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Existence of Steady States of the Massless
Einstein–Vlasov System Surrounding a
Schwarzschild Black Hole

H̊akan Andréasson

Abstract. We show that there exist steady states of the spherically sym-
metric massless Einstein–Vlasov system which surround a Schwarzschild
black hole. The steady states are (thick) shells with finite mass and com-
pact support. Furthermore we prove that an arbitrary number of shells,
necessarily well separated, can surround the black hole. To our knowledge
this is the first result of static self-gravitating solutions to any massless
Einstein-matter system which surround a black hole. We also include a
numerical investigation about the properties of the shells.

1. Introduction

The Einstein–Vlasov system typically models self-gravitating particle ensem-
bles such as galaxies or clusters of galaxies. The particles in the former case are
stars, and in the latter case, they are galaxies. Clearly, the particles carry mass
in these two situations. In this work we are instead interested in the case of
massless particles, e.g. photons, and we show that there exist self-gravitating
ensembles of massless particles with finite mass and compact support sur-
rounding a Schwarzschild black hole. To put our result in context let us briefly
review some related results. Existence of steady states to the Einstein–Vlasov
system in the case of massive particles was first established in [25]. The steady
states constructed in this work are spherically symmetric with a regular centre.
Several simplifications and generalizations have since then been obtained, and
we refer to [22] for a simplified and general approach, to [6] for the existence
of highly relativistic static solutions and to [11] for the existence of stationary
solutions in the axisymmetric case. There are several other existence results
and also results about the properties of the static solutions in the literature,
and we refer to [8] for a review and to [2,3,9] for more recent results.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-021-01104-6&domain=pdf
http://orcid.org/0000-0003-4953-6001
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By relaxing the condition of a regular centre the case with a Schwarzschild
black hole was considered in [23], where the existence of massive static shells of
Vlasov matter surrounding a black hole was shown. A different method leading
to a similar result has been more recently given by Jabiri [20]. For a fluid, the
first result of a massive static shell surrounding a black hole was obtained in
[18]. If the matter model originates from quantum mechanics, similar results
need not be true as is for instance shown in [17], where the absence of static
black hole solutions is shown for the Einstein–Dirac–Yang/Mills equations. It
is argued in [17] that a reason for the difference between the classical and the
quantum mechanical case is that classical particles are prevented from falling
into the black hole by the centrifugal barrier, whereas quantum particles can
tunnel through this barrier.

Solutions of the Einstein–Vlasov system can also model ensembles of
massless particles, e.g. photons. The first mathematical study of the massless
Einstein–Vlasov system is to our knowledge the work [26] by Rendall, where
the dynamics of cosmological solutions is investigated. Only more recently
results about static solutions have been obtained. Akbarian and Choptuik
constructed massless solutions with compact support numerically in [1]. An
existence proof was obtained in [10], where also a discussion about the rela-
tion to Wheeler’s concept of geons is given. Gundlach studied the problem
by numeric and analytic tools in [19]. An important difference between the
massive and massless case is that the existence of massless static solutions
requires that the solutions are highly relativistic in the sense that the com-
pactness ratio 2M/R is large. Here M is the ADM mass of the solution and R
its (areal) radial support. It is known that 2M/R is always bounded by 8/9, cf.
[7]. (The classical result by Buchdahl [13] does not apply in this case although
the bound is the same.) Numerically it has been found that a necessary lower
bound is roughly 2M/R > 4/5, cf. [1,10,19], for the existence of massless static
solutions, whereas no such lower bound is needed in the massive case.

In the present work we combine the methods from [10,23]. We consider
the case with a Schwarzschild black hole in the centre and we show that there
exist static massless shells of Vlasov matter with compact support and finite
mass which surround the black hole. Necessarily there is a gap between the
black hole and the shell; the inner radius of the shell has to be larger than the
radius of the photon sphere of the black hole. In our proof the shell is placed
far away from the photon sphere. This is a technical condition. Numerically,
we find that there are situations when the shell can be arbitrary close to the
photon sphere, cf. Sect. 5. The shell solutions are highly relativistic in the
sense that 2M/R is large. However, when the shell can be placed close to the
photon sphere the ratio 2M/R is larger than, but close to, 2/3. Hence, the
presence of a black hole reduces the required lower bound of 2M/R. Clearly,
since the ratio 2M/R of the shell is larger than 2/3, there is a photon sphere
surrounding the shell in addition to the photon sphere which surrounds the
black hole and which is situated between the black hole and the shell. Our
result can be generalized to the case of an arbitrary number of shells. The
resulting spacetime thus contains an arbitrary number of photon spheres. This
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seems to contradict the result in [14] which shows that only one photon sphere
can appear in a static spacetime. However, the result in [14] does not apply in
the case when the photon spheres are nested as in our case.

We remark that our result holds also in the case when the black hole mass
vanishes. However, the family of solutions obtained in this work is different
from the family of solutions obtained in [10]. In the present situation we require
the inner radius of the shell, R0, to be sufficiently large, whereas R0 is required
to be sufficiently small in [10]. In fact, the compactness ratio 2M/R → 8/9 in
both the limits R0 → 0 and R0 → ∞. (It should be pointed out that in the
former case L0 is fixed and R0 becomes small by increasing E0.)

Let us finally mention that the linear massless Einstein–Vlasov system
has been studied on a fixed black hole spacetime in [4]. The authors show that
solutions to the linear Einstein–Vlasov system on a Kerr background satisfy a
Morawetz estimate. Our result shows that an analogous result cannot hold for
the nonlinear Einstein–Vlasov system. On the other hand, the main purpose of
[4] is to understand perturbations of black hole spacetimes. The steady states
we construct require compact configurations and the matter components can-
not be made arbitrary small. Thus they should not be relevant when studying
perturbations.

The outline of the paper is as follows. In Sect. 2 we introduce the massless
static Einstein–Vlasov system. In Sect. 3 we formulate the main results and
in Sect. 4 we prove our main theorem. Section 5 is devoted to a numerical
investigation of the properties of the solutions.

2. The Static Einstein–Vlasov System

The metric of a static spherically symmetric spacetime takes the following
form in Schwarzschild coordinates

ds2 = −e2μ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2),

where r ≥ 0, θ ∈ [0, π], ϕ ∈ [0, 2π] and t ∈ R. Asymptotic flatness is expressed
by the boundary conditions

lim
r→∞ λ(r) = lim

r→∞ μ(r) = 0.

We now formulate the spherically symmetric static massless Einstein–Vlasov
system. For an introduction to the Einstein–Vlasov system we refer to [8,24]
and [26]. Below we use units such that c = G = 1 where G is the gravitational
constant and c is the speed of light. The spherically symmetric static massless
Einstein–Vlasov system is given by the Einstein equations

e−2λ(2rλr − 1) + 1 = 8πr2ρ, (2.1)

e−2λ(2rμr + 1) − 1 = 8πr2p, (2.2)

μrr + (μr − λr)
(

μr +
1
r

)
= 8πpT e2λ, (2.3)
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together with the static Vlasov equation

w

ε
∂rf −

(
μrε − L

r3ε

)
∂wf = 0, (2.4)

where

ε = ε(r, w, L) =
√

w2 + L/r2.

The matter quantities are defined by

ρ(r) =
π

r2

∫ ∞

−∞

∫ ∞

0

ε(r, w, L)f(r, w, L) dLdw, (2.5)

p(r) =
π

r2

∫ ∞

−∞

∫ ∞

0

w2

ε(r, w, L)
f(r, w, L) dLdw, (2.6)

pT (r) =
π

2r4

∫ ∞

−∞

∫ ∞

0

L

ε(r, w, L)
f(r, w, L) dLdw. (2.7)

The variables w and L can be thought of as the momentum in the radial
direction and the square of the angular momentum, respectively.

The matter quantities ρ, p and pT are the energy density, the radial pres-
sure and the tangential pressure, respectively. The system of equations above
are not independent, and we study the reduced system (2.1)–(2.2) together
with (2.4) and (2.5)–(2.6). It is straightforward to show that a solution to the
reduced system is a solution to the full system.

Define

E = eμε,

then the ansatz

f(r, w, L) = Φ(E,L), (2.8)

satisfies (2.4). By inserting this ansatz into (2.5)–(2.6) the system of equa-
tions reduce to a system where the metric coefficients μ and λ alone are the
unknowns. This has turned out to be an efficient method to construct static
solutions and we will use this approach here. The following form of Φ will be
used

Φ(E,L) = (E0 − E)k
+(L − L0)l

+, (2.9)

where l ≥ 1/2, k ≥ 0, L0 > 0, E0 > 0, and x+ := max{x, 0}. In the Newtonian
case with l = L0 = 0, this ansatz leads to steady states with a polytropic
equation of state.

The aim in this work is to show that static shells of Vlasov matter exist
which surround a Schwarzschild black hole; in fact, there can be arbitrary many
shells separated by vacuum surrounding the black hole. To prove our result we
construct highly compact shells, i.e. shells for which the compactness ratio

Γ := sup
2m(r)

r
, (2.10)



Existence of Steady States

is large; roughly Γ ≥ 4
5 . Here m is the Hawking mass defined for r ≥ 2M0 by

m(r) = M0 +
∫ r

2M0

s2ρ(s) ds, r ≥ 2M0.

From [7] it always holds that Γ < 8
9 . The result in [7] concerns steady states

with a regular centre, but it is straightforward to show that it holds also in
the case with a Schwarzschild black hole at the centre.

Remark 2.1. Numerically we are able to construct solutions where the shell
is close to the photon sphere of the black hole. For such solutions it turns
out that Γ is larger than, but close to, 2/3, cf. Sect. 5. Hence, the presence
of a black hole reduces the required lower bound of Γ. Indeed, recall that the
numerical studies in the regular case indicate that the required lower bound is
larger in that case, cf. [1,10,19].

If the inner radius of the shell is denoted by R0, we show that for highly
relativistic shells there is a radius R1 such that f(r, w, L) = 0 in an interval
[R1, R1 + ε], ε > 0. This fact makes it possible to glue a Schwarzschild solution
at r = R1 to the shell solution with support in [R0, R1]. If a Schwarzschild
solution is not attached at r = R1, then the ansatz (2.9) implies that Vlasov
matter will occur again and there exists a radius R2 such that f > 0 for all
r > R2 and the solution is not asymptotically flat. This is a general feature
of massless static solutions of the Einstein–Vlasov system obtained from an
ansatz, cf. Eq. (2.8). In the massive case the situation is different and solutions
generated by the ansatz (2.9) alone gives rise to compactly supported solutions.

In the massive case the existence of shells surrounding a Schwarzschild
black hole was settled in [23]. These shells are not highly relativistic. To con-
struct highly relativistic shells for which Γ is sufficiently large we adapt the
method developed in [6], which in turn was used to show existence of massless
steady states with a regular centre in [10].

3. Set-up and Main Result

Let M0 > 0 be the mass of the black hole. In a vacuum region in the exterior
of the black hole it holds that

e2μ(r) = 1 − 2M0

r
.

Note that the ansatz (2.9) implies that f = 0 whenever E > E0. Accordingly
we let f = 0 in the interval [2M0, R0], where R0 is the largest root to the
equation (

1 − 2M0

r

)
L0

r2
= E2

0 = 1. (3.11)

Of course, we need a condition on L0 which guarantees that the equation has
real roots.
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Remark 3.1. The parameter L0 can be removed. From above we see that by
replacing E0 by Ẽ0 = E0/

√
L0 we could consider the case L0 = 1 and use E0

as free parameter, cf. [19,27]. However, below we keep L0 as free parameter
and we fix E0 = 1.

An elementary computation shows that the maximum value of the left
hand side of (3.11) is

L0

27M2
0

,

attained at r = 3M0. This radius corresponds to the radius of the photon
sphere of the black hole. We fix E0 = 1 and impose the condition that

L0 > 27M2
0 =: L∗.

Equation (3.11) then has three real roots and we denote the largest root by
R0 where R0 > 3M0. To carry out the proof of our main result we will take
L0 large. We have the following result.

Lemma 3.2. There exists a constant C > 0, depending on M0, such that

1 − C√
L0

≤ R0√
L0

≤ 1 as L0 → ∞.

Proof. The proof is a straightforward application of the solution formula for
cubic equations. Indeed, Eq. (3.11) is equivalent to

r3 − L0r + 2M0L0 = 0,

which we write as r3 + pr + q = 0 where p = −L0 and q = 2M0L0. Set

D =
(p

3

)3

+
(q

2

)2

= L2
0

(
−L0

27
+ M2

0

)
.

Since we choose L0 > 27M2
0 , it follows that D < 0 and a standard result for

cubic equations implies that the equation has three real roots given by

r1 = u + v, r2,3 =
u + v

2
± u − v

2
i
√

3,

where u = (−q/2 + i
√|D|)1/3 and v = (−q/2 − i

√|D|)1/3. Note here that
u + v and (u − v)i are real. The largest of these roots is

R0 := r1 = u + v = 2
(

q2

4
+ |D|

)1/6

cos
β

3
,

where

β =
π

2
+ arctan

(q/2)√|D| .

We have

0 ≤ (q/2)√|D| =≤ M0

√
L0

√
1
27 − M2

0
L0

≤ C√
L0

,
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where we used that L0 −L∗ > 0 since we consider large L0. Hence there exists
a constant C > 0 such that

π

2
≤ β ≤ π

2
+

C√
L0

,

for large L0. This implies that
√

3
2

− C√
L0

≤ cos
β

3
≤

√
3

2
,

for some positive constant C. Moreover, we have

2
(

q2

4
+ |D|

)1/6

= 2
(

M2
0 L2

0 + L2
0

(
L0

27
− M2

0

))1/6

=
2
√

L0√
3

.

Hence we conclude that for large L0

1 − C√
L0

≤ R0√
L0

≤ 1.

�

We now consider the Einstein–Vlasov system on the domain r ≥ R0 and
we prescribe data for μ and λ at r = R0 by letting

e2μ(R0) = e−2λ(R0) = 1 − 2M0

R0
.

Using results from previous works we can assume that there exists a solution
to the Einstein–Vlasov system which exists on [R0,∞[ with the property that
Γ < 8/9 everywhere, cf. [10] for existence and [7] for the bound on Γ. We will
show that if R0 is sufficiently large, i.e. we take L0 large, there is a radius
R1 > R0 such that the energy density and the pressure components vanish at
r = R1. The shell [R0, R1] is thin in the sense that

R1

R0
→ 1as R0 → ∞. (3.12)

However, the difference R1 − R0 does not need to decrease. Depending on the
parameters in equation (2.9) the difference may even become unbounded, cf.
Remark (3.4). Hence the shell is thin in the sense (3.12), which is different
from the usual notion of thin shells in general relativity.

When the distribution function f has the form

f(r, w, L) = Φ(E,L), (3.13)

where Φ = 0 whenever E > E0, the matter quantities ρ and p become func-
tionals of μ, and we have

ρ =
2π

r2

∫ E0e−µ

√
L0
r

∫ r2(s2−1)

L0

Φ(eμs, L)
s2√

s2 − 1 − L
r2

dLds, (3.14)

p =
2π

r2

∫ E0e−µ

√
L0
r

∫ r2(s2−1)

L0

Φ(eμs, L)

√
s2 − 1 − L

r2
dLds. (3.15)
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Here we have kept the parameter E0, but in what follows we use that E0 = 1.
By taking (2.9) for Φ these integrals can be computed explicitly in the cases
when k = 0, 1, 2, ... and l = 1/2, 3/2, ... Let

γ = −μ − 1
2

log
L0

r2
,

we then have the following lemma from [10].

Lemma 3.3. Let k = 0, 1, 2, ... and let l = 1/2, 3/2, 5/2, ... then there are posi-
tive constants πj

k,l, j = 1, 2, 3 such that when γ ≥ 0

ρ = π1
k,lr

2l

(
L0

r2

)l+2

(eγ − 1)l+k+3/2Pl+5/2−k(eγ), (3.17)

p = π2
k,lr

2l

(
L0

r2

)l+2

(eγ − 1)l+k+5/2Pl+3/2−k(eγ), (3.18)

If γ < 0, then all matter components vanish. Here Pn(eγ) is a polynomial of
degree n and Pn > 0.

In order to simplify the technical details we consider only the case k = 0
and l = 1/2, but we emphasize that our result holds more generally as in [10]
and [6].

Remark 3.4. In the case k = 0 and l = 1/2 the support of the shell [R0, R1]
satisfy R1 − R0 ≤ C, independently of R0 as shown below, whereas for other
values of the parameters we claim that

R1 − R0 ∼ R
q−2−2l

q

0 ,

where q = k + l + 5/2, cf. Sect. 5. This relation is obtained by performing the
analysis below in the general case, cf. [6].

Let t = eγ , we then have (with k = 0 and l = 1/2)

ρ(r) = π2r

(
L0

r2

)5/2

(t − 1)2
(

3t3 + 6t2 + 4t + 2
15

)
, (3.19)

and

p(r) = π2r

(
L0

r2

)5/2

(t − 1)3
(

3t2 + 9t + 8
60

)
. (3.20)

Let R0 be large and define

δ :=
(

1
20π3

)1/3

. (3.21)

The argument below will be carried out in the interval I := [R0, R1] where
R1 ≤ R0 + 50δ =: R∗

1. Since R0 will be taken large, R1/R0 is as close to 1 as
we wish. We now formulate the main results in this work.
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Theorem 3.5. Let M0 ≥ 0 be the ADM mass of a Schwarzschild black hole.
Then there exist static solutions with finite ADM mass to the massless spheri-
cally symmetric Einstein–Vlasov system surrounding the black hole. The mat-
ter components are supported on a finite interval [R0, R1], where R0 > 3M0,
and spacetime is asymptotically flat.

Remark 3.6. The arguments below lead to a solution for which μ(r) has a
finite limit μ(∞) as r → ∞. In order to obtain an asymptotically flat solution,
we rescale by letting Ẽ0 := eμ(∞) and μ̃(r) := μ(r) − μ(∞).

Remark 3.7. The regularity of the solution depends on the parameters k and
l, cf. Eqs. (3.17) and (3.18). For the values of k and l that we consider in this
work the matter quantities are continuously differentiable.

Remark 3.8. As mentioned in Introduction, note that our result holds also in
the case when M0 = 0 but that the family of solutions obtained in this work is
different from the family of solutions obtained in [10]. In the present situation
we require the inner radius R0 to be large, whereas in [10] R0 is required
to be small. Clearly, when M0 > 0 it is not possible to take R0 small since
necessarily R0 > 2M0. Both families share the property that Γ → 8/9 in the
extreme limits, i.e. when R0 → 0 as in [10] or when R0 → ∞ as in the present
case.

Remark 3.9. Having a black hole with one shell surrounding it, we can start
from this solution and add another shell with the strategy in the proof. Hence,
our result implies that an arbitrary number of shells can surround the black
hole.

In view of the discussion in Sect. 2, Theorem 3.5 is a consequence of the
following result.

Theorem 3.10. Consider a static solution to the massless Einstein–Vlasov sys-
tem, corresponding to the ansatz (2.9) with k = 0 and l = 1/2, with data given
at r = R0 as described above. For R0 sufficiently large, there exists R1 such
that R0 < R1 ≤ R0 + 50δ, and such that the matter components are sup-
ported in the interval [R0, R1] and vanish at r = R1. Here δ is given by (3.21).
Furthermore, Γ → 8

9 as R0 → ∞.

4. Proof of Main Result

The proof of our main result will follow from a chain of lemmas.

Proof of Theorem 3.10. First we establish convenient formulas for the matter
terms. Although L0 is our free parameter, we will instead use R0 as free pa-
rameter since R0 → ∞ as L0 → ∞ in view of Lemma 3.2. Next we note that
R∗

1/R0 ≤ 1 + C/R0. We remark that here and below C denotes a constant
which might depend on M0 and which might change from line to line. Hence,
by Lemma 3.2 we have for any r ∈ [R0, R

∗
1]

1 − α(R0) ≤ L0

r2
≤ 1 + α(R0), (4.22)
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where we have introduced the notation α(R0) where α(R0) ≥ 0 and α(R0) → 0
as R0 → ∞. By the definition of R0 we have that γ(R0) = 0. Moreover,

γ′(r) = −μ′(r) +
1
r
. (4.23)

Now, since ρ = p = 0 and m(r) = M0 for r ≤ R0, we have that that μ′(R0) <
1/R0. Here we used that M0/R0 < 1/3 and that

e2λ(r) =
1

1 − 2m(r)
r

.

The last relation is a consequence of the Einstein equation (2.1). This implies
that γ′(R0) > 0. Thus γ(r) > 0 in a right neighbourhood of R0 and the aim is
to show that there exists R1 < R∗

1 such that γ(R1) = 0. Hence γ > 0 on the
interior of the closed interval I. An upper bound on γ follows from (4.23). We
have since μ′(r) ≥ 0,

γ(r) = γ(r) − γ(R0) ≤ log
r

R0
= log

(
1 +

r − R0

R0

)
,

which implies that 0 ≤ γ ≤ α(R0) on I if R0 is sufficiently large. Hence for
r ∈ I

γ(r) ≤ eγ(r) − 1 ≤ γ(r)(1 + α(R0)).

In particular this implies that (recall t = eγ)

1 ≤ 3t3 + 6t2 + 4t + 2
15

≤ 1 + α(R0),

and similarly for the corresponding polynomial in p(r). Putting these estimates
together we conclude that

π2rγ2(r)(1 − α(R0)) ≤ ρ(r) ≤ π2rγ2(r)(1 + α(R0)),

and similarly for p(r). Since for all arguments below it is sufficient to have a
lower bound and an upper bound on ρ and p, we assume for simplicity that

ρ(r) = π2rγ2(r), (4.24)

and

p(r) =
π2

3
rγ3(r), (4.25)

for r ∈ I. �

Lemma 4.1. Let δ be as above. Then

γ′(r) ≥ 1
2r

for r ∈ [R0, R0 + δ] =: I1.

Proof. We have by the mean value theorem that for any σ ≤ δ

γ(R0 + σ) = γ(R0 + σ) − γ(R0) = σγ′(ξ) ≤ δ

R0
,
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where ξ ∈ [R0, R0 + σ], since γ(r) ≤ 1/r. Hence,

ρ(r) ≤ π2r
δ2

R2
0

on I1.

We get for σ ≤ δ

m(R0 + σ) ≤ M0 +
4π3δ2

R2
0

∫ R0+σ

R0

η3 dη ≤ M0 +
4π3δ2(R0 + σ)3

R2
0

σ.

By taking R0 large we thus obtain

m(R0 + σ)
R0 + σ

≤ 4π3δ2σ + α(R0) ≤ 4π3δ3 + α(R0) ≤ 1
5

+ α(R0).

This implies that for r ∈ I1

m(r)
r

e2λ(r) ≤ 1
3

+ α(R0).

Moreover, we have for r ∈ I1 that

4πr2p(r)e2λ(r) ≤ 4πr2p(r)
(

5
3

+ α(R0)
)

≤ 4π3δ3

3

(
5
3

+ α(R0)
)

≤ 1
9

+ α(R0).

Hence, for r ∈ I1 we get for sufficiently large R0

μ′(r) ≤
(

1
3

+
1
9

+ α(R0)
)

1
r

≤ 1
2r

.

This completes the proof of the lemma. �

The lemma implies that for σ ≤ δ

γ(R0 + σ) ≥ γ(R0) + σ inf
0≤s≤σ

γ′(R0 + s) ≥ σ

2(R0 + σ)
.

Let

σ∗ := δ,

and define

γ∗ =
σ∗

2(R0 + σ∗)
.

Remark 4.2. The notation σ∗ is in this case superfluous, but for general pa-
rameter values it is motivated, cf. [6].

Clearly we have that

γ(R0 + σ∗) ≥ γ∗.

The result in the following lemma shows that γ will reach the γ∗ level again
at a larger radius.

Lemma 4.3. There exists a radius r2 > R0 +σ∗ such that γ(r2) = γ∗ and such
that γ(r) > γ∗ for R0 + σ∗ < r < r2. Moreover, r2 ≤ R0 + 11δ.
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Proof. Since γ(R0+σ∗) ≥ γ∗, and since Lemma 4.1 gives that γ′(R0+σ∗) > 0,
the radius r2 must be strictly greater than R0 +σ∗. Let [R0 +σ∗, R0 +σ∗ +Δ],
for some 0 < Δ < 10δ, be the smallest interval such that γ ≥ γ∗ on the interval.
We will show that there in fact γ(R0 + σ∗ + Δ) = γ∗. We have from (4.24)

m(R0 + σ∗ + Δ) ≥ 4π3

∫ R0+σ∗+Δ

R0+σ∗

σ2
∗

4(R0 + σ∗)2
r3 dr

≥ π3σ2
∗(R0 + σ∗)Δ. (4.26)

Hence,

m(R0 + σ∗ + Δ)
R0 + σ∗ + Δ

≥ π3σ2
∗(R0 + σ∗)

R0 + σ∗ + Δ
Δ ≥ 9

10
π3σ2

∗Δ,

where we used that R0 ≥ 100δ, so that (R0 +σ∗)/(R0 +σ∗ +Δ) ≥ 9/10, since
we consider large R0. Since for r ≥ R0 necessarily

m(r)
r

<
4
9
,

we conclude that there is a Δ such that

Δ ≤ 40
81π3σ2∗

=
40

81π3δ2
=

40 · 202/3

81π
≤ 10δ,

with the property that γ(R0 + σ∗ + Δ) = γ∗, since otherwise we obtain a
contradiction. �

Next we show an important property of the solution at the radius r = r2

when R0 is sufficiently large.

Lemma 4.4. Let r2 be as above. If R0 is sufficiently large, then

m(r2)
r2

≥ 2
5
.

Proof. We consider the fundamental equation (10) in [5]. In our case with a
black hole at the centre it takes the form(

m(r)
r2

+ 4πrp(r)
)

eμ(r)+λ(r) − M0

R2
0

=
1
r2

∫ r

R0

4πη2eμ+λ(ρ + p + 2pT )dη.

(4.27)

Here we used that μ(R0) + λ(R0) = 0 and that p(R0) = 0. This equation is a
consequence of the generalized Oppenheimer–Tolman–Volkoff equation

pr = −μr(p + ρ) − 2
r
(p − pT ),

cf. [5] for details. In the present massless case we have p + 2pT = ρ, so that
ρ + p + 2pT = 2ρ. If we take r = r2 we then get

m(r2)
r2

e(μ+λ)(r2) ≥ 8π

r2

∫ r2

R0

η2eμ+λρdη − 4πr2
2pe(μ+λ)(r2). (4.28)
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Here we dropped the term involving M0 due to sign. Note that it becomes
arbitrary small for R0 large. Next we write∫ r2

R0

4πηρeλ dη =
∫ r2

R0

(
− d

dr
e−λ

)
dη +

∫ r2

R0

meλ

η2
dη

≥
√

1 − 2M0

R0
−

√
1 − 2m(r2)

r2

= 1 −
√

1 − 2m(r2)
r2

−
(

1 −
√

1 − 2M0

R0

)

=
2m(r2)

r2

(
1 +

√
1 − 2m(r2)

r2

) − α(R0). (4.29)

In the inequality above we dropped the second term due to sign. We note that
this term is as small as we wish for a relatively thin shell. The reason we point
this out is that the chain of inequalities in this paragraph is close to a chain
of equalities for very thin shells. This is essential to understand why for a thin
shell Γ approaches the limit 8/9.

From (4.28) we obtain using that μ is increasing

m(r2)
r2

e(μ+λ)(r2) ≥ 8π

r2

∫ r2

R0

η2eμ+λρdη − 4πr2
2p(r2)e(μ+λ)(r2)

≥ 8πeμ(R0)
R0

r2

∫ r2

R0

ηeλρdη − 4πr2
2p(r2)e(μ+λ)(r2).

Let us introduce the notation P := 4πr2
2p(r2). Using (4.29) we get

m(r2)
r2

e(μ+λ)(r2) ≥ eμ(R0)R0

r2

4m(r2)

r2(1 +
√

1 − 2m(r2)
r2

)

−Pe(μ+λ)(r2) − α(R0). (4.30)

Letting

Y :=
m(r2)

r2
,

we obtain by using that e−λ(r2) =
√

1 − 2Y (r2)

Y ≥ eμ(R0)−μ(r2)

(
R0

r2

)
4Y

√
1 − 2Y

1 +
√

1 − 2Y
− P − α(R0)e−(μ+λ)(r2). (4.31)

Next we show a couple of properties of the solutions that we need to proceed
with the argument. From Lemma 4.3 we have that γ approaches γ∗ from above
and therefore γ′(r2) ≤ 0, which implies that

μ′(r2) ≥ 1
r2

, (4.32)
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in view of (4.23). Furthermore we have from (4.25) that

p(r2) =
π2

3
r2γ

3
∗ =

π2

3
r2

δ3

8(R0 + δ)3
.

Now recall that

μ′ =
(m

r2
+ 4πrp

)
e2λ.

We will show that Y = m(r2)/r2 ≥ 1/4. Assume the contrary, i.e. assume

Y <
1
4
, (4.33)

then

e2λ(r2) =
1

1 − 2Y
< 2,

and thus

4πr2
2p(r2)e2λ(r2) ≤ π3

3
r3
2

δ3

(R0 + δ)3
=

1
60

r3
2

(R0 + δ)3
≤ 1

50
. (4.34)

Here we used that δ3 = 1/20π3 and that r2 ≤ R0 + 11δ so that

r3
2

(R0 + δ)3
≤ 6

5
for R0 large.

Hence if (4.33) holds, then

μ′(r2) =
(

m(r2)
r2
2

+ 4πr2p(r2)
)

e2λ(r2) ≤
(

1
2

+
1
50

)
1
r2

,

which is a contradiction to (4.32) and we obtain that

Y ≥ 1
4
.

Let us next consider the difference μ(R0) − μ(r2). We have

μ(r2) − μ(R0) =
∫ r2

R0

(
m

η2
+ 4πηp

)
e2λ dη.

Since γ′(r) ≤ 1/r we have for R0 ≤ r ≤ r2 ≤ R0 + 11δ

γ(r) ≤ log
r

R0
≤ 11δ

R0
,

and we get by using (4.25), and that e2λ ≤ 9

4πr2p(r)e2λ(r) ≤ 12π3r3γ3(r) ≤ 3
5
( r

R0

)3113 ≤ C.

Hence, since m/r ≤ 4/9 we get∫ r2

R0

(
m

η2
+ 4πηp

)
e2λ dη ≤

∫ r2

R0

C

η
dη ≤ C log

r2

R0
≤ C

R0
.

As a consequence we obtain that

1 − α(R0) ≤ eμ(R0)−μ(r2)

(
R0

r2

)
≤ 1 + α(R0).
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From this estimate we also have that e−(μ+λ)(r2) is bounded independently of
R0 and using that Y ≥ 1/4 we can therefore write (4.31) as

1 ≥ 4
√

1 − 2Y

1 +
√

1 − 2Y
− 4P − α(R0). (4.35)

Let us introduce the notation B = 4P + α(R0). We can assume that B ≥ 0
since otherwise this term can be dropped. Multiplying (4.35) by

1 +
√

1 − 2Y ,

and then squaring both sides we obtain

Y ≥ 4
9

− B
√

1 − 2Y (1 +
√

1 − 2Y )
3

, (4.36)

where we dropped the term involving B2 due to sign. Using that Y ≥ 1/4 we
estimate

√
1 − 2Y (1 +

√
1 − 2Y )

3
≤ 1

3
√

2

(
1 +

1√
2

)
≤ 9

20
.

Taking R0 large we derive from (4.36) the inequality

Y ≥ 4
9

− 2P.

The estimate (4.34) can now be used noting that e2λ(r2) ≥ 2 and we obtain

Y ≥ 4
9

− 1
50

≥ 2
5
.

�

Remark 4.5. The proof above is very similar to the corresponding proof in [6].
However, for shells for which the inner radius R0 → 0, as in [6], the pressure
term P → 0 and one can conclude from the argument in the lemma above that
as R0 → 0 the compactness ratio Γ → 8/9. In the present case the situation is
slightly different. However, as soon as we know that there is a radius R1 such
that ρ(R1) = p(R1) = 0, and such that R1/R0 → 1 as R0 → ∞, then we can
use the argument above, with r2 replaced by R1, to show that the compactness
ratio Γ → 8

9 as R0 → ∞. This shows the last claim in Theorem 3.10.

Inspired by an idea of T. Makino introduced in [21], we show that γ
necessarily must vanish close to the point r2 if R0 is sufficiently large. Let

x :=
m(r)
rγ(r)

.

Using that m′(r) = 4πr2ρ, and that μ′(r) = (m/r2 + 4πr)e2λ it follows that

rx′ =
4πr2ρ

γ
− x +

x2

1 − 2γx
− x

γ
+

4πxr2p(r)
γ(1 − 2γx)

.
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In our case r > R0 and γ > 0 and we will show that γ(r) = 0 for some
R1 ∈ [R0, R

∗
1]. Since γ > 0 and ρ, p ≥ 0 the first term and the last term can

be dropped and we have

rx′ ≥ −x +
x2

1 − 2γx
− x

γ
=

x2

3(1 − 2γx)
− x +

2x2

3(1 − 2γx)
− x

γ
. (4.37)

Take R0 sufficiently large so that m(r2)/r2 ≥ 2/5 by Lemma 4.4. Let r ∈
[r2, 16r2/15], then since m is increasing in r we get

m(r)
r

≥ m(r2)
r

=
r2

r

m(r2)
r2

≥ 15
16

· 2
5

=
3
8
.

Now by the definition of x it follows that
x

1 − 2γx
=

m

γr
e2λ =

m

γr(1 − 2m/r)
≥ 3

2γ
, when

m

r
≥ 3

8
.

Thus on [r2, 16r2/15],

2x2

3(1 − 2γx)
− x

γ
≥ 0,

so that on this interval

rx′ ≥ x2

3(1 − 2γx)
− x ≥ 4

3
x2 − x, (4.38)

where we used that
1

1 − 2γx
=

1
1 − 2m/r

≥ 4 when
m

r
≥ 3

8
.

The upper bound

γ ≤ log
(

1 +
r − R0

R0

)

implies that

x(r2) =
m(r2)
r2γ(r2)

≥ 2
5

R0

r2 − R0
. (4.39)

In particular
x(r2)

x(r2) − 3/4
≤ 16

15
,

for R0 large. Solving (4.38) yields

x(r) ≥ 3
4

(
1 − r(4x(r2)/3 − 1)

4r2x(r2)/3

)−1

, on r ∈ [r2, 16r2/15),

and we get that x(r) → ∞ as r → R1, where

R1 ≤ r2
x(r2)

x(r2) − 3/4
. (4.40)

In view of (4.39) we estimate

R1 ≤ r2 +
15
8 (r2 − R0)r2

R0 − 15
8 (r2 − R0)

.
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For sufficiently large R0 we have R0/10 ≥ 15
8 (r2−R0) ≥ 0, recall that r2−R0 ≤

11δ, and we obtain

R1 ≤ r2 +
25
12 (r2 − R0)r2

R0
≤ r2 + 3(r2 − R0) ≤ R0 + 50δ.

This completes the proof of the theorem. �

5. Numerical Results

In this section we present some numerical results. In the analytic proof we
required L0, or equivalently R0, to be large. One aim is to investigate for which
L0 solutions can be obtained numerically. Recall that necessarily L0 > L∗,
and one question is if solutions can be constructed for L0 values arbitrary
close to L∗, i.e. if the shell can occur arbitrary close to the photon sphere of
the black hole. It turns out that this depends on the parameters and on the
mass of the black hole, but for a large class of solutions it is possible. Hence,
the condition in the proof that L0 is large is mainly a technical condition.
Moreover, based on our numerical findings together with the arguments in
the proof, we conjecture that the compactness ratio for any shell surrounding
a black hole satisfies Γ > 2/3. Note that 2M0/r = 2/3 at the radius of the
photon sphere. This study is presented in Sect. 5.1.

Another aim is to numerically confirm the claim in Remark (3.4) that
the support [R1, R0] of the solution satisfies

R1 − R0 ∼ R
q−2−2l

q

0 ,

where q = k+l+5/2. Hence, the thickness of the shells depend on the parameter
values k and l. This investigation is presented in Sect. 5.2.

In Sect. 5.3 we construct solutions with several shells. We do this by
using two different strategies. From the set-up in Sect. 2 we know that having
a compactly supported solution with ADM mass M0, where M0 in this case is
the total mass of the black hole and the shell(s) surrounding the black hole,
we can choose L0 > L∗ (sufficiently large) and find the largest root R0 to
equation (3.11). We can then pose data at r = R0 and numerically construct
an additional shell. This strategy thus follows the analytic proof in the previous
section.

The second strategy is different in the sense that it does not follow the
strategy of the proof. We start with a black hole and then we use one ansatz
function for the shells; in particular, we do not change L0 for the different
shells. In this way a solution consisting of several shells, separated by vacuum,
is generated by solving equation (3.11) only once. After a number of shells
there is no longer a vacuum region separating the neighbouring shells and
a Schwarzschild solution has to be glued before this happens. The solution
obtained in this way is very similar to the multi-peak solutions obtained in
the massive case [12]. In the latter case there is, however, no need to glue a
Schwarzschild solution since the massive solutions have compact support.
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5.1. A Black Hole with One Shell

First we compute solutions for the parameter values k = 0 and l = 1/2 used in
the proof. We have chosen the mass of the black hole to be M0 = 0.25 so that
L∗ = 27M2

0 = 27/16 ≈ 1.69. First we try to put the shell close to the photon
sphere of the black hole by choosing L0 = 1.7. However, as Fig. 1 shows there
is no vacuum region after the first peak (and thus there is no proper shell)
and it is not possible to obtain an asymptotically flat solution. (In all figures
the energy density ρ is displayed on the vertical axis and the area radius r
on the horizontal axis.) The choice L0 = 1.86 gives on the other hand rise
to a vacuum region after the first peak, and an asymptotically flat solution
is obtained. The photon sphere is located at r = 3M0 = 0.75, and the inner
radius of the shell is located at R0 = 0.92. The compactness ratio Γ of the
shell is 0.74. The shell is depicted in Fig. 2. The radius of the photon sphere
preceding the shell is denoted by r∗.

If we increase the parameter value k, to k = 1 instead of k = 0, we have
to increase L0 to obtain a proper shell, i.e. the shell must be placed further
away from the photon sphere of the black hole. Indeed, in Fig. 3 we have
used the same parameter values as in Fig. 2 with the only change that k = 1
instead of k = 0. We see that in this case a proper shell is not obtained. We
have to increase L0 to L0 = 5.5 in order to get a proper shell. This case is
shown in Fig. 4. The inner radius is located at R0 = 2.04, and the compactness
ratio is Γ = 0.80. Hence, the parameter k has a considerable influence on how
close to the photon sphere the shell can be placed. We point out that the
parameter l has a similar impact, but we have not made a systematic study of
the dependence on k and l.

If we increase the mass of the black hole, the situation changes and the
shell can be placed closer to the photon sphere. Again this depends on the
parameter values of k and l, but generally the shells can be placed closer to
the photon sphere when M0 is larger. If M0 is taken sufficiently large, the shell
can be placed arbitrary close to the photon sphere. This results in a low value
of the compactness ratio Γ. Since 2M0/r = 2/3 at the location of the photon
sphere, we conjecture that Γ > 2/3 for any shell surrounding the black hole,
where low values are attained for shells which are located very close to the
photon sphere. Recall from the proof that as the inner radius R0 → ∞, the
compactness ratio Γ → 8/9 (a fact that is confirmed numerically in Figs. 6c, 7c
and 8c), so that morally it is advantageous to keep R0 small in order to get a
low value of Γ.

We choose M0 = 2.0, which implies that L∗ = 27M2
0 = 108. The photon

sphere is located at r = 3M0 = 6.0. We find that the choice L0 = 108.1
gives rise to a proper shell which is located very close to the photon sphere,
at R0 = 6.1. The shell is depicted in Fig. 5, where k = 0 and l = 1/2. The
compactness ratio Γ for the shell is merely 0.68. If k is increased to k = 1,
then we need to increase L0, to L0 = 113, in order to obtain a proper shell,
which results in a shell with an inner radius of R0 = 6.9, and a compactness
ratio Γ = 0.73.
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Figure 1. Not a proper shell (k = 0, l = 1/2)
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Figure 2. A proper shell (k = 0, l = 1/2). L0 = 1.86,Γ =
0.74 and r∗ = 0.75
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Figure 3. Not a proper shell (k = 1, l = 1/2)
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Figure 4. A proper shell (k = 1, l = 1/2). L0 = 5.5,Γ = 0.8
and r∗ = 0.75
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Figure 5. A proper shell (k = 0, l = 1/2). L0 = 108.1,Γ =
0.68 and r∗ = 6.0

5.2. The Thickness of the Shells

We claim in Remark (3.4) that the thickness of the shells, R1 − R0, depends
on the parameters k and l as

R1 − R0 ∼ R
q−2−2l

q

0 , (5.41)

where q = k+ l+5/2. As shown in Figs. 6, 7 and 8 we have computed shells for
L0 = 15, L0 = 75 and L0 = 375 in the three cases k = 0, l = 1/2; k = 1, l = 1/2
and k = 0, l = 3/2. The quantity

τ :=
q − 2 − 2l

q
,

takes the following values in these cases, 0, 1/4 and −1/4, respectively. When
τ = 0, the width of the shell is independent on R0 and this is confirmed in
Fig. 6 where the thickness R1 − R0 ≈ 0.29 for any of these shells. This is the
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(a) L 0 = 15 (b) L 0 = 75

(c) L 0 = 375 , Γ = 0 .883

Figure 6. Three shells with constant thickness (τ = 0)

case we considered in the proof. In the second case τ = 1/4, and the width of
the shell thus increases as R0 grows. We compute the ratio

R1 − R0

Rτ
0

, (5.42)

for the three shells in Fig. 7 and we find that it is approximately constant,
roughly 0.67. In the last case τ = −1/4, and the width decreases as R0 in-
creases. This can be seen in Fig. 8 where the ratio (5.42) is roughly 0.46 for
each shell. Hence, we find numerical support for the claim (5.41). Moreover,
Γ is computed in the three cases where L0 = 375, to confirm that Γ → 8

9 as
R0 → ∞, cf. Figs. 6c, 7c and 8c.

5.3. A Black Hole with Several Nested Shells

Here we construct solutions where the black hole is surrounded by several
shells. We choose the black hole mass M0 = 1.0 so that L∗ = 27.0. We put a
shell close to the photon sphere by the choice L0 = 28.0. We obtain a solution
with one shell surrounding the black hole with ADM mass of 1.3. This implies
that L∗ = 45.6 and we choose L0 = 48 for the second shell. The solution we
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(a) L 0 = 15 (b) L 0 = 75

(c) L 0 = 375 , Γ= 0.875

Figure 7. Three shells with growing thickness (τ = 1/4)

obtain is depicted in Fig. 9 where we have taken k = 0 and l = 1/2. The radius
of the photon sphere surrounding the black hole is r∗ = 3.0, and the radius of
the photon sphere surrounding the first shell is located at r∗ = 4.2. Similar as
above, if we increase the parameter values k, then we have to take larger values
of L0 to obtain proper shells. Clearly, the procedure can be continued and an
arbitrary number of shells can be constructed which surround the black hole.

Remark 5.1. The photon spheres discussed above surround either the black
hole or the shells, i.e. they occur in a vacuum region and therefore the radius
of the photon sphere satisfy r = 3m, where m is the Hawking mass interior of
the photon sphere. There are in fact also photon spheres within the shells. The
condition for a photon sphere is that μr(r) = 1/r, cf. [15]. Since μr ≥ 1/r when
m/r ≥ 1/3, it is clear that photon spheres also exist within the shells. In this
context we also mention that photon spheres are important in astrophysics,
cf. e.g. [16,28].

Next, we again start with a black hole, but we only use one ansatz func-
tion for the shells; in particular we only solve equation (3.11) once and L0 is
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Figure 8. Three shells with decreasing thickness (τ = −1/4)
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Figure 9. L0 = 28.0 (shell one) and L0 = 48 (shell two)

fixed. We then obtain a solution consisting of several nested shells, separated
by vacuum. In Fig. 10 such a solution is depicted where M0 = 1.3, L0 = 48,
k = 0 and l = 1/2. After the fifth peak there is no longer a vacuum region
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Figure 10. Multi-shells with one ansatz. L0 = 48, M0 = 1.3,
k = 0 and l = 1/2
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Figure 11. No proper shells. L0 = 48, M0 = 1.3, k = 0 and
l = 1/2

separating the neighbouring shells (which is difficult to see in the picture since
ρ is very small) and a Schwarzschild solution has to be glued after the fourth
peak in order to obtain an asymptotically flat solution. The solution obtained
in this way is very similar to the multi-peak solutions obtained in the massive
case [12]. In the latter case there is, however, no need to glue a Schwarzschild
solution since the massive solutions have compact support. We also include a
few cases with other choices of the parameters k and l. In Fig. 11 we use the
same parameters as in Fig. 10 with the only change that k = 1. In this case
there are no proper shells and an asymptotically flat solution is not possible
to obtain. By increasing L0 proper shells are obtained as depicted in Fig. 12.
Finally we consider the case l = 3/2 but otherwise the same parameters as in
Fig. 10. In this case three proper shells separated by vacuum are obtained as
is depicted in Fig. 13.
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Figure 12. Multi-shells with one ansatz. L0 = 80, M0 = 1.3,
k = 1 and l = 1/2
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Figure 13. Multi-shells with one ansatz. L0 = 48, M0 = 1.3,
k = 0 and l = 3/2
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