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Abstract—Space-Time Adaptive Processing is a commonly used
technique to mitigate ground clutter reflections from an airborne
radar system. It estimates a covariance matrix based on spatial
and temporal information, and the estimate is thereafter used
to suppress the ground clutter. In a side-looking monostatic
radar system, the estimate is rather straight forward based
on radar observations. However, in this paper, we consider
bistatic systems where the power of adaptivity is limited due to
nonstationarity of the ground clutter reflections over the range
dimension. To overcome this, scenario dependent transformations
are commonly used when forming the sample covariance matrix.
In this contribution we instead investigate a detector where the
clutter covariance matrix is determined from the geometry of the
bistatic scenario. Using a Monte-Carlo simulation, we investigate
how sensitive the detector is to errors in the assumed geometry,
and compare this with state-of-the-art adaptive methods. The
results indicates that a good clutter rejection is obtained for
errors of order 103 m for assumed transmitter position and 100

km/h for assumed transmitter velocity.
Index Terms—Space-Time Adaptive Processing, bistatic radar

systems, ground clutter mitigation.

I. INTRODUCTION

A pulsed Doppler radar is used to detect and track moving
objects by measuring objects relative range and velocity com-
pared the radar platform itself. If the radar is equipped with an
array antenna, and a train of pulses is transmitted, slow moving
targets can be detected from an environment with ground
clutter and jammers. If the radar is located on an airborne
platform, the ground clutter will have a relative velocity to
the radar platform itself. This implies that the ground clutter
and possible targets may have a common Doppler frequency.
This makes it hard to separate them, and thus the performance
of the detector is degraded. To avoid this, the effects of the
ground clutter needs to be mitigated. A common technique to
suppress the clutter is to use Space-Time Adaptive Processing
(STAP).

In a STAP algorithm, spatial and temporal observations are
combined to derive data-dependent weights to mitigate the
impact of ground clutter and noise. To mitigate the clutter
and the noise properly an estimate of their distributions needs
to be obtained. The processor characterize the estimate with
a covariance matrix, and the estimate is usually based on
secondary data and knowledge about antenna array charac-
teristics. However, by using secondary data in the estimate, an

assumption is made which presume that the secondary data
follows the same distribution as the clutter and the noise in the
cell under test. This assumption is not fulfilled for the clutter
in several practical applications. A few of these applications
are airborne non side-looking antenna arrays, and bistatic radar
systems. This paper will further investigate the case of bistatic
radar systems.

The secondary data is usually collected from the range
dimension. A condition for the STAP algorithm to work
properly, is that the distribution of the ground clutter along
the range dimension is independent and identically distributed
(IID). In such case, the covariance estimate converges to
its true value if sufficiently many secondary data is chosen.
However, for a bistatic radar scenario, the intensity of the
clutter will be range dependent since the geometry between
the transmitter, the receiver and the range cell of the secondary
data will change depending on the range. This will imply
that the secondary data no longer satisfies the assumption
of identical distributions over the range dimension. In such
scenarios, the secondary data needs to be transformed to
satisfy the assumption before an estimate can be obtained.

There exist several algorithms which addresses the problem
of range dependent secondary data in an airborne bistatic radar
system. Common for most of the algorithms is to analyze, or
process, the secondary data in a way such that it appears more
identically distributed over range. In a localized processing
scheme, secondary data are chosen in a close vicinity to the
cell under test to minimize the variations in the secondary data
itself [1], [2]. Moreover, in a time-varying weight scheme,
the range depending temporal variations are included in the
processing. This allows for linear variations of the temporal
observations over range [1], [3], [4]. In Doppler warping tech-
niques, the secondary data is homogenized by a transformation
which makes the data to appear more similarly distributed over
range [5]–[10]. This is done by aligning the angle-Doppler
response over several range bins to a common reference
point. Several variations of Doppler warping technique exists.
For instance, in a registration based method, curve fitting is
applied to the direction-Doppler (DD) curve to align different
range bins to a common reference DD-curve [9]. While in
the Adaptive Angle-Doppler Compensation (A2DC) method,
the dominant subspace of the data from different range bins



are aligned to a common reference subspace [10], [11]. This
method aligns the response of the transmitted main lobe, and
is completely data dependent. Hence, no knowledge about
the velocities and positions of the radar platforms is needed.
In [12], a model describing the temporal radar parameters is
used to obtain the clutter covariance matrix. This is possible
since the clutter distribution is determined by the current
radar scenario. Secondary data is then used to fit the model
parameters to the temporal observations.

All of the algorithms above obtains an estimate of the
ground clutter distribution for the range cell under test based
on secondary data from adjacent range bins. To obtain a
proper estimate the secondary data is processed to fit the
cell under test. However, the ground clutter distribution is
deterministically determined by the current radar scenario,
which implies that secondary data is not necessary to obtain
an estimate of the clutter distribution. Instead, the covariance
matrix can be obtained from an assumed radar scenario. The
parameters which affects the radar scenario, and hence how
the ground clutter will be distributed, are the position and
the velocities of the transmitter and receiver platforms, as
well as the gain pattern of the transmitter antenna. If all of
these parameters are known, the covariance matrix of the
ground clutter reflections can be determined. However, in a
real application, neither the positions, the velocities nor the
gain pattern are exactly known, but will be uncertain to the
processor. Particularly quantities connected to the transmitter
are uncertain for the receiving platform. This will introduce
an error in the assumed radar scenario compared to the true
one. Similar ideas are utilized in [12] where secondary data
are used to adjust model parameters to a current scenario.
However, the usage of several connected models makes the
connections between parameter uncertainty and outcome in
detector performance hard to interpret. Therefore, in this work,
we perform a sensitivity analysis which analyses how a certain
level of uncertainty in the assumed radar scenario will effect
the performance of the detector.

The paper is organized as follows. In Section II we give
a background and introduce signal models for radar signal
processing. In Section III we present how the distribution
of the ground clutter can be determined from an assumed
radar scenario, and in Section IV we evaluate the performance
from numerical simulations. Finally, the paper is concluded in
Section V.

II. SIGNAL MODEL

Consider an N channel array receiving and processing M
pulses over K ranges. The space-time snapshot at range bin k is
xk ∈ CMN×1. We assume that ground clutter xk,c ∈ CMN×1,
receiver noise xk,n ∈ CMN×1 and possible targets xk,s ∈
CMN×1 additively comprises the snapshot. To determine if a
target is present in range bin k, binary hypothesis testing is
performed

H0 : xk/H0
= xk,c + xk,n (1a)

H1 : xk/H1
= xk,s + xk,c + xk,n, (1b)
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Fig. 1. A general bistatic radar geometry.

where H0 is the null hypothesis where no target is present in
range bin k, and H1 is the alternative hypothesis with a target
present. To determine between the hypotheses, the elements
in xk are linearly combined to a scalar output yk = wH

k xk.
The detector then compares the output with a threshold to
determine if a target is present or not.

The purpose of STAP is to suppress clutter, jammers and
noise while preserving the desired radar returns. This can
be achieved by properly chosing the weights in the scalar
output. The optimal weights, from a Signal to Noise Ratio
(SNR) perspective, is the vector wk,opt = µR−1

k sts, where
µ is an arbitrary constant, sts is the space-time steering
vector and Rk = E[xk/H0

xHk/H0
] ∈ CNM×NM is the null-

hypothesis covariance matrix. The superscript ’H’ denotes the
Hermitian transpose. Thus, we have that xk/H0

∼ CN(0, Rk).
In practice, neither Rk nor sts is available, and hence needs to
be estimated. Substituting Rk with its estimate R̂k and sts with
the hypothesized space-time steering vector vts, the estimated
weight vector becomes ŵk = µ̂R̂−1

k vts, where µ̂ is a constant
which may depend on the estimated quantities [13].

In Fig 1 a general bistatic geometry is shown. We denote
the transmitter as Tx, the receiver as Rx and the ground
clutter patch as P (θT , ϕT , θR, ϕR). (θT , ϕT ) and (θR, ϕR) are
elevation and azimuth angles between the transmitter respec-
tively the receiver to the clutter patch. The distance from the
transmitter to the clutter patch P (θT , ϕT , θR, ϕR) is RT , and
the distance from the receiver to the same clutter patch is RR.
Hence, the bistatic range from the transmitter and the receiver
platforms to a clutter patch is R = RT +RR. Clutter patches
with the same bistatic range to the transmitter and the receiver
platforms will be considered to be in the same range bin.
Elevation and azimuth angles, to where the transmitter antenna
array is electronically steered, are denoted with (θ0

T , ϕ
0
T ). The

detector in the receiver is searching for possible targets at
azimuth and elevation angles (θ0

R, ϕ
0
R). It is assumed that

the gain pattern for the transmitter is coordinated with the
detector in the receiver, hence the transmitted main-lobe and
the searched angles intersect with each other. Moreover, both
the transmitter and the receiver employ a true north coordinate
system, the earth is assumed to be flat, and that the two
platforms move at a constant altitude. Also, the scenario is
considered to be fixed for all transmitted and received data.

The bistatic Doppler frequency for a clutter patch depends
on both the transmitters and the receivers velocities and



direction of flight, and is given by

fd =
|vT |
λ

cos (θv,T − θT ) sin (ϕv,T − ϕT )

+
|vR|
λ

cos (θv,R − θR) sin (ϕv,R − ϕR), (2)

where |vT | and |vR| are the transmitter and the receiver
speeds, and (θv,T , θv,R) respectively (ϕv,T , ϕv,R) are ele-
vation and azimuth angles for the direction of flight for the
transmitter and the receiver. The wavelength of the propagating
RF signal is denoted with λ.

A temporal steering vector characterize the linear phase
shifts between the first pulse and the remaining M − 1 pulses
hitting the receiver. The time derivative of this phase function
normalized with 1/(2π) gives the Doppler frequency described
in (2). The temporal steering vector is

st(fd) =[1 exp(j2πfdT ) exp(j2πfd2T )

· · · exp(j2πfd(M − 1)T )]T , (3)

where T is the pulse repetition interval (PRI), and the super-
script ’T ’ denotes matrix transpose.

In the same way, the varying phase among receiving sub-
arrays for an incoming wave can be described by a steering
vector. For a Uniform Linear Array (ULA), the phase varia-
tions occurs linear, and the spatial steering vector is

ss(θR, ϕR) = [1, exp
(
j

2πd

λ
cos (θR) cos (ϕv,R − ϕR)

)
,

exp
(
j

2π2d

λ
cos (θR) cos (ϕv,R − ϕR)

)
,

· · ·exp
(
j

2π(N − 1)d

λ
cos (θR) cos (ϕv,R − ϕR)

)
]T ,

(4)

where d is the distance between two adjacent subarrays, and
the direction of the array is assumed to be parallel with the
receiver platform’s heading.

The space-time steering vector is given by the Kronecker
product between the temporal and the spatial steering vectors.
Thus, we have

sts(θR, ϕR, fd) = st(fd)⊗ ss(θR, ϕR). (5)

The bistatic ground clutter response for a range bin is the
continuous voltage response from all scatters comprising the
range resolution cell. The ground clutter snapshot for range
bin k can be modeled by [14]

xk,c =

∫ R+∆R/2

R−∆R/2

∫ 2π

0

σc(θR, ϕR|θT , ϕT , θ0
T , ϕ

0
T )

· v(θR, ϕR|θT , ϕT )sts(θR, ϕR, fd) dθRdr (6)

where ∆R defines the bound between two adjacent range bins,
σc(θR, ϕR|θT , ϕT , θ0

T , ϕ
0
T ) is the intensity of the received

observations given the transmitted gain pattern and azimuth
and elevation angles for the transmitter and the receiver, and
v(θR, ϕR|θT , ϕT ) ∼ CN(0, 1). A discrete approximation of
(6), suitable for numerical simulations, is given by:

1. Divide the earth’s surface into fractions of a radar
resolution cell, and identify all fractions corresponding to the
same bistatic range.

2. Calculate the fraction snapshot by muliplying the root
pixel power by a standard normal random variable and the
appropriate space-time steering vector.

3. Sum all snapshots for a common bistatic range.
The accuracy of the approximation of (6) increases with

decreased size of each ground clutter fraction.

III. DERIVATION OF COVARIANCE MATRIX

To be able to suppress the ground clutter properly, an
estimate of the null hypothesis distribution must be obtained.
It is assumed that the null hypothesis is Gaussian distributed
with zero mean, therefore the corresponding covariance matrix
is sufficient to fully describe the distribution.

Given that the ground clutter reflections for range bin k are
given by (6), the clairvoyant covariance matrix for range bin
k can be obtained from

Rk,c =

∫ R+∆R/2

R−∆R/2

∫ 2π

0

σ2
c (θR, ϕR|θT , ϕT , θ0

T , ϕ
0
T )

· sts(θR, ϕR, fd)sHts(θR, ϕR, fd) dθRdr (7)

As can be seen in (7), the covariance matrix depends on
the true radar scenario, i.e. the position and velocities of the
transmitter and the receiver, and the transmitted gain pattern.
In (7), the positions and the velocities are implicitly given by
θT , θR, ϕT , ϕR and fd.

In a real application, the radar scenario is not perfectly
known to the processor. That is, the position and the velocities
of the transmitter and the receiver, and the transmitted gain
pattern are only known to the processor up to some uncertainty.
Especially quantities connected to the transmitter are normally
more uncertain to the processor, since the processing is usually
performed in the receiver. Therefore, by assuming that the
processor has exact knowledge of the parameters connected to
the receiver, and that parameters connected to the transmitter
are uncertain to the processor. A certainty of equivalence
estimate of the covariance matrix is

R̂k,c =

∫ R+∆R/2

R−∆R/2

∫ 2π

0

σ2
c (θR, ϕR|θ̂T , ϕ̂T , θ̂0

T , ϕ̂
0
T )

· sts(θR, ϕR, f̂d)sHts(θR, ϕR, f̂d)dθRdr (8)

where (θ̂T , ϕ̂T , θ̂
0
T , ϕ̂

0
T , f̂d) are, by the receiver assumed, pa-

rameters of (θT , ϕT , θ
0
T , ϕ

0
T , fd). The accuracy of the assumed

parameters will determine the accuracy of the estimate R̂k,c.

IV. NUMERICAL SIMULATIONS

In this section, we consider numerical simulations to eval-
uate the performance of the estimated covariance matrix from
an assumed radar scenario. The method is compared with the
A2DC method [10], [11].

The radar scenario that is considered in the simulations
is presented in Fig 2 and the radar parameters used in the
simulation can be find in Table I. The estimate from the A2DC
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Fig. 2. The bistatic radar scenario considered in the numerical simulations.

TABLE I
RADAR PARAMETERS

Parameter Value
Number of pulses, M 16

Number of receive channels, N 18
Number of transmitting channels 18

Distance between adjacent antenna arrays 0.5λ
Pulse repetition interval 5 ms

Wavelength of transmitted pulses 0.05 m

method is based on secondary data, generated according to (6),
from adjacent range bins to the cell under test. To follow the
RBM rule, 2NM range bins are considered [15]. Moreover,
the secondary data is homogenized towards a common refer-
ence range bin, which is selected to be the range bin under
test. Notice though that the range bin corresponding to the cell
under test is not part of the secondary data. The calculation of
the covariance matrix from the proposed method is not based
upon secondary data, but is calculated to coincide with the
range bin corresponding to the cell under test.

The methods are compared by evaluating how well their
estimate of the ground clutter covariance matrix performs in
a radar detector [16]. A target, with velocity (45, 70, 0) km/h,
is placed in the cell under test to obtain a suitable measure.
This implies that target position corresponds to the analysed
cell. From the detector, the performance of the hypothesis
testing can be evaluated by studying the Receiver Operating
Characteristic (ROC) [17]. Moreover, a valid scalar value of
the performance can be obtained from the Area Under the
Curve (AUC) to the ROC-curve [17].

To obtain a proper AUC measurement for the proposed
method, we consider Monte-Carlo simulations. In each Monte-
Carlo iteration, a random sample for the assumed transmitter
position, velocity and direction of gain pattern is considered.
The random samples are drawn from

Q̂Tx = QTx + εQTx
(9)

v̂T = vT + εvT
(10)

where the position of the transmitter is denoted QTx, εQTx
∼

N (0, RQTx
) and εvT

∼ N (0, RvT
). The sensitivity of the

estimate (8) is analyzed by varying RQTx
and RvT

.
In Fig 3 the corresponding ROC-curves for the clairvoyant

detector, the estimate from the A2DC method, and the mean
ROC-curve for estimates from (8) where the assumed radar
parameters are 100 samples from Q̂Tx ∼ N (QTx, 103 · I3)
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Fig. 3. ROC-curve of detector for the cell under test with clairvoyant
covariance matrix, and estimated covariance matrices from the proposed
method and A2DC.

Fig. 4. Difference in AUC of estimates from the proposed method for different
assumed radar parameters and the A2DC method.

m and v̂T ∼ N (vT , 0.5 · I3) km/h, is shown. It can be seen
that the proposed method gives a better estimate of the clutter
covariance matrix than the A2DC method.

In Fig 4, the AUC for different assumed transmitter pa-
rameters is viewed. The figure shows the difference in AUC
between the estimate from (8) and the estimate from the A2DC
method. Thus, positive values in the figure means that the
proposed method results in a better detector, and negative
values means that A2DC gives a better estimator. Each value
for the estimate from (8) is the mean value of the AUC from
100 Monte-Carlo iterations. It should also be noted that the
origin in the figure corresponds to the clairvoyant detector.
From the results in the example, we note that even for rather
large errors in the assumed radar scenario the estimate from
(8) still produces a detector which is better than the one from
A2DC.

V. CONCLUSION

This paper consider ground clutter mitigation for airborne
bistatic radar systems. The covariance matrix of the ground
clutter is determined from the radar geometry, and the trans-
mitted gain pattern. This paper investigate a method which
calculates the corresponding covariance matrix from assumed
knowledge of the current radar parameters. This implies that
no secondary data are necessary in the estimated covariance
matrix. The numerical examples indicates an improved clutter
rejection compared to other state-of-the-art methods for errors
of order 103 m and 100 km/h in the assumed transmitter
position and transmitter velocity.
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