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Cow’s milk protein allergy (CMPA) is an immune response to cow’s milk proteins, which
is one of the most common food allergies in infants and young children. It is estimated
that 2–3% of infants and young children have CMPA. The diet, gut microbiota, and their
interactions are believed to be involved in the alterations of mucosal immune tolerance,
which might lead to the development of CMPA and other food allergies. In this review,
the potential molecular mechanisms of CMPA, including omics technologies used for
analyzing microbiota, impacts of early microbial exposures on CMPA development, and
microbiota–host interactions, are summarized. The probiotics, prebiotics, synbiotics,
fecal microbiota transplantation, and other modulation strategies for gut microbiota and
the potential application of microbiota-based design of diets for the CMPA treatment
are also discussed. This review not only summarizes the current studies about the
interactions of CMPA with gut microbiota but also gives insights into the possible CMPA
treatment strategies by modulating gut microbiota, which might help in improving the
life quality of CMPA patients in the future.

Keywords: cow’s milk allergy, gut microbiota, probiotics, prebiotics, synthetic microbiota, fecal microbiota
transplantation

INTRODUCTION

Food allergy has become a major public health issue worldwide. The prevalence of food allergies
has been growing steadily, affecting 3–6% of the United States population (Sicherer and Sampson,
2014). Cow’s milk protein allergy (CMPA) is one of the most common food allergies in early
childhood, affecting 2–3% of the children under 3 years of age (Sicherer, 2011; Savage and Johns,
2015). Besides, 1% of adults show severe allergic reactions related to milk consumption (Nwaru
et al., 2014; Schocker et al., 2019). CMPA is an immune response to cow’s milk proteins derived from
the infant formula. The infants suffering from CMPA cannot consume cow’s milk and need amino
acid-based formula (AAF) or extensively hydrolyzed casein formula (EHCF). However, some
infants are intolerant to AAF and EHCF. Therefore, CMPA decreases the life quality of infants,
affects their health, and causes financial burdens to their families (Vanderhoof and Kleinman, 2015).
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Altogether, the exploration of the molecular mechanisms of
CMPA might be a crucial step to developing cost-effective
treatment strategies for CMPA.

Based on the immune responses, CMPA can be classified
into three types, including the non-immunoglobulin E (IgE)-
mediated CMPA, IgE-mediated CMPA, and mixed CMPA. The
IgE-mediated CMPA is the most common form of CMPA
(Wiley et al., 2015), which often occurs at the first-time
exposure of infants to cow’ milk (infant formula or other
foods, containing cow’s milk or cereal). It could be diagnosed
when the infants have a history of immediate, acute, and
objective symptoms within 2 h after the ingestion of dairy
products (D’Auria and Venter, 2020; Munblit et al., 2020). Within
2 h of the exposure, the infants with IgE-mediated CMPA
experience erythema, angioedema, urticaria, vomiting, lethargy,
or respiratory symptoms, which can vanish soon and happen
again upon exposure to cow’s milk. In contrast, the non-IgE-
mediated CMPA occurs without stable symptoms and no efficient
diagnostic methods are available (Flom and Sicherer, 2019). The
non-IgE-mediated CMPA appears at least 2 h after exposure to
cow’s milk, which is usually accompanied by the food protein-
induced enterocolitis syndrome, allergic proctocolitis, chronic
cutaneous, or gastrointestinal symptoms. Since the symptoms
are similar to the other infant diseases, the delayed diagnosis
and misdiagnosis of non-IgE-mediated CMPA are common
in clinical practices (Munblit et al., 2020). The mixed CMPA
is a combination of the IgE- and non-IgE-mediated CMPA
and is sophisticated in diagnosis and treatment. Therefore,
the investigation of its molecular mechanisms is necessary for
effective treatment.

GUT MICROBIOTA IN EARLY
CHILDHOOD

Human bodies are colonized by various microorganisms, the
most influential of which is gut microbiota (Sprockett et al.,
2018). The wide applications of next-generation sequencing
(NGS) technologies have potentiated the investigation of the
structure and function of gut microbiota in a cost-effective way
(Berni Canani et al., 2019; Liu et al., 2021). The 16S rRNA gene
sequencing technology is used to identify the composition of gut
microbiota at the genus and phylum levels, while the shotgun
metagenomic analysis and other strategies are used to explore
the taxonomic and functional compositions of gut microbiota
at species or strain level (Supplementary Figure 1; Bunyavanich
and Berin, 2019). The differences at the strain-level diversity of
microbiota have shown distinct effects on the host phenotypes
(Chen et al., 2018). Therefore, the understanding of interspecies
diversity is important for the development of microbiome-based
biomarkers linked to human health and disease (Bunyavanich
and Berin, 2019). The integration of multi-omics technologies,
including genomics, epigenomics, transcriptomics, proteomics,
metabolomics, and microbiome, can help in the investigation,
characterization, and quantification of microorganisms in human
gut microbiota, giving insights into the interactions between host
and its gut microbiota (Dhondalay et al., 2018; Shi et al., 2020).

Based on the functional properties and microbial associations,
the potential microbial biomarkers can be identified and the
personalized medicine protocols, including drugs, live probiotics,
and microbial metabolites, can be designed for treatment
purposes (Sicherer and Sampson, 2018; Berni Canani et al., 2019).

The microbiota has close interactions with the homeostasis
of immune response and various interconnections with the host
metabolic pathways (Conway and Boddy, 2013; Gensollen et al.,
2016). The microbial colonization in early life strongly affects
humans’ health and diseases for their whole lifetime (Turnbaugh
et al., 2009; Benson et al., 2010; Gensollen et al., 2016). The gut
microbiota changes dramatically during the first year of life and is
relatively stable and mature after 3 years of age (Yatsunenko et al.,
2012; Stewart et al., 2018). The maturation of gut microbiome
can be divided into the developmental phase (months 3–14),
transitional phase (months 15–30), and stable phase (months
31–46) (Stewart et al., 2018). Understanding the colonization
process of gut microbiota in early life is critical for further
understanding CMPA and other food allergies. The total amounts
of gut microbes (especially anaerobic microbes) in children with
CMPA are relatively higher as compared to those of healthy
children (Bunyavanich and Schadt, 2015). The composition of gut
microbiota at the age of 3–6 months was found to be associated
with milk allergy by the age of 8 years with the enrichment
of class Clostridia and phylum Firmicutes in the infant’s gut
microbiota (Bunyavanich et al., 2016). Moreover, a recent study
has shown that the newborns, who developed IgE-mediated
allergic sensitization by 1 year of their age, exhibited less diverse
gut metabolic activities at their birth, and the specific metabolic
clusters were associated with the abundance of key taxa, driving
the maturation of gut microbiota (Petersen et al., 2021).

The progression of microbiota is associated with various
perinatal characteristics, such as mode of delivery, type of feeding,
lifestyle, antibiotic usage, and geographic distribution (Adak and
Khan, 2019). The mode of delivery affects the initial infant’s
gut microbiota (Biasucci et al., 2010; Wampach et al., 2018)
and maturation (Chu et al., 2017). The vaginally delivered
newborns mainly obtain their gut microbiota from the mother’s
vaginal microbiota, and the gut microbiota is mainly composed
of the genera Lactobacillus and Prevotella; on the other hand,
the gut microbiota of cesarean section-delivered newborns is
similar to the skin microbiota, which is mainly composed of the
genera Staphylococcus, Corynebacterium, and Propionibacterium
(Dominguez-Bello et al., 2010; Tamburini et al., 2016). After
birth, the microorganisms from the mother and the surrounding
environments colonize rapidly (Vandenplas et al., 2020) and
some opportunistic pathogens might also colonize the infants’
gut, causing infections (Shao et al., 2019). The initial gut
microbiota subsequently affects child health, and the cesarean
section-delivered newborns might have a higher risk of food
allergies and other diseases (Arrieta et al., 2015; Rachid and
Chatila, 2016). Moreover, the metabolic maturation of infants’
gut microbiota can be predicted by the feeding types and
maternal gestational weight gain (Bäckhed et al., 2015; Baumann-
Dudenhoeffer et al., 2018). Further insights into the development
of an infant’s gut microbiota suggested that it was affected
by diverse environmental factors, including diet, breastfeeding,
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FIGURE 1 | Mechanism of immune tolerance. Some Clostridium species stimulate the intestines to secrete TGF-β. TGF-β can induce Foxp3+ Treg cells in the colon
to secrete IL-10, thereby promoting immune tolerance. c-MAF, a T cell transcription factor, is the key factor to sustain the stability of gut microbiota. The
costimulatory molecules of CD80/CD86, which are expressed on the antigen-presenting cells, stimulate the secretion of TGF-β and IL-10.

and antibiotics (Bokulich et al., 2016; Yassour et al., 2016;
Bazanella et al., 2017), and the gut microbiota was not mature
even at the age of 5 (Roswall et al., 2021).

MICROBIOTA–HOST INTERACTIONS
AND CMPA

A healthy immune system is tolerant to self-antigens and only
shows allergic reactions to the foreign antigens, such as pathogens
(Stephen-Victor and Chatila, 2019). The food-allergic infants
are sensitive to the specific food antigens with the assistance
of a pathogenic T-helper 2 (Th2) response (Johnston et al.,
2014). Dendritic cells (DCs) and specific antigen-presenting
cells (APCs) are widely distributed in the human body, playing
essential roles in immune responses. Usually, the DCs can
identify and process foreign antigens, as well as the injured host
cells, thereby inducing juvenile T cells to activate the adaptive
immune responses. On the other hand, the DC can limit the
response of effector cells by developing central and peripheral
tolerance (Qian and Cao, 2018). The gut-draining lymph nodes
(gLNs) show distinct immune functions in the different areas of
the gut. The gene expression of DC in gLNs is diverse, resulting
in different immune responses against the same antigen. The
gLNs can determine the host’s adaptive immune responses via
the compartmentalization of the gut into segments for different
antigens (Esterhazy et al., 2019). The DC promotes immune
tolerance by inducing and inhibiting T cell response, accelerating
apoptosis, and producing regulatory T (Treg) cells (Kushwah and
Hu, 2011). Unlike the Treg cells in other organs, the intestinal

Treg antigen receptor (TCR) can inhibit the immune responses
to harmless antigens and symbiotic microbiota in diet (Tanoue
et al., 2016). The regulation of Treg cells in intestinal immunity
at a steady state is essential for sustaining tolerogenic response
by adaptive immunity. Some species in the Clostridium genus or
other species can induce the generation of colonic Foxp3+ Treg
cells by transforming growth factor-beta (TGF-β). Meanwhile,
the CD80/86 proteins expressed by the Treg cells can inhibit
CD28 of effector T cells by releasing TGF-β and interleukin-10
(IL-10) to mediate the immune tolerance (Figure 1; Russler-
Germain et al., 2017).

Intestinal Treg cells, especially the Foxp3+ Treg cells, are
critical for maintaining the balance of gut microbiota and the
physiological stability of the intestinal tract (Fujimura et al.,
2016). The interaction of gut microbiota with intestinal Treg cells
requires the regulation of c-MAF (T cell transcription factor), and
a deficiency in c-MAF would lead to severe diseases related to
the disorder of gut microbiota (Campbell et al., 2018; Xu et al.,
2018; Neumann et al., 2019). In addition, the short-chain fatty
acids (SCFAs), generated by the gut microbiota, can increase
the number of Treg cells in the colon and enhance their ability
to secrete IL-10 (Smith et al., 2013; Russler-Germain et al.,
2017). IL-22 protects the integrity of the intestinal epithelial
barrier and reduces the intestinal permeability of dietary antigens
(Brandl et al., 2021). The germ-free mice, colonized with genus
Clostridium, produced a great amount of IL-22 and reduced the
number of allergens entering the bloodstream; the introduction
of some Clostridium species into gut microbiota alleviated the
host allergen sensitization (Figure 1; Stefka et al., 2014). The gut
microbiota maintains tolerance to dietary antigens by mediating
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a protective response to the intestinal epithelial barrier. For
example, as a local Ig, IgA protects intestinal mucosa through
interacting with gut microbiota and antigenic rejection, thereby
participating in immune tolerance (Stefka et al., 2014; Donaldson
et al., 2018).

MICROBIAL INTERACTIONS AND CMPA

The early-life gut microbiota of infants is associated with the
development of the immune system. Several pieces of evidence
showed that the development of gut microbiota was associated
with the level of IgE, thereby increasing the occurrence of
allergy (Sarkar et al., 2021). Therefore, the development of
gut microbiota is essential for stimulating the immune system
(Cahenzli et al., 2013). The transmission of gut microbiota
from mother to infant could help in the development of proper
gut microbiota, and the strain-level microbial profiling revealed
that the infant’s gut microbiota shifted from maternal vaginal
microbiota to distinct maternal sources with selections after
birth (Ferretti et al., 2018). The diets have a major impact
on the establishment of early-life gut microbiota. The breast-
feeding bacteria, such as Streptococcus spp. and Veillonella dispar,
transferred from breast milk to infant gut microbiota, which
influenced its development (Di Luccia et al., 2020). Although the
gut microbiota of infants is dynamic and variable, it has similar
trajectories and different maturation paces (Bäckhed et al., 2015;
Weström et al., 2020; Roswall et al., 2021). Moreover, the under-
nutrition states affected the response of oral cholera vaccination,
suggesting that the diets have global effects on the immune system
and might interact with allergy, including CMPA (Di Luccia et al.,
2020).

The gut microbiota protects the intestinal barrier and mediates
immune tolerance by secreting active metabolites, such as inosine
and SCFAs (Mager et al., 2020; Yang et al., 2020), while food
provides nutrients and habitat for the microbes (Ma et al., 2017).
The gut microbiota of the infants with CMPA was introduced into
the germ-free mice, which showed lower sensitivity to the allergic
materials of cow’s milk (Feehley et al., 2019), suggesting the
potential microbial involvement in the development of CMPA.
As compared to that of healthy children, the gut microbiota
of the children with CMPA showed enrichment in the relative
abundance of families Trichocomaceae and Ruminococcaceae
as well as genera Bacteroides and Alistipes while a decrease in
that of genus Bifidobacterium, suggesting that the gut microbiota
of children with CMPA might be under imbalanced state
(Berni Canani et al., 2018; Mauras et al., 2019). A long-term
investigation of gut microbiota of children with CMPA showed
that the children that recovered from CMPA had enriched
Clostridia and Firmicutes, and further metagenomic analyses
predicted that their gut microbiota had decreased ability of fatty
acid metabolism (Bunyavanich et al., 2016).

PROBIOTICS, PREBIOTICS, AND CMPA

A low amount of whey was absorbed by the epithelium, most
of which was transferred to the Peyer’s patches, suggesting that

the physicochemical features of proteins could affect allergic
responses (Graversen et al., 2020). In order to alleviate or avoid
CMPA, the AAF and deep hydrolyzed milk powder were used as
the main food for infants and children with CMPA. Moreover,
cow’s milk after heat treatment or being processed by other ways
was used for the feeding of infants with CMPA; however, these
strategies could not cure CMPA directly (Geiselhart et al., 2021).
Avoiding the allergens in food or other materials is difficult in
daily life. Therefore, the transfer from food avoidance to active
treatment is essential. Omalizumab and oral immunotherapy
have been used for treating IgE-mediated food allergy, which has
shown the potential to be used for CMPA treatment (Inuo et al.,
2018; Costa et al., 2020). Nowadays, a few other active treatment
strategies, such as probiotics and prebiotics (Qamer et al., 2019),
transplantation of fecal microbiota (Feehley et al., 2019), and
precise personalized designed diets, have been developed for the
treatment of infants with CMPA (Figure 2).

Probiotics are defined as live microorganisms, which
are beneficial for the host’s health. They modulate the
structure and function of gut microbiota and interact with
the enterocytes through decreasing gut permeability, enhancing
mucus thickness, stimulating secretory immunoglobulin A,
and producing defensin (Maldonado Galdeano et al., 2019).
Moreover, probiotics can modulate the cytokine’s response by
immune cells and help in preventing allergies (Berni Canani
et al., 2012, 2016; Hardy et al., 2013; Hill et al., 2014; Muraro
et al., 2014). Therefore, probiotics and prebiotics have been
used for the prevention and treatment of food allergy via the
modulation of gut microbiota and immune system (Figure 2A;
D’Auria et al., 2019). The supplementation of Lactobacillus and
Bifidobacterium species has been used in a practical treatment
for CMPA, which accelerated the immune tolerance to cow’s
milk in infants with CMPA (Hol et al., 2008; Berni Canani et al.,
2012). A randomized, double-blind, and placebo-controlled
trial indicated that the probiotics Lactobacillus rhamnosus and
Lactobacillus casei strains could improve the symptoms of infants
with CMPA (Cukrowska et al., 2021). A meta-analysis suggested
that probiotics could improve the symptoms of CMPA, but
there was no evidence of improving tolerance to cow’s milk
(Berni Canani et al., 2017; Tan-Lim and Esteban-Ipac, 2018).
The tolerance to cow’s milk can be developed if the infants
with CMPA can use extensively hydrolyzed formula containing
L. rhamnosus GG (LGG) (Berni Canani et al., 2012). The LGG
is a butyrate producer, which might modulate the expression of
genes involved in the allergic pathway, to improve the tolerance
to cow’s milk proteins (Berni Canani et al., 2012, 2013; Elce et al.,
2017; Nocerino et al., 2019). Moreover, the supplementation
of L. rhamnosus LA305, Lactobacillus salivarius LA307, or
Bifidobacterium longum subsp. to CMPA-mouse models altered
the gut microbiota at the species level and immune responses,
which led to the acquisition of tolerance to some food allergies
(Esber et al., 2020). However, further assessment of the probiotics
supplementation effect on the development of immune tolerance
is necessary before the clinical application.

Prebiotics are beneficial substances, which promote the
performance of the indigenous microorganisms and host
immune system (Hardy et al., 2013; Hill et al., 2014).
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FIGURE 2 | Different strategies for CMPA treatment. (A) Probiotics, prebiotics, and synbiotics are often used for CMPA treatment. In the future, the
microbiota-targeted design of a healthy diet might be possible to treat CMPA infants. (B) Fecal microbiota transplantation strategy used for CMPA treatment.

They are abundant in human breast milk and include
galactooligosaccharides (GOS), fructooligosaccharides (FOS),
2′-fucosyllactose, and lacto-N-neo-tetraose. They have direct
effects on the host by interacting with the host epithelial
barrier and indirect effects via the metabolites (Miqdady
et al., 2020). They also act as the energy and nutrient
sources for selective fermentation by resident health-promoting
microorganisms in the gastrointestinal tract, which can protect
against pathogens, improve intestinal barrier function, and
orchestrate immune pathways (Parnell and Reimer, 2012;
Wasilewski et al., 2015).

A mixture of prebiotics could reduce the incidence of allergic
responses before 2 years of life and had long-term immune-
modulating effects (Arslanoglu et al., 2008). Prebiotics also
showed preventive effects in allergy and promoted a tolerogenic
environment (Brosseau et al., 2019). The supplementation of
prebiotics has been suggested as an effective intervention strategy
to treat allergic disorders (Sestito et al., 2020). Although the
use of prebiotics has positive effects on the improvement of
allergic responses, available evidence is insufficient. Therefore,
further global and rigorous studies with randomized, double-
blind, and placebo-controlled designs are necessary before the
recommendation of any prebiotic as a routine supplementation
for the prevention of allergy in formula-fed food. Synbiotics
are combinations of useful probiotics and prebiotics, which
provide a synergistic effect on human health (Markowiak and
Śliżewska, 2017). Compared to probiotics and prebiotics, the

design of proper synbiotics would enrich specific taxa in gut
microbiota and provide long-term benefits for CMPA infants
(Phavichitr et al., 2021).

MICROBIOTA-TARGETED PREVENTION
AND TREATMENT OF CMPA

As previously described, the gut microbiota is associated with the
occurrence of allergic reactions (Shu et al., 2019). A recent study
showed that the gut microbiota of cesarean section-delivered
newborns was restored to the normal state similar to the vaginally
delivered newborns by maternal fecal microbiota transplantation
(FMT) (Korpela et al., 2020), suggesting that FMT can modulate
infants’ gut microbiota and might be a possible treatment strategy
for CMPA (Albuhairi and Rachid, 2020). FMT is the transfer
of normal gut microbiota from healthy people to patients,
rebuilding the gut microbiota ecosystem (Figure 2B). It has
been applied to treat several diseases, including inflammatory
bowel disease (IBD), and Clostridioides difficile infection (CDI)
(Mohajeri et al., 2018; Galan-Ros et al., 2020; Glassner et al.,
2020; Zhang et al., 2020). The survival rate of IBD caused by CDI
using the FMT strategy could reach 90% (Basson et al., 2020).
The animal trials demonstrated that FMT could improve CMPA
symptoms. However, the use of FMT for the CMPA treatment
is still under development. As the gut microbiota of infants is
immature (Stokholm et al., 2018; Moore and Townsend, 2019),
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the curative effects of FMT on CMPA treatment need
comprehensive evaluation.

Nowadays, the incidences of food allergy have been increased
due to the alterations in genome–environment interaction
and modern lifestyles (Loh and Tang, 2018). Diets play
vital roles in food allergy and the development of CMPA,
and the early dietary interventions have been proved to
be an effective strategy to prevent food allergy (Du Toit
et al., 2016). The introduction of solid food at the early
life might reduce the incidence of food allergy (Caffarelli
et al., 2018; Mastrorilli et al., 2020). High-fiber foods lead
to the high level of SCFAs’ release, which might enhance
oral tolerance and protect the host from food allergy (Tan
et al., 2016; Makki et al., 2018). In contrast, high-fat diet
induces post-diet alteration in gut microbiota, which might
increase the incidence of food allergy (Hussain et al., 2019).
Moreover, the extensive casein formula, supplemented with
LGG and EHCF which designed for the treatment of infants
with CMPA, significantly increased the fecal butyrate levels,
which increased the infants’ tolerance to CMPA (Berni
Canani et al., 2016) via the alteration of gut microbiota
(Berni Canani et al., 2016).

A recent study showed that cranberries attenuated the
impact of an animal-based diet to a less favorable profile
(Rodríguez-Morató et al., 2018), suggesting that healthy food
can induce changes in the composition and function of
human gut microbiota. The baseline gut microbiota could
affect the final diet intervention results based on a diet-
induced weight-loss study, and the abundance of some
microbial species, including Ruminococcus gnavus, Akkermansia
muciniphila, Blautia wexlerae, and Bacteroides dorei, was found
to be linked to the weight loss during diet interventions
(Jie et al., 2021). Moreover, the changes in gut microbiota
induced by the diet were temporary and the long-term
dietary interventions are still unknown (Leeming et al.,
2019). Therefore, the modulation of gut microbiota should
consider the personal baseline microbiota and personalized
responses to diets. The microbiota-based design of healthy
food is crucial for the personalized nutrient supplementation
strategy in the future (Fan and Pedersen, 2021). After
understanding the keystone microbial taxa in infants with CMPA
and diet–microbiota interactions, the design of personalized
diets might contribute to the CMPA treatments (Figure 2A;
Kolodziejczyk et al., 2019). With the development of synthetic
biology and computational approaches, the intervention of
engineered live microbiota that produces active molecules
into infants with CMPA is a potential treatment strategy
for CMPA via the integration of multi-omics data and
clinical characteristics (Guan et al., 2020; Wang et al., 2020;
Peng et al., 2021).

FUTURE PERSPECTIVES AND
CONCLUSION

An insight into the gut microbiota of infants with CMPA and the
identification of keystone taxa in its development are required for
the diagnosis and treatment of CMPA. Moreover, current focus
should be shifted from the descriptive CMPA gut microbiota to
the cause-and-effect host–microbiota investigation, which will
reveal the CMPA-related microbiota. The global profiling of
long-term changes and the dietary intervention effects on gut
microbiota are required for the dietary modulation of CMPA
gut microbiota. Besides, the supplementation of probiotics,
prebiotics, synbiotics, FMT, and microbiota-based design of a
healthy diet is intrigued to implement for the treatment of
CMPA in the future. Based on the relationship of gut microbiota
and CMPA, the microorganism-based diagnosis and treatment
strategies of CMPA might be developed soon, which may improve
the health and life quality of CMPA infants.

AUTHOR CONTRIBUTIONS

YW and BJ conceived the study. YDY, XL, and YY drafted
the manuscript. YDY prepared the figures. CZ and SS
revised the manuscript. YW and BJ designed the whole study
and revised the manuscript. All authors read, revised, and
approved the manuscript.

FUNDING

This work was supported by Henan Provincial Key Laboratory
of Children’s Genetics and Metabolic Diseases Foundation
(No. SS201909), the National Natural Science Foundation
of China (Nos. 31800079 and 32111530179), and Clinical
Laboratories, Shenyou Bio.

ACKNOWLEDGMENTS

We would like to thank TopEdit (www.topeditsci.com) for the
English language editing of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.716667/full#supplementary-material

REFERENCES
Adak, A., and Khan, M. R. (2019). An insight into gut microbiota and its

functionalities. Cell. Mol. Life Sci. 76, 473–493. doi: 10.1007/s00018-018-2943-4
Albuhairi, S., and Rachid, R. (2020). Novel therapies for treatment of food allergy.

Immunol. Allergy Clin. North Am. 40, 175–186. doi: 10.1016/j.iac.2019.09.007

Arrieta, M. C., Stiemsma, L. T., Dimitriu, P. A., Thorson, L., Russell, S., Yurist-
Doutsch, S., et al. (2015). Early infancy microbial and metabolic alterations
affect risk of childhood asthma. Sci. Transl. Med. 7:307ra152. doi: 10.1126/
scitranslmed.aab2271

Arslanoglu, S., Moro, G. E., Schmitt, J., Tandoi, L., Rizzardi, S., and Boehm, G.
(2008). Early dietary intervention with a mixture of prebiotic oligosaccharides

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 716667

http://www.topeditsci.com
https://www.frontiersin.org/articles/10.3389/fmicb.2021.716667/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.716667/full#supplementary-material
https://doi.org/10.1007/s00018-018-2943-4
https://doi.org/10.1016/j.iac.2019.09.007
https://doi.org/10.1126/scitranslmed.aab2271
https://doi.org/10.1126/scitranslmed.aab2271
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-716667 August 10, 2021 Time: 12:50 # 7

Yang et al. Allergy and Gut Microbiota

reduces the incidence of allergic manifestations and infections during the first
two years of life. J. Nutr. 138, 1091–1095. doi: 10.1093/jn/138.6.1091

Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al.
(2015). Dynamics and Stabilization of the human gut microbiome during the
first year of life. Cell Host Microbe 17, 690–703.

Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A., and Cominelli, F. (2020).
Autologous fecal microbiota transplantation for the treatment of inflammatory
bowel disease. Transl. Res. 226, 1–11. doi: 10.1016/j.trsl.2020.05.008

Baumann-Dudenhoeffer, A. M., D’souza, A. W., Tarr, P. I., Warner, B. B., and
Dantas, G. (2018). Infant diet and maternal gestational weight gain predict
early metabolic maturation of gut microbiomes. Nat. Med. 24, 1822–1829.
doi: 10.1038/s41591-018-0216-2

Bazanella, M., Maier, T. V., Clavel, T., Lagkouvardos, I., Lucio, M., Maldonado-
Gòmez, M. X., et al. (2017). Randomized controlled trial on the impact of
early-life intervention with bifidobacteria on the healthy infant fecal microbiota
and metabolome. Am. J. Clin. Nutr. 106, 1274–1286.

Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., et al. (2010).
Individuality in gut microbiota composition is a complex polygenic trait shaped
by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci.
U. S. A. 107, 18933–18938. doi: 10.1073/pnas.1007028107

Berni Canani, R., De Filippis, F., Nocerino, R., Paparo, L., Di Scala, C., Cosenza, L.,
et al. (2018). Gut microbiota composition and butyrate production in children
affected by non-IgE-mediated cow’s milk allergy. Sci. Rep. 8:12500.

Berni Canani, R., Di Costanzo, M., Bedogni, G., Amoroso, A., Cosenza, L., Di Scala,
C., et al. (2017). Extensively hydrolyzed casein formula containing Lactobacillus
rhamnosus GG reduces the occurrence of other allergic manifestations in
children with cow’s milk allergy: 3-year randomized controlled trial. J. Allergy
Clin. Immunol. 139, 1906–1913.e4.

Berni Canani, R., Nocerino, R., Terrin, G., Coruzzo, A., Cosenza, L., Leone, L., et al.
(2012). Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s
milk allergy: a randomized trial. J. Allergy Clin. Immunol. 129, 580–582.e5.

Berni Canani, R., Nocerino, R., Terrin, G., Frediani, T., Lucarelli, S., Cosenza, L.,
et al. (2013). Formula selection for management of children with cow’s milk
allergy influences the rate of acquisition of tolerance: a prospective multicenter
study. J. Pediatr. 163, 771–777.e1.

Berni Canani, R., Paparo, L., Nocerino, R., Di Scala, C., Della Gatta, G., Maddalena,
Y., et al. (2019). Gut microbiome as target for innovative strategies against food
allergy. Front. Immunol. 10:191. doi: 10.3389/fimmu.2019.00191

Berni Canani, R., Sangwan, N., Stefka, A. T., Nocerino, R., Paparo, L., Aitoro,
R., et al. (2016). Lactobacillus rhamnosus GG-supplemented formula expands
butyrate-producing bacterial strains in food allergic infants. ISME J. 10, 742–
750. doi: 10.1038/ismej.2015.151

Biasucci, G., Rubini, M., Riboni, S., Morelli, L., Bessi, E., and Retetangos, C. (2010).
Mode of delivery affects the bacterial community in the newborn gut. Early
Hum. Dev. 86(Suppl. 1), 13–15. doi: 10.1016/j.earlhumdev.2010.01.004

Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., et al. (2016).
Antibiotics, birth mode, and diet shape microbiome maturation during early
life. Sci. Transl. Med. 8:343ra382.

Brandl, C., Bucci, L., Schett, G., and Zaiss, M. M. (2021). Crossing the barriers:
revisiting the gut feeling in rheumatoid arthritis. Eur. J. Immunol. 51, 798–810.
doi: 10.1002/eji.202048876

Brosseau, C., Selle, A., Palmer, D. J., Prescott, S. L., Barbarot, S., and Bodinier,
M. (2019). Prebiotics: mechanisms and preventive effects in allergy. Nutrients
11:1841. doi: 10.3390/nu11081841

Bunyavanich, S., and Berin, M. C. (2019). Food allergy and the microbiome: current
understandings and future directions. J. Allergy Clin. Immunol. 144, 1468–1477.
doi: 10.1016/j.jaci.2019.10.019

Bunyavanich, S., and Schadt, E. E. (2015). Systems biology of asthma and allergic
diseases: a multiscale approach. J. Allergy Clin. Immunol. 135, 31–42. doi:
10.1016/j.jaci.2014.10.015

Bunyavanich, S., Shen, N., Grishin, A., Wood, R., Burks, W., Dawson, P.,
et al. (2016). Early-life gut microbiome composition and milk allergy
resolution. J. Allergy Clin. Immunol. 138, 1122–1130. doi: 10.1016/j.jaci.2016.
03.041

Caffarelli, C., Di Mauro, D., Mastrorilli, C., Bottau, P., Cipriani, F., and Ricci, G.
(2018). Solid food introduction and the development of food allergies. Nutrients
10:1790. doi: 10.3390/nu10111790

Cahenzli, J., Köller, Y., Wyss, M., Geuking, M. B., and Mccoy, K. D. (2013).
Intestinal microbial diversity during early-life colonization shapes long-term
IgE levels. Cell Host Microbe 14, 559–570. doi: 10.1016/j.chom.2013.10.004

Campbell, C., Dikiy, S., Bhattarai, S. K., Chinen, T., Matheis, F., Calafiore, M.,
et al. (2018). Extrathymically generated regulatory T cells establish a niche for
intestinal border-dwelling bacteria and affect physiologic metabolite balance.
Immunity 48, 1245–1257.e9.

Chen, Y. E., Fischbach, M. A., and Belkaid, Y. (2018). Skin microbiota-host
interactions. Nature 553, 427–436. doi: 10.1038/nature25177

Chu, D. M., Ma, J., Prince, A. L., Antony, K. M., Seferovic, M. D., and Aagaard,
K. M. (2017). Maturation of the infant microbiome community structure and
function across multiple body sites and in relation to mode of delivery. Nat.
Med. 23, 314–326. doi: 10.1038/nm.4272

Conway, K. R., and Boddy, C. N. (2013). ClusterMine360: a database of microbial
PKS/NRPS biosynthesis. Nucleic Acids Res. 41, D402–D407.

Costa, C., Coimbra, A., Vitor, A., Aguiar, R., Ferreira, A. L., and Todo-Bom,
A. (2020). Food allergy-from food avoidance to active treatment. Scand. J.
Immunol. 91:e12824.

Cukrowska, B., Ceregra, A., Maciorkowska, E., Surowska, B., Zegadło-Mylik,
M. A., Konopka, E., et al. (2021). The effectiveness of probiotic Lactobacillus
rhamnosus and Lactobacillus casei strains in children with atopic dermatitis and
cow’s milk protein allergy: a multicenter, randomized, double blind, placebo
controlled study. Nutrients 13:1169. doi: 10.3390/nu13041169

D’Auria, E., Salvatore, S., Pozzi, E., Mantegazza, C., Sartorio, M. U. A., Pensabene,
L., et al. (2019). Cow’s milk allergy: immunomodulation by dietary intervention.
Nutrients 11:1399. doi: 10.3390/nu11061399

D’Auria, E., and Venter, C. (2020). Precision medicine in cow’s milk allergy.
Curr. Opin. Allergy Clin. Immunol. 20, 233–241. doi: 10.1080/00325481.1982.
11716263

Dhondalay, G. K., Rael, E., Acharya, S., Zhang, W., Sampath, V., Galli, S. J., et al.
(2018). Food allergy and omics. J. Allergy Clin. Immunol. 141, 20–29.

Di Luccia, B., Ahern, P. P., Griffin, N. W., Cheng, J., Guruge, J. L., Byrne, A. E., et al.
(2020). Combined prebiotic and microbial intervention improves oral cholera
vaccination responses in a mouse model of childhood undernutrition. Cell Host
Microbe 27, 899–908.e5.

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G.,
Fierer, N., et al. (2010). Delivery mode shapes the acquisition and structure of
the initial microbiota across multiple body habitats in newborns. Proc. Natl.
Acad. Sci. U. S. A. 107, 11971–11975. doi: 10.1073/pnas.1002601107

Donaldson, G. P., Ladinsky, M. S., Yu, K. B., Sanders, J. G., Yoo, B. B., Chou,
W.-C., et al. (2018). Gut microbiota utilize immunoglobulin A for mucosal
colonization. Science 360, 795–800. doi: 10.1126/science.aaq0926

Du Toit, G., Foong, R. X., and Lack, G. (2016). Prevention of food allergy – early
dietary interventions. Allergol. Int. 65, 370–377. doi: 10.1016/j.alit.2016.08.001

Elce, A., Amato, F., Zarrilli, F., Calignano, A., Troncone, R., Castaldo, G., et al.
(2017). Butyrate modulating effects on pro-inflammatory pathways in human
intestinal epithelial cells. Benef. Microbes 8, 841–847. doi: 10.3920/bm2016.0197

Esber, N., Mauras, A., Delannoy, J., Labellie, C., Mayeur, C., Caillaud, M. A., et al.
(2020). Three candidate probiotic strains impact gut microbiota and induce
anergy in mice with cow’s milk allergy. Appl. Environ. Microbiol. 86:e01203-20.

Esterhazy, D., Canesso, M. C. C., Mesin, L., Muller, P. A., De Castro, T. B. R.,
Lockhart, A., et al. (2019). Compartmentalized gut lymph node drainage
dictates adaptive immune responses. Nature 569, 126–130. doi: 10.1038/
s41586-019-1125-3

Fan, Y., and Pedersen, O. (2021). Gut microbiota in human metabolic health and
disease. Nat. Rev. Microbiol. 19, 55–71. doi: 10.1038/s41579-020-0433-9

Feehley, T., Plunkett, C. H., Bao, R., Choi Hong, S. M., Culleen, E., Belda-Ferre, P.,
et al. (2019). Healthy infants harbor intestinal bacteria that protect against food
allergy. Nat. Med. 25, 448–453. doi: 10.1038/s41591-018-0324-z

Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., et al. (2018).
Mother-to-infant microbial transmission from different body sites shapes the
developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5.

Flom, J. D., and Sicherer, S. H. (2019). Epidemiology of cow’s milk allergy. Nutrients
11:1051.

Fujimura, K. E., Sitarik, A. R., Havstad, S., Lin, D. L., Levan, S., Fadrosh, D.,
et al. (2016). Neonatal gut microbiota associates with childhood multisensitized
atopy and T cell differentiation. Nat. Med. 22, 1187–1191. doi: 10.1038/nm.4176

Frontiers in Microbiology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 716667

https://doi.org/10.1093/jn/138.6.1091
https://doi.org/10.1016/j.trsl.2020.05.008
https://doi.org/10.1038/s41591-018-0216-2
https://doi.org/10.1073/pnas.1007028107
https://doi.org/10.3389/fimmu.2019.00191
https://doi.org/10.1038/ismej.2015.151
https://doi.org/10.1016/j.earlhumdev.2010.01.004
https://doi.org/10.1002/eji.202048876
https://doi.org/10.3390/nu11081841
https://doi.org/10.1016/j.jaci.2019.10.019
https://doi.org/10.1016/j.jaci.2014.10.015
https://doi.org/10.1016/j.jaci.2014.10.015
https://doi.org/10.1016/j.jaci.2016.03.041
https://doi.org/10.1016/j.jaci.2016.03.041
https://doi.org/10.3390/nu10111790
https://doi.org/10.1016/j.chom.2013.10.004
https://doi.org/10.1038/nature25177
https://doi.org/10.1038/nm.4272
https://doi.org/10.3390/nu13041169
https://doi.org/10.3390/nu11061399
https://doi.org/10.1080/00325481.1982.11716263
https://doi.org/10.1080/00325481.1982.11716263
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1126/science.aaq0926
https://doi.org/10.1016/j.alit.2016.08.001
https://doi.org/10.3920/bm2016.0197
https://doi.org/10.1038/s41586-019-1125-3
https://doi.org/10.1038/s41586-019-1125-3
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.1038/s41591-018-0324-z
https://doi.org/10.1038/nm.4176
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-716667 August 10, 2021 Time: 12:50 # 8

Yang et al. Allergy and Gut Microbiota

Galan-Ros, J., Ramos-Arenas, V., and Conesa-Zamora, P. (2020). Predictive
values of colon microbiota in the treatment response to colorectal cancer.
Pharmacogenomics 21, 1045–1059. doi: 10.2217/pgs-2020-0044

Geiselhart, S., Podzhilkova, A., and Hoffmann-Sommergruber, K. (2021). Cow’s
milk processing—friend or foe in food allergy? Foods 10:572. doi: 10.3390/
foods10030572

Gensollen, T., Iyer, S. S., Kasper, D. L., and Blumberg, R. S. (2016). How
colonization by microbiota in early life shapes the immune system. Science 352,
539–544. doi: 10.1126/science.aad9378

Glassner, K. L., Abraham, B. P., and Quigley, E. M. M. (2020). The microbiome and
inflammatory bowel disease. J. Allergy Clin. Immunol. 145, 16–27.

Graversen, K. B., Ballegaard, A. R., Kraemer, L. H., Hornslet, S. E., Sørensen, L. V.,
Christoffersen, H. F., et al. (2020). Cow’s milk allergy prevention and treatment
by heat-treated whey-A study in Brown Norway rats. Clin. Exp. Allergy 50,
708–721. doi: 10.1111/cea.13587

Guan, R., Wang, M., Guan, Z., Jin, C.-Y., Lin, W., Ji, X., et al. (2020). Metabolic
engineering for glycyrrhetinic acid production in Saccharomyces cerevisiae.
Front. Bioeng. Biotechnol. 8:588255. doi: 10.3389/fbioe.2020.588255

Hardy, H., Harris, J., Lyon, E., Beal, J., and Foey, A. D. (2013). Probiotics,
prebiotics and immunomodulation of gut mucosal defences: homeostasis and
immunopathology. Nutrients 5, 1869–1912. doi: 10.3390/nu5061869

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al.
(2014). Expert consensus document. The international scientific association for
probiotics and prebiotics consensus statement on the scope and appropriate
use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514. doi:
10.1038/nrgastro.2014.66

Hol, J., Van Leer, E. H., Elink Schuurman, B. E., De Ruiter, L. F., Samsom,
J. N., Hop, W., et al. (2008). The acquisition of tolerance toward cow’s milk
through probiotic supplementation: a randomized, controlled trial. J. Allergy
Clin. Immunol. 121, 1448–1454. doi: 10.1016/j.jaci.2008.03.018

Hussain, M., Bonilla-Rosso, G., Kwong Chung, C. K. C., Bäriswyl, L., Rodriguez,
M. P., Kim, B. S., et al. (2019). High dietary fat intake induces a microbiota
signature that promotes food allergy. J. Allergy Clin. Immunol. 144, 157–170.e8.

Inuo, C., Tanaka, K., Suzuki, S., Nakajima, Y., Yamawaki, K., Tsuge, I., et al.
(2018). Oral immunotherapy using partially hydrolyzed formula for cow’s milk
protein allergy: a randomized, controlled trial. Int. Arch. Allergy Immunol. 177,
259–268. doi: 10.1159/000490804

Jie, Z., Yu, X., Liu, Y., Sun, L., Chen, P., Ding, Q., et al. (2021). The baseline gut
microbiota directs dieting-induced weight loss trajectories. Gastroenterology
160, 2029–2042.e16.

Johnston, L. K., Chien, K. B., and Bryce, P. J. (2014). The immunology of food
allergy. J. Immunol. 192, 2529–2534.

Kolodziejczyk, A. A., Zheng, D., and Elinav, E. (2019). Diet-microbiota interactions
and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753. doi: 10.1038/
s41579-019-0256-8

Korpela, K., Helve, O., Kolho, K. L., Saisto, T., Skogberg, K., Dikareva, E., et al.
(2020). Maternal fecal microbiota transplantation in cesarean-born infants
rapidly restores normal gut microbial development: a proof-of-concept study.
Cell 183, 324–334.e5.

Kushwah, R., and Hu, J. (2011). Role of dendritic cells in the induction of regulatory
T cells. Cell Biosci. 1:20.

Leeming, E. R., Johnson, A. J., Spector, T. D., and Le Roy, C. I. (2019). Effect of
diet on the gut microbiota: rethinking intervention duration. Nutrients 11:2862.
doi: 10.3390/nu11122862

Liu, Y., Li, X., Yang, Y., Liu, Y., Wang, S., Ji, B., et al. (2021). Exploring potential
gut microbiota in patients with colorectal disease based on 16S rRNA gene
amplicon and metagenomics. Front. Mol. Biosci. 8:703638. doi: 10.3389/fmolb.
2021.703638

Loh, W., and Tang, M. L. K. (2018). The epidemiology of food allergy in the
global context. Int. J. Environ. Res. Public Health 15, 2043. doi: 10.3390/
ijerph15092043

Ma, N., Tian, Y., Wu, Y., and Ma, X. (2017). Contributions of the interaction
between dietary protein and gut microbiota to intestinal health. Curr. Protein
Pept. Sci. 18, 795–808.

Mager, L. F., Burkhard, R., Pett, N., Cooke, N. C. A., Brown, K., Ramay, H.,
et al. (2020). Microbiome-derived inosine modulates response to checkpoint
inhibitor immunotherapy. Science 369, 1481–1489. doi: 10.1126/science.
abc3421

Makki, K., Deehan, E. C., Walter, J., and Bäckhed, F. (2018). The impact of dietary
fiber on gut microbiota in host health and disease. Cell Host Microbe 23,
705–715. doi: 10.1016/j.chom.2018.05.012

Maldonado Galdeano, C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E.,
and Perdigón, G. (2019). Beneficial effects of probiotic consumption on
the immune system. Ann. Nutr. Metab. 74, 115–124. doi: 10.1159/00049
6426
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