
Handling Transitive Relations in First-Order Automated Reasoning

Downloaded from: https://research.chalmers.se, 2022-01-01 18:12 UTC

Citation for the original published paper (version of record):
Claessen, K., Lillieström, A. (2021)
Handling Transitive Relations in First-Order Automated Reasoning
Journal of Automated Reasoning, In Press
http://dx.doi.org/10.1007/s10817-021-09605-z

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Automated Reasoning
https://doi.org/10.1007/s10817-021-09605-z

Handling Transitive Relations in First-Order Automated
Reasoning

Koen Claessen1 · Ann Lillieström1

Received: 9 May 2018 / Accepted: 4 July 2021
© The Author(s) 2021

Abstract
Wepresent a number of alternativeways of handling transitive binary relations that commonly
occur in first-order problems, in particular equivalence relations, total orders, and transitive
relations in general. We show how such relations can be discovered syntactically in an input
theory, and how they can be expressed in alternative ways. We experimentally evaluate
different such ways on problems from the TPTP, using resolution-based reasoning tools as
well as instance-based tools. Our conclusions are that (1) it is beneficial to consider different
treatments of binary relations as a user, and that (2) reasoning tools could benefit from using
a preprocessor or even built-in support for certain types of binary relations.

Keywords First-order logic · Transitive relations · Automated reasoning · Transformation ·
Binary relations · Automated theorem proving · Transitivity

1 Introduction

This paper explores different possible ways of speeding up the handling of commonly occur-
ring kinds of transitive binary relations, in the context of general first-order automated
reasoning.

As an example, consider the following set of first-order axioms for a relation symbol R:

B Koen Claessen
koen@chalmers.se

Ann Lillieström
annl@chalmers.se

1 Chalmers University of Technology, Gothenburg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-021-09605-z&domain=pdf
http://orcid.org/0000-0002-8113-4478


K. Claessen, A. Lillieström

A possible goal we may want to prove is:

A quick investigation of the first three axioms reveals that R is an equivalence relation,
which is a binary relation that occurs quite commonly in practice in first-order problems. In
this paper, we suggest that an alternative way of dealing with equivalence relations is not
to axiomatize them (as we did in the example), but to choose a new function symbol rep,
and replace all occurrences of R(x, y) with the literal rep(x)=rep(y). Doing so makes the
problem simpler, because the three axioms for equivalence relations (reflexivity, symmetry,
and transitivity) can be removed. The resulting (complete) set of axioms is:

The goal we need to prove becomes:

As our experimental results show, this alternative way of dealing with equivalence relations
presented here is beneficial for some theorem provers, because it is easier for those provers
to reason about equality and an extra function symbol than about a binary predicate symbol
wth additional axioms.

This paper identifies six kinds of commonly occurring binary relations (that all happen to
be transitive) for which alternative treatments are proposed, that are designed to be simpler
to reason about than their standard axiomatizations. The kinds of binary relations dealt with
in this paper are:

– Equivalence relations, and partial equivalence relations,
– Total orders, and strict total orders,
– (general) transitive relations, with and without reflexivity.

It can be very beneficial to hardcode special ways of dealing of commonly occurring
functions or relations in automated reasoning tools, as demonstrated by for example equality
handling, AC handling, and arithmetic operators and relations, which have native support in
many reasoning tools. However, we chose to investigate alternative ways of expressing the
mentioned binary relations directly in the input problem, rather than new methods that need
to be built-in to theorem provers, for several reasons: (1) it is cheaper than implementing
built-in methods, simply because no extra implementation effort is required, (2) it is more
flexible, because one is not tied to one particular theorem prover, and (3) it is beneficial to
the user of the tool (who can choose what alternative to use) as well as the implementer of
the tool (who can implement automatic transformations that choose the alternative). Such
automatic transformations are also described in the paper.

The target audience for this paper is thus both people who use reasoning tools and people
who implement reasoning tools.

Related Work Binary relations, and transitive relations and transitive closure in particular,
have been given special treatment in automated reasoning tools in a variety of different
domains. For example, Kodkod [12] and CVC4 [8] reason about relational logic for finite
domains, where even transitive closure can be supported. Cristiá et al. [3] present a decision
procedure for sets, relations, and partial functions that is complete for finite sets. Horrocks
and Gough propose an efficient way of dealing with transitive binary relations in the context
of description logics [6]. Schmidt and Hustadt present a method that translates problems in

123



Handling Transitive Relations in First-Order Automated…

Fig. 1 Definitions of basic
properties of binary relations

Fig. 2 Number of occurrences of
binary relation properties in
TPTP

propositional modal logic with background theories (that can also include transitivity) into
first-order logic [9].

For general first-order logic, chaining [1] is a family of built-in methods that limit the
use of transitivity-like axioms in proofs by only allowing certain chains of them to occur
in proofs. The result is a complete proof system that avoids the derivation of unnecessary
consequences of transitivity. Chaining has been implemented inside one of the reasoning
tools we considered for this paper (SPASS [13]). Also more specific binary relations that the
ones considered in this paper have been implemented in this way [5].

In contrast, this paper presents purely preprocessing techniques for speeding up reasoning
about different kinds of transitive binary relations occurring in general first-order logic. As
far as we know, this is also the first paper to consider methods for dealing with (partial)
equivalence relations and (strict) total orders specifically.

2 Common Properties of Binary Relations

In this section, we take a look at commonly occurring properties of binary relations, which
combinations of these are interesting for us to treat specially, and how we may go about
discovering these. Note that the logic that we use throughout the paper is unsorted first-order
logic with equality.

Take a look at Fig. 1. It lists 8 basic and common properties of binary relations. Each of
these properties can be expressed using one logic clause, which makes it easy to syntactically
identify the presence of such a property in a given theory1.

When we investigated the number of occurrences of these basic properties in a subset of
the TPTP problem library (v7.0.0)2 [11], we ended up with the table in Fig. 2. The table
was constructed by gathering all clauses from all TPTP problems (after clausification), and
keeping every clause that only contained one binary relation symbol, no function symbols,

1 Throughout the paper, we use the word theory to simply mean “set of formulas”.
2 For the statistics in this paper, we decided to only look at unsorted TPTP problems with 10.000 clauses or
less.

123



K. Claessen, A. Lillieström

and, possibly, equality. Each such clause was then syntactically categorized as an expression
of a basic property of a binary relation symbol. The total number of such clauses found is
indicated in the table for each basic property. We found 163 clauses that did not fit any of the
8 properties we chose as basic properties, but were instead instances of two new properties.
Both of these were quite esoteric and did not seem to have a standard name in mathematics.

The table also contains occurrences where a negated relation was stated to have a certain
property, and also occurrenceswhere aflipped relation (a relationwith its arguments swapped)
was stated to have a certain property, and also occurrences of combined negated and flipped
relations. This explains for example why the number of occurrences of total relations is the
same as for asymmetric relations; if a relation is total, the negated relation is asymmetric and
vice-versa.

We adopt the following notation. Given a relation R, the negated version of R, denoted
R¬, is defined as follows:

The flipped version of R, denoted R � , is defined as follows:

We lift these two notions to properties of relations as follows. Given a property of binary
relations prop, we introduce its negated version, which is denoted by prop¬. The property
prop¬ holds for R if and only if prop holds for R¬:

Similarly, we introduce the flipped version of a property prop, which is denoted by prop � .
The property prop � holds for R if and only if prop holds for R � :

Using this notation, we can for example say that total is equivalent with asymmetric¬. Some-
times the property we call euclidean here is called right euclidean; the corresponding variant
left euclidean can be denoted euclidean � . Note that prop¬ is not the same as ¬prop! For
example, a relation R can be reflexive, or reflexive¬ (which means that ¬R is reflexive), or
¬reflexive, which means that R is not reflexive.

Using this notation on the 8 original basic properties from Fig. 1, we end up with 32
new basic properties that we can use. (However, as we have already seen, some of these are
equivalent to others.)

This paper will look at 6 kinds of different binary relations, which are defined as combi-
nations of basic properties:

As a side note, in mathematics, strict total orders are sometimes defined using a property
called trichotomous, which means that exactly one of R(x, y), x=y, or R(y, x) must be true.
However, when this property is clausified in the presence of transitivity, one ends up with
antisymmetric¬ which says that at least one of R(x, y), x=y, or R(y, x) must be true. There

123



Handling Transitive Relations in First-Order Automated…

Fig. 3 Number of occurrences of binary relations in TPTP, divided up into Theorem/Unsatisfiable/
Unknown/Open problems +Satisfiable/CounterSatisfiable problems

Fig. 4 Basic properties that are
equivalent

seems to be no standard name in mathematics for the property antisymmetric¬, which is why
we use this name.

In Fig. 3, we display the number of binary relations we have found in (our subset of) the
TPTP for each category. The next section describes how we found these.

3 Syntactic Discovery of Common Binary Relations

Our goal is to automatically choose the right treatment of equivalence relations, total orders,
and general transitive relations. Thus, we must have an automatic way of identifying these
relations in a given theory. It is relatively easy to discover for example an equivalence relation
in a theory by means of syntactic inspection. If we find the presence of the axioms reflexive,
symmetric, and transitive, for the same relational symbol R, we know that R is an equivalence
relation.

But, there are many other ways of axiomatizing equivalence relations. For example, a
much more common way to axiomatize equivalence relations in the TPTP is to state the two
properties reflexive and euclidean for R.

Rather than enumerating all possible ways to axiomatize certain relations by hand, we
wrote a program that computes all possible ways for any combination of basic properties
to imply any other combination of basic properties. Our program generates a table that
can be precomputed in a minute or so and then used to very quickly detect any alternative
axiomatization of binary relations using basic properties.

Let us explain how this table was generated. We start with a list of 32 basic properties
(the 8 original basic properties, plus their negated, flipped, and negated flipped versions).
Firstly, we use an automated theorem prover (we used E [10]) to discover which of these
are equivalent with other such properties. The result is displayed in Fig. 4. Thus, 17 basic
properties can be removed from the list, because they can be expressed using other properties.
The list of basic properties now has 15 elements left.

123



K. Claessen, A. Lillieström

Fig. 5 The complete list of implications between properties

Secondly, we want to generate all implications of the form {prop1, . ., propn} ⇒ prop
where the set {prop1, . ., propn} is minimal. We do this separately for each prop. The results
are displayed in Fig. 5.

The procedure uses a simple constraint solver (a SAT-solver) to keep track of all implica-
tions it has tried so far, and consists of one main loop. At every loop iteration, the constraint
solver guesses a set {prop1, . ., propn} from the set of all properties P−{prop}. The proce-

123



Handling Transitive Relations in First-Order Automated…

dure then asks E whether or not {prop1, . ., propn} ⇒ prop is valid. If it is, then we look
at the proof that E produces, and print the implication {propa, . ., propb} ⇒ prop, where
{propa, . ., propb} is the subset of properties that were used in the proof. We then also tell the
constraint solver never to guess a superset of {propa, . ., propb} again. If the guessed implica-
tion can not be proven,we tell the constraint solver to never guess a subset of {prop1, . ., propn}
again. The procedure stops when no guesses that satisfy all constraints can be made anymore.

After the loop terminates, we remove all implications that are subsumed by others.
In order to avoid generating inconsistent sets {prop1, . ., propn} (that would imply any

other property), we also add the artificial inconsistent property false to the set, and gen-
erate implications for this property first. We exclude any found implication here from the
implication sets of the real properties.

This procedure generates a complete list ofminimal implications. It workswell in practice,
especially if all guesses made by the SAT-solver are maximized according to their size. The
vast majority of the time is spent on the implication proofs, and no significant time is spent
in the SAT-solver.

To detect a binary relation R with certain properties in a given theory, we simply gather
all basic properties about R that occur in the theory, and then compute which other properties
they imply, using the pre-generated table.

Also, certain properties can be derived for a binary relation R2 if R2 is implied by another
binary relation R1, and R1 has that property. This holds for reflexivity, totality and seriality.
Similarly, if R2 is antisymmetric or coreflexive, the same property can be derived for R1.
When having derived a new property of a relation in this way, we iterate the procedure of
finding implied properties using the precomputed table until no new information is gained.
In this way, we never perform full theorem proving, but we nonetheless detect many binary
relations with the listed basic properties.

In the following three sections, we describe how to deal with equivalence relations, total
orders, and general transitive relations, respectively.

4 Handling Equivalence Relations

Equalification As mentioned in the introduction, an alternative way of handling equivalence
relations R is to create a new symbol rep and replace all occurrences of R with a formula
involving rep:

To explain the above notation: We have two theories, one on the left-hand side of the arrow,
and one on the right-hand side of the arrow. The proposed transformation transforms any
theory that looks like the left-hand side into a theory that looks like the right-hand side.
We write T [. .e. .] for theories in which e occurs syntactically; in the transformation, all
occurrences of e should be replaced.

We call the above transformation equalification. This transformation may be beneficial
because reasoning about the equivalence relation now involves built-in equality reasoning
instead of reasoning about an unknown symbol using axioms.

The transformation is correct, meaning that it preserves (non-)satisfiability:

123



K. Claessen, A. Lillieström

Theorem 1 (Correctness of equalification) Two theories H and H ′ that respectively match
the LHS and RHS of equalification, are equisatisfiable.

Proof (⇒) Assume we have m |� H, then m (R)3 is an equivalence relation. Let the
interpretation m′ interpret all existing symbols as m does. Moreover, let m′ (rep) be
a representative function of the equivalence relation m (R). This means that we have
m′ |� (R(x, y) ⇔ rep(x)= rep(y)), which means that m′ is a model of H ′.

(⇐) Assume we have m′ |� H ′. Let the interpretation m interpret all existing symbols as
m′ does. Moreover, let (x, y) ∈ m(R) precisely when m′(rep)(x)=m′(rep)(y). The relation
m(R) is clearly reflexive, symmetric, and transitive, and therefore we have m |� H. 	


In the transformation,we also remove the axioms for reflexivity, symmetry, and transitivity,
because they are not needed anymore. But what if R is axiomatized as an equivalence relation
using different axioms? Thenwe can remove any axiom about R that is implied by reflexivity,
symmetry, and transitivity. Luckily we have already computed a table of which properties
imply which other ones (shown in Fig. 5).
Pequalification There are commonly occurring binary relations called partial equivalence
relations that almost behave as equivalence relations, but not quite. In particular, they do not
have to obey the axiom of reflexivity. Can we do something for these too?

A set with a partial equivalence relation R can be partitioned into two subsets: (1) one
subset on which R is an actual equivalence relation, and (2) one subset of elements which
are not related to anything, not even themselves.

Thus, an alternative way of handling partial equivalence relations R is to create two new
symbols, rep and P , and replace all occurrences of R with a formula involving rep and P:

Here, P is the predicate that indicates the subset on which R behaves as an equivalence
relation.

We call this transformation pequalification. This transformationmay be beneficial because
the reasoning now involves built-in equality reasoning instead of reasoning about an unknown
symbol using axioms. However, there is also a clear price to pay since the size of the problem
grows considerably.

The transformation is correct, meaning that it preserves (non-)satisfiability:

Theorem 2 (Correctness of pequalification) Two theories H and H ′ that respectively match
the LHS and RHS of pequalification, are equisatisfiable.

Proof (⇒) Assumewe havem |� H, thenm(R) is a partial equivalence relation. Let the inter-
pretationm′ interpret all existing symbols asm does.Moreover, letm′(P) be the set of domain
elements x for whichwe have (x, x) ∈ m(R), i.e. the subset of the domainwhere R is an actual
equivalence relation. Letm′(rep) be a representative function of the partial equivalence rela-
tion m(R). This means that we have m′ |� (R(x, y) ⇔ (P(x)∧ P(y)∧ rep(x) = rep(y))),
which means that m′ is a model of H ′.

(⇐) Assume we have m′ |� H ′. Let the interpretation m interpret all existing symbols as
m′ does. Moreover, let (x, y) ∈ m(R) precisely when m′(P)(x)∧m′(P)(y)∧m′(rep)(x)=m′
(rep)(y). The relation m (R) is clearly symmetric and transitive, and therefore we have
m |� H. 	

3 We write m(R) for the interpretation of symbol R in the model m.

123



Handling Transitive Relations in First-Order Automated…

Intuitively, one can see that this transformation is correct by realising that the elements
on which the relation R is not reflexive cannot be related to any other elements. This is
because R (x, y) together with symmetry and transitivity gives us R (x, x). Thus, when we
encounter R (x, y) in the LHS theory, we know that both x and y are in the set defined by
P . (This holds also when x equals y). Since R is an equivalence relation on this set, we can
use the transformation of pure equivalence relations on the subset P to get P (x)∧P (y) ⇒
rep(x)= rep(y).

5 Handling Total Orders

Ordification Many reasoning tools have built-in support for arithmetic, in particular they
support an order≤ on numbers. It turns out that we can “borrow” this operator when handling
general total orders. Suppose we have a total order:

We now introduce a new injective function:

We then replace all occurrences of R with a formula involving rep in the following way:

(Here, ≤ is the order on reals.) We call this transformation ordification. This transformation
may be beneficial because the reasoning now involves built-in arithmetic reasoning instead
of reasoning about an unknown symbol using axioms.

The above transformation is correct, meaning that it preserves (non-)satisfiability:

Theorem 3 (Correctness of ordification) Two theories H and H ′ that respectively match the
LHS and RHS of ordification, are equisatisfiable.

Proof (⇒) If we have m |� H, then without loss of generality (by Löwenheim-Skolem), we
can assume that the domain ofm is countable.Also,m(R) is a total order. Let the interpretation
m′ interpret all existing symbols as m does. We now construct m′ (rep) recursively as a
mapping from the model domain to R, such that we have (x, y) ∈ m (R) precisely when
m′ (rep) (x) ≤ m′ (rep) (y), in the following way. Let {a0, a1, a2, . .} be the domain of
the model, and set m′ (rep) (a0) := 0. For any n>0, pick a value for m′ (rep) (an) that is
consistent with the total order R and all earlier domain elements ai , for 0 ≤ i<n. This can
always be done because there is always extra room for a new, unique element between any
two distinct values of R. Thus m′(rep) is injective and we also have a model m′ of H ′.

(⇐) Assume we have m′ |� H ′. Let the interpretation m interpret all existing symbols as
m′ does. Moreover, let (x, y) ∈ m(R) precisely when m′(rep) (x) ≤ m′(rep) (y). It is clear
that m (R) is total and transitive, and also antisymmetric because m′ (rep) is injective, and
therefore m |� H. 	

Note onQ vs.R The proof would have worked forQ as well instead ofR. The transformation
can therefore be used for any tool that supportsQ orR or both, and should choose whichever

123



K. Claessen, A. Lillieström

comparison operator is cheapest if there is a choice. Using integer arithmetic would however
not have been correct.

Note on injectivity The transformation requires an axiom that expresses that rep is injective.
There are two natural ways in which this can be expressed. Here is a direct axiom:

And here is an axiom that makes use of a helper function rep−1 which plays the role of reps
inverse:

These two are logically equivalent.
Note on strict total orders One may have expected to have a transformation specifically
targeted to strict total orders, i.e. something like:

However, the transformation for total orders already covers this case! Any strict total order R
is also recognized as a total order R¬, and ordification already transforms such theories in the
correct way. The only difference is that R(x, y) is replaced with ¬(rep(x) ≤ rep(y)) instead
of rep(x)<rep(y), which is satisfiability-equivalent. (We found no performance difference
in practice between these choices.)

Maxification Some reasoning tools do not have orders on real arithmetic built-in, but they
may have other concepts that are built-in that can be used to express total orders instead. One
such concept is handling of associative, commutative (AC) operators.

For such a tool, one alternative way of handling total orders R is to create a new function
symbol max and replace all occurrences of R with a formula involving max :

We call this transformation maxification. This transformation may be beneficial because the
reasoning now involves built-in equality reasoning with AC unification (and one extra axiom)
instead of reasoning about an unknown relational symbol (using three axioms).

The above transformation is correct, meaning that it preserves (non-)satisfiability:

Theorem 4 (Correctness of maxification) Two theories H and H ′ that respectively match the
LHS and RHS of maxification, are equisatisfiable.

Proof (⇒) If we have m |� H, then m (R) must be a total order. Let the interpretation m′
interpret all existing symbols as m does. Let m′(max) be the maximum function associated
with the total orderm(R). The functionm′(max) is associative and commutative, andwe have
thatm′(max)(x, y)=x∨m′(max)(x, y)=y. Moreover, we havem′|� R(x, y) ⇔ max(x, y)=y.
Thus we also have a model m′ of H ′.

(⇐) Assume we have m′ |� H ′. Let the interpretation m interpret all existing symbols as
m′ does. Moreover, let (x, y) ∈ m(R) precisely when m′(max)(x, y)=y. Now, m(R) is total
(because ofm′(max)(x, y)=x∨m′(max)(x, y)=y), antisymmetric (because of commutativity
of m′(max)), and transitive (because of associativity of m′(max)), and therefore m |� H. 	


123



Handling Transitive Relations in First-Order Automated…

6 Handling Transitive Relations in General

The treatments introduced so far all make use of built-in concepts of the reasoning tool, and
they can be applied only to special cases of transitive relations. In this section we propose
a more general approach, in which theories with a transitivity axiom are transformed into
theories without that transitivity axiom. To this end, transitivity is specialized at each positive
occurrence of the relational symbol. Such transformations may be beneficial because reason-
ing about transitivity in a naive way can be very expensive for theorem provers, because from
transitivity there are many possible conclusions to draw that trigger each other “recursively”.

The transformations presented in this subsection only work on problems where every
occurrence of R is either positive or negative (and not both, such as under an equivalence
operator). If this is not the case, the problem has to be translated into one where this is the
case. This can for example be done by means of clausification.
DetransificationAgeneral way of handling any transitive relation R is to create a new symbol
Q and replace all positive occurrences of R with a formula involving Q (see below, positive
occurrences are denoted by +R); the negative occurrences are simply replaced by ¬Q:

We call this transformation detransification. It can be applied to any theory that involves a
transitivity axiom. The transformation removes the transitivity, but adds for every positive
occurrence of R(x, y) an implication that says “for any r, if you could reach x from r, now
you can reach y too”. Thus, we have specialized the transitivity axiom for every positive
occurrence of R.

Note that in the RHS theory, Q does not have to be transitive! Nonetheless, the transfor-
mation is correct, meaning that it preserves (non-)satisfiability:

Theorem 5 (Correctness of detransification) Two theories H and H ′ that respectively match
the LHS and RHS of detransification, are equisatisfiable.

Proof (⇒) If we have m |� H, then m (R) is transitive. Let the interpretation m′ inter-
pret all existing symbols as m does. Moreover, let m′ (Q)(x, y):=m (R)(x, y). We have to
show that m′ (R)(x, y) implies m′ (Q)(x, y), which is trivial, and that m′ (R)(x, y) implies
∀r. m′(Q)(r, x) ⇒ m′(Q)(r, y), which is indeed the case because m′(R) is transitive. Thus
we have m′ |� H ′.

(⇐) Assume we have m′ |� H ′. Let the interpretation m interpret all existing symbols
as m′ does. Moreover, let (x, y) ∈ m (R) precisely when m′ (Q)(x, y)∧∀r. m′ (Q)(r, x) ⇒
m′(Q)(r, y). We have to show that ¬m(Q)(x, y) implies ¬m(R)(x, y), which is the same as
showing that m (Q)(x, y)∧∀r. m (Q)(r, x) ⇒ m (Q)(r, y) implies m (Q)(x, y). m (R) is also
transitive (by transitivity of implication). Thus we also have m|� H. 	


Detransification can be seen as performing one resolution step with each positive occur-
rence of the relation and the transitivity axiom. A positive occurrence R(a, b) of a transitive
relation R, resolved with the transitivity axiom R (x, y)&R (y, z) ⇒ R (x, z) becomes
R(x, a) ⇒ R(x, b) under the substitution y := a, z := b.
Detransification with reflexivityDetransification can be simplified for transitive relations that
are also reflexive. In particular, we can simplify the formula with which we replace positive
occurrences of the relation symbol R:

123



K. Claessen, A. Lillieström

We now replace any positive occurrence of R (x, y) with an implication that says “for any
r, if you could reach x from r, now you can reach y too”. Thus, we have specialized the
transitivity axiom for every positive occurrence of R. The part that we omit here (namely
Q(x, y)) is implicitly implied by the fact that R is reflexive.

Similarly to the detransification transformation above, Q does not have to be transitive
in the RHS theory. Nonetheless, the transformation is correct, meaning that it preserves
(non-)satisfiability:

Theorem 6 (Correctness of detransification with reflexivity) Two theories H and H ′ that
respectively match the LHS and RHS of detransification with reflexivity, are equisatisfiable.

Proof (⇒) If we have m |� H, then m (R) is reflexive and transitive. Let the interpreta-
tion m′ interpret all existing symbols as m does. Moreover, let (x, y) ∈ m′ (Q) precisely
when m (R)(x, y). m′ (Q) is obviously reflexive. We have to show that m′ (R)(x, y) implies
∀r. m′(Q)(r, x) ⇒ m′(Q)(r, y), which is indeed the case because m′(R) is transitive. Thus
we have m′ |� H ′.

(⇐) Assume we have m′ |� H ′, then m′ (Q) is reflexive. Let the interpretation m
interpret all existing symbols as m′ does. Moreover, let (x, y) ∈ m (R) precisely when
∀r. m′(Q)(r, x) ⇒ m′(Q)(r, y). m(R) is reflexive (by reflexivity of implication) and transi-
tive (by transitivity of implication). We have to show that ¬m(Q)(x, y) implies ¬m(R)(x, y),
which is the same as showing that ∀r. m(Q)(r, x) ⇒ m(Q)(r, y) implies m(Q)(x, y), which
is true because m(Q) is reflexive. Thus we also have m|� H. 	


7 Experimental Results

We evaluate the effects of the different axiomatizations using three different resolution based
theorem provers, E 2.0 [10] (with the xAuto and tAuto options), Vampire 4.0 [7] (with the
casc mode option), Spass 3.9 [13] (with the Auto option, which activates chaining in the
presence of transitive predicates), and two SMT-solvers, Z3 4.5 [4] and CVC4 1.5 [2]. The
experiments were performed on a PC with a 2xQuad Core Intel Xeon E5620 processor with
24 GB physical memory, running at 2.4 GHz, with Ubuntu 12.04. We use a time limit of
5min on each problem.

We started from a set of 13410 test problems from the TPTP, listed as Unsatisfiable,
Theorem or Unknown or Open (leaving out the very large theories)4. For each problem, a
new theory was generated for each applicable transformation. For most problems, no relation
matching any of the given criteria was detected, and thus no new theories were produced
for these problems. In total, 2007 problems were found to include one or more transitive
relations and could thus be used with at least one of the presented transformations. 130 of
these problems are listed as Unknown, and an additional 172 problems have rating 1.0. No
problem in the resulting set of problems is listed as Open.

The experimental results are summarized in Fig. 6.

4 Theories with more than 10.000 clauses were considered "very large" and we chose to leave them out of
these experiments, because they were impractical to deal with. We have also evaluated the transformations on

123



Handling Transitive Relations in First-Order Automated…

Fig. 6 Table showing for each theorem prover the number of test problems solved before the transformation,
how many new problems are solved after the transformation, and the number of problems that could be
solved before but not after the transformation. (Total number of applicable problems for each transformation
in parentheses). A +value in boldface indicates that there were hard problems (Rating 1.0) solved with that
combination of treatment and theorem prover

Overall, the results vary between each transformation and reasoning tool. For many of
the transformations, we do not gain any solved problems without also losing some. A time-
slicing strategy can be advantageous, were the reasoning tool is run on both the original and
the transformed problem, with a suitably chosen time-limit for each. Z3 turns out to work
well on ordified problems, where it can make use of its built in strategies for arithmetic. E
did not benefit from any of the transformations, and a large portion of the problems became
unsolvable. One may have expected better results for equalification, since introducing equal-
ity in place of each occurrence of an equivalence relation seems suitable for an equational
theorem prover. However, E performs well already on the untreated problems with equiv-
alence relations, leaving little room for improvement. Vampire has the least difference in
performance before and after the transformations.

In order to make a comparison between the transformations and evaluate what transfor-
mation works best for each kind of transitive relation, we partition the test problems into
different subsets (Fig. 7). These subsets are defined by the discovered properties of the
transitive relation. A problem can appear in several subsets if the problem includes several
transitive relations having different properties. This is the case for 156 problems. Apart from
such special cases, the subsets are disjoint. Firstly, we divide the problems into two sets, one
where the transitive relation is found to be total (or strictly total, as in the case of a negated
total order), and one where this was not the case. We use the notation PC to denote the subset
of problems with transitive relations with no syntactic evidence of the property P.

Satisfiable/Countersatisfiable problems, but there were too few problems for the results to be significant, and
the results were also mostly negative.

123



K. Claessen, A. Lillieström

Fig. 7 Partitioning of test problems and their applicable transformations

The problems in TotalC are further divided into four groups, depending on if they contain
a transitive relation that is found to be reflexive and/or symmetric. The problems containing
a total relation are partitioned into two sets: problems with one or more total order (i.e. total,
transitive and antisymmetric), and problems with relations that are total and transitive but
lack the antisymmetry property (labelled as “other” in the diagram). Fig. 7 shows each subset
with its number of problems and number of rating 1 problems, and the transformations that
are applicable for that subset. For example, a problem with a transitive relation that is in
TotalC, ReflexiveC and Symmetric has the applicable transformations Pequalification and
Detransification, as shown in the bottom left corner of the diagram. The number of rating
1 problems in each subset can give an indication of the difficulty of dealing with different
kinds of transitive relations. Problems with equivalence relations are typically less difficult
than problems with partial equivalence relations, however it is hard to tell if the difficulty of
a problem is related to the transitive relation or has other reasons.

7.1 Detransification

Detransification is the only transformation applicable on all 2007 test problems with transi-
tive relations. As can be seen in Fig. 6, the benefits of detransification varies with the theorem
prover and problem. The SMT-solvers profit the most from this transformation, however, big
differences can be seen in the different subsets. Figure 18 presents an overview of the effects
on solving times for each theorem prover in the evaluation. For all of the theorem provers,
detransification lets us prove some problems that we could not previously, but some problems
also become unsolvable within the time limit.

Figure 8 presents the results of detransification on each of the subsets defined in Fig. 7.
Here we can get an indication of what problems detransification is useful for and what kind of
problems tend to become harder after the transformation. For E, the results generally become
worse after detransification, even though some new problems become solvable, including
one with rating 1. For Vampire, detransification improves the results on problems with par-
tial orders and partial equivalence relations. These subsets have a relatively low success rate
before the transformations. On the other subsets, the results stay fairly stable. For Spass,
partial equivalences and strict partial orders benefit the most from detransification, while
the other subsets show mixed results. Both SMT-solvers, Z3 and CVC4, show improved
results on the transformed equivalence relations and partial equivalence relation. The theo-
rem provers performed well on these problems already before the transformation and thus

123



Handling Transitive Relations in First-Order Automated…

Fig. 8 The effect of detransification on each subset (original number of problems solved; number of extra
problems after the transformation; number of lost problems)

Fig. 9 The effect of detransification with reflexivity on each applicable subset (original number of problems
solved; number of extra problems after the transformation; number of lost problems)

have less room for improvement. For partial orders and strict partial orders, the results are
mixed, however more is gained than what is lost. Total orders and other transitive relations
do not benefit from detransification using any of the reasoning tools in our evaluation.

7.2 Detransification with Reflexivity

The use of detransification with reflexivity is limited to transitive relations that are reflexive.
It shows worse results than detransification without reflexivity on all applicable subsets for
all of the tested tools. This is especially true for the SMT-solvers, for which many problems
become unsolvable. The results on each applicable subset is shown in Fig. 9

7.3 Pequalification

Pequalification is applicable on any relation that is transitive and symmetric, i.e. both equiv-
alence relations and partial equivalence relations. The results on these subsets are presented
in Fig. 10, which also shows the results of the variant of pequalification with the added idem-
potency axiom. SMT-solvers benefit the most from pequalification, especially Z3 on the set
of problems with equivalence relations. All of the tested reasoning tools perform about the
same or worse given this extra axiom.

Comparing pequalification with detransification, detransification is clearly much better
for partial equivalence relations, while for equivalence relations it is not as clear which trans-

123



K. Claessen, A. Lillieström

Fig. 10 The effect of pequalification/pequalification with idempotency on each applicable subset (original
number of problems solved; number of extra problems after the transformation; number of lost problems)

Fig. 11 The effect of equalification/equalification with idempotency on the applicable subset (original number
of problems solved; number of extra problems after the transformation; number of lost problems)

formation one should pick. Pequalification without idempotency seems to be a good choice
on equivalence relations for SMT-solvers, especially for Z3.

7.4 Equalification

Equalification is applicable only to problems that contain equivalence relations. It performs
slightly worse or about the same compared to pequalification, which is more general. Like
pequalification, it shows the best results combined with the SMT solvers. Adding an idempo-
tency axiom typically makes the results slightly worse, with E showing the most significant
change. The results of equalification and equalification with idempotency are presented in
Fig. 11.

7.5 Ordification

Since ordification uses arithmetic, it is only applicable with Vampire (in TFF format) and Z3
and CVC4 (in SMT format). The original problems were transformed into TFF and SMT as
well, in order to achieve a fair comparison, avoiding the effects that the change of input format
may have on the results. Ordification is applicable only on the set of problems containing
total orders. Ordification improved the results significantly for both Z3 and CVC4, while
Vampire performs about the same as before the transformation.

We can compare ordification with detransification, which is the only other transformation
that is applicable on total orders. Similarly to ordification, detransification does not have
any significant impact on the results for either of CVC4 or Vampire on total orders. For Z3,
ordification is clearly the best choice. Note however that Z3 shows worse results than CVC4

Fig. 12 The effect of ordification
on the applicable subset (original
number of problems solved;
number of extra problems after
the transformation; number of
lost problems)

123



Handling Transitive Relations in First-Order Automated…

Fig. 13 Results of E by subset and strategy (number of problems solved; number of extra/lost problems in
parentheses)

Fig. 14 Results of Vampire by
subset and strategy (number of
problems solved; number of
extra/lost problems in
parentheses)

and Vampire prior to the transformation. After ordification, the three tools solve about the
same number of problems. The results are presented in Fig. 12.

7.6 Problems withmore than One Kind of Transitive Relation

156 of the problems in our evaluation contain more than one kind of transitive relation. 140 of
them contain a partial equivalence relation and a strict partial order. 14 contain an equivalence
relation and a partial order, and two problems contain a partial equivalence relation and a
relation that is total and transitive. Almost half of these problems are hard, with rating 1 in
the TPTP.

For the 140 problems with a partial equivalence and a strict partial order, we found that
applying detransification to all of the transitive relations gave the best results. For the 14
problems with equivalence relation and a partial order, applying equalification on the equiv-
alence relation and detransification on the partial order was the best, in particular for the
SMT-solvers. The 2 remaining problems with multiple kinds of transitive relations are both
labelled as Unknown, and were not solved before nor after any choice of transformation.

123



K. Claessen, A. Lillieström

Fig. 15 Results of Spass by
subset and strategy (number of
problems solved; number of
extra/lost problems in
parentheses)

7.7 Time-Slicing

As can be seen in Figs. 18, 19, 20, 21 and 22, problems are typically solved within the
first half of the 5min time-limit or less. By splitting the time equally between the original
version of the problem and the applicable transformations can thus in many cases improve
the success rate. This was the case for Spass, CVC4 and Z3. For Vampire (which has its
own built-in time-slicing strategies), many problems were solved towards the end of the
5min, and time-slicing between transformations was thus less favourable. For E, whose
advantages of the transformations were quite limited, the problems that did become solvable
after a transformation were solved in a relatively short time. The best results were achieved
by allowing 10s on each applicable transformation, and the remaining time on the original
problem.

123



Handling Transitive Relations in First-Order Automated…

Fig. 16 Results of Z3 by subset
and strategy (number of problems
solved; number of extra/lost
problems in parentheses)

7.8 Optimal Strategies

We present for each tool an optimal strategy, that is given by identifying for each subset the
transformation or combination of transformations that maximises the total number of solved
problems. Since the results are based on the limited set of problems in the current TPTP
library, we do not provide a universal method, but rather an idea of how parameters can be
tuned to improve the results.

In Sect. 7.5, we transformed the original problem into the same format as the ordified
problem (SMT format for Z3 and CVC4, and TFF format for Vampire), to focus on the effects
of ordification alone. In this section we are concerned with how the results of the problems
in the TPTP library can be improved. We therefore compare all results of the transformations
(including ordification) with the original TPTP problem given in CNF-format. This makes
a difference for Z3, which performs better on the original problems in CNF format than

123



K. Claessen, A. Lillieström

Fig. 17 Results of CVC4 by
subset and strategy (number of
problems solved; number of
extra/lost problems in
parentheses)

the problems transformed into SMT. This is the reason why Z3 solves 31 new problems
after ordification in Fig. 16 but 50 new problems in Fig. 12. We omit detransification with
reflexivity and the idempotency version of equalification and pequalification in the diagrams
below, as these transformations did not contribute to the overall results.

123



Handling Transitive Relations in First-Order Automated…

Fig. 18 Time (in s) taken to solve problems, with and without transification, using E, Vampire, Spass, Z3 and
CVC4. Every mark (×) indicates a problem run before and after the transformation

123



K. Claessen, A. Lillieström

Fig. 19 Time (in s) taken to solve problems, with and without transification with reflexivity, using E, Vampire,
Spass, Z3 and CVC4. Every mark (×) indicates a problem run before and after the transformation. Times in
seconds

123



Handling Transitive Relations in First-Order Automated…

Fig. 20 Time (in s) taken to solve problems, with and without equalification, using E, Vampire, Z3 and CVC4.
Every mark (×) indicates a problem run before and after the transformation. Times in seconds

123



K. Claessen, A. Lillieström

Fig. 21 Time (in s) taken to solve problems, with and without pequalification, using E, Vampire, Spass, Z3
and CVC4. Every mark (×) indicates a problem run before and after the transformation. Times in seconds

123



Handling Transitive Relations in First-Order Automated…

Fig. 22 Time (in s) taken to solve problems, with and without ordification, using Vampire, Z3 and CVC4.
Every mark (×) indicates a problem run before and after the transformation. Times in seconds

7.8.1 E

E did not have any major benefits from any of the transformations. However, with time-
slicing we can avoid a lot of the bad effects of a transformation, while still keeping the
results that were improved. For E, the best results were achieved when allowing 10s on each
transformed problem and the remaining time on the original problem. This is based on a
time-limit of 5min. Fig. 13 show the subsets on which there was a transformation that solved
new problems. With this strategy, we gain a total of 10 solved problems, 7 with equivalence
relations and 3 with partial orders. On the remaining subsets there is no transformation that
increases the success rate compared to the original, but splitting does not decrease it.

7.8.2 Vampire

For Vampire, detransification is the best choice for both partial orders and partial equivalence
relations. A majority of the problems solved after detransification but not before took a long
time,making time-slicing less favorable. For the other subsets, Vampire is themost successful

123



K. Claessen, A. Lillieström

on the original problems. Using detransification on partial equivalences and partial orders,
and no transformation otherwise, we gain 39 solved problems and lose 6.

7.8.3 Spass

For Spass, the best results for transitive and reflexive relations (i.e. equivalences and partial
orders) were given by spending 10s on each of the applicable transformations, and the
remaining time on the original problem. For the remaining subsets, splitting evenly between
the applicable transformations and untransformed problems solves the most problems. The
8 new solved problems with a partial equivalence also have a strict partial order, and thus are
contained in the 43 new problems that were solved in the partial orders subset. In total, the
optimal strategy solves 75 new problems, while it loses 15.

7.8.4 Z3

For Z3, the best strategy is to split the time evenly between the original problem and all
of the applicable transformations. Spending 10s on each applicable transformation and the
remaining time on the original problem gives very similar results. In total, we solve 135
new problems compared to the original, and lose 6. 21 of the newly solved problems are in
overlapping subsets (containing more than one kind of transitive relation).

7.8.5 CVC4

For CVC4, splitting evenly between the original problem and all of the applicable transfor-
mations gives the best results. 19 of the newly solved problems are overlapping; 16 problems
have both a partial equivalence and a strict partial order. 3 of the problems have an equiva-
lence relation and a partial order. The total gain of the optimal strategy is 83 problems, and
the loss is 2 problems.

8 Discussion and Conclusions

We have presented 6 transformations that can be applied to theories with certain transi-
tive relations: equalification, pequalification, ordification, maxification, detransification, and
detransification with reflexivity. We have also created a method for syntactic discovery of
binary relations where these transformations are applicable.

For users of reasoning tools that create their own theories, it is clear that they should
consider using one or more of the proposed alternative treatments when writing theories. For
all of our methods, there are existing theories for which some provers performed better on
these theories than others. In particular, there exist 5 TPTP problems that are now solvable
that weren’t previously. These are FLD012-2 (solved by E with detransification), SEU322+2
(Solved by Vampire and Z3 with detransification), SEU270+2 (solved by CVC4 and Z3
with detransification), SEU372+2 (solved by Vampire with detransification) and LDA005-1
(solved by Z3 with ordification).

For implementers of reasoning tools, our conclusions are less clear. For some combina-
tions of treatments and provers (such as transification for Vampire, and equalification for
Z3), overall results are clearly better, and we would thus recommend these treatments as
preprocessors for these provers. Some more combinations of treatments and provers lend

123



Handling Transitive Relations in First-Order Automated…

themselves to a time slicing strategy that can solve strictly more problems, and could be
integrated in a natural way in provers that already have the time slicing machinery in place.

9 FutureWork

There are many other relations that are more or less common that could benefit from an
alternative treatment like the transformations described in this paper. In particular, maxifica-
tion seems to be an idea that could be applied to binary relations that are weaker than total
orders, which maymake this treatment more effective. But there are also other, non-transitive
relations that are of interest.

There are other kinds of relations than binary relations. For example, we can have an
ternary relation that behaves as an equivalence relation in its 2nd and 3rd argument. An
alternative treatment of this relation would be to introduce a binary function symbol rep.
We do not know whether or not this occurs often, and if it is a good idea to treat higher-arity
relational symbols specially in this way.

Lastly, we would like to look at how these ideas could be used inside a theorem prover;
as soon as the prover discovers that a relation is an equivalence relation or a total order, one
of our transformations could be applied, on the fly. The details of how to do this remain to
be investigated.

Acknowledgements We thank Nicholas Smallbone and the anonyous referees for discussions and useful
suggestions on earlier versions of this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for first-order theories of transitive rela-
tions. Journal of the ACM, 45(6), 1007–1049, 1998

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.:
CVC4. In: Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11).
Springer, Berlin (2011)

3. Cristiá,M., Rossi, G.: A decision procedure for sets, binary relations and partial functions. In: Proceedings
of the 28th Conference on Computer Aided Verification (CAV’16). Springer, Berlin (2016)

4. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08). Springer
(2008)

5. Hillenbrand, T., Piskac, R., Waldmann, U., Weidenbach, C.: From search to computation: Redundancy
criteria and simplification at work. In: Programming Logics: Essays in Memory of Harald Ganzinger, pp.
169–193. Springer, Berlin (2013)

6. Horrocks, I., Gough, G.: Description logics with transitive roles. Descr. Logics 9(3), 385–410 (1997)
7. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Proceedings of the 25th Confer-

ence on Computer Aided Verification (CAV’13). Springer, Berlin (2013)
8. Meng, B., Reynolds, A., Tinelli, C., Barrett, C.: Relational constraint solving in SMT. In: de Moura, L.

(ed.) Proceedings of the 26nd Conference on Automated Deduction (CADE-26). Springer, Berlin (2017)

123

http://creativecommons.org/licenses/by/4.0/


K. Claessen, A. Lillieström

9. Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Trans. Comput.
Logic 8(4), 19 (2007)

10. Schulz, S.: The E theorem prover (2015). http://www.eprover.org/. Accessed 3 June 2021
11. Sutcliffe, G.: The TPTP problem library (2015). http://www.tptp.org/. Accessed 3 June 2021
12. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Proceedings of the 13th International

Conference onTools andAlgorithms for theConstruction andAnalysis of Systems (TACAS’07). Springer,
Berlin (2007)

13. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: Spass version 3.5. In:
Proceedings of the 22nd Conference on Automated Deduction (CADE-22). Springer, Berlin (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.eprover.org/
http://www.tptp.org/

	Handling Transitive Relations in First-Order Automated Reasoning
	Abstract
	1 Introduction
	2 Common Properties of Binary Relations
	3 Syntactic Discovery of Common Binary Relations
	4 Handling Equivalence Relations
	5 Handling Total Orders
	6 Handling Transitive Relations in General
	7 Experimental Results
	7.1 Detransification
	7.2 Detransification with Reflexivity
	7.3 Pequalification
	7.4 Equalification
	7.5 Ordification
	7.6 Problems with more than One Kind of Transitive Relation
	7.7 Time-Slicing
	7.8 Optimal Strategies
	7.8.1 E
	7.8.2 Vampire
	7.8.3 Spass
	7.8.4 Z3
	7.8.5 CVC4


	8 Discussion and Conclusions
	9 Future Work
	Acknowledgements
	References




