. The example includes two trains A and B that are moving with the
same speed in opposite directions from X to Y and from Y to X, respectively,
and the global objective is to minimize their combined traveling time. It is
easy to see that the optimal solution requires train A to wait at Z until B has
arrived, since B otherwise would not be able to start until A has finished. If
we, however, only optimize the path of A, without taking B into considera-
tion, it would be more efficient to just continue directly without delays. This
illustrates one of the main limitations of compositional optimization; there is
typically not enough information available to decide on a local optimal path
for each subsystem individually. The key challenge then becomes the identi-
fication of those parts of the subsystems that we do have enough information
about to reduce locally.

2.3 CompOpt – an Optimal Compositional
Optimization Technique

CompOpt, developed in Papers A and B, is one of the main contribution of
this thesis. The technique is specifically designed for the mitigation of the
state explosion problem during the optimization of large-scale systems of sys-
tems. It takes as input a modular optimization model where each subsystem
is modelled individually as a weighted automaton, illustrated in Fig. 2.5, which
include a cost function to specify the cost of each transition.
The main strengths of CompOpt are: (i) the identification and optimization

of strictly local behaviour within each subsystem, and (ii) an integrated syn-
chronization and optimization algorithm. These methods allow CompOpt to

14

2.3 CompOpt – an Optimal Compositional Optimization Technique

compute global optimal solutions without computing any monolithic models.
Note that, although Paper B uses non-deterministic finite automata as the

modelling paradigm, CompOpt is expecting deterministic systems. The non-
deterministic models were only used in Paper B to express partial results
generated by the integrated synchronization and optimization approach pre-
sented below, in which two transitions could have the same event but different
weights. This does not affect the optimization algorithm, since the alterna-
tive paths are reduced down to one before the synchronization is done, thus
resulting in a deterministic system.

Local optimization reduces each subsystem individually
The local optimization method is the core of CompOpt. We prove in Pa-
per A that this method can compute maximal reductions of each subsystem
or subproblem, called locally optimal reductions, without affecting the global
optimal solution. The level of reduction is paramount to the complexity of
the optimization, since it directly affects the extent of the state space growth
in the subsequent synchronization.
The key to the local optimization method is to identify parts of the behavior

in the subsystems that are strictly local, meaning that the behavior in these
parts is independent of other subsystems. These parts can then be considered
individually, without affecting the global problem.

To give a better understanding of the properties of local optimization, con-
sider a small system consisting of two subsystems G1, G2. The task at hand
is to optimize the first subsystem G1 shown in Fig. 2.5(a), where the marking
{σ,w} of a transition indicates that the transition is activated by the event
σ and has the weight w. The only available information about G2 is that
the event a is shared between the two subsystems in some way, how they
interact is not revealed. The local optimization has to preserve the shared
behavior, since this can affect the global behavior, which in this case means
that the locally optimal reduction of G1, denoted G′1, will include the same
transition over event a. The rest of the behavior can be considered local and
can, therefore, be optimized without affecting G2. The resulting locally opti-
mal reduction is shown in Fig. 2.5(b), where the event d is deactivated since
it is more expensive than the sequence of local events b, c. The sequence of
local events is abstracted to a single transition representing there combined
behavior.

15

Chapter 2 Compositional optimization

(a) (b)

Figure 2.5: An illustration of the properties of local optimization. (a) shows a
plant model of a subsystem G1, where it is known that the event a is
shared with another subsystem, (b) shows the locally optimal reduction
of G1, where the local transition {d, 3} and the sequence {b, 1}, {c, 1}
have been replaced by an abstraction {bc, 2}.

Integrated synchronization and optimization
The integrated synchronization and optimization method called partial time-
weighted synchronization (PTWS) was proposed for the first time in Paper B.
This method mainly aims to reduce the complexity of dealing with a specific
type of systems called time-weighted systems, where the cost function ex-
presses the execution time of the tasks performed by each subsystem. Comp-
Opt will then minimize the total execution time of the full behavior of the
system, which requires synchronization of the time lines for the subsystems.
In SCT, this type of systems generally require more complex modelling

paradigms such as timed automata [22]. The reason is that they no longer are
pure DESs. The fact that the cost function or weights in these systems reflect
the execution time of their transitions makes it necessary to also consider the
synchronization of the execution of these transitions. This is something that
by construction can be neglected for an ordinary DES, since the transitions
are assumed to occur instantaneously. The synchronous composition will, by
construction, model parallel events as a sequence. This makes sense in a DES,
since the events are by definition instantaneous, and therefore can occur at
the same time even if modelled sequentially. It does not make sense when the
weights connected to the system transitions represent the execution time of

16

2.3 CompOpt – an Optimal Compositional Optimization Technique

(a) (b) (c)

Figure 2.6: An example showing that default synchronous composition is insuffi-
cient when synchronizing time-weighted systems. (a-b) represent two
independent subsystems that should run in parallel, (c) gives their
synchronous composition.

the transitions, which would require a transition to finish its entire execution
before it reaches the next state, where subsequent events can occur.
To illustrate this effect, consider the automata in Fig. 2.6, where (a) and (b)

are two independent systems that run in parallel and (c) is the default syn-
chronous composition of these systems. Let us first assume that the weight as-
sociated with each transition represents the energy consumption of the event.
Then, a sequential model of the events a and b is correct. Each event, even if
executed in parallel, still generates an individual energy consumption and the
total consumption equals the sum of the two weights, which will be the result
of the sequence of transitions in Fig. 2.6(c). Now let the weights represent
the execution time of the transition. Since it is specified that the subsystems
run in parallel we expect G1 and G2 to reach their marked state in 1 and
in 2 seconds respectively, independent of each other. Following the behavior
of the synchronous composition in Fig. 2.6(c) does, however, indicate that it
will be the sum of these execution times that is required to reach the marked
state. This shows that the default synchronous composition known from DES
is insufficient for the synchronization of time-weighted subsystems.
To fully understand the type of parallel behavior that should be considered,

take a look at the timed Petri net[23] in Fig. 2.7. The parallel behavior of
the events a and b can easily be incorporated using a Petri net model since
this paradigm has the ability to use multiple tokens, which in this case are
used to represent that the two transitions are performed in parallel. The
timed Petri net model is however a more complex model than an automaton,

17

Chapter 2 Compositional optimization

Figure 2.7: A timed Petri net model, representing a parallel execution of events
a and b. Note that the final state is drawn as an accepting state
only to highlight that it represents the same accepting state as in the
corresponding automaton model. Generally, accepting states are not
represented graphically for Petri nets.

including more information in each state about the current status of ongoing
and possible transitions. To search through this system, one would still need to
explicitly search through each variation of these states, which would have the
same effect as using a timed automaton or any other more complex modelling
paradigm.
An alternative approach to the more complex modelling paradigms de-

scribed above is to apply simplifications to the time-weighted system, such
as discretization of their timeline. This was done in Paper A by transforming
all locally optimal reductions into tick automata [20] before their synchroniza-
tion. In a tick automaton, each transition in the weighted automaton will be
followed by a set of transitions – called ticks – which represent the passage of
time. The number of ticks added to each transition depends on the desired
accuracy. An example of this is illustrated in Fig. 2.8, where the subsystem
G1 from Fig. 2.5(a) has been transformed into a tick automaton with the ac-
curacy of one time unit. This was sufficient to show the potential of CompOpt
in general, but it was proven to be very inefficient with a reduced accuracy as
well as a drastically increased state space of the optimization.

18

2.3 CompOpt – an Optimal Compositional Optimization Technique

G
1 b c 𝜏

d 𝜏 𝜏 𝜏

𝜏

a
𝜏 𝜏

𝜏

Figure 2.8: A tick automaton of the system depicted in Fig. 2.5(a) with the accu-
racy of one time unit.

Paper B addressed this limitation by proposing PTWS, denoted ||′, which
is able to model the parallel execution of tasks in multiple time-weighted sys-
tems using only regular weighted automata, such as in Fig. 2.6. Moreover, by
integrating an optimization heuristic that resembles the local optimization, it
can utilize the weights of the transitions in order to compute a synchronous
composition that is partially reduced by construction. This enables the subse-
quent optimization of the composition to be faster due to the reduced search
space.
To better understand the concept of PTWS, consider the weighted automa-

ton in Fig. 2.9. This represents another synchronous composition of the mod-
ules in Fig. 2.6(a) and (b), which in this case has been constructed using
PTWS. This example illustrates two of the main properties of PTWS. First,
the weights of the transitions in the synchronous composition G1 ‖′ G2 are
no longer directly related to the corresponding transitions in the subsystems
G1 and G2. Instead, they have been modified during the synchronization in
order to represent the parallel execution of the events. One can see that the
weight of transition a is now set to zero. This means that the the transition is
performed instantaneously, just like a regular DES, and the actual execution
time of a is instead covered during the subsequent transition. The weight of b
is kept at 2 to allow both event a and event b to finish their execution before
the system ends up in the accepting state. Secondly, the model in Fig. 2.9
only includes a single path ab, in which the two events are executed in parallel.
Thus, the model does not include any other possibility, such as, for instance,
that the events are executed sequentially or that event b is executed before
event a. This reduction is an effect of the included optimization heuristic.
This is further explained in Paper B, but the basic idea is that it is enough

19

Chapter 2 Compositional optimization

G1||´G2

Figure 2.9: A time-weighted automaton representing the parallel execution of the
events a and b.

to include only one path for any pair of local transitions, as long as this path
is the cheapest. This allows PTWS to avoid the interleaving of local events.

Compositional computation of a global optimal solution
That CompOpt uses a compositional approach is stated as one of the main
contributions in this thesis. But, once the local optimization and integrated
synchronization and optimization are in place, the compositional computation
actually becomes trivial.
From SCT we know that the compositional synthesis of a supervisor corre-

sponds to an iterative process, where individual supervisors are computed for
each subsystem and then combined incrementally, while doing further synthe-
sis step-wise. This is the case also in CompOpt. For example, assume that set
G = {G1, G2, . . . , Gn} represents a weighted system that should be optimized
using CompOpt. Then an example of the iterative process of CompOpt can
be described as

S′i =
(
G′i ‖′ S′i−1

)′
, ∀i ∈ [1, n],

where G′i represents the locally optimal reduction of a subsystem Gi and ‖′ de-
notes synchronization using the integrated synchronization and optimization
method presented above. For simplicity, this example synchronizes the sub-
systems in a strictly sequential order, but the algorithm presented in Paper B
has a more general formulation that includes the subsystems in an arbitrary
order. This allows CompOpt to utilize efficient heuristics to maximize the
benefits of the compositional synthesis, such as [16].

20

2.3 CompOpt – an Optimal Compositional Optimization Technique

Regardless of the ordering of the synchronization, this simple compositional
approach guarantees that S′n will be the final global optimal solution. The
reason is that each iteration of the algorithm expands on the local behavior
by synchronizing additional subsystems. Once the final model S′n is reached,
all tasks can be considered local, which will let this locally optimal reduction
represent the global optimal solution.

Strengths and limitations of the approach
The strength of CompOpt is first of all that it fully integrates the optimization
into a compositional framework. It is shown in Papers A and B that this has
the potential to drastically reduce the state space of the optimization problem
without computing large monolithic models.
However, from Section 2.2 we remember that one of the main limitations

of any compositional optimization approach is that the information available
when considering a single subsystem is typically insufficient for the computa-
tion of a final optimal control strategy. CompOpt is no exception to this rule.
It does guarantee that the local optimization computes a minimal reduction
of each subsystem, and that the final solution will be a global optima for
the system, but we show in Papers A and B that the efficiency of CompOpt
depends heavily on the complexity of the local behavior in the subsystems.

Taking the limitations into account, the results of the papers show that
CompOpt has the potential to improve efficiency of the optimization of large-
scale systems of systems, when these have a complex local behavior in the
subsystems. Tab. 2.1 includes part of an example from Paper B, where a
number of robots, in this case only 2, should each perform a varying number
of tasks. The table indicates how the average size of the state space increases
with the number of tasks to be performed. Without going into all the details
about the example (these are fully described in Paper B), it is obvious that
the exponential growth of this state space quickly becomes a problem for an
optimization. In the paper, one can also observe that the growth becomes
even worse when the number of robots is increased, instead of the number of
tasks.
The results of solving the same systems as in Tab. 2.1 using CompOpt is

shown in Fig. 2.10. Observe that the number of states are represented using a
logarithmic scale. The figure originally comes from Paper B and also includes
a varying number of robots, but the bottom blue line of the graph represents

21

Chapter 2 Compositional optimization

Table 2.1: Average number of states in the monolithic model of an instance with 2
robots when the number of tasks is increased from 2 up to 10, calculated
using instances with ten different random seeds.

Tasks States

2 8 140.0
3 15 392.0
4 96 030.8
5 180 032.0
6 912 585.6
7 1 638 088.0
8 6 986 696.0
9 11 981 064.0
10 42 450 952.0

the case with two robots, which is equivalent to the example in the table.
The figure shows that the state space no longer grows exponentially with
an increased number of tasks. Instead, the growth resembles a low degree
polynomial, since the line is almost linear. The paper further evaluates the
potential of the approach, but also includes detailed examples that illustrate
possible limitations of the optimization method.

Applying compositional optimization in industry
This thesis gives examples abstracted from industrial applications, both from
logistics, in the motivating example of Section 2.1, and production industry,
shown in the examples of Papers A and B. The compositional approach of
CompOpt makes it especially relevant for large systems with multiple, mainly
decoupled subsystems, with a limited shared behavior. The general formula-
tion of CompOpt does, however, enable it to optimize any system of systems
as long as these can be modelled using weighted automata. These type of sys-
tems can be found in a wide range of applications and are in no way restricted
only to the traditional areas of industrial automation.
In the papers we apply CompOpt on an artificial example of a robot cell

in production industry. This specific example may not be entirely realistic
but there are similar scenarios in industry today. The example presented in
these papers is a simplification of a respotting problem in a welding robot

22

2.3 CompOpt – an Optimal Compositional Optimization Technique

3 4 5 6 7 8 9 10

Tasks

10
1

10
2

10
3

10
4

10
5

10
6

S
ta

te
s

Figure 2.10: An example from Paper B, illustrating how the state space of Comp-
Opt scales with the number of robots and tasks per robot. Each line
in the plot represents a fixed number of robots ranging from 2 to 15.

cell. Just like the example, the real scenario includes multiple robots that
operate in parallel on the same product, but from different angles. During a
production cycle there are specific events that affect all robots similarly, such
as the assembly of one additional subpart to the product. A few of the welding
operations performed by the robots have to be performed while the assembly
robot is still gripping the part. A majority of the operations, however, can,
or have to, be performed once the assembly robot has left the zone.

23

24

CHAPTER 3

Modular active learning

The aim of this chapter is to introduce the modular active learning (MAL)
proposed in Papers C, D and E, its purpose and properties.

3.1 Background
The areas of SCT and optimization tend to rely heavily on the existence of
accurate models of the systems. There are plenty of well-known and efficient
formal methods of verification, control and optimization that operate on a
predefined plant model, CompOpt presented in Chapter 2 being one of them.
Modeling large complex systems is, however, a challenging task that requires
skill and in-depth knowledge of the system. Furthermore, manually defining
these models is an error-prone task; incorrect or incomplete models are mis-
leading, and can unnecessarily complicate the development process. Hence,
assuming access to a correct plant model can be limiting.
Simulation technologies have gained attention in many areas of automation,

and simulation-based development is increasingly common. In this area, the
intended system is first developed in a simulation environment, where it can be
tested and improved upon before moving forward with physical tests. These

25

Chapter 3 Modular active learning

simulations implicitly contain the behavior of the plant, though this behavior
is often not accessible in a usable format for formal methods of verification
or optimization. However, there exist learning algorithms that can infer the
necessary discrete models of the plant by interacting with the simulation.
Active learning algorithms are a class of machine learning algorithms that

aim to deduce a discrete-event model describing the behavior of a system.
In active learning, the learning algorithm can query a teacher to label new
data points. Active automata learning has been successfully applied to learn
and verify communication protocols using Mealy machines [24], [25]; to obtain
the formal models of biometric passports [26] and bank cards [27]. However,
as mentioned in 1, these discrete-event models suffer from state explosion.
Therefore, MAL was presented as a new modular approach to the learning of
these models.
The Modular Plant Learner (MPL) introduced in Paper C was, to the best

of our knowledge, the first attempt towards MAL within the automata learning
community. This method learns complete modular models that can then be
used in formal methods, for instance in verification and synthesis. The work on
MAL was then extended in Paper D with the addition of a Modular Supervisor
Learner (MSL). An algorithm that integrates SCT and active learning to learn
a maximally permissive and controllable supervisor of the system directly from
the simulation, given a set of formal specifications. Additionally, Paper E
presented a modified version of MPL that computes a reduced plant model,
specifically designed for use in CompOpt. The main strength of all three
contributions are their ability to decrease the search space of the learning
process by exploiting the modular structure of the system, thus mitigating
the state explosion problem.
At the core of the MAL technique is the plant structure hypothesis (PSH),

a high-level meta-model that defines the modular structure of the system.
The modular structure refers to a division of the complete plant behavior
as separate modules. Usually, but not necessarily, representing the separate
subsystems that the plant is composed of. The PSH guides the learning algo-
rithm to divide the learned information into separate modules and to reduce
the search space, ultimately mitigating the state explosion problem.
Instead of viewing the system as a black box that must be modelled from

scratch, the PSH assumes a certain amount of knowledge about the system.
It is assumed that all actions that can be executed within the simulator are

26

3.2 Defining the modular structure as a PSH

known, but not the effect that these will have, or when they will occur. That
is, the alphabet of the model is known but not the transitions. It is also as-
sumed that all output variables are known in advance. A state in the simulator
is defined by the values assigned to these output variables. Unique combina-
tions of the values assigned to these variables make up the different states.
The purpose of the PSH is to define the relation between these events and
variables and the individual modules that together constitute the complete
system model.

3.2 Defining the modular structure as a PSH
The PSH is formally defined as a 3-tuple H = 〈M,E, S〉, including a set of
modulesM and their event and state mappings E(m) and S(m), respectively.
It is stated in Paper C that the event mappings define which actions, or
events, that belong to which module. Thus, E(m) ⊆ Σ is the local alphabet
of module m ∈M . Similarly, it is stated that the state mapping S(m) defines
the relation between the modules and the set of variables in the simulator.
In practice, these formal definitions do, however, only specify lower bounds

for the mappings. Let us instead rephrase these definitions, saying that the
event and state mapping of a module must include at least all events and
states that are connected to the module. This simplifies the formulation of a
correct PSH. Instead of answering the question “What events/state variables
should be part of the mappings?”, which might be hard without being an
expert on the system, one can instead initiate the mappings to include all
events/state variables and then ask “Are there any event/state variables that
we know do not affect a specific module”. This means that a correct PSH can
be formulated regardless of the available system knowledge. Then, removing
any event/state variable may speed up the learning greatly. If one manages
to remove all events/state variables that are not strictly necessary, then a
maximum reduction is achieved, both of the search space and of the state
space in the final result.
The reformulation above has, of course, not changed the theory of the PSH.

It aims only to help in the understanding of what the definition of a PSH
actually requires and how to get started. Regardless of how the PSH is defined,
provided that it is valid, the learning algorithm will return the same system.
That is, a specific PSH affects how many modules the model will include and

27

Chapter 3 Modular active learning

(a)

¬A, ¬B, ¬C

σB

A, ¬B, ¬C

A, B, C

σA

σC

σC

σB

A, B, ¬C A, ¬B, C

(b)

Figure 3.1: A system of systems consisting of two light bulbs controlled by separate
switches as well as a main switch. (a) shows an illustration of the
system, (b) shows the system model.

how much redundancy there will be between these modules, but the complete
model, i.e. the synchronous composition, should always be the same. It should
be noted though that the efficiency of the learning strongly correlates with the
quality of the PSH; if none or very limited structural information is available,
then MAL might not be the most effective learning method.

Example on the formulation of a PSH
Consider an illustrative example of a system consisting of two light bulbs and
three switches, shown in Fig. 3.1(a). Switch A controls the main power to
both lights and switches B, C control the power to one bulb each. For the
simplicity of the example, the system also has the following restrictions: (i)
the switches can only be toggled from OFF to ON , not the other way around
and (ii) the main switch A has to be toggled ON before the switches B and
C.
An automata representing the system is shown in Fig 3.1(b). Event label σi

represents the toggling of switch i and each state in the model is a valuation of
the state vector 〈A,B,C〉, where A, B and C are binary variables representing
the status of the switches. To simplify the notation, we denote the valuation
of these state variables as A when switch A is ON or ¬A when it is OFF ,
and similarly for the state variables B and C.

Assume that the formal model, in Fig 3.1(b), is not yet known but that
we have access to a simulator of the system and that we want to use MAL

28

3.2 Defining the modular structure as a PSH

to learn a modular model. The first step in the initiation of MAL is then to
define the desired PSH, H = 〈M,E, S〉. For this purpose, the following basic
properties of the system is known:

1. The purpose of the system is to control two light bulbs.

2. Three light switches control the bulbs, toggled on/off by the actions σA,
σB and σC .

3. There are three available variables A, B and C that indicate the status
of the switches.

Based on the first property the most obvious division of the system into
modules is to learn a separate model for each light bulb. This gives the
modules M = {L1, L2}, where we have given the two light bulbs arbitrary
labels L1, L2. Following the steps above we then assign the trivial solution to
the event and state mappings:

E(L1) = E(L2) = {σA, σB , σC}

S(L1) = S(L2) = {A,B,C}

Let us evaluate how different levels of expertise determine the possible reduc-
tion of this PSH and how it affects the learning.

No knowledge: As a general rule, modular learning is not recommended
when there is no knowledge about how the events and variables connect to
the modules. With no knowledge, there are no event or state variables to
remove in the mappings of the PSH, which leaves us with the trivial solution.
This means that there are no distinct differences between the defined modules
and the learning will be unable to make any reductions to the modules. This
makes the modular learning very inefficient and the final result will be that
each module includes the complete system model, from Fig 3.1(b).

Knowledge about events: Assume that we know that the events σB and σC
are connected to one light bulb each, and that we define the corresponding
event mappings to be E(L1) = {σA, σB} and E(L2) = {σA, σC}. This reduc-
tion of the event mapping will have a big impact on the modular model.
Consider for instance the effect on module L1. That event σC is no longer

part of the event mapping E(L1) implies that σC is not part of its alphabet

29

Chapter 3 Modular active learning

ΣL1 , thus no transitions that are activated by this event can be part of the
module. The goal of the modular learning will in this case be to learn a
model where module L1 only models the behavior including the events σA
and σB , while module L2 only models the behavior including the events σA
and σC . The result will, for this example, be that each module includes only
two transitions, while the interleaving of the events σB and σC , seen in 3.1(b),
will be ignored. This shows that removing an event from an event mapping
may reduce the size of the state space in the corresponding module.

Knowledge about state variables: Assume that we know that state vari-
able C only connects to event σC . We can then reduce the state mapping
to S(L1) = {A,B}. This type of reduction to the state mapping lets MAL
structure the identified states and transitions into the different modules di-
rectly, reducing the state explosion during the learning process. For instance,
let us consider the two transitions activated by event σb. Given the reduction
of the state mapping S(L1), the valuation of the source and target state are
identical, i.e. both state variables in the state mapping have the same value
in the source and the target state. From this, MAL infers that the two tran-
sitions corresponds to a single transition. Hence, querying the simulation for
outgoing transitions using an event σ ∈ E(L1) from one of the target states
can be expected to yield the same results as if it was done from the other
target state. This shows that removing a state variable from a state mapping
may reduce the search space of the learning.

To summarize, the PSH is used to incorporate structural knowledge about
the system to the learning algorithm. Knowledge about the events may miti-
gate the state explosion of the final model by reducing the state space of each
module, while knowledge about the state variables may mitigate the state
explosion of the learning process itself.

3.3 The exploration and reduction of the search
space

As mentioned previously, MAL is designed to conduct the learning through
interactions with a simulation of the system, which provides several advantages
compared to the physical system. A simulation can typically be run faster

30

3.3 The exploration and reduction of the search space

than real-time, even multiple instances in parallel, thereby speeding up the
learning process. Dangerous collisions and unforeseen events are avoided and
confined to the simulation, providing a safe learning environment. This is
not strictly necessary, however, and MAL could in practice interact with a
physical system as well, as long as an interface exists.
The interface necessary to run MAL is defined by a function getNextState :

Q × Σ → Q that takes as input a state of the system and an event to be
executed. The output of this function is the resulting state when the given
event is executed from the given state. The learning then uses this algorithm
in a forward search, starting in the initial state of the system, querying the
simulator for unidentified outgoing transitions from any new state.
MAL is arguably the most complex process presented in this thesis, and

with the aim to further improve the understanding, let us revisit the previ-
ous example with two light bulbs, shown in Fig. 3.1. Using MAL to learn a
model of this system would yield a modular model, such as the one shown
in Fig. 3.2. This specific modular model represents the output of the Modu-
lar Plant Learner (MPL), the most basic of the MAL algorithms, given the
following PSH:

• M = {L1, L2},

• E(L1) = {σA, σB},

• E(L2) = {σA, σC},

• S(L1) = {A,B},

• S(L2) = {A,C}.

In the model of Fig 3.2, each module includes only the state variables and
events connected to one of the light bulbs, and their synchronous composition
equals the monolithic model in Fig. 3.1(b). The learning of this modular
model is explained in three steps below.

Step 1.1 The learning starts in the initial state q0 = 〈¬A,¬B,¬C〉. The
algorithm searches for outgoing transitions from this state through a num-
ber of queries to the simulator, namely one query getNextState(q0, σ) for
each of the events in both E(L1) and E(L2). This yields a single transition
〈¬A,¬B,¬C〉 σA−−→ 〈A,¬B,¬C〉, which can be seen in the Fig. 3.1(b). This is

31

Chapter 3 Modular active learning

¬A, ¬B

σB

A, ¬B

σA

A, B

(a)

¬A, ¬C

σC

A, ¬C

σA

A, C

(b)

Figure 3.2: A modular model of the system with two light bulbs, depicted in
Fig. 3.1, with module L1 in (a) and module L2 in (b).

an example of a shared transition. It is activated by the event σA and updates
the state variable A, both of which are part of the state and event mappings
in L1 as well as L2. This tells MPL that the transition should be represented
in both modules, resulting in the first transition of each module.

Step 1.2 The algorithm expands the newly identified state 〈A,¬B,¬C〉
from Step 1.1. Outgoing transitions are 〈A,¬B,¬C〉 σB−−→ 〈A,B,¬C〉 and
〈A,¬B,¬C〉 σC−−→ 〈A,¬B,C〉. These transitions are similar and each concerns
only one of the modules. The first transition is activated by event σB and
updates only state variable B, an event and a state variable that is only part
of the event and state mapping of L1. This means that the transition does
not affect module L2 at all and yields a new transition only in module L1,
namely the transition 〈A,¬B〉 σB−−→ 〈A,B〉. Similarly, the second transition
does not affect module L1 and yields only the transition 〈A,¬C〉 σC−−→ 〈A,C〉
in module L2.

Step 1.3 Step 1.2 identified two new states: 〈A,B,¬C〉 and 〈A,¬B,C〉.
We can already see in Fig. 3.2 that the local transitions added in Step 1.2
complete the modular model, but the algorithm does not know this yet and
must search for any additional outgoing transitions. Additionally, this step,
and the expansion of these states illustrate two very important properties of
MAL.
First, even if the search finds a new transitions to an unidentified state,

it does not necessarily yield any new transitions in the modular model. The
reason is that the new state can represent an interleaving of previously iden-
tified local states, which does not need to be explicitly modelled in the mod-

32

3.3 The exploration and reduction of the search space

ules, but will be available in their synchronous composition. Assume, for
instance, that the state 〈A,B,¬C〉 is expanded. This yields one new transi-
tion 〈A,B,¬C〉 σC−−→ 〈A,B,C〉, with a previously unidentified target state. Its
event and the only updated state variable is local to L2, so it does not affect
module L1, and in L2 the corresponding local transition 〈A,¬C〉 σC−−→ 〈A,C〉
is identical to the transition added to L2 in Step 1.2. Thus, the transition
does not add anything to the modular model, and can therefore be ignored.
This constitutes the main strength of a modular learning and may result in a
drastic reduction of the search space when learning larger systems, where the
modules typically have a large number of local variables that can interleave.
Secondly, the number of events that have to be evaluated in the expansion of

a state may be reduced based on how the transition that lead up to this state
affected different modules. This was first introduced in Paper E, and MAL
had prior to this tried to expand each new state through every available event.
To demonstrate this method, recall the transition 〈A,¬B,¬C〉 σB−−→ 〈A,B,¬C〉
from Step 1.2, that lead up to the previously unidentified state 〈A,B,¬C〉. In
L1, this added a new local state 〈A,B〉, which tells the algorithm that there
might exist outgoing transitions from this state that must be included in the
module.
The algorithm must search for these transitions by querying the simulator

once for each event in the event mapping E(L1), which, by the definition of
PSH, are the only events that can be included in module L1. On the other
hand, the transition did not affect module L2. In fact, following the state
mapping S(L2), we can see that the source and target states both correspond
to the same local state 〈A,¬C〉. From this, the algorithm infers that it is
unnecessary to look for new transitions for module L2, using the events in
E(L2), since any such transition would have already been identified when
expanding the source state. In other words, it is enough for the expansion of
a state to consider events in the event mappings of those modules in which
the identification of the state yielded a new local state.
Note that the above reduction of the number of events considered in the

expansion of states relies on the the assumption that the state mappings of the
PSH are always overestimated. While this allows the algorithm to decrease
the number of queries to the simulator, which can have a big impact on the
execution time of the learning process, it has its own side effect. If a state
variable that affects module m is removed from S(m), then the algorithm

33

Chapter 3 Modular active learning

B

C

A

(a)

σB

¬A, ¬B, ¬C

¬A, B, C
σA

σC

σC

σB

¬A, B, ¬C ¬A, ¬B, C

A, B, C

(b)

Figure 3.3: A system of systems consisting of three switches A, B and C that
together control a single light bulb. (a) shows an illustration of the
system, (b) shows the system model.

might ignore the expansion of some event in certain states, leading to an
incomplete final model.

Coordinating shared transitions
Step 1.1 above shows how a shared transition is added to multiple modules. It
is not, however, always trivial to identify these transitions in modular learning.
To illustrate this, consider a new example, shown in Fig. 3.3, which includes a
modified configuration of the three switches from the previous example. The
purpose is to illustrate what happens when a shared event, i.e. switch A,
depends on multiple local events, i.e. switches B and C. Previously A was a
main switch that controlled the power to both B and C. Now switches B and
C can be activated independently, but it is only once both are activated that
switch A can be activated. This can, for instance, be a system where B and
C are part of a two-step security check required before A can be activated.
Applying MAL to the system in Fig. 3.1 using the same PSH as previ-

ously would yield an incorrect result where the shared event would never be
identified, which becomes obvious in the two steps described below.

Step 2.1 The learning still starts in the initial state 〈¬A,¬B,¬C〉, but
the expansion now yields two transition 〈¬A,¬B,¬C〉 σB−−→ 〈¬A,B,¬C〉 and
〈¬A,¬B,¬C〉 σC−−→ 〈¬A,¬B,C〉. These are similar to the transitions identified
in Step 2 of the previous learning in the sense that they each add only a sin-
gle local transition to one of the modules while leaving the other unchanged,

34

3.3 The exploration and reduction of the search space

namely 〈¬A,¬B〉 σB−−→ 〈¬A,B〉 to L1 and 〈¬A,¬C〉 σC−−→ 〈¬A,C〉 to L2.

Step 2.2 Step 1 identified two states 〈¬A,B,¬C〉 and 〈¬A,¬B,C〉. Expand-
ing these states yields two outgoing transitions 〈¬A,B,¬C〉 σC−−→ 〈¬A,B,C〉
and 〈¬A,¬B,C〉 σB−−→ 〈¬A,B,C〉. However, these transitions are, according
to the given PSH, equivalent to those identified in Step 1. Consider, for in-
stance, the first transition, which only affects module L2 and, following S(L2),
corresponds to the local transition 〈¬A,¬C〉 σC−−→ 〈¬A,C〉. No new states are
identified in this step and the algorithm believes that the system is explored
completely. This means that the algorithm fails to identify the shared transi-
tion 〈¬A,B,C〉 σA−−→ 〈A,B,C〉.

The problem above is that S(L1) includes B but not C, while S(L2) includes
C but not B. This means that the algorithm interprets the state 〈¬A,B,C〉 as
an unnecessary interleaving of the two local states 〈¬A,B〉 in L1 and 〈¬A,C〉
in L2. To avoid this, the PSH needs to account for the coordination of the
shared transition, which is done by including C in S(L1) and/or B in S(L2).
Assume that we do both, i.e. S(L1) = S(L2) = {A,B,C}, while leaving the
set of modules and the event mappings unchanged. This would then change
the learning process in the way described in Step 3.1.

Step 3.1 This is similar to Step 2.1, but the two transitions now affect both
modules, since the state mappings now include additional state variables.
Consider, for instance, the first transition 〈¬A,¬B,¬C〉 σB−−→ 〈¬A,B,¬C〉. Its
effect on module L1 is unchanged, yielding the local transition 〈¬A,¬B〉 σB−−→
〈¬A,B〉. However, in contrast to Step 2.1, the new PSH, which defines that
B ∈ S(L2), implies that the target state is significant for the learning of
module L2. The problem is that σB /∈ E(L2) implies that the transition can
not be included in the final module. This means that, in module L2, the state
variable B should toggle from OFF to ON but no event is executed. This
does not conform with a discrete event system, where all state changes must
come as a result of a discrete event being activated. For now, assume that
MAL adds the target state to the module without adding the transition, which
is illustrated in Fig. 3.4. This means that the target state will be unreachable,
but it will at least be included in the learning process and will be expanded.
It will later in this subsection be shown how the unreachability of these states

35

Chapter 3 Modular active learning

σB

¬A, ¬B, ¬C

¬A, B, ¬C ¬A, ¬B, C

(a)

¬A, ¬B, ¬C
σC

¬A, B, ¬C ¬A, ¬B, C

(b)

Figure 3.4: The modular model so far after Step 3.1, with module L1 in (a) and
module L2 in (b).

is resolved in the final modular model.

Step 3.2 Just as in Step 2.2, the learning identifies two outgoing transitions
〈¬A,B,¬C〉 σC−−→ 〈¬A,B,C〉 and 〈¬A,¬B,C〉 σB−−→ 〈¬A,B,C〉. However, in
contrast to Step 2.2, the new PSH ensures that the target state 〈¬A,B,C〉 is
now recognized as an unidentified state and the corresponding local transitions
are added to the modules. The result of this step can be seen in Fig. 3.5.

Step 3.3 Due to the new transitions in Step 3.2, the algorithm now correctly
expands the state 〈¬A,B,C〉 and adds the shared transition 〈¬A,B,C〉 σA−−→
〈A,B,C〉 to both modules.

The algorithm terminates after Step 3.3 when no additional transitions can
be identified. At this point the algorithm must construct the final modular
model based on the information learned and it must resolve the unreachability
in the modules. This is done by, for each module m, removing any state
variables from the state mapping S(m) that were changed during the learning

σB

¬A, ¬B, ¬C

¬A, B, C

σB

¬A, B, ¬C ¬A, ¬B, C

(a)

¬A, ¬B, ¬C

¬A, B, C

σC

σC

¬A, B, ¬C ¬A, ¬B, C

(b)

Figure 3.5: The modular model so far after Step 3.2, with module L1 in (a) and
module L2 in (b).

36

3.4 Applying modular learning in industry

¬A, ¬B

σA

¬A, B

σB

A, B

(a)

¬A, ¬C

σC

¬A, C

σC

A, C

(b)

Figure 3.6: The final modular model constructed after Step 3.3, with module L1
in (a) and module L2 in (b).

by a transition activated by an event that is not in the event mapping E(m).
Recall the transition 〈¬A,B,¬C〉 σC−−→ 〈¬A,B,C〉, identified in Step 3.1. This
transition updates the state variable C ∈ S(L1) even though σC /∈ E(L1),
which resulted in an unreachable state being added to the module. Removing
C from S(L1) will change the structure of module L1 by merging any pair
of states where the only difference in their valuation is the value of C. For
instance, the states 〈A,¬B,¬C〉 and 〈A,¬B,C〉 both valuates to 〈A,¬B〉
once variable C is removed from the mapping. Removing all such variables
in both L1 and L2 will resolve the unreachability and yield the final modular
model shown in Fig. 3.6.

3.4 Applying modular learning in industry
This chapter has introduced the basics of MAL, proposed in Papers C, D
and E. The main purpose of this method is to enable formal methods to
be used in verification, synthesis and optimization of large-scale automation
systems, while relieving its requirement on expert system knowledge for the
construction of the formal models. It applies a modular approach using the
PSH – a much simpler meta-model of the system structure – to mitigate the
state explosion, both during the learning and in the resulting modular model.
This makes the method applicable to much larger systems than learning al-
gorithms that do not take any structural information into account.
The key properties that determine the applicability of the method is: (i)

the availability of a suitable simulator with which the learning can interact,
(ii) existing knowledge about the structure of the system, i.e. the ability to
define an efficient PSH, and (iii) the complexity of different subsystems in

37

Chapter 3 Modular active learning

the system at hand. The latter refers to the fact that, if the system includes
multiple loosely connected systems, then there are likely a lot of unnecessary
interleaving of local transitions that can be avoided in the modular model.
However, if all subsystems work in close relation to each other and if they need
to constantly keep track of each other, then there might not be a reason to
apply a modular learning. In that case, all modules would mainly include the
same shared transitions, possibly even worsening the state explosion problem.
Defining clearer guidelines to identify systems that benefit from a modular

learning is hard and is left for future research. In general terms, the goal of
modular learning is to avoid an exponential growth of the search space and
of the state space of the constructed model. However, in worst case it will,
when no local transition exist in the subsystems, result in a linear increase of
the state space, since each module will have to include the complete system
model.

38

CHAPTER 4

Compositional optimization of an unknown system

This chapter presents the integration of MAL and CompOpt, implemented in
MOL in Paper E. Note, however, that MOL is an extension of MAL and some
of its contributions, that do not directly relate to optimization, have already
been covered in Chapter 3. The purpose of MOL is to construct the modular
optimization models needed to apply CompOpt to the current system. This
was proposed in Paper E to relieve CompOpt’s strong reliance on predefined
models. The main difference in these models compared to the models discussed
in Chapter 3 is that a modular optimization model also must include a cost
function, defining the cost of each transition. Paper E has focused on costs
represented by the execution time of the transitions but it can, for instance,
also be monetary costs or energy efficiency.
The goal of MOL is to integrate the local optimization of CompOpt directly

in the learning algorithm. CompOpt can of course be applied on the mod-
ular models constructed by MPL as well, but the strength of MOL is that
it learns locally optimal reductions of the modules. The result in Paper E
shows that this has the potential to drastically reduce the state space of the
constructed optimization model, which in turn decreases the complexity of
the subsequent optimization. It should be noted that MOL does not, as of

39

Chapter 4 Compositional optimization of an unknown system

yet, include the abstraction of sequences of local events that was illustrated
in Fig. 2.5 in Chapter 2. This could of course be included, but would require
a post-processing of already added transitions, thus might be more suited for
the subsequent optimization.
The main strength of MOL, compared to MPL, is its ability to reduce the

state space of the constructed modular model. This is done by guiding the
search of the learning process to imitate a shortest-path algorithm. Similarly
to the well-known Dijkstra’s algorithm [28], MOL searches for the cheapest
path from the initial state to all other states. This results in the learning of
modules resembling shortest-path trees [29], which are then reduced by re-
moving all paths that do not conform to the definition of a locally optimal
reduction. Furthermore, MOL integrates this local optimization into an algo-
rithm very similar to MPL, without adding any extra complexity. The only
practical differences between MOL and MPL are: (i) that the order in which
new transitions in the system is explored is decided by a greedy heuristic to
ensure that the shortest path always gets expanded first, and (ii) that, when a
new transition is identified it will be added to the modules only if no cheaper
path to the target state has been previously identified.

4.1 Learning locally optimal reductions
Section 2.3 briefly described the computation of a locally optimal reduction
as the maximal reduction of a subsystem without affecting the global optimal
solution. It was stated that the key to this local optimization method is
to identify parts of the behavior in the subsystems that are strictly local.
In CompOpt this is done by identifying all shared transitions, which must
be maintained in the modules. It then optimizes the local behavior of each
subsystem by conducting one greedy search from the target state of each
shared transition. Only the cheapest local paths connecting any pairs of states
are kept.
The same method can not be implemented in MOL, since the shared tran-

sitions are not known in advance. Instead, the learning algorithm starts with
a single greedy search from the initial state, identifying the cheapest local
paths from this state to any other state. If the algorithm identifies a shared
transition along the way, then it executes one additional greedy search from
the target of this transition. In this way it will continuously expand the sys-

40

4.2 Avoiding concurrent operations using MAL

tem, identifying shared transitions along the way and optimal local paths to
connect them, until, eventually, the complete system has been expanded.

4.2 Avoiding concurrent operations using MAL
Section 2.3 proposed PTWS as a method to compute a synchronous com-
position of multiple time-weighted systems. A modelling paradigm that is
used in CompOpt to optimize the system based on the execution time of the
transitions. The purpose of PTWS is to deal with the challenge of explicitly
modelling concurrent operations of tasks in parallel time-weighted systems.
This challenge also applies to the learning of these systems, where constructed
models must include the same concurrent operations.
Fortunately, just like in CompOpt, this challenge only arises when multiple

subsystems operating in parallel should be included in the same model. Thus,
it can be ignored completely when learning modular models, assuming that
the internal operations in each module are executed sequentially. This is an
implicit assumption in MAL, since it models each module as a deterministic
finite automaton [7]. This is a modelling paradigm that does not include the
execution of multiple actions in parallel, therefore, MAL implicitly expects
each module to execute sequentially. If the system does include subsystems
that operate in parallel, then the concurrent operation of their tasks will still
be included in the synchronous composition of the modules.

In summary, using a modular learning avoids certain challenges that arise in
connection with explicit modelling of concurrent operations in time-weighted
systems. This is an indirect strength in MOL, since it allows for much more
efficient learning of optimization models for this type of systems.

4.3 Completing the compositional optimization
framework

While MOL is presented as a separate contribution; nonetheless, it is specif-
ically designed to learn modular optimization models that can be solved by
CompOpt. Thus, MOL can be considered a complement to the CompOpt
framework, with the ability to simplify its application.
Previously, applying CompOpt on an automation system first required the

41

Chapter 4 Compositional optimization of an unknown system

formulation of a formal modular model of the system. Formulating these
models requires a high level of expertise and system knowledge. With the
addition of MOL, it is now sufficient to have access to a simulation of the
system and to formulate the much simpler PSH. In practice, the process of
applying the combination of MOL and CompOpt is this:

1. Construct a simulation of the system. This can be implemented in any
software as long as a suitable interface exists or can be constructed.

2. Define a PSH for the system. As shown in Chapter 3, this can theo-
retically be constructed without any system knowledge, but the more
structural information that is added to PSH, the more efficient the learn-
ing and subsequent optimization will be.

3. Let MOL construct a modular optimization model based on the simu-
lation and PSH.

4. Input the constructed model to CompOpt in order to compute the global
optimal solution.

4.4 Applications in industry
This chapter has introduced the basics of MOL, proposed in Paper E. The
method integrates the local optimization of CompOpt with the modular learn-
ing of MAL, to learn a modular model consisting of the locally optimal reduc-
tion of the subsystems. The purpose of MOL is to resolve the main limitation
to the industrial application of CompOpt, namely its reliance on predefined
formal models. Combining MOL and CompOpt completes an optimization
framework that allows for optimization of large-scale automation systems,
while minimizing the level of expertise and system knowledge needed for its
application.
The key properties that determine the applicability of MOL is, just like

with MAL in general: (i) the availability of a simulator, (ii) the ability to
define an efficient PSH, and (iii) the complexity of different subsystems in the
system at hand. It should be noted that MOL, in general, exploits the same
local behavior of the subsystems as CompOpt, thus does especially well when
learning the same type of systems as CompOpt is designed to optimize.

42

CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Fredrik Hagebring, Bengt Lennartson
Compositional optimization of discrete event systems
Proceedings of the 14th IEEE Conference on Automation Science and
Engineering,
2018, Munich, Germany.

This paper presents CompOpt as a novel optimization technique that in-
tegrates techniques from compositional supervisory control with traditional
graph based search algorithms. Its strength comes from the ability to re-
duce the state space of each subsystem individually by exploiting their local
behavior, mitigating the state explosion that would otherwise occur during
synchronization. The technique shows great potential in dealing with large-
scale systems of systems.

43

Chapter 5 Summary of included papers

5.2 Paper B

Fredrik Hagebring, Bengt Lennartson
Time-optimal control of large-scale systems of systems using composi-
tional optimization
Discrete Event Dynamic Systems: Theory and Applications,
Vol. 29 Issue 3 pp. 411-443, Sep. 2019.

This paper improves on CompOpt by proposing a novel and efficient syn-
chronization method for time-weighted systems, called reduced asynchronous
synchronization (RAS). This method is able to synchronize the parallel be-
haviour of time-weighted subsystems without adding any additional states or
transitions to their models. The key is the integration of an optimization
heuristic that, similarly to the local optimization, reduces the state space of
the synchronous composition by removing non-optimal or redundant solutions,
while maintaining the global optimal solution. We show in this paper that this
further improves the efficiency of CompOpt by strengthening the mitigation
of the state explosion problem.

5.3 Paper C

Ashfaq Farooqui, Fredrik Hagebring, Martin Fabian
Active learning of modular plant models
Proceedings of the 15th IFAC Workshop on Discrete Event Systems,
2020, Virtual Conference.

In this paper we present the Modular Plant Learner (MPL), an algorithm
that explores the state-space and constructs a discrete model of a system.
The MPL takes as input a hypothesis structure of the system – called the
Plant Structure Hypothesis (PSH)– and using this information, interacts with
a simulation of the system to construct a modular discrete-event model. Us-
ing an example we show how the algorithm uses the structural information
provided – the PSH – to search the state-space in a smart manner, mitigating
the state-space explosion problem.

44

5.4 Paper D

5.4 Paper D
Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian
Modular supervisory synthesis for unknown plant models using active
learning
Proceedings of the 15th IFAC Workshop on Discrete Event Systems,
2020, Virtual Conference.

This paper proposes an approach to synthesize a modular discrete-event
supervisor to control a plant, the behavior model of which is unknown, so as
to satisfy given specifications. To this end, the Modular Supervisor Learner
(MSL) is presented that based on the known specifications and the structure
of the system defines the configuration of the supervisors to learn. Then,
by actively querying the simulation and interacting with the specification it
explores the state-space of the system to learn a set of maximally permissive
controllable supervisors.

5.5 Paper E
Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian, Bengt Lennart-
son
On optimization of automation systems: integrating modular learning
and optimization
Submitted for possible publication in IEEE Transactions on Automation
Science and Engineering: Special Issue on Automation Analytics beyond
Industry 4.0: From Hybrid Strategy to Zero-Defect Manufacturing,
2021.

This paper extends on MPL with the Modular Optimization Learner (MOL),
a method that learns modular optimization models designed for subsequent
optimization using CompOpt. This completes the CompOpt framework, which
allows for optimization of large-scale automation systems without the exis-
tence of formal models. Furthermore, an integrated greedy search heuristic
removes many suboptimal paths in the individual modules. This allows MOL
to construct reduced optimization models similar to the locally optimal re-
ductions from CompOpt, speeding up the subsequent optimization.

45

46

CHAPTER 6

Concluding Remarks

The inspiration for the research presented in this thesis was an evaluation of
existing optimization paradigms where we tried to identify efficient methods
to deal with systems of systems. The evaluation did, however, result in the
realization that all the evaluated methods suffered severely from the state ex-
plosion problem. This was, of course, expected, since the problem is caused
by the modelling rather than the optimization itself. The aim has since then
been to push the boundaries of large-scale optimization of systems of sys-
tems through the integration of modular techniques, which have proven very
efficient in areas such as verification and supervisory control synthesis.
The first main contribution of this thesis, presented in Chapter 2, is a novel

approach to optimization of large-scale systems of systems. This method,
called compositional optimization, integrates time optimal control with meth-
ods from compositional supervisory control. The three key components of
this method are: (i) a local optimization technique that reduces the size of
each subsystem individually to mitigate the state explosion problem, (ii) an
integrated synchronization and optimization technique that synchronizes the
behavior of multiple subsystems, and at the same time reduces the global state
space using a fully integrated optimization heuristic, and (iii) the composi-

47

Chapter 6 Concluding Remarks

tional approach that computes the global optimal solution of the complete
system using the results from (i) and (ii). It is proven in this thesis that
the proposed compositional optimization approach both maintains the global
optimal solution of the system and computes a minimum reduction of each
subsystem.
It is shown in the included papers that this method has the potential to

be very efficient in large-scale optimization. Moreover, it is shown that it can
scale very well with the number of subsystems. This is especially true when
the subsystems have a complex local behavior, something that in a mono-
lithic optimization would cause an exponential growth of the search space.
It is shown in this paper that the method can calculate globally optimal so-
lutions for large-scale industrial applications. The focus has mainly been on
automation systems, including examples of manufacturing and logistics sys-
tems. Yet, the general theories presented can be applied to any system of
systems, as long as it can be modelled as a discrete event system.
The second main contribution of the thesis, presented in Chapter 3, is a

modular learning approach. Based on the interaction with a simulator and an
initial hypothesis of the modular structure of the system, this approach au-
tonomously learns the modular model necessary to perform a compositional
optimization. This mitigates the main limitation of the compositional opti-
mization: the reliance on existing formal models of the system, which requires
a high level of expertise to construct. It is also shown that the modular learn-
ing is able to learn different types of models for multiple purposes, such as
verification, supervisory control synthesis, as well as compositional optimiza-
tion.
Chapter 4 shows how these two contributions can be combined, completing

an optimization framework that can compute globally optimal schedules or
plans for large-scale systems without prior knowledge of any explicit system
models. This allows the optimization to be applied in a wider range of indus-
trial systems to improve their overall efficiency, which, of course, is beneficial
both from an economic and a sustainable perspective.
In future work, it would be interesting to apply this method in real indus-

trial applications to evaluate how well the learning scales with different types
of simulators and systems. The main challenge that this thesis reveals is to
find better guidelines on how to define an efficient PSH, such that the local
behavior of the subsystems can be exploited maximally. In the long term, the

48

definition of an efficient PSH can potentially be automated in the simulation
software. That is, the simulation software could be extended with a function
that allows it to derive a PSH based on the specific subsystem included in the
simulation environment. For instance, if the simulation includes two indus-
trial robots, then the simulator should be able to derive what actions can be
performed by each robot and how this affects different output variables of the
simulation. Furthermore, it would also be of interest to implement parallel
computation of the subproblems in both the learning process and the compo-
sitional optimization, and to implement this as a cloud service to evaluate the
potential of having scalable computational power.

49

50

References

[1] M. P. Groover, Fundamentals of modern manufacturing : materials, pro-
cesses and systems. Englewood Cliffs, N.J. : Prentice Hall, cop. 1996.,
1996, isbn: 0-13-312182-8.

[2] K. M. Passino and P. J. Antsaklis, “On the optimal control of discrete
event systems,” in Proceedings of the 28th IEEE Conference on Decision
and Control, Dec. 1989.

[3] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,” IEEE Transactions on Automatic Control, vol. 39,
no. 2, pp. 329–342, Feb. 1994.

[4] J. Huang and R. Kumar, “Optimal nonblocking directed control of dis-
crete event systems,” IEEE Transactions on Automatic Control, vol. 53,
no. 7, pp. 1592–1603, Aug. 2008.

[5] A. Kobetski and M. Fabian, “Time-optimal coordination of flexible man-
ufacturing systems using deterministic finite automata and mixed in-
teger linear programming,” Discrete Event Dynamic Systems, vol. 19,
no. 3, pp. 287–315, Sep. 2009.

[6] F. Hagebring, O. Wigström, B. Lennartson, S. I. Ware, and R. Su,
“Comparing MILP, CP, and A* for multiple stacker crane scheduling,”
in 13th International Workshop on Discrete Event Systems (WODES),
May 2016, pp. 63–70.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, 2nd Ed. Springer Science & Business Media, 2008.

51

References

[8] A. Valmari, “The state explosion problem,” in Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the Volumes Are Based on the
Advanced Course on Petri Nets, 1998.

[9] S. I. Gass and M. C. Fu, Encyclopedia of Operations Research and Man-
agement Science, 2013 Ed. Springer US, 2013.

[10] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. New York, NY, USA: Wiley-Interscience, 2007, isbn:
0470171553.

[11] X. Cao, Stochastic Learning and Optimization: A Sensitivity-Based Ap-
proach. Springer US, 2007, isbn: 9780387367873.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Bel-
mont, MA, USA: Athena Scientific, 1996.

[13] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd. Bel-
mont, MA, USA: Athena Scientific, 2005, vol. I.

[14] K. C. Wong and W. M. Wonham, “Modular control and coordination of
discrete-event systems,” Discrete Event Dynamic Systems, vol. 8, no. 3,
pp. 247–297, Oct. 1998.

[15] P. Ramadge andW.Wonham, “Modular feedback logic for discrete event
systems,” IFAC Proceedings Volumes, vol. 20, no. 9, pp. 93–98, 1987.

[16] H. Flordal and R. Malik, “Compositional verification in supervisory
control,” SIAM Journal on Control and Optimization, vol. 48, no. 3,
pp. 1914–1938, 2009.

[17] S. Mohajerani, R. Malik, and M. Fabian, “A framework for composi-
tional synthesis of modular nonblocking supervisors,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 1, pp. 150–162, Jan. 2014.

[18] R. Hill and S. Lafortune, “Planning under abstraction within a supervi-
sory control context,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), Dec. 2016.

[19] ——, “Scaling the formal synthesis of supervisory control software for
multiple robot systems,” in 2017 American Control Conference (ACC),
May 2017.

52

References

[20] S. Ware and R. Su, “Time optimal synthesis based upon sequential
abstraction and its application to cluster tools,” IEEE Transactions on
Automation Science and Engineering, vol. 14, no. 2, pp. 772–784, Apr.
2017.

[21] J. van Leeuwen, Ed., Handbook of Theoretical Computer Science (Vol.
A): Algorithms and Complexity. Cambridge, MA, USA: MIT Press,
1990, isbn: 0-444-88071-2.

[22] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Com-
puter Science, vol. 126, no. 2, pp. 183–235, 1994, issn: 0304-3975.

[23] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets.
Jan. 2010.

[24] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems, 2011.

[25] B. Jonsson, “Learning of automata models extended with data,” in For-
mal Methods for Eternal Networked Software Systems: 11th Interna-
tional School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18,
2011. Advanced Lectures. Berlin, Heidelberg: Springer, 2011, pp. 327–
349.

[26] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and abstraction of
the biometric passport,” in Leveraging Applications of Formal Methods,
Verification, and Validation, T. Margaria and B. Steffen, Eds., Berlin,
Heidelberg: Springer, 2010, pp. 673–686, isbn: 978-3-642-16558-0.

[27] F. Aarts, J. de Ruiter, and E. Poll, “Formal models of bank cards for
free,” IEEE 6th International Conference on Software Testing, Verifica-
tion and Validation Workshops, ICSTW 2013, pp. 461–468, Mar. 2013.

[28] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959, issn: 0029-599X.

[29] R. Sedgewick and K. D. Wayne, Algorithms. Addison-Wesley, 2011,
isbn: 9780321573513.

53

54

