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ABSTRACT

Differential privacy is a strong mathematical notion of privacy. Still,

a prominent challenge when using differential privacy in real data

collection is understanding and counteracting the accuracy loss

that differential privacy imposes. As such, the accuracy/privacy

trade-off of differential privacy needs to be balanced on a case-by-

case basis. Applications in the literature tend to focus solely on

analytical accuracy bounds, not include data in error prediction, or

use arbitrary settings to measure error empirically.

To fill the gap in the literature, we propose a novel application of

factor experiments to create data aware error predictions. Basically,

factor experiments provide a systematic approach to conducting

empirical experiments. To demonstrate our methodology in action,

we conduct a case study where error is dependent on arbitrarily

complex tree structures. We first construct a tool to simulate poll

data. Next, we use our simulated data to construct a least squares

model to predict error. Last, we show how to validate the model.

Consequently, our contribution is a method for constructing error

prediction models that are data aware.

KEYWORDS

accuracy prediction, data privacy, differential privacy, empirical
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1 INTRODUCTION

Adopting differential privacy in real systems is ultimately an issue

of properly understanding the impact differential privacy will have

on accuracy. In other words, if an analyst cannot predict the accu-

racy loss an algorithm will cause, they will be hesitant to use the

algorithm. As such, understanding the accuracy loss induced by

differential privacy is crucial to differential privacy being deployed

in real systems.

In the literature, the accuracy of a differentially private algorithm

is often evaluated analytically through Chernoff bounds, such as by

Kasiviswanathan et al. [11]. Here, the authors introduce a metric

for error, namely misclassification error, which is applicable in their

domain. However, the general Chernoff bound they provide requires

that there exists a definition for error, i.e. a unit of measurement

for the inaccuracy introduced by differential privacy. As such, if

the relationship between input variables and error is unknown,

Chernoff bounds will not be applicable. As noted by Hay et al. [9],

the more complex algorithm, the more difficult it is to analyze the

algorithm theoretically. Consequently, some algorithms may be

easier to investigate empirically instead of analytically.

In addition, previous research [9, 10] shows that the accuracy

of a differentially private algorithm may be greatly influenced by

the input data. Consequently, input data should also be taken into

account when modeling error. So far, the current literature seems

to model error from the algorithm without taking the input data

into consideration. For example, Kasiviswanathan et al. [11] and

Vadhan [27] use Chernoff bounds, but they do not include input

data in their error model.

From the other end of the perspective, several papers includ-

ing [1–3, 8, 12, 13, 29] investigate error empirically. Still, input

values to the experiments are chosen seemingly arbitrarily. For

example, Gao and Ma [8] use {0.005, 0.008, 0.012, 0.015, 0.02} as

input values for a threshold variable, and {20, 40, 60, 80, 100} as

input for query range size. While these values may be representa-

tive for their given domain, this approach requires the authors to

rationalize both the chosen ranges and the amount of values used.

Furthermore, if a variable is varied in isolation, it is not possible

to capture interactions between variables. For example, in [3], the

authors vary the number of dimensions, while setting cardinality

and Y to fixed values. As such the trend for error when varying the

number of dimensions is just captured at a fixed setting.

Hence, we identify three existing problems: 1) the relationship

between error and an algorithm’s input may be unknown, 2) data

oblivious error may result in incorrect error predictions, and 3)

choosing representative values for empirical experiments is diffi-

cult. To mitigate these problems we propose a novel application

of factor experiments [18, 20, 24], a statistical approach, to the do-

main of differential privacy. Here, we show how empirical error

measurements can be used to construct an error prediction model

using (multiple) linear regression. As such, we are able to model the

relationship between all input variables, including data, and error.

Accordingly, for the example with Y and population as variables,

the prediction model would be in the following format:

𝑦 =𝛾0 + 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × threshold + 𝛾𝑟𝑎𝑛𝑔𝑒 × range

+ 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 :𝑟𝑎𝑛𝑔𝑒 × threshold : range (1)

where 𝑦 is the predicted error for a specific setting, 𝛾0 is the inter-

cept, threshold and range are coded value representations of the
factors, and threshold:range is the possible interaction between

factors. Hence, the prediction model is able to predict the error for

any value (within the model’s span) of threshold and range.
More importantly, factor experiments provide a systematic way

to choose the experiment settings where the most information can

be extracted. Consequently, our methodology tackles all of the

three identified problems by 1) modeling the relationship between

variables and error, 2) involving all input variables in model cre-

ation, and 3) minimizing the samples required, allowing for efficient

experiments.

We expect our methodology to be valid for any differentially

private algorithm: factor experiments allow both numerical and

categorical variables, and the analyst may choose any suitable error



metric for their domain. To put our methodology into context,

we will conduct a case study. In our case study, we run a poll

where the algorithm traverses a tree structure before delivering a

differentially private reply. Now, we will argue that our use case is

particularly interesting in the context of our methodology. First, we

have noticed that it is difficult to model the error correctly due to

allowing for arbitrarily complex tree structures, where we identify

six variables that need to be varied in experiments. Next, it is also

difficult to argue for what constitutes a ’good’ experiment setting in

this case. As such, we believe the many variables’ effect on error in

our particular use case is difficult to investigate using methods from

the current literature. Accordingly, we use Randori [14] as a use

case where we create a prediction model for error. Randori is a set

of tools for gathering poll data under local differential privacy [28].

So far, Randori can predict error analytically through Chernoff

bounds, but this error is not data aware. In this paper, we extend

Randori by adding a simulation tool where users can generate

synthetic poll data and empirically evaluate error.

To summarize, prediction models created using our methodology

will be able to answer the following questions:

• What is each variable’s impact/effect on error?

• Are there any relationships/interactions between variables?

Hence, our contribution is a method for constructing accuracy/error

prediction models.

2 BACKGROUND

In this paper, we join twowell-known areas: differential privacy and

statistical design of experiments (DOE) [16]. To provide the reader
the necessary background, we describe the accuracy/privacy trade-

off in differential privacy. As we expect our readers to mainly come

from the area of differential privacy, we also introduce terminology

used in DOE.

2.1 Differential Privacy

Differential privacy [5, 6] is a statistical notion of privacy that quan-

tifies the privacy loss. Since differential privacy is a definition and

not an implementation, differential privacy can be achieved in differ-

ent ways, but must always satisfy Definition 2. To define differential

privacy, we must first define neighboring data sets (Definition 1).

Definition 1 (Neighboring Data Sets). Two data sets, 𝐷 and
𝐷 ′, are neighboring if and only if they differ on at most one element
𝑑 . That is, 𝐷 ′ can be constructed from 𝐷 by adding or removing one
single element 𝑑 :

𝐷 ′ = 𝐷 ± 𝑑

Definition 2 (Y-Differential Privacy). A randomized algo-
rithm 𝑓 is Y-differentially private if for all neighboring data sets D,
D’ and for all sets of outputs S

Pr[𝑓 (𝐷) ∈ S] ≤ 𝑒𝑥𝑝 (Y) × Pr[𝑓 (𝐷 ′) ∈ S]
where the probability is taken over the randomness of the algorithm
𝑓 .

Although differential privacy gives strong mathematical privacy

guarantees, implementations introduce some kind of error, rela-

tive to an exact but non-private algorithm, to achieve said privacy.

The accuracy of a differentially private algorithm can be investi-

gated through analytical accuracy bounds, such as Chernoff bounds.

These analytical accuracy bounds are often expressed in general

terms, i.e. they do not define error for a specific algorithm, such

as the Chernoff bound given by Kasiviswanathan et al. [11] in

Definition 3.

Definition 3 ((𝛼, 𝛽)-usefulness). Let 𝑋 be a random variable
representing the error of the output of a differentially private algorithm
𝑓 ′, 𝑛 is the population size and 𝛼, 𝛽 ∈ (0, 1

2
), where 𝛽 = 2𝑒−2𝛼

2𝑛 .
Then with probability 1-𝛽 , the error 𝑋 is bounded by at most error 𝛼 :

Pr[𝑋 ≤ 𝛼] ≥ 1 − 𝛽

We say that 𝑓 ′ is (𝛼, 𝛽)-useful [30].

Note that this formula in particular does not define how to ex-

press error. That is, error must be defined on a per-algorithm basis.

For example, Kasiviswanathan et al. [11] use misclassification error

as their error metric. Still, the resulting accuracy bounds cover the

entire possible range of error the algorithm can achieve. That is,

such theoretical accuracy bounds focus on the worst case error [9].

In other words, the bounds do not describe how error is distributed

within the bound. For example, high errors may have very low prob-

ability, but an analyst may still condemn the algorithm because the

accuracy bounds are not tight enough. Consequently, predicting

error using analytical methods can be overly pessimistic.

Furthermore, it can be difficult to properly model the error in

order to construct a Chernoff bound. The data dependence of an

algorithm’s error is particularly important to capture. As Hay et al.

[9] point out, a number of differentially private algorithms are

indeed data dependent. Hence, data can have an impact on error,

but the current literature offers no guidelines on modeling error

correctly.

2.2 Designed Experiments

In this paper, we will empirically measure the error of a differen-

tially private algorithm. As a consequence, we need to plan and

conduct experiments. More specifically, we will conduct factor ex-
periments [18, 24], which is a more efficient way of conducting

experiments than changing one factor at a time (OFAT) [7]. Here,
a factor is the same as a variable, and we will use these terms

interchangeably.

With factor experiments, we are able to change several factors

simultaneously, allowing us to run fewer experiments in total. Es-

sentially, factor experiments is a way of designing experiments such

that we can maximize what is learned given a fixed number of mea-

surements [18]. For example, conducting an experiment with two

different factors that each can take on 100 different values would

require 10 000 measurements with the OFAT approach. Using these

same factors but instead running two-level factor experiments, we

only need to measure the response at each edge of the space. That

is, only measurements from the black dots in Figure 1 are required

for factor experiments, whereas the response from each coordinate

in the space is required using OFAT.

Hence, two-level factor experiments with two factors (𝑘 = 2)

require only 2
𝑘 = 2

2 = 4measurements. In summary, with two-level

factor experiments, 2
𝑘
measurements are needed for an experiment
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Figure 1: The space covered by a factor experiment with two

factors. Black dots represents the factors at high/low respec-

tively, and the blue dot is the baseline.

with𝑘 factors. Naturally, factor experiments aremuchmore efficient

than OFAT.

When running factor experiments, coded values are used to de-

note actual values. For example, two-level experiments usually have

a low (’-’ or ’-1’) and a high (’+’ or ’+1’) coded value which are re-

lated to the actual values as follows:

𝑣𝑐𝑜𝑑𝑒𝑑 =
𝑣 − 𝑎

𝑏
, (2)

where 𝑎 =
𝑣ℎ𝑖𝑔ℎ + 𝑣𝑙𝑜𝑤

2

, (3)

𝑏 =
𝑣ℎ𝑖𝑔ℎ − 𝑣𝑙𝑜𝑤

2

(4)

So, in a real use case, with the high value (+1) 1000, and the low

value (-1) 100, the actual value 500 is represented by the coded value

-
5

45
.

Another point of interest in factor experiments is the baseline.
The baseline is the center point (the blue dot in Figure 1) of the

entire space that we cover. Consequently, the baseline always has

the coded value 0 for each factor.

Using the 2
𝑘
responses from the factor experiments, it is possible

to construct a prediction model. In this paper, we will construct a

linear prediction model using (multiple) linear regression. Given

two factors 𝐴 and 𝐵, the linear model can be written as follows:

𝑦 = 𝛾0 + 𝛾1𝐴 + 𝛾2𝐵 + 𝛾12𝐴𝐵 + experimental error (5)

Where the constant 𝛾0 is the response at the baseline, and 𝐴𝐵 is

included to capture the possible interaction between factor A and

B.

Since the prediction model is linear, we will later show how to

confirm these assumptions and validate the fit of the model. We

also note that in case of non-linear systems, one can instead use

three-level factorial designs [22], which are less efficient but are

able to capture curvature.

3 METHODOLOGY

We propose a methodology consisting of four stages:

(1) Experiment design

(2) Data collection/generation

(3) Model creation

(4) Model validation

After going through all the stages, the prediction model is ready

to be used.

3.1 Experiment Design

We propose using two-level factor experiments. This allows linear

prediction models to be created. Note that it is important to not

choose maximum or minimum values for the levels, as such values

likely will be too extreme and not produce a valid model [4]. Instead,

choose values that are feasible within the domain. Accordingly, the

prediction model will be valid within the space the two levels span,

but will not be able to make predictions for values outside. This step

is necessary, as extreme values will likely break the assumptions

about linearity that allow us to create a linear prediction model.

Next, the 𝑘 factors involved needs to be identified. This can be

done in different ways. The authors note that in software systems,

this process is much more straightforward than in for example

physical systems, since all possible factors are represented in code.

As such, it should be possible to extract all factors from the code

directly.

In cases where there are many factors, it might be a good idea

to run screening designs first, using fractional designs [21] experi-
ments to reduce the number of measurements needed. Basically,

a fractional design only includes some of the 2
𝑘
points, but are

chosen in a systematic way. With screening designs, it is possible to

determine if there are factors that can be ignored without running

the full 2
𝑘
experiments.

Our use case: In Randori, data is gathered in poll format. A

poll consists of a number of questions and a fixed set of answer

alternatives. We represent these questions as trees where a node

is either an answer alternative or a question. Furthermore, we

also allow follow-up questions in our poll. As such, some answer

alternatives have question nodes as children.

Answers to the poll are then gathered using randomized re-
sponse [28]. In randomized response, a respondent will answer

truthfully with some probability, Pr[truth], and will otherwise

choose a random answer according to a known distribution. In

Randori, the known distribution is represented through weights

attached to each answer alternative.

From our use case, we identify six factors to include in our experi-

ment design. Here, Pr[truth] and relative alternative weight are due
to randomized response. Tree depth andNumber of alternatives are
due to the poll’s tree structure. Next, to make our model data aware,

we include both the Population and the Number of answers which
corresponds to the number of respondents that choose the answer

alternative that we target in our measurements. We illustrate all of

our identified factors in Figure 2. When we measure the error, we

will choose one of the alternatives as our target, for example 𝐴1𝑄1.

In Table 1 we show all our factors and define the levels for each

factor.

Now, it makes sense to explain why we have not included Y

among our factors. In our case, one thing we want to investigate

is the impact of the poll structure on the error. However, there is

not a one-to-one mapping between Y and poll structure. That is,

while Y can be calculated from the structure of the poll, different

structures can result in the same value of Y. As such, only varying

Y would not allow us to deduce a unique poll structure.
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Figure 2: The factors used as input to Randori, including

both data (to the left) and algorithm parameters (to the

right). Here, question nodes are gray and answer alterna-

tives are green.

Factor + -

Pr[truth] High Low

Tree depth Deep Shallow

Number of alternatives Many Few

Relative alternative weight High Low

Population Many Few

Number of answers Many Few

Table 1: Factors, and their respective levels

3.2 Data Collection/Generation

Data can either be collected from real experiments or generated

synthetically. That is, responses from any differentially private

algorithm can be used. Note that synthetic data does not make

the model less valid: the prediction model will be valid for the

entire space covered by the factors. In fact, if the algorithm can be

simulated we recommend doing so, as this also eliminates the need

to gather potentially sensitive data. Basically, the finesse of factor

experiments is that we do not look to sample specific representative

settings, but rather we want to be able to cover all values within a

known space.

Since results from differentially private algorithms are proba-

bilistic, it is also important to decide whether to measure an average

error, or just one measurement per experiment setting. In this step,

it is also important to decide which metric to use for error compar-

ison.

Next, create a table for all the possible combinations of the 𝑘

factors for a total of 2
𝑘
combinations. In physical systems, it is

customary to produce the measurements in random order to avoid

systematic errors.

Our use case:We construct a tool where we can generate syn-

thetic data and measure the empirical error introduced by ran-

domized response. This tool simulates respondents answering a

given poll on Randori’s format. We call this tool the Simulation

Environment.

We decide to run each setting 30 times, i.e. 𝑛 = 30, to measure

the average error. We also decide to use mean average percentage
error (MAPE) as our error metric:

MAPE =
1

𝑛

𝑛∑
𝑡=1

����𝑥𝑡 − 𝑥 ′𝑡
𝑥𝑡

���� × 100 (6)

Here, we will calculate the MAPE for one target answer alter-

native. As such, we measure the distance between the actual per-

centage (𝑥) of respondents that chose the target alternative, and

the estimated percentage (𝑥 ′) calculated from the randomized re-

sponses.

3.3 Model Creation

From the measured error, it is now possible to create the prediction

model. The prediction model is calculated using (multiple) linear

regression. To create the prediction model, we suggest using the

programming language R. In R, pass the data to the lm function and

R will output a model. This model will include the effect of each

variable and all present interactions between variables.

3.4 Model Validation

To test the fit of the model, we first check that the assumptions

about linearity hold. Next, the predictions made by the model also

need to be investigated. That is, more measurements need to be

gathered and compared to the model’s predictions for the same

setting.

If the model has a good fit, the residuals will be small. We use

the following formula to calculate the residual 𝑟𝑖 when comparing

a prediction 𝑦𝑖 to a sample measurement 𝑠𝑖 for some coordinate 𝑖:

𝑟𝑖 = 𝑦𝑖 − 𝑠𝑖 (7)

A numerical measurement of the model’s fit is the (multiple) 𝑅2,

the coefficient of determination. A high value of 𝑅2 is necessary

but not sufficient for concluding that the fit is good [17]. Next,

compare the 𝑅2 value to the adjusted 𝑅2 (calculated as follows:

𝑅2
𝑎𝑑 𝑗

= 1 − (1 − 𝑅2) 𝑁−1
𝑁−𝑝−1 , where 𝑁 is the sample size and 𝑝 is the

number of predictors). The value of 𝑅2 and the adjusted 𝑅2 should

be close. Otherwise, a difference indicates that there are terms in

the model that are not significant [23]. Consequently, if 𝑅2 and

adjusted 𝑅2 differ much, insignificant terms can be removed from

the model. In this step, the programming language R can help with

providing suggestions for which effects are significant.

Next, we recommend using visual methods to further validate the

model due to NIST’s recommendation [19]. These visual methods

allow conclusions to be drawn that cannot be drawn from merely

observing 𝑅2.

We suggest the following three visual methods:

(1) Histogram

(2) Residual vs. fitted plot

(3) Q-Q normal plot

First, use a histogram to test the residuals for normality. Here, the

residuals are expected to have the shape of a normal distribution,

and to be centered around 0.
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Next, for the residual vs. fitted plot, values should be randomly

scattered around 0 on the y-axis [19]. We also expect the locally
weighted scatterplot smoothing (LOWESS) [15] curve to be flat, since

this shows that a linear model is reasonable.

Last, using the Q-Q normal plot shows if the residuals come

from a common distribution as the prediction model. If the data

sets come from common distributions, the points should be close

to the plotted line.

Strategy if themodel does not fit:To get quick feedback about

the model’s fit, pick the three points in Figure 3. Next, calculate the

residuals for these points.

Figure 3: The center point, i.e. the baseline represented by

the blue dot, and the red dots at (-0.5, -0.5) and (0.5,0.5) re-

spectively

In cases where the residuals are high, re-use the samples from

Figure 3 and add the remaining samples needed to create a new,

smaller space. That is, systematically zoom in and target a smaller

space to make the predictions on. We illustrate this new smaller

space in 2D to be able to show a geometric explanation in Figure 4.

Figure 4: Adding the points (0.5,-0.5) and (-0.5,0.5) allows us

to zoom in and find a new target space within the red lines

4 RESULTS

Next, we will apply our methodology to our use case where we

estimate error for poll data. Here, we present the tool we used to

generate data (the Simulation Environment) and then we show

how we iteratively apply the methodology to reach an adequate

prediction model.

4.1 Simulation Environment

We have built a simulation environment using a Jupyter note-

book [25] that takes input on a portable JSON format. The Sim-

ulation Environment is an additional tool to the Randori
1

(Figure 5) set of open source tools.

Figure 5: The Simulation Environment (white puzzle

piece) in relation to existing Randori tools

Here, a user can construct an arbitrarily complex poll using

Randori’s Poll Editor. Next, the poll can be imported into the

Simulation Environment where the user can tweak all the in-

put variables. In addition, the Simulation Environment is able

to simulate the respondents’ answers either based on probability

distributions or a deterministic distribution, although we only use

deterministic distributions in this paper.

4.2 Experiments

We run a factor experiment with 𝑘 = 6, and calculate the error as

MAPE. We run each experiment 𝑛 = 30 times.

Using the actual values in Table 2 we produce the measurements

in Table 6 (in Appendix due to length).

Factor Baseline +1 -1

Pr[truth] 50% 90% 10%

Tree depth 3 5 1

Number of alternatives 6 10 2

Relative alternative weight 50% 90% 10%

Population 50500 100 000 1000

Number of answers 50% 90% 10%

Table 2: Factors and the actual values used for corresponding

coded values. In the case of weight and pop the percentage

is used for the target alternative, and the remainder is uni-

formly distributed among siblings.

1
https://github.com/niteo/randori
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We enter our data in R and create a prediction model using

the lm function. Calculating the residual for the baseline, we get a

significant error of 384.6646. We pick two additional settings and

measure them (Table 3) to convince ourselves that the model is

indeed a bad fit.

Setting 𝑦𝑖 𝑠𝑖 𝑟𝑖

(0, 0, 0, 0, 0, 0) 418.7087 34.04411 384.6646

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5) 124.8765 14.41732 110.4592

(-0.5, -0.5, -0.5, -0.5, -0.5, -0.5) 731.8813 38.23649 693.6448

Table 3: Residuals calculated using the prediction model for

the first experiment

As a result, we move on to sample the 2
6
points that covers half

the previous space i.e using the settings from Table 4. The measured

MAPE is in Table 7 (in Appendix due to length). We then use these

measurements to construct a new prediction model over the smaller

space.

Factor Baseline +0.5 -0.5

Pr[truth] 50% 70% 30%

Tree depth 3 4 2

Number of alternatives 6 8 4

Relative alternative weight 50% 70% 30%

Population 50500 75750 25250

Number of answers 50% 70% 30%

Table 4: Factors and the values used for calculating residuals

From entering our measured values into R’s lm function, we get

a model with 64 coefficients. Using the model, we notice that the

prediction for the baseline has improved significantly. The updated

prediction is 32.89371, which gives us a residual of 34.04411 −
32.89371 = 1.1504. Hence, we move on to validate our model.

5 ANALYSIS

Next, we move on to validate our model according to our method-

ology. After validating the model, we will interpret the model.

5.1 Evaluating the Model

In order to validate the model, we need to investigate the behavior

of the residuals. Hence, we need more measurements. We have

decided to pick settings to sample from two sets:

(1) The corners (2
6
points) of the middle of the model (like in

Figure 4) and the center point

(2) Any coordinate in the space

We randomly pick 20 points (except that we always include the

center point in the first set) from each of the two approaches, giving

us a total of 40 samples to calculate residuals from. Be aware that

you may also need to adjust values in certain cases. In our case,

we need to take into account that some of our factors are discrete.

For example depth is a discrete value and our corner values 0.25

and -0.25 would correspond to a depth of 3.5 and 2.5 respectively.

truth depth alts weight pop answers MAPE

0 0 0 0 0 0 0 34.04411

1 0.25 0.00 0.25 0.25 0.25 0.25 20.17603

2 -0.25 0.00 0.25 -0.25 0.25 -0.25 48.18286

3 0.25 0.00 -0.25 -0.25 0.25 -0.25 31.06755

4 -0.25 0.00 0.25 -0.25 -0.25 0.25 50.33476

5 0.25 0.00 -0.25 0.25 0.25 0.25 19.59611

6 -0.25 0.00 0.25 0.25 0.25 0.25 27.66037

7 -0.25 0.00 -0.25 -0.25 0.25 -0.25 46.24753

8 -0.25 0.00 -0.25 0.25 0.25 0.25 26.60268

9 0.25 0.00 -0.25 0.25 0.25 -0.25 17.30670

10 -0.25 0.00 0.25 0.25 -0.25 -0.25 25.07704

11 -0.25 0.00 -0.25 -0.25 0.25 -0.25 46.36067

12 -0.25 0.00 -0.25 -0.25 0.25 -0.25 46.18749

13 0.25 0.00 -0.25 0.25 -0.25 0.25 19.71108

14 0.25 0.00 -0.25 -0.25 -0.25 0.25 33.26383

15 -0.25 0.00 0.25 -0.25 -0.25 -0.25 48.09976

16 -0.25 0.00 0.25 0.25 -0.25 0.25 27.58968

17 -0.25 0.00 -0.25 0.25 0.25 -0.25 22.55290

18 -0.25 0.00 0.25 0.25 0.25 -0.25 24.97823

19 0.25 0.00 -0.25 0.25 0.25 0.25 19.61443

20 -0.50 -0.50 -0.50 0.03 -0.46 0.28 8.42964

21 0.16 0.25 0.00 0.32 -0.25 0.38 28.34642

22 -0.06 -0.25 -0.50 0.03 -0.31 -0.32 8.82148

23 -0.50 0.25 -0.25 0.03 0.03 -0.29 53.20864

24 0.21 0.50 0.00 0.12 -0.17 0.34 36.71494

25 0.31 0.50 0.25 0.34 -0.02 0.39 29.04886

26 -0.49 0.25 0.25 -0.22 -0.12 0.07 63.40224

27 -0.27 -0.50 0.00 0.35 0.29 0.34 65.43967

28 0.39 0.25 0.50 0.21 -0.03 0.38 25.73380

29 0.39 -0.25 0.00 0.30 0.13 0.28 3.46581

30 -0.45 0.50 0.50 0.06 -0.04 -0.21 59.91642

31 -0.00 0.50 -0.25 -0.36 0.05 -0.02 47.62934

32 -0.20 -0.25 -0.50 -0.03 0.16 0.42 21.80034

33 -0.14 0.25 0.50 -0.40 0.11 0.46 53.57877

34 0.11 0.00 -0.25 -0.48 -0.35 -0.21 39.38831

35 0.14 0.00 0.00 -0.37 0.15 0.02 38.41253

36 -0.09 -0.50 -0.50 -0.41 -0.47 -0.39 5.75857

37 -0.19 0.50 0.25 -0.08 0.44 -0.19 52.70103

38 0.42 -0.50 -0.25 -0.19 0.00 -0.01 2.18997

39 -0.47 0.50 -0.25 0.33 -0.33 0.35 51.42151

Table 5: The sampled points used and their measured MAPE

Consequently, we chose to fix depth to 3. The points and their

corresponding MAPE is shown in Table 5.

First, we check the value of our𝑅2. For ourmodel, the𝑅2 is 0.8419.

However, we notice that the adjusted 𝑅2 is significantly lower,

0.5929. Seeing as we have 64 coefficients, it seems reasonable to

simplify our model to avoid overfitting.We update our model in R to

only involve the effects that Rmarks as significant. To do this, we en-

ter the suggested effects in R, which in our case are: lm(formula =
MAPE ∼ truth + alts + weight + truth*depth+depth*weight
+ truth*depth*weight + depth*weight*answers ). Now, we
end up with a 𝑅2 of 0.7846, and an adjusted 𝑅2 of 0.7562. These
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values are still high, and since they are now significantly closer, we

move on to validate the model visually.

Next, we plot the residuals as a histogram in Figure 6. From the

histogram, we see that our residuals are indeed centered around 0.

The histogram indicates a normal distribution. Hence, we move on

to the next test.

Figure 6: A histogram of the residuals

Now, we want to investigate the relationship between fitted val-

ues (measurements) and the model’s prediction. Then, we plot fitted

values vs. predictions in Figure 7. We observe that the residuals

appear to not have a specific shape around the y-axis. We also

conclude that the LOWESS fit curve appears to be almost flat.

Figure 7: Residuals represented as circles, fitted values as the

dotted line. The red line represents the LOWESS fit of the

residuals vs. fitted values.

Finally, we investigate the normal Q-Q plot (Figure 8).We see that

most points follow the plotted line, indicating that our predictions

come from the same distribution as the measured values. Hence,

we conclude that our prediction model is valid for our use case.

5.2 Interpreting the Model

The model is now ready to be used. That is, any value within each

factor’s range [high,low] can be plugged in to produce an error

prediction. It is also possible to set𝑦 ≤ 𝑐 , with 𝑐 being our maximum

Figure 8: The normal quantile-quantile plot

tolerable error, and then find which settings satisfy the inequality.

Our final error prediction model is as follows:

𝑦 = 32.501266 − 29.023493 × truth + 5.037411 × alts

− 16.562410 × weight + 1.449934 × depth

+ 1.856916 × answers + 10.044302 × truth : depth

− 28.397984 × weight : depth

+ 4.175231 × truth : weight

+ 8.535667 × depth : answers

− 8.402531 × weight : answers

+ 51.134829 × truth : weight : depth

+ 25.945740 × weight : depth : answers (8)

We note that the simplification step has allowed us to completely

eliminate pop from our factors. As such, we draw the conclusion

that the population size itself does not have a significant impact on

error.

To get an overview of our model, we use a Pareto plot [26]

(Figure 9) which allows us to visually compare all effects at once.

Here, effects are ordered by magnitude.

Figure 9: The Pareto plot of the simplified model

From the plot, it is clear that truth:weight:depth affects error

the most. Maybe most notably, truth:weight:depth increases error
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whereas its components truth andweight:depth both decrease error.
From examining the Pareto plot, it seems that truth:weight is the
interaction that causes the increase in error.

As expected, truth has a negative impact on error. That is, a high

value of truthwill reduce error. More surprisingly, truth is involved

in several interactions which all increase error.

It may be tempting to completely ignore answers and depth
as these two factors have the lowest magnitude of effect. How-

ever, ignoring these factors is dangerous: they are both involved in

interactions that have significantly higher magnitude.

The factor alts is the only one that does not have interactions. It

may seem counter-intuitive that having more siblings have such

a small impact on error. Still, the magnitude of this effect may

very well be due to our choice to input polls where we uniformly

distribute the remaining weight among the siblings.

Hence, we can give Randori’s users the following advice: use

the model to find local minima or ranges. The model can also

be used to find minima and ranges while accounting for known

constraints such as for example Pr[truth] ≤ 0.5. When working in

Randori’s Poll Editor it is important to beware of the main effect

truth:weight:depth and its building blocks. As weight primarily

is involved in decreasing error, we recommend increasing weight
before tweaking the other factors.

6 DISCUSSION, LIMITATIONS AND FUTURE

WORK

A limitation in our work is that the prediction models we create are

linear. As such, prediction can be off in cases where the error is in

fact non-linear. Still, factor experiments can nevertheless be used to

make predictions for non-linear systems. To facilitate for non-linear

systems the factor levels have to be chosen differently: i.e. we would

need 3 levels [22] instead of 2. Hence, our approach can be adapted

to create non-linear models by running more experiments.

Additionally, we know that error should also depend on the, non-

linear, term 𝑒𝑥𝑝 (Y) from the definition of differential privacy. Still,

it is not clear how the term 𝑒𝑥𝑝 (Y) and other, algorithm specific,

factors compare in order of magnitude. As such, more research is

needed to see if Y can be modeled in a suitable way, or if perhaps

Y needs to be transformed to be linear (𝑙𝑛(𝑒𝑥𝑝 (Y)). Nevertheless,
factor experiments still provide a systematic and efficient way to

explore the impact of different variables on error. That is, factor

experiments may still be used to explore the other factors’ impact

on error. Hence, while it may not always be possible to extract an

accurate prediction model, factor experiments are still useful when

determining which data points should be used as input to test the

accuracy of a differentially private algorithm.

Furthermore, factor experiments provide a possible way to sys-

tematically predict error for all representative input data sets for a
differentially private algorithm. That is, instead of using real data

sets to predict error, factor experiments statistically emulate all

possible data sets bounded by the experiment’s levels (the high/low

values for each variable in our case). Hence, using factor experi-

ments to create prediction models can be more robust statistically

than making predictions based on one real data set.

Whether the model is correct or not will be identified when

testing the model according to our methodology. If the model is

incorrect it can be due to error being non-linear, but it can also

be due to not including all relevant factors. As such, an incorrect

model requires further investigation.

Accordingly, correctly identifying relevant factors is crucial to

building a correct model. Still, there exists no recognized way of

correctly and efficiently identifying all factors. As mentioned in

Section 3.1, it is nonetheless possible to try if a factor is relevant

using screening designs before running a full factorial experiment.

From our use case, it is nonetheless clear that some candidate factors

rule themselves out by simply being impossible to implement. For

example, we considered having the factor number of parent siblings
together with depth, which results in the impossible combination of

having no parents (depth=0) and also having parent siblings. Hence,
we believe looking for possible contradictions among factors is

important when designing the experiments.

In order to not create contradicting factors, we have also decided

to only model the weight for the target alternative. That is, we set
the weight for the target alternative (or the target’s parent), and

uniformly divide the remainder among the siblings. For example,

when a target has weight 70% and three siblings, each sibling gets

100−70
3

% each. As such, we have not investigated settings where the

siblings have non-uniform weight distributions.

One decision that may seem controversial is that we do not

include Y as one of the factors in our model. While we do not tweak

Y directly, we do in fact adjust Y by changing the structure of the poll.

The reason we have chosen to indirectly tweak Y as to tweaking it

directly is that one single value of Y corresponds to multiple poll

structures, whereas one poll structure corresponds to exactly one

value of Y. Hence, while it may seem unintuitive at first, indirectly

tweaking Y makes more sense than tweaking it directly in our case.

Somewhat surprising is that population was eliminated from

our prediction model in the simplification step. We argue that the

elimination of population is because answers is related to pop
(the probability of choosing some alternative 𝐴𝑖𝑄 𝑗 is Pr[𝐴𝑖𝑄 𝑗 ] =
pop*answers), and population therefore becomes redundant. It is

also possible that the choice of error measurement, MAPE in our

case, contributes to making population irrelevant since it is a rela-

tive measurement of error as opposed to an absolute measurement.

Finally, we note that in this paper we have measured the error

of leaf nodes in a tree. Still, with the known relationships between

answers, it appears to be possible to further post-process and add

accuracy to parent answers. We believe including the number of

children as a factor would be an interesting path to explore next

in order to better understand the effect of this post-processing.

Put differently, the challenge here is properly modeling the factors

without creating contradictions between factors.

7 RELATEDWORK

As mentioned in Section 1, evaluating error empirically is not a

new topic within differential privacy. However, creating prediction

models from empirical data appears to be a novel approach.

The work closest to ours isDPBench [9], which is an error evalu-

ation framework for differentially private algorithms. In DPBench,

the authors propose a set of evaluation principles, including guide-

lines for creating diverse input for algorithms. Hence,DPBench has
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a strong focus on understanding the data-dependence of an algo-

rithm’s error. Still, DPBench does not produce an error prediction

model like we do, nor does it minimize the number of experiments

needed to conduct.

We also note that DPComp [10] is the closest work to our Simu-

lation Environment. DPComp allows users to compare how the

accuracy of a differentially private algorithm is affected by varying

input data. Our work is similar in the sense that our Simulation

Environment also is intended to be used to evaluate accuracy/pri-

vacy trade-offs. Our Simulation Environment is also inspired by

DPBench’s evaluation principles and consequently allows data fol-

lowing different distributions to be entered and evaluated. However,

our simulation environment is less general than DPComp, since our

solution uses one fixed algorithm.

8 CONCLUSION

We have presented a methodology for empirically estimating error

in differentially private algorithms which 1) models the relation-

ships between input parameters, 2) is data aware, and 3) minimizes

the measurements required as input. Hence, prediction models cre-

ated using our methodology allow for expressive, data aware, error

prediction. Moreover, we conducted a case study where we apply

our methodology to a setting where error is measured from poll

structures. To support our use case, we have added a simulation

tool to the Randori open source tool suite, adding the functionality

of generating synthetic data and evaluating error empirically.

From our case study, wewere able to create a predictionmodel for

error using six factors. After evaluating and simplifying our model,

we are able to answer the two questions from our introduction. First,

there are 13 main effects on error. Next, there are seven interactions.

From evaluating the prediction model we found that our model

has a good fit. As such, our novel application of factor experiments

shows promising results as a methodology for error evaluation of

differentially private algorithms.

Consequently, we have contributed with a novel application of

a methodology that shows promise for error prediction of differen-

tially private algorithms. In addition, we have also built a simulation

environment that generates synthetic poll data and measures error

through simulating randomized response.

One interesting path for future work is to investigate if, and

how, the number of factors used in the model prediction affects the

model’s fit. Along a similar line of thought, it would also be inter-

esting to attempt to create prediction models for well known dif-

ferentially private algorithms and libraries. As such, we encourage

the use of our methodology in order to construct error prediction

models for other differentially private algorithms.
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Standard order Pr[truth] Tree depth Number of alternatives Alternative weight Population Number of answers MAPE

N/A 0 0 0 0 0 0 34.04411

1 - - - - - - 87.08667

2 + - - - - - 3.49111

3 - + - - - - 37.57905

4 + + - - - - 4.90007

5 - - + - - - 47.75

6 + - + - - - 6.58

7 - + + - - - 76.73124

8 + + + - - - 8.56657

9 - - - + - - 7365.33667

10 + - - + - - 96.20333

11 - + - + - - 1228.76234

12 + + - + - - 19.77456

13 - - + + - - 1456.40333

14 + - + + - - 18.47

15 - + + + - - 405.1528

16 + + + + - - 3.74374

17 - - - - + - 90.03673

18 + - - - + - 1.21997

19 - + - - + - 39.38121

20 + + - - + - 4.38645

21 - - + - + - 47.13567

22 + - + - + - 7.02496

23 - + + - + - 75.60747

24 + + + - + - 8.34256

25 - - - + + - 7362.4095

26 + - - + + - 98.25777

27 - + - + + - 1240.11986

28 + + - + + - 19.7394

29 - - + + + - 1466.18583

30 + - + + + - 18.8858

31 - + + + + - 403.33846

32 + + + + + - 4.16551

33 - - - - - + 61.83111

34 + - - - - + 8.08626

35 - + - - - + 88.29154

36 + + - - - + 9.66657

37 - - + - - + 63.75222

38 + - + - - + 8.2323

39 - + + - - + 89.69907

40 + + + - - + 10.02583

41 - - - + - + 811.41556

42 + - - + - + 10.13037

43 - + - + - + 310.01569

44 + + - + - + 2.16437

45 - - + + - + 738.71667

46 + - + + - + 9.07111

47 - + + + - + 300.02957

48 + + + + - + 2.1328

49 - - - - + + 61.99979

50 + - - - + + 7.9004

51 - + - - + + 88.42618

52 + + - - + + 9.84616

53 - - + - + + 63.75659

54 + - + - + + 7.95395

55 - + + - + + 89.82931

56 + + + - + + 9.95786

57 - - - + + + 810.22851

58 + - - + + + 9.99809

59 - + - + + + 310.55943

60 + + - + + + 2.44021

61 - - + + + + 737.21517

62 - + + + + + 299.99379

63 + - + + + + 9.01693

64 + + + + + + 2.20558

Table 6: MAPE measurements for the experiment using -1 and +1 as coded value inputs

Standard order Pr[truth] Tree depth Number of alternatives Alternative weight Population Number of answers MAPE

N/A 0 0 0 0 0 0 34.04411

1 - - - - - - 38.23649

2 + - - - - - 17.89185

3 - + - - - - 58.33831
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Standard order Pr[truth] Tree depth Number of alternatives Alternative weight Population Number of answers MAPE

4 + + - - - - 25.18673

5 - - + - - - 48.15875

6 + - + - - - 25.15229

7 - + + - - - 64.44095

8 + + + - - - 27.66351

9 - - - + - - 81.467

10 + - - + - - 13.00362

11 - + - + - - 9.89232

12 + + - + - - 9.41709

13 - - + + - - 56.28555

14 + - + + - - 9.56171

15 - + + + - - 19.75423

16 + + + + - - 12.79737

17 - - - - + - 38.11988

18 + - - - + - 17.97198

19 - + - - + - 58.37657

20 + + - - + - 25.14935

21 - - + - + - 48.43102

22 + - + - + - 25.08915

23 - + + - + - 64.49147

24 + + + - + - 27.73975

25 - - - + + - 81.24882

26 + - - + + - 13.02403

27 - + - + + - 9.5234

28 + + - + + - 9.65797

29 - - + + + - 56.3261

30 + - + + + - 9.79661

31 - + + + + - 19.70136

32 + + + + + - 12.57202

33 - - - - - + 52.6255

34 + - - - - + 23.3408

35 - + - - - + 66.96285

36 + + - - - + 28.56059

37 - - + - - + 54.63909

38 + - + - - + 28.61188

39 - + + - - + 68.09695

40 + + + - - + 29.17961

41 - - - + - + 45.78992

42 + - - + - + 4.45637

43 - + - + - + 23.87327

44 + + - + - + 13.78785

45 - - + + - + 41.37552

46 + - + + - + 13.85628

47 - + + + - + 25.68611

48 + + + + - + 14.47902

49 - - - - + + 52.71001

50 + - - - + + 23.2522

51 - + - - + + 66.94767

52 + + - - + + 28.70839

53 - - + - + + 54.66564

54 + - + - + + 28.71268

55 - + + - + + 68.04705

56 + + + - + + 29.16309

57 - - - + + + 45.72794

58 + - - + + + 4.47782

59 - + - + + + 23.84796

60 + + - + + + 13.90072

61 - - + + + + 41.23229

62 - + + + + + 25.70945

63 + - + + + + 13.88817

64 + + + + + + 14.41732

Table 7: MAPE measurements for the experiment using -0.5 and +0.5 as coded value inputs
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