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Electrochemistry shows cerium(IV)

stabilized in MOFs
We offer insights into how network topology influences stability of metal-organic

frameworks and suggest the application of rare sheet-MOFs, where metal ions and

linkers form infinite 2D units (SBUs) as a strategy for achieving higher stability. We

also demonstrate a unified topology approach to MOFs exemplified by the dot-,

rod-, and sheet-MOFs reported. These MOFs are based on vicinal dicarboxylates,

which we propose as a way to prepare rod-MOFs. Cyclic voltammetry suggests

Ce(IV)-MOFs as being more stable than expected with potential electrochemical

applications.
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A unified topology approach
to dot-, rod-, and sheet-MOFs

Francoise M. Amombo Noa,1,* Maria Abrahamsson,1 Elisabet Ahlberg,2 Ocean Cheung,3

Christian R. Göb,4 Christine J. McKenzie,5 and Lars Öhrström1,6,*
The bigger picture

Metal-organic frameworks is an

emerging class of materials with

wide-ranging capabilities due to

tunability, high surface area,

porosity, and large internal void

spaces. However, stability may be

an issue. Here, we argue for

increased stability going from

discrete multi-metal entities to

infinite rods to sheets as building

units and propose a unified way to

classify them.

We present a rare sheet-MOF

based on non-dense 2D net,

opening the way to even more

stable MOFs while preserving the

potential of high porosity and

surface area. Cyclic voltammetry

on this Ce(III)-based MOF CTH-15

indicates a remarkable

stabilization of the Ce(IV)

oxidation state and that more

Ce(IV) MOFs may be feasible.

Potential applications of this, or

similar MOFs, in electrochemical

applications related to drinking

water purification are discussed.
SUMMARY

Metal-organic frameworks made from multi-metal-ion units in the
shape of clusters and rods (termed dot-MOFs and rod-MOFs) are well
known. Here, we introduce MOFs with multi-metallic units in the form
of sheets—sheet-MOFs. We show exemplars of all three types of units
based on structures containing Y3+, Ce3+, or Gd3+ linked by benzene-
1,2,4,5-tetracarboxylate to give crystals of a dot-MOF in H2NMe2[Y(b-
tec)(H2O)] CTH-14, a sheet-MOF in [Ce3(btec)(Hbtec)(OAc)(HCO2)]
CTH-15, and a rod-MOF in 4,40-azopyridinium[Gd2(btec)2] CTH-16. Cy-
clic voltammetry shows that CTH-15 stabilizes Ce(IV). Given the fact
that sheet-MOFs represent an intellectual advance in the evolution of
MOFs, a unified approach is proposed for the topological classification
of dot-, rod-, and sheet-MOFs. It is suggested that the stability ofMOFs
follow in the trenddot< rod< sheet. ForCTH-14-16, the sheet- and the
rod-MOF have higher thermal stability. We suggest sheet-MOFs as an
additional strategy for making robust MOFs.

INTRODUCTION

The assembly and structure-directing role of the multi-metallic secondary building

unit (SBU) is central to the synthesis and understanding of metal-organic frameworks

(MOFs).1 In most cases, the metal-containing SBU can be reduced to a single point,

0D (for example {Zn4O(OCO)6} in MOF-5) with a certain geometry (octahedral in

MOF-5) and connectivity (6-c) to the organic SBUs. We will refer to this as a dot-

MOF. In some MOFs, however, carboxylates, imidazolates, or other Lewis base

groups bridge the metal ions in an infinite pattern where it is not possible to define

a 0D SBU (Figure 1 center and right). Most notably, we find these in the rod-MOFs,

where the metal ions are connected to form an infinite 1D SBU, such as {Mg2(O-

CO)2(O)2}N in MOF-74, then further connected into a 3D framework by the organic

SBUs.2 In this report, we introduce the concept of infinite 2D SBUs. To date, these

are rare in MOF chemistry, but our findings indicate that they are important. We

will refer to them as sheet-MOFs, and the three classes are compared in Figure 1.

For someMOFapplications, the stability, chiefly thermal or resistance todegradation in

solution3 (i.e., water at high or low pH) as well as mechanical stability, will be a crucial

parameter for real-world devices. Although there are no comprehensive systematic sta-

bility studies of a large sampling of different MOFs, indications are that rod-MOFs are

more thermally stable than dot-MOFs.4 We note that the rod-MOF topology was

recently credited with the hydrolytic stability of the water-harvesting MOF-303,5 and

that the rod-MOF MFM-300(Cr) was recently branded as ‘‘ultrastable.’’6

By analogy, we suspect that sheet-MOFs are even more stable than rod-MOFs, prin-

cipally because the higher the dimensionality of the SBU, the less likely it is to have a

strained structure especially around the metal sites.
Chem 7, 2491–2512, September 9, 2021 ª 2021 The Authors. Published by Elsevier Inc.
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Figure 1. Comparison of the three classes of MOFs based on metal SBUs

Left: Dot-MOF built from discrete metal-ion entities (0D) as small as a single-metal ion up to 2-

figure numbers. Center: Rod-MOF with 1D infinite metal SBU. Right: Sheet-MOF with 2D infinite

SBU. In all cases, the organic SBUs (not shown) connect the metal SBUs to a three-dimensional

framework. For clarity, only the SBUs are shown, not the 3D framework.
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For thermal tolerance, the sheet-MOF performance is indicated by the remarkable

stability of ULMOF-1, up to 610�C under a nitrogen atmosphere.7 In this compound,

sheets of edge- and corner-shared lithium-oxygen tetrahedra connect to a dense

sheet bridged by 1,4-benzene dicarboxylate (bdc) organic SBUs. Another example

is the Na+-based MOF-705 and MOF-706. Their sheet-MOF properties were used

to explain the unusual stability.8

There are good reasons to be observant of this general classification. However, a

more precise description of topologies is essential in reticular chemistry synthesis

planning,1 analysis, and communication of the resulting structures.9–13 Properties

such as porosity and flexibility have recently been investigated using the topology

approach,14 and a special case of folding topologies has been identified.15 How-

ever, rod-MOFs, and now sheet-MOFs, pose a particular problem because these

are commonly analyzed in a different way from dot-MOFs.2,16,17 A unified

approach would be advantageous both from a synthesis and an understanding

perspective. Note, however, we do not in any way seek to supersede or diminish

current efforts to generate solid algorithms for the automatic analysis of the large

amount of crystallographic data now available18,19; we find these absolutely

essential.

We approach the topology question from the vantage point of threeMOFs prepared

with benzene-1,2,4,5-tetracarboxylate, H4btec: a dot-MOF in H2NMe2[Y(btec)(H2O)]

CTH-14, a sheet-MOF in [Ce3(btec)(Hbtec)(OAc)(HCO2)] CTH-15, and a rod-MOF in

4,40-azopyridinium[Gd2(btec)2] CTH-16. From the MOF design point of view,

we note that btec, with its vicinal 1,2-dicarboxylates, seems prone to form rod-

MOFs, and this synthesis strategy will be elucidated further. As for rare-earth-

element (REE)-based MOFs, these are fascinating for their luminescence

properties, and the high coordination numbers of the REE ions make for diverse ge-

ometries and unprecedented network topologies.20 Moreover, H4btec is lumines-

cent on its own, and we report on how this property is modulated by the REEs in

these solids.

More importantly, MOFs have been identified as catalysts for different reactions

related to environmental issues.21 Specifically, Ce-MOFs were demonstrated as
2492 Chem 7, 2491–2512, September 9, 2021
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Figure 2. Benzene-1,2,4,5-tetracarboxylic acid H4btec and bonding to REE M3+

Note the angles between the carboxylate group and the benzene plane (dashed lines) that are

further investigated in Figure 6. The (H4btec) ligand offers two carboxylate groups in close vicinity

and therefore may be prone to the formation of infinite SBUs.
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effective catalysts for combustion of volatile organic compounds in air,22 and Ce(IV/

III)-MOF catalysis was recently proposed for hydrolysis of nerve agents.23 We have

investigated the redox properties of the Ce- and Gd-MOFs CTH-15 and CTH-16

by cyclic voltammetry, and our results suggest a stabilization of Ce(IV), normally a

strong oxidant.

Benzene-1,2,4,5-tetracarboxylate, H4btec (Figure 2) is a somewhat odd MOF linker

because the two carboxylate groups on each side are in close proximity. This looks

inviting for synergistic coordination in which the metal-ion attachment to one

carboxylate influences the coordination of the second one. There are 350 such

MOFs or coordination networks reported in the Cambridge Crystallographic Data-

base (CSD) to date, starting with a Ce(III)btec compound in 1997.24
RESULTS AND DISCUSSION

We start with synthesis and structures, then move on to thermal characterization,

chemical stability, photoluminescence, and electrochemical properties. In the

final part, the discussion draws from all these parts, touching on synthesis,

flexibility, and topology. Figure 3 gives an overview of the structures of CTH-

14–CTH-16.
Synthesis and structures of CTH-14, CTH-15, and CTH-16

The solvothermal reaction of H4btec, 4,40-azopyridine and Y(NO3)3$6H2O in a 1:1:2

(v/v/v) DMF/H2O/glacial acetic acid solution in a pyrex tube at 120�C produced

colorless single crystals of CTH-14, H2NMe2[Y(btec)(H2O)] after 24 h. A similar

method was applied in the making of CTH-15, [Ce3(btec)(Hbtec)(OAc)(HCO2)] and

CTH-16, 4,40-azopyridinium[Gd2(btec)2] with the exception that the metal salts

were Ce(NO3)3$6H2O and Gd(NO3)3$6H2O, respectively. In CTH-15, colorless crys-

tals were obtained after 3 days, and pale yellow crystals of CTH-16 were acquired on

the second day of the solvothermal reaction. CTH-14 and CTH-15 could also be pre-

pared without the presence of 4,40-azopyridine.

Table S1 details the crystallographic data and structure refinement parameters of

CTH-14, CTH-15, and CTH-16, and we also comment on the refinement processes

of CTH-15 and CTH-16. A short summary of the crystallography is provided below.

Figures S1–S5 give some more detail of the structures.

When the structures are discussed, it will be clear that neither of these compounds

are expected to show any remarkable surface areas or porosities. The gas sorption

results are therefore only briefly presented and discussed after each structure.

More details are provided in Table S6.
Chem 7, 2491–2512, September 9, 2021 2493



Figure 3. Overview of the three different MOFs, CTH-14, CTH-15, and CTH-16

The MOFs were obtained using solvothermal conditions from H4btec and mononuclear metal

precursor salts in DMF with or without the 4,40-azopyridine (except CTH-16). This gives MOFs with

the same organic SBU (btec part shown in green) and three distinct carboxylate-bridged

coordination entities (shown in cyan), which in turn can be thought of as a 0D metal SBU and infinite

1D or 2D metal SBUs. This gives one dot-MOF, one rod-MOF, and one sheet-MOF whose network

topologies were analyzed. Green and yellow spheres indicate nodes in the 0D SBUs, and black

spheres nodes in the network using the points-of-extension approach (vide infra). More details are

given below and in Figures S1–S4.
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H2NMe2[Y(btec)(H2O)]: CTH-14

H2NMe2[Y(btec)(H2O)] crystallizes in the P1 space group with an asymmetric unit

consisting of one Y ion, one btec linker, one dimethylammonium cation

(H2NMe2
+), and one H2O molecule coordinated to Y. The coordination network in

CTH-14 is a straightforward dot-MOF (Figure 3), although the dimethylammonium

ions fill most of the potential voids in the structure. Y3+ binds to five btec4� and

the btec4� binds to either 4 or 6 Y3+. The coordination sphere of Y3+ is completed

by one water molecule to give coordination number 8. The framework is stabilized

by hydrogen bonds (Table S2) between btec, H2O, and H2NMe2
+.

As expected, this compound shows no porosity in the gas sorption experiment.

[Ce3(btec)(Hbtec)(OAc)(HCO2)]: CTH-15

All tested crystals of CTH-15 had similar lattice constants and were potentially pseudo-

merohedral twinned. This compound, whose structure solved in the monoclinic space
2494 Chem 7, 2491–2512, September 9, 2021



Figure 4. Normalized solid-state photoluminescence spectra of CTH-16, H4btec, and 4,40-
azopyridine

The solid-state luminescence (lexc= 300 nm) of CTH-16 is dominated by the luminescence from the

guest molecule 4,40-azopyridine resident in the framework voids. Intensities are in arbitrary units,

normalized, and cannot be directly compared. For other luminescence spectra, see Figures S25 and

S26.
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group P21/cwith a very small monoclinic angle of 90.011(2)�, has three symmetry-inde-

pendentCeatoms,bonding10–12oxygenatomseach, and twobtec ligands indifferent

protonation states, a common occurrence for Ln-btec-MOFs. Formate is a common

breakdown product of theDMF solvent and acts as a non-bridging, coordinating anion.

This Ce-MOF has an unusual network for a MOF in that an infinite 2D SBU is formed

(Figure 3). The calculated porosity of CTH-15 with solvent removed is 38% with

spherical cavities of diameter 4.2 Å using CrystalMaker (see supplemental informa-

tion for details) or 20.7% using the more common Platon approach. However,

neither the porosity by N2 sorption at liquid N2 temperature nor CO2 and N2 sorp-

tion at ambient temperature (20�C) could be verified possibly because channel

diameter may be too narrow to detect,25 or, as indicated by a solvent accessible

void calculation, the voids are more isolated cavities than channels (see supple-

mental information for details). Powder diffraction indicates that CTH-15 retains its

network structure after activation in vacuum and the gas sorption experiment.

4,40-azopyridinium[Gd2(btec)2]: CTH-16

4,40-azopyridinium[Gd2(btec)2] CTH-16 crystallizes in the triclinic space group P1 with

its asymmetric unit containing one nine-coordinated Gd center, two half btec linkers,

and one half 4,40-azopyridium. In analogy with the isoreticular series (4,40-bipyridi-
nium)[Ln2(btec)2] Ln = Pr, Eu, Gd,26 we assign the missing charges to protonated pyri-

dine (O4.H-N42.394 Å) rather thanaprotonatedbtec ligandbasedon their presumed

pKa values although theproton cannot be identified from theelectrondensitymap. The

4,40-azopyridinium ion itself is situatedarounda special position in the channels ofCTH-

16. It was isotropically modeled as a fragment obtained from CSD structure KUGJUS27

because it is disordered,which is frequently the case.Of 152 structuredeterminations in

the CSDwith organic co-crystals of 4,40-azopyridine,more than 40%display disorder or

other problems. The identity of the 4,40-azopyridinium guest was moreover confirmed

by luminescencemeasurements (Figure 4). There are no apparent voids in the structure,
Chem 7, 2491–2512, September 9, 2021 2495
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andgas sorptionmeasurementsdidnot showanyporosity for this compound.As shown

in Figure 3, CTH-16 is a typical example of a rod-MOF.

Having established the structures, we now investigate some properties of these

materials.
Thermal analysis, thermal stability, and powder X-ray diffraction

CTH-14–CTH-16were studied by thermogravimetric analysis (TGA) under air and ex-

hibited different thermal behaviors. In the thermogravimetric curve of CTH-14 (Fig-

ure S12), the first two mass losses were associated to the loss of the dimethylamine

(HNMe2) (found 10.4%, calculated 11.2%); the rest corresponded to the loss of the

coordinated water molecule and the decomposition of the linker (btec). The CTH-

15 TGA curve is illustrated in Figure S13 and shows a first weight loss at 8.80%, which

is the release of mass corresponding to solvent (calculated 8.1%). The second weight

loss indicates the decomposition of the linker, acetate, and formate to give a residue

of 47.7% CeO2 (calc. 46.0 %). TGA analysis of CTH-16 (Figure S14) gave one weight

loss, which means that 4,40-azopyridinium is tightly held in the CTH-16 pores.

Although constant weight during a TGA experiment is no proof of architectural sta-

bility, it is still an indication of the material’s overall thermal stability.4 For our com-

pounds, the onset of thermal degradation is clearly some 20� lower for CTH-14

compared with CTH-15–CTH-16 that show close to identical starting points of the

mass loss at around 400�C. This is consistent with the idea that rod- and sheet-

MOFs are more stable than dot-MOFs such as CTH-14.

The PXRDpatterns ofCTH-14–CTH-16were in good agreement with their calculated

PXRD patterns, as demonstrated in Figures S15–S17. PXRD patterns of these three

MOFs were collected after N2 sorption experiments, indicating that all samples

remain intact after activation except for CTH-16. PXRD was further used to explore

the thermal architectural stability of the materials (Figures S18–S20).

Heating up to just under the decomposition temperature as indicated by the TGA

experiment, 350�C, shows the dot-MOF CTH-14 losing architectural integrity and

transforming to another unknown crystalline phase already after the 120� vacuum

activation for the gas sorption experiment. The sheet-MOF CTH-15 and rod-MOF

CTH-16 on the other hand are stable up to at least 350�C.

The compounds do differ in some substantial ways other than the dimensionality of

the SBUs, so to make the case for a stability trend dot < rod < sheet, we need to look

at more data. Recently, Bennett and co-workers4 reported a study of MOF thermal

stability. They based their analysis on the onset of decomposition from the plateau

phase in the TGA, and more than 200 MOF TGA experiments were taken into

account. We picked out and analyzed the topology of the metal SBUs for the most

stable MOFs in this study with a Td exceeding 500�C (see Table S4).

We found that of these 10 thermally stable MOFs, there were one dot-MOF, six rod-

MOFs, and three sheet-MOFs, with the sheet-MOF ULMOF-1 taking the record, be-

ing stable up to 610�C as already mentioned. Although this corroborates our idea,

we acknowledge that this cannot be the only factor deciding the thermal stability.

In this respect, we note that the only MOFs stable enough to melt are a couple of

ZIFs. ZIF-4 melts at 567�C and ZIF-62 at 410�C and is stable for another 100�C.28
2496 Chem 7, 2491–2512, September 9, 2021
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This seems understandable in light of the above discussion as ZIFs connected only

through their imidazolate units can be thought of as having three-dimensional SBUs.

Chemical stability

Chemical stability of CTH-14, CTH-15, and CTH-16 were probed by soaking the

MOFs in water at pH 7, aqueous 5-M HCl, and aqueous 5-M NaOH at room temper-

ature for 1 h (Figures S21–S23). All threeMOFs were stable in water for at least 1 h, as

their corresponding PXRD patterns remained the same as the as-synthesized prod-

ucts. In 5-M HCl, CTH-14, CTH-15, and CTH-16 maintained their crystallinity

although some peak broadening was observed, but their final products did not

match their as-synthesized diffraction patterns but rather H4btec on its own (Fig-

ure S24). Lower chemical stability of these three MOFs were found when using

very basic (5-M NaOH) media. There is loss of intensity in the PXRD patterns of

CTH-14 and CTH-16 and a rather amorphous final product in CTH-15. This is likely

because CTH-15 has a relatively good leaving group (formate, pKa 3.7), which is

easily attacked andmay provoke the decomposition of the framework (the exchange

of formate for other anionic molecules has been demonstrated in, for example,

MOF-52029).

Ding et al.3 recently surveyed solution-stability studies of MOFs, and again, we

picked the most stable examples, materials reported to survive a week or more un-

der various conditions (see Table S3). Of these, eight are dot-MOFs, another eight

rod-MOFs, and one is a ZIF, thus with a 3D SBU. We note that of these, only ZIF-8,

MIL-177-LT, and two rod-MOFs were stable under as harsh conditions as we tested

CTH-14, CTH-15, and CTH-16.

Again, given the predominance of dot-MOFs, this supports that the dimensionality

of the metal SBU is a factor also in solution stability. The importance of chemical sta-

bility in many chemical applications of MOFs makes it somewhat surprising to note

the scarcity of thermodynamic solubility product data.30

Photoluminescence properties

Lanthanoid-basedMOFs have become popular in the past years because of their po-

tential useful magnetic and photoluminescence properties. These properties are

attributed to their geometries, higher coordination numbers compared with transi-

tion metals, inherent luminescent abilities, and high number of unpaired elec-

trons.31–33 The luminescence properties of CTH-14, CTH-15, and CTH-16, H4btec,

and 4,40-azopyridine were investigated in the solid state at room temperature using

an excitation wavelength of 300 nm. Detailed assignments are discussed in the sup-

plemental information.

The emission spectra of the free ligands are displayed in Figure 4. H4btec exhibits

somewhat structured emission at 370 nm in line with previous studies,34,35 while

4,40-azopyridine on the other hand shows a less structured emission band at

414 nm.36

The photoluminescence spectrum of CTH-14 shows emission at 351 nm, whereas

CTH-15 has a more intense emission at 400 nm, both consistent with similar com-

pounds37,38 (Figure S25).

The CTH-16 spectrum (Figure 4) is dominated by an emission band at 414 nm, which

can be attributed to the 4,40-azopyridine guest. Weaker features at around 370 and

500 nm are also observed that may originate in the btec ligand (Figure S26). This
Chem 7, 2491–2512, September 9, 2021 2497



Figure 5. Cyclic voltammetry of the Ce(IV)/Ce(III) redox couple in CTH-15

Cyclic voltammogram of CTH-15 in carbon paste, 0.1 M phosphate buffer, pH = 7 and sweep rate

10 mVs�1 showing that the redox potential of Ce(IV)/Ce(III) in [Ce3(btec)(Hbtec)(OAc)(HCO2)] CTH-

15 is about 0.2 V versus Ag/AgCl, a remarkable stabilization of Ce(IV) compared with the aqueous

solution chemistry. For other cyclic voltammograms, see Figures S27 and S28.
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indicates that 4,40-azopyridine is present in the CTH-16 structure, corroborating the

findings from the X-ray investigation. However, these measurements do not appear

to be sensitive to whether the 4,40-azopyridine is coordinated to a metal ion or

protonated.39

CompoundsCTH-14, CTH-15, and CTH-16 exhibit photoluminescent behaviors that

may warrant further investigations in light of the need for devices stable to moisture,

air, and thermal degradation,40,41 especially given the architectural stability of CTH-

15 up to 350�C as shown by powder diffraction and the insolubility in common polar

and non-polar solvents.
Electrochemistry

The electrochemical behavior of CTH-15 and CTH-16 was characterized by cyclic

voltammetry in the solid state using a carbon paste electrode.

For CTH-15, the voltammogram shows a quasi-reversible electron transfer reaction,

probably related to the Ce(IV)/Ce(III) redox couple in theMOF structure, see Figure 5

(as no corresponding couple was shown forCTH-16with the non-redox active Gd3+).

The electron transfer kinetics is slow as expected for a carbon paste electrode. The

redox potential is about 0.2 V versus Ag/AgCl, taken as the mean value between the

anodic and cathodic peak potentials.

For the Ce(IV)/Ce(III) in aqueous solution, the reversible potential is 1.72 V versus

SHE, i.e., 1.52 V versus Ag/AgCl.42 The large decrease in oxidation potential for

CTH-15 means that Ce(III) is destabilized in the structure, i.e., it is more easily

oxidized, whereas Ce(IV) is stabilized and more difficult to reduce than its corre-

sponding water complexes. This is in line with previous solution studies indicating

a substantial span in redox potentials for the Ce(IV)/Ce(III) couple and in particular

stabilization of the Ce(IV) by anionic oxygen ligands.43,44 Notably, with the
2498 Chem 7, 2491–2512, September 9, 2021
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octadentate 1-hydroxy-2-pyridinonate ligand 3,4,3-li-(1,2-hopo), the Ce(IV)/Ce(III)

potential was measured to be 0.175 V versus Ag/AgCl,45 close to the Ce(IV)/Ce(III)

potential measured for CTH-15. It is also in line with very recent studies on Ce(IV)-

MOF-808.46

Cerium is well established in various electrochemical processes,47 but studies of

electrochemical applications of MOF have been mostly concentrated on batteries

and supercapacitors or water-splitting reactions.48 Given the affinity of cerium

ions to nitrate ions,47 it would be interesting to explore CTH-15 or related systems

in catalytic electrochemical nitrate reduction, an important issue due to a pressing

need to remove nitrate from drinking water.49,50 We note that the general require-

ments for a nitrate reduction cathode as pointed out by Zeng et al.50 ‘‘liquid channels

for reactant delivery and gas channels for product separation’’ seem to fit nicely with

the MOF concept.50,51 In this context, the low toxicity of cerium and its relative high

earth abundance, on the level of copper, is noteworthy. More comprehensive

studies of the electrochemistry of CTH-15 and related systems are underway.

Gd(III) in CTH-16 is not redox active, but the guest molecule 4,40-azopyridine could

in principle be reduced to the hydrazine. However, the two small redox couples that

can be observed in the cyclic voltammogram of CTH-16 (Figure S28) we tentatively

attribute to the btec linker52 because they have no resemblance to the electrochem-

ical behavior of 4,40-azopyridine, also investigated in the solid state (Figure S27), the

latter showing two clear peaks for the oxidation and reduction, forming 1,2-di(pyri-

dine-4-yl)hydrazine corresponding to the solution chemistry. This indicates that the

guest is shielded in the structure and the reduction, requiring water or protons,

cannot take place.

We will now discuss these results in a broader context.

Implications for btec-based MOF synthesis

Flexibility

The guests, or counter ions, are of slightly different shape and size in CTH-16 and in

the isoreticular (4,40-bipyridinium)[Ln2(btec)2], meaning that the network has to have

some flexibility. For the unit cell, this is expressed by 7% volume increase in CTH-16

and a visibly less tilted network (Figure S4). There are many flexible, or ‘‘breathing’’

MOFs,53–57 but the classic example is MIL-53,58 a rod-MOF just like CTH-16 with an

sra-net. While there are different topological discussions of flexibility,14,15 for MIL-53

and its derivatives, a kneecap movement of the metal carboxylates has been identi-

fied in the crystal structures. This involves bending of the M2O2 plane of the carbox-

ylate versus the benzene plane, so that for a ‘‘closed’’ (GUSNEN01) version of MIL-53

the average angle is 30� and for the ‘‘open’’ (MINVOU) 10� (Figure S6 left).

In contrast, the out-of-plane turning of the carboxylates (Figure 2) is very slight for all

such compounds, 85% laying within 22� from being co-planar and 10% being exactly

co-planar (Figure S6 right). The situation is very different for the btec-MOFs, where

there is a larger variety in angles and these angles are pairwise correlated (because

of steric effects) (see Figure 6). We suggest that both of thesemechanisms are in play

simultaneously to render these frameworks flexible.

We also suggest that the flexibility of the btec ligand depicted in Figure 6 is partly

responsible for the variety of structures observed with the REE ions. We count 17

different topologies in the 43 different 3D btec coordination polymers reported to

date (Table S5).14 Add to this around 10 2D compounds, and it is certainly a lot
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Figure 6. Analysis of vicinal benzene dicarboxylate structures in the CSD

Left: The structures of all vicinal (1,2) benzene dicarboxylates in the CSD were analyzed, and for

each structure, the two angles between the carboxylate groups and the benzene plane were

extracted (see Figure 2 for angle definitions). The many different angles may make both flexibility

and a variety of network topologies possible. The potential energy surface also looks fairly flat.

Values for CTH-16 and the isoreticular Gd-btec-MOF with CSD code FEQXAB are indicated by

stars. For a similar analysis of 1,4- benzene dicarboxylate-based MOFs, see Figure S6. Right: Space

filling structures of the frameworks in CTH-16, and the isoreticular Gd-btec-MOF with CSD code

FEQXAB, with hydrogen atoms omitted.
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for systems likely to form compounds that should be very similar or even isostruc-

tural. The devil is in the details, different solvents, stoichiometries, and methods

yielding these diverse results.

Rod- and sheet-MOF synthesis

Rod-MOF structures may be a strategy for increased stability of MOFs, and btec-

type ligands may be a way to achieve that. The vicinal positions of the carboxylates

induce chain formation, and the concerted movement of the CO2
� units (see flexi-

bility discussion) may also be a factor. Experimental indications come from the prom-

inent featuring of btec-MOFs in the 2016 review by Schoedel et al.2 and also from

our analysis of the 43 different REE 3D btec coordination polymers (Table S5). Of

these, almost 80% are rod-MOFs, and two are sheet-MOFs. However, due to the

shortness of the btec linker, we cannot expect any great porosity or surface area

for these.

However, extended btec-type ligands, bridging aromatic ligands with double (such

as btec) or triple vicinal carboxylate groups are rare in MOF chemistry. So, while

[1,10:20,10’-terphenyl]-4,40,40’,50-tetracarboxylates with one vicinal dicarboxylate are

relatively common ligands (36 MOF structures in the CSD), the one benzene group

extension of H4btec to 2,3,6,7-anthracenetetracarboxylic acid has but four known

MOF structures.59

Weseehere anopportunity for new families ofMOFs: for example, onecandidatemetal

ion being Ce(IV), which we have shown here to be substantially stabilized compared

with its aqueous solution chemistry. Ce(IV) MOFs are previously known,46,60–72 but it

is not a large class of MOFs, possibly because of the use of Ce(IV) as a well-known

oxidant in organic synthesis. However, Ce(IV) may be more stable than we think,43,44
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Figure 7. Approaches to rod-MOF topologies

Schematic example of topology approaches for infinite 1D rod-SBUs in btec-MOFs. Left: Node

assignment and links according to the TOPOS standard method ‘‘standard.’’ Center left: Node

assignment and links using the carbonyl carbons as branching points corresponding to the points-

of-extension approach. Center right: The straight rod, STR, approach. Right: The points-of-

extension & metal centers, PE&M approach.
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aswe recently noted the spontaneousoxidation of Ce(III) toCe(IV) forming entities such

as [Fe(III)4Ce(IV)4O4(O2CCMe3)4(N(CH2CH2OH)3)4(N3)4(MeOH)4].
73

To answer the more general question of whether there are specific conditions favor-

ing rod- and sheet-MOF formation is more difficult. The same parameters that lead

to the formation of compounds with non-connected rods and sheets should be

good, if these are known. Then, we might just speculate that one difference is that

precursors of the dot-MOF may be coordinately saturated discrete 0D metal SBUs

that are potentially stable, or meta-stable, in solution. Depending on the stability

constants, these may be obtained under high ligand-to-metal ratios. No corre-

sponding solution species are possible for the infinite 1D and 2D metal SBUs of

rod- and sheet-MOFs, suggesting that lower ligand-to-metal ratios may be a viable

strategy.

Having discussed our results in a broader structural context, we will now look into

some specific topology issues.
Network topologies: A unified approach to MOFs

There are three basic approaches for the discussion of the network topologies. The

‘‘all-nodes’’ approach with identification of SBUs, the ‘‘standard simplification,’’

which we will simply call ‘‘standard,’’ which takes the organic linkers as one node

and each metal atom as a separate node thus splitting multinuclear metal SBUs

into several nodes, or the ‘‘cluster simplification,’’ decomposing the structure into

pieces with high connectivity, which may again generate metal SBUs.14,74,75 The

former lends itself more easily to synthesis planning for chemists, whereas the latter

two approaches have been coded for, and databases such as the Cambridge Struc-

tural Database (CSD) have been searched and analyzed.14 The topologies reported

will be related in a net relation graph76 and for single-metal SBUs often identical.

For rod-MOFs, the differences are significant (Figure 7). The all-nodes approach has

been modified to use the carboxylate carbons as branching points, which has the
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Figure 8. The network in H2NMe2[Y(btec)(H2O)]: CTH-14

Left: The form of the metal SBU is two edge-sharing square pyramids depicted as the yellow

polyhedral, and the organic SBU is a rectangle shown in green. Right: The resulting network in the

all-nodes approach is the eight- (yellow) and four-connected (green) scu-net, shown here with the

H2NMe2
+ in the network voids. For the standard approach and the crg-net, see Figures S7 and S8.
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merit that it will also reflect the shape of the rod. This ‘‘points-of-extension’’

approach2 is shown in the center left of Figure 7.

Making connections only through the organic ligand does not consider the rod at all

(see standard method, Figure 7, left). Recently, alternative approaches to rod-MOFs

have been discussed,16,17 and we will also compare them with a simplified version of

the straight rod representation (STR) (Figure 7 center right). We also note the

method recently proposed to use both points of extension and metal centers

(PE&M, Figure 7 right).16 This helps avoid some ambiguity in the points-of-extension

approach, but it also introduces more nodes.

Topology of H2NMe2[Y(btec)(H2O)]: Dot-MOF CTH-14

The coordination network CTH-14 is a straightforward dot-MOF with the metal SBU

as the bridged dimer in the form of two edge-sharing square pyramids (Figure S1),

and the structure can be described as eight- and four-connected scu-net,77 with

additional space filled with dimethylammonium ions (see Figure 8 right).

Apart from the SBU approach using the dimer as themetal node giving the high sym-

metry scu-net, we could also consider the carboxylates binding to single-metal ions,

the standard approach, where we now need to consider Y3+ binding to five btec and

the btec binding to either 4 or 6 Y3+ (Figure S7), but no connection between the two

Y3+ in the dimer. This gives the 4,5,6-connected net, crg (or 4,5,6T11, Figure S8).

The points-of-extension method applied to a dot-MOF

Yet another way of looking at the CTH-14 structure is to consider the points-of-

extension method as used for rod-MOFs. The merit of this would be to have the

same description for dot-, rod-, and sheet-MOFs.

We first note that this method has analogies with the augmented net. The augmented

net is the net that is formed by replacing nodes by their corresponding polyhedra (Fig-

ure 9).78 This is a commonway of depicting, for example,MOF-5 and thepcu-net. Thus,

the SBU {Zn4O(OCO)6} in MOF-5 forms an octahedron if we connect the six carbonyl
2502 Chem 7, 2491–2512, September 9, 2021



Figure 9. Augmented net and points-of-extension topologies demonstrated in MOF-5

The augmented net is the net that is formed by replacing the nodes by the corresponding

coordination figure. This is a common way of depicting, for example, the pcu-net and MOF-5. In the

picture, we see the six-connected pcu-net in black and the augmented five-connected pcu-a or

cab-net in red. We can generalize the augmented net concept and instead use the coordination

figure of the actual SBU, which for MOF-5 is identical to the coordination figure of the net. In CTH-

14, the approach leads to a points-of-extension net.
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carbons. In the process, wewill also split the 6-connected nodeof thepcu-net into six 5-

connected nodes, giving the network topology cab or pcu-a (-a for augmented).

For the scu-net, this means that the scu-a is formed by squares and cubes with 3- and

4-connected nodes, respectively. However, other polyhedral shapes can form 8-

connected nodes, for example, the two fused square pyramids (Figure S1) that

form the metal SBU in CTH-14. The points-of-extension net formed in this way is a

6-nodal 4-, 5-, and 6-connected net (with ToposPro designation loh3).

Although this may only seem to add unnecessary complications, pcu is a perfectly

adequate description of MOF-5 and scu of CTH-14; what the points-of-extension

method supplies is a topology including also themetal SBU geometry. This is exactly

equivalent to the reportedmethod of analyzing rod-MOFs2 and also the way we pro-

pose to analyze sheet-MOFs.

The points-of-extension method thus puts dot-MOFs, rod-MOFs, and sheet-MOFs

on the same topological footing.

Topology of [Ce3(btec)(Hbtec)(OAc)(HCO2)]: CTH-15

Although MOFs with layered infinite SBUs have been observed before, notably for

[Fe2(btec)] MIL-62,79 most of these tend to be dense layers, pillared by linkers. Some

are based on the corresponding hydroxide structures, such as [Eu2(OH)4(bdc)], MIL-

51, or the earlier-mentioned ULMOF-1 with a lithium-oxide-based layer. However,

the overall shape of a rod is a line, a 1D object, but a 2D infinite SBU may have many

overall motifs, like a square planar grid or a honeycombnet. In Figure 10, we can assign

a 3-connected honeycomb (hcb) motif for the 2D SBU {Ce3(OCO)7}
2�

N in CTH-15.

These motifs can, similar to the rods in the rod-MOFs, be constructed in different

ways. For example, edge-sharing octahedra may give a honeycomb net.

Using the reported approach for rod-MOFs2 that we call the points-of-extension

method, we take the carboxylate carbons as the points defining the shape of the

metal SBU (just as the form of the SBU of MOF-5 is described by an octahedron in

Figure 9). This yields chains of edge-sharing trigonal prisms bridged by rectangles
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Figure 10. Infinite (sheet) SBU in [Ce3(btec)(Hbtec)(OAc)(HCO2)]: CTH-15

The infinite (sheet) SBU in [Ce3(btec)(Hbtec)(HCO2)(OAc)] CTH-15. Left: Showing Ce and the btec

COO� units. Right: The 2D hcb net used for the STR approach. For clarity, bridging btec-nodes or

acetates and formates are not shown. See also Figures S9 and S10.
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and a three-nodal 4,5,6-connected topology loh2 (ToposPro designation) with point

symbol {32.44.5.63}2{3
2.64}{33.45.5.66}2 (Figure 11).

A similar approach as the standard in Figure 7, linking only metal ions to the centers

of the ligands instead gives the edge transitive two-nodal 4- and 6-connected stp-

net based on square planes and trigonal prisms if we exclude the acetate and

formate that can be seen as merely attachments to the network (Figure S10). The

straight rod representation can also be extended to 2D with the hcb-nets (Figure 10)

connected by the btec ligands. If we further simplify by considering the btec ligands

as just a link between these sheets, we get the well-known five-connected bnn-net

(Figure S10).

Compared with the rod-MOFs, these sheet-MOFs seem rare and should by no

means be confused with the case of having a flat 0D SBUs forming layers in a struc-

ture of a dot-MOF. Two other examples of sheet-MOFs are [Cd3(suc)2.5(dpa)2]ClO4

(suc = succinate, dpa = 4,40-dipyridylamine) with a 8-metal 2D square grid SBU,80

and [Pb5(1,3-bdc)5(H2O)2]2 with a 16-metal 2D honeycomb grid SBU with a roughly

5 Å aperture.81 Because of the extra oxygen enabling the formation of these short
Figure 11. The network in [Ce3(btec)(Hbtec)(OAc)(HCO2)]: CTH-15

Left: Polyhedral view with the infinite 2D metal SBU in yellow, defining CTH-15 as a sheet-MOF, and

the bridging btec organic SBU in green. Right: This results in a three-nodal 4,5,6-connected

network topology, where btec is 4-connected, as with the points-of-extension method it retains its

connectivity irrespective of the detailed layout of the metal coordination.

2504 Chem 7, 2491–2512, September 9, 2021



Figure 12. The Gd-btec network in 4,40-azopyridinium[Gd2(btec)2]: CTH-16

Left: Polyhedral view with the infinite 1D metal SBU in yellow, defining CTH-16 as a rod-MOF, and

the bridging btec organic SBU in green. The resulting network, center, with Gd3+ ions shown as

cyan spheres, has a bi-nodal 4,5-connected topology, cjm shown in a perpendicular view to the

right in its most symmetric form shown. For the standard and STR approaches, see Figure S11.
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bridges, one would expect sulfonates and phosphonates82 to bemore prone to form

sheet-MOFs, and one such example is [Co(O3PC14H12PO3)].H2O.83

Topology of 4,40-azopyridinium[Gd2(btec)2]: CTH-16

CTH-16, 4,40-azopyridinium[Gd2(btec)2] is a typical example of a rod-MOF. The rods

are formed by face-sharing cubes, bridged by 4-connecting btec4� ligands, and the

points-of-extension approach gives the bi-nodal 4,5-connected topology cjm with

point symbol {32.62.72}{3.45.52.62}4 (Figure 12).

The rod-MOF structure CTH-16 can also be treated with the standard method,

yielding the likewise bi-nodal htp-net based on hexagons (btec) and trigonal prisms

(Gd), the assignment given to the isoreticular 4,40-bipyridinium[Ln2(btec)2] com-

pounds in a recent database survey (Figure S4).14 If we make straight rods and let

the btec just be a linear connector, the structure reduces to the dia-net in an embed-

ding with seesaw geometry of the nodes (Figure S11).

The merits of the different approaches

In Table 1, we compare some different topology approaches for the compounds

presented in this work.
Table 1. Comparison of the different topology approaches

Comp. All nodes Points of extension Standard Simple STR

MOF-5 pcu (1,1) cab (1,2) fff (3,2)84 –

CTH-14 (Y) scu (2,1) loh3a (6,12) crg (3,3)b –

CTH-15 (Ce) – loh2a (3,8) stp (2,1)c bnn (1,2)

CTH-16 (Gd) – cjm (2,5) htp (2,2)5 dia (1,1)

Comparison of the different topology approaches for the materials presented in this article and MOF-5

for comparison. For each topology, we also present in parenthesis p = number of nodes and q = number

of edges, as a crude indication of the complexity of each net.
aTTD collection code (TOPOS).
bTTD code 4,5,6T11
cConsidering only linking by the btec ligand.
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All topology methods have their merits, but it is essential to know the difference,

especially for infinite SBUs, and be clear on which one is used. The standard method

gives a conceptually simpler way of describing the net (Table 1) but normally has no

links in the direction of the rod or the sheet, and thus these become ‘‘invisible.’’

The points-of-extension approach, on the other hand, can easily give very complex

rod-SBUs85 and, we suspect, even more complex sheet-SBUs. One advantage is the

preservation, by definition, of the connectivity of the organic SBU. For example, as

long as all carboxylate groups of the btec ligand are engaged in metal bonding,

btec will always be described as a rectangular 4-connected SBU. Another

advantage is the explicit description of the metal SBU that is no longer reduced to

a single point.

In addition, the metal SBUs are assembled during the reaction so that planning for a

particular network to form, knowledge of what nets are possible with that particular

metal SBU, or choosing what metal SBU to aim for will be essential for synthesis

planning.

However, one has to be sure that the increased complexity really gives an increased

understanding for the points-of-extension approach to be worthwhile. So, although

visually picturing MOF-5 as the points-of-extension uninodal net cab is closer to the

real structure, the topology adds little. The same is true if describing MOF-5 with the

three-nodal fff topology with the bridging dicarboxylates described as 4-connected

nodes in the standard method.

On the other hand, if easy-to-recognize rod or sheet patterns as ladders or fused

polyhedra that could inspire the chemist are not what we are after, but instead a nu-

merical comparison of large number of structures, then the PE&M may be a way for-

ward. This gives for MOF-5 the three-nodal mof-net. A more detailed description

also makes it easier to find closely related materials in various databases.

Conclusions

We have shown that in addition to the common rod-nets there are analogous infinite

2D SBUs forming sheets. We propose that the three classes of MOFs emerging from

the designation of themetal SBUs as 0D, 1D, and 2Dbe called dot-MOFs, rod-MOFs,

and sheet-MOFs, respectively, in order for us to be able to discuss them easily.

Bennett and co-workers noted recently that there is a ‘‘huge gap in our understand-

ing of the thermal stability of this vast class of materials.’’4 Literature data we have

assembled, nevertheless, supports the idea that the thermal, but also chemical, sta-

bility of MOFs follow in the trend dot < rod < sheet. Certainly, for our materials, the

sheet-MOF CTH-15 was the most stable thermally. Having said that, we want to

stress that this is not the only factor determining the stability of a MOF.

The network topologies of all three classes can be analyzed using the points-of-

extension method. This does not invalidate or supersede other methods but pro-

vides a way of describing all MOFs in the same theoretical framework. Notably, it

takes into account the geometry of the metal SBU and preserves the connectivity

of the organic SBU.

We suggest that implementing a search algorithm for the points-of-extension

method and applying it to the MOF subset in the CSD may yield further insights

into MOF structures and properties along the lines of recent studies, with the
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standard method, cluster method, or PE&M approaches perhaps more suitable for

numerical comparisons.19

We have attributed the flexibility, or potential breathing behavior, of CTH-16 and its

isoreticular analogs partly to the large conformational space of the vicinal carboxyl-

ates of the btec linker, shown by analysis of data in the CSD.

The photoluminescent behavior suggests potential for further investigations, but

most importantly, this was used to identify the guest molecule in CTH-16.

Finally, cyclic voltammetry shows a remarkable stabilization of Ce(IV) compared with

solution chemistry, and we suggest Ce(III/IV) MOFs to be interesting catalyst candi-

dates for various redox reactions. More experiments are planned to explore the po-

tential for electrochemical redox catalysis with CTH-15.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information should be directed to and will be fulfilled by the lead contact,

Lars Öhrström (ohrstrom@chalmers.se).

Materials availability

All chemicals were purchased from Sigma-Aldrich and were used without further pu-

rification. Samples of CTH14-16 may be available on request to the lead contact.

Data and code availability

d Crystallographic Information Files for the structures reported in this paper have

been deposited with the Cambridge Crystallographic Data Center (CCDC). The

deposition numbers of clusters are CCDC 2019728 (CTH-14), 2088967 (CTH-

15), 2019730 (CTH-16) and 2019731 (salt). Copies of the data can be obtained,

free of charge, on application to the CCDC, 12 Union Road, Cambridge

CB21EZ, U.K. (fax 44 (1223) 336 033; e-mail deposit@ccdc.cam.ac.uk) or on

www.ccdc.cam.ac.uk.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

Synthesis of CTH-14: (H2NMe2)[Y(btec)(H2O)]

Yttrium nitrate hexahydrate (60.278 mg, 0.157 mmol), 1,2,4,5-benzenetetracarbox-

ylic acid (H4btec; 20 mg, 0.079 mmol), and 4,40-azopyridine (4,40-azpy; 14.495 mg,

0.079 mmol) were dissolved in a 1:1:1 (v/v/v) DMF/H2O/glacial acetic acid. The reac-

tionmixturewas placed in a pyrex tube for solvothermal synthesis at 120�Cand color-

less crystals which are CTH-14 were obtained in 24 h. In the same tube, pale yellow

crystals, which are a salt formed between H4btec and the reduced 4,40-azopyridine;
1,2-di(pyridin-4-yl)hydrazine, were also obtained.CTH-14 could also beobtained in a

similar reaction without the 4,40-azopyridine. Elemental analysis for CTH-14,

C12H12NO9Y, calculated (found): C 35.75 (35.23), H 3.00 (2.96), N 3.47 (3.46)%.

Synthesis of (1,2-di(pyridinium-4-yl)hydrazine(H2btec)), see CTH-14

Synthesis of CTH-15: [Ce3(btec)(Hbtec)(OAc)(HCO2)]

Same synthesis procedure was done as for CTH-14 with the exception that cerium

nitrate hexahydrate (68.337 mg, 0.157 mmol) was used, and after 3 days, colorless

crystals of CTH-15 were formed. CTH-15 could also be obtained in a similar reaction
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without the 4,40-azopyridine. Elemental analysis for CTH-15 with seven extra water

molecules, C23H23Ce3O27, calculated (found): C 23.99 (23.5), H 2.01 (1.9), N 0.4

(0.0)%.
Synthesis of CTH-16: 4,40-azopyridinium[Gd2(btec)2]$

The same procedure was followed as in CTH-14 with the exception that gadolinium

nitrate hexahydrate (71.035 mg, 0.079 mmol) was used. Pale yellow crystals were ac-

quired on the second day. Elemental analysis for CTH-16 with three extra water mol-

ecules, C30H20Gd2N4O19, calculated (found): C 34.15 (34.39), H 1.91 (2.30), N 5.31

(5.42).
Single-crystal X-ray diffraction

Single-crystal X-ray diffraction data were collected on a Rigaku XtaLAB Synergy-S,

Dualflex diffractometer equipped with an AtlasS2 detector at �173�C using Cu Ka

radiation (l = 1.54184 Å) and a Rigaku XtaLAB Synergy-S, Dualflex diffractometer

equipped with a HyPix-6000HE detector using Mo Ka radiation (l = 0.71073 Å).

Diffraction data were acquired and processed with CrysAlisPro software pack-

age.86,87 Direct or structure expansion methods were used for all structures, and

the refinements were established by full-matrix least squares with SHELX-2018/388

using X-seed89 and Olex290 software as a graphical interface. Details of structure re-

finements are found in the supplemental information.
Volumetric gas adsorption and surface area analysis

N2 adsorption isotherms were recorded on a Micromeritics ASAP2020 surface area

analyzer at liquid N2 temperature (�196�C). The samples were pre-treated at

120�C under dynamic vacuum (1 3 10�4 Pa) for 6 h before the analysis. The relative

pressure range of 0.05–0.15 was used to estimate the Langmuir and BET surface

area of the samples. Additionally, CO2 and N2 adsorption isotherms were re-

corded at 20�C (with a temperature-controlled water bath) using the same

instrument.
Cyclic voltammetry

All electrochemical measurements were made in a three-electrode cell with an Ag/

AgCl reference electrode and a Pt mesh counter electrode. The working electrode

consisted of carbon paste (Metrohm), with and without electroactive material. The

composition of the electroactive part was 50/50 wt % of carbon paste and electro-

active material. A phosphate buffer with pH = 7 and concentration 0.1 M was used

as electrolyte. The electrolyte was purged with nitrogen before each experiment,

and a stream of nitrogen was kept over the solution during the experiments. The

scan rate was 10 mV/s.
Emission measurements

Room temperature steady-state emission spectra of the compounds were obtained

with a Spex Fluorolog 3 from JY Horiba; the excitation wavelength was 300 nm for all

samples. For H4btec, 4,40-azopyridine, CTH-15, and CTH-16, the samples were

loaded into 1-mm cuvettes, but for CTH-14, the sample was deposited on a glass

substrate, as there was not enough to fill a cuvette.
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