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Normal ordering provides an approach to approximate three-body forces as effective two-body operators and
it is therefore an important tool in many-body calculations with realistic nuclear interactions. The corresponding
neglect of certain three-body terms in the normal-ordered Hamiltonian is known to influence translational
invariance, although the magnitude of this effect has not yet been systematically quantified. In this paper we study
in particular the normal-ordering two-body approximation applied to a single harmonic-oscillator reference state.
We explicate the breaking of translational invariance and demonstrate the magnitude of the approximation error
as a function of model space parameters for 4He and 16O by performing full no-core shell-model calculations
with and without three-nucleon forces. We combine two different diagnostics to better monitor the breaking of
translational invariance. While the center-of-mass effect is shown to become potentially very large for 4He, it
is also shown to be much smaller for 16O although full convergence is not reached. These tools can be easily
implemented in studies using other many-body frameworks and bases.

DOI: 10.1103/PhysRevC.104.024324

I. INTRODUCTION

The need for an effective three-nucleon force (3NF) to
describe the strong nuclear interaction in atomic nuclei is well
established [1]. Its origin dates back to Fujita and Miyazawa,
who computed the 3NF arising from a two-pion exchange
diagram [2]. In the modern understanding, 3NFs arise in ef-
fective field theories (EFTs) as a consequence of integrating
out degrees of freedom. More specifically, 3NFs appear in the
chiral EFT of the strong nuclear interaction at next-to-next-to-
leading order (N2LO) and above in standard power counting
schemes of the chiral expansion [3–6]. Besides the EFT ar-
guments, it has also been shown that several experimental
findings are difficult to reproduce without the inclusion of a
3NF, such as certain three-nucleon scattering observables [7],
the A = 3, 4 binding energies [8,9], and selected light nucleus
spectroscopy [10–12].

Unfortunately, the full inclusion of 3NFs in quantum
many-body methods is computationally demanding due to the
large increase in the number of nonzero matrix elements [13].
In fact, the escalation of memory demands and the increase
in execution time often render solutions intractable when ex-
plicit 3NFs are added. This situation has initiated searches for
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approximation schemes that will include the most important
physics of 3NFs, but at a lower computational cost.

One such approximation scheme is the single-reference
normal-ordering two-body (SR-NO2B) approximation
[14,15], which potentially can incorporate the dominant
piece of the 3NF as an effective two-nucleon force (2NF) and
therefore at significantly reduced computational cost. This is
often done by approximating the ground state with a single
Slater determinant (SD) and then normal ordering the 3NF
relative to this reference state using Wick’s theorem [16].
The expectation value of the residual three-nucleon term,
acting only outside the reference state, is assumed to give a
much smaller contribution to the ground-state energy than the
induced two-, one-, and zero-body parts—and is therefore
discarded.

The SR-NO2B approximation has been used with great
success in ab initio nuclear structure calculations—in partic-
ular to facilitate studies of medium-mass systems [15,17–20].
Normal-ordering approximations beyond the single reference
state have also been developed [21,22]. The accuracy of the
SR-NO2B has been benchmarked, e.g., in Refs. [14,15,23].
The importance of residual 3NFs was shown to be small by
explicit comparison with calculations using full 3NFs. How-
ever, these benchmarks were performed at a fixed oscillator
frequency and the dependence on model-space parameters has
not been investigated. This is particularly important since we
show that the sensitivity of SR-NO2B to the choice of basis
frequency could be significant.

We stress that our concern pertains to the explicit break-
ing of translational invariance of the underlying Hamiltonian
due to the normal-ordering two-body (NO2B) approximation.
The ensuing center-of-mass (CM) dependence is therefore
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of different origin compared to the well-known problem of
CM mixing as a consequence of, e.g., particular truncations
of the single-particle basis that are used in some many-body
solvers [20,24–29]. We also note that a conceptually differ-
ent, but related, issue appears when working with symmetry
broken (and restored) reference states. In that context, there
have been studies to design more general normal-ordering
approximations to obtain operators that are still consistent
with symmetries of the Hamiltonian. In particular, such de-
signs exist for reference states with broken particle-number
symmetry [30], and rotational symmetry [31].

In this paper, we have studied the SR-NO2B approximation
in a harmonic oscillator (HO) basis with a no-core shell model
(NCSM) total-energy truncation. We consider the closed-shell
systems 4He and 16O—for which the single-reference approx-
imation is appropriate—and we explore the accuracy of the
NO2B approximation and the breaking of translational invari-
ance as a function of model space parameters Nmax and h̄�.
The realistic N2LOsat interaction [32] with both 2NF and 3NF
terms is used for all numerical calculations unless otherwise
stated.

The full Hamiltonian, the NCSM method, and the SR-
NO2B approximation are introduced in Sec. II. The CM
problem is presented in Sec. III where we also introduce
and benchmark the metrics that will be used in the analysis.
The NO2B approximation errors for ground-state energies
and radii for 4He and 16O are analyzed in Sec. IV, while
concluding remarks are given in Sec. V.

II. THEORY

A. The Hamiltonian

The general Hamiltonian that is considered in this paper
can be written

Ĥ = T̂int + V̂2NF + V̂3NF. (1)

The potential operators are expressed in second quantized
form as

V̂2NF = 1

4

∑
αβ

α′β ′

〈αβ|V2NF|α′β ′〉ĉ†
α ĉ†

β ĉβ ′ ĉα′ , (2)

and

V̂3NF = 1

36

∑
αβγ

α′β ′γ ′

〈αβγ |V3NF|α′β ′γ ′〉ĉ†
α ĉ†

β ĉ†
γ ĉγ ′ ĉβ ′ ĉα′ , (3)

with Greek letters representing tuples of the well-known
single-particle quantum numbers (n, l, j, jz, tz ) in a HO ba-
sis. These operators, as well as the intrinsic kinetic energy,
T̂int , depend on relative coordinates (in position and momen-
tum space) such that the Hamiltonian (1) is translationally
invariant.

B. The no-core shell model

To solve the many-body Schrödinger equation we employ
the NCSM in which the Schrödinger equation

Ĥ |�〉 = E |�〉 (4)

is rewritten as a finite matrix eigenvalue problem by expand-
ing the eigenstates of the Hamiltonian Ĥ in a finite many-body
basis {|�i〉}D

i=1, i.e., the NCSM eigenstate n is

|�n〉NCSM =
D∑

i=0

cn,i|�i〉. (5)

The SD many-body basis state |�i〉 is constructed using
second-quantization

|�i〉 = ĉ†
αi,1

· · · ĉ†
αi,A

|〉, (6)

and is an eigenstate of a two-component A-body (A = N + Z)
fermionic HO Hamiltonian with the corresponding eigenen-
ergy Ei = (Ni + 3

2 )h̄� where � is the oscillator frequency and
Ni is the total HO energy quantum number

Ni ≡
∑

n j ,l j∈�i

(2n j + l j ), (7)

where n j (l j) is the principle quantum number (orbital angular
momentum) of particle j in the basis state �i. The dimension
D of the NCSM basis is set by a total HO-energy truncation

Ni − Nref � Nmax, (8)

where Nref is the total HO energy quantum number of a refer-
ence state composed of the (N, Z ) lowest single-particle HO
states. For example, Nref = 0 for 4He and Nref = 12 for 16O.

In general, there is no guarantee that the separation of
intrinsic and CM excitations due to the translational invari-
ance of the Hamiltonian is preserved when the Hilbert space
is arbitrarily truncated. However, an important feature of the
total-energy truncation of the NCSM basis is that it does in
fact guarantee this separation due to the energy-conserving
property of the HO transformation brackets [11]. This prop-
erty implies that there exists a unitary mapping of a SD
basis of HO single-particle states—truncated with respect to
the HO excitation energy Nmax h̄�—onto a Jacobi-coordinate
basis. Therefore, the NCSM eigenstates of (1) can formally be
written as product states

|�n〉NCSM = |�i〉int ⊗ |� j〉CM, (9)

with the state number n = n(i, j). The lowest energy state
(n = 0) will be the product of the ground state of the CM
motion ( j = 0) and that of the intrinsic Hamiltonian (i = 0).

C. Single-reference normal ordering

In this section we outline the major steps of single-
reference normal ordering and describe the NO2B approxi-
mation. We start from the general expression of the vacuum
normal-ordered 3NFs in Eq. (3) and a reference state, that is,
a single SD:

|ψref〉 = ĉ†
α1

· · · ĉ†
αA

|〉, (10)
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constructed from R = R(A, Z ) = {αi}A
i=1—the lowest HO

states for the A-body system composed of Z protons and
N = A − Z neutrons.

V̂3NF can then be normal ordered relative to |ψref〉, which
results in an expansion of zero-, one-, two-, and three-body
operators. The contribution to the ground-state energy of the
residual three-nucleon operator is assumed to be small—since
it acts solely outside the reference state—and is discarded.
This is known as the NO2B approximation as it results in an
effective Hamiltonian with at most two-body operators.

The normal ordering relative to |ψref〉 is easiest performed
with Wick’s theorem [33]. A product of second-quantization
operators, normal ordered relative to |ψref〉, is here writ-
ten as {âb̂ĉ · · · }. Such a normal-ordered operator fulfills
{âb̂ĉ · · · }|ψref〉 = 0. Combined with the formal definition of

a contraction, âb̂ = âb̂ − {âb̂}, it is possible to derive the
contraction rules

ĉ†
α ĉβ =

{
δα,β if α ∈ R(A, Z ) ∧ β ∈ R(A, Z )
0 otherwise , (11)

ĉα ĉ†
β =

{
δα,β if α 	∈ R(A, Z ) ∧ β 	∈ R(A, Z )
0 otherwise , (12)

ĉ†
α ĉ†

β = 0, (13)

ĉα ĉβ = 0. (14)

The 3NF in Eq. (3) can now be normal ordered relative to
|ψref〉 by applying Wick’s theorem:

V̂3NF =

≡W0︷ ︸︸ ︷
1

6

∑
α,β,γ∈R

〈αβγ |V3NF|αβγ 〉

+

≡Ŵ1︷ ︸︸ ︷
1

2

∑
α

α′

∑
β,γ∈R

〈αβγ |V3NF|α′βγ 〉{ĉ†
α ĉα′ }

+

≡Ŵ2︷ ︸︸ ︷
1

4

∑
αβ

α′β ′

∑
γ∈R

〈αβγ |V3NF|α′β ′γ 〉{ĉ†
α ĉ†

β ĉβ ′ ĉα′ }

+

≡Ŵ3︷ ︸︸ ︷
1

36

∑
αβγ

α′β ′γ ′

〈αβγ |V3NF|α′β ′γ ′〉{ĉ†
α ĉ†

β ĉ†
γ ĉγ ′ ĉβ ′ ĉα′ },

(15)

where we note that W0 is a constant while Ŵi|ψref〉 = 0 for
i ∈ {1, 2, 3} due to the normal-ordered second-quantization
operators. The NO2B approximation of V̂3NF is then
defined as

V̂ NO2B
3NF ≡ W0 + Ŵ1 + Ŵ2. (16)

In the NCSM, however, the Hamiltonian is not expressed rela-
tive to a reference state and we need to apply Wick’s theorem

backwards to transform V̂ NO2B
3NF into vacuum normal-ordered

form. With this aim, we use the relations

{ĉ†
α ĉα′ } = ĉ†

α ĉα′ − ĉ†
α ĉα′ , (17)

{ĉ†
α ĉ†

β ĉβ ′ ĉα′ } = ĉ†
α ĉ†

β ĉβ ′ ĉα′

− ĉ†
β ĉβ ′ {ĉ†

α ĉα′ } − ĉ†
α ĉα′ {ĉ†

β ĉβ ′ }

+ ĉ†
β ĉα′ {ĉ†

α ĉβ ′ } + ĉ†
α ĉβ ′ {ĉ†

β ĉα′ }

− ĉ†
α ĉα′ ĉ†

β ĉβ ′ + ĉ†
α ĉβ ′ ĉ†

β ĉα′ (18)

and arrive at

V̂ NO2B
3NF = 1

6

∑
α,β,γ∈R

〈αβγ |V3NF|αβγ 〉

− 1

2

∑
α

α′

∑
β,γ∈R

〈αβγ |V3NF|α′βγ 〉ĉ†
α ĉα′

+ 1

4

∑
αβ

α′β ′

∑
γ∈R

〈αβγ |V3NF|α′β ′γ 〉ĉ†
α ĉ†

β ĉβ ′ ĉα′ .

(19)

In the end, the NO2B-approximated Hamiltonian that we use
in the NCSM is

ĤNO2B = T̂int + V̂2NF + V̂ NO2B
3NF . (20)

This is clearly different compared to the full Hamiltonian, Ĥ ,
given by Eq. (1) where the complete 3NF is retained.

III. THE CENTER-OF-MASS PROBLEM

The translational symmetry of the NO2B-approximated
Hamiltonian (20) is explicitly broken since we neglect the
residual 3NF and this renders the CM dependence of the
reference state manifest. Indeed, retaining the residual 3NF
restores translational symmetry since the normal ordering in
Eq. (15) is an exact relation. With the NO2B approximation
it is therefore no longer guaranteed that the ground state
|�NO2B

GS 〉NCSM of ĤNO2B is factorized into a product of CM and
intrinsic states as in Eq. (9). Instead we must expect a linear
superposition of product states:

∣∣�NO2B
GS

〉
NCSM =

∑
i, j

ci, j |�i〉int ⊗ |� j〉CM. (21)

In this more general situation the intrinsic and CM states are
no longer pure quantum states and must be expressed with
density matrices ρ̂int and ρ̂CM.

This mixing of CM and intrinsic degrees of freedom can
potentially have a huge effect on various observables and is
here labeled as the center-of-mass problem. It is therefore
crucial to quantify the CM mixing. In the following we will
introduce two metrics that have exactly this purpose.
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A. Introducing center-of-mass metrics

The mixing of CM and intrinsic states is a known prob-
lem in many-body physics. It might occur also when using
fully translational-invariant Hamiltonians as a consequence
of approximations used in the many-body solver. In particu-
lar, Galilean invariance is broken explicitly when employing
lattice methods [34] and CM mixing can occur in basis-
expansion methods when imposing a basis truncation at the
single-particle level [20,24–29]. A very common approach
to diagnose the problem in basis expansion methods is to
evaluate the (energy-shifted) HO CM Hamiltonian

ĤCM(ω) = P̂2
CM

2mA
+ 1

2
mAω2R̂2

CM − 3

2
h̄ω, (22)

or the corresponding CM number operator

N̂CM(ω) = 1

h̄ω
ĤCM(ω) (23)

with expectation value NCM(ω). Small expectation values of
these operators, ĤCM(�) and N̂CM(�), evaluated at the basis
frequency �, are then used as evidence for satisfactory CM
factorization. Large expectation values, on the other hand,
indicate problematic mixing.

However, it might be too assertive to claim proper CM
separation based on this single observable. We argue here that
additional metrics are needed. In addition, there are claims
[25] that the factorization does occur but that the CM state
is not necessarily a ground state of the Hamiltonian ĤCM(�)
(22) constructed using the basis frequency h̄�.

1. The ξCM metric

Consider an eigenstate of a translationally invariant Hamil-
tonian that factorizes into a product of an intrinsic state |�〉int

and a CM state |�ωξ

GS〉CM, where the latter corresponds to the
ground state of ĤCM(ωξ )—the Hamiltonian (22) constructed
with an oscillator frequency ωξ which does not necessarily
correspond to the basis frequency �. In this situation we
would obtain the expectation values

〈
R2

CM

〉 = 3

2
b2 (24)

and
〈
P2

CM

〉 = 3

2

h̄2

b2
, (25)

with the oscillator length b = b(ωξ ) = √
h̄/Amωξ , and the

expectation values are with respect to the full ground state.
This fact was utilized by Parzuchowski et al. [27] in their
study of transition operators within the in-medium similarity
renormalization group framework. They introduced the quan-
tity

ξCM ≡
√〈

R̂2
CM

〉〈P̂2
CM〉

h̄
− 3

2
, (26)

which will evaluate to ξCM = 0 if |�ωξ

GS〉CM is a HO ground
state, regardless of the frequency ωξ , while ξCM > 0 if it is
not. Note, however, that a HO eigenstate with one frequency,
ω, cannot be exactly represented in a truncated HO basis with

2−5 2−3 2−1 21 23 25

ω/Ω

0.00

0.05

0.10

0.15

ξ C
M

Nmax

0

2

4

6

8

10

FIG. 1. The ξCM metric for ground states of HCM(ω) computed
for different ω/� ratios (where � is the basis frequency) and in-
creasing NCSM basis truncations. We have pointwise convergence,
ξCM → 0, for all ω/� ratios as Nmax → ∞.

a different basis frequency � 	= ω. This is illustrated in Fig. 1
and further discussed in the Appendix.

In the case when ξCM ≈ 0 it is possible to identify the
corresponding frequency of the underlying HO Hamiltonian
ĤCM(ωξ ) by

h̄ωξ = 4
3 〈T̂CM〉, (27)

where T̂CM is the CM kinetic energy, and the expectation
value is with respect to the ground state. When the NCSM
Hamiltonian is translationally invariant the frequency ωξ will
equal the basis frequency in the NCSM method. However,
ωξ 	= � indicates a broken symmetry. Note that we might
still have a product state (9) in this situation—such that CM
mixing is not problematic—and that we can measure this with
ξCM.

2. The NCM metric

In applications of the coupled-cluster (CC) method the
computed ground state |�GS〉CC is assumed to be separable
such that the CM state is the ground state of a HO Hamiltonian
with a frequency ωN that not necessarily equals the underlying
HO basis frequency �. The frequency ωN is obtained by
evaluating [25]

h̄ω± = h̄� + 2

3
〈ĤCM(�)〉

±
√

4

9
〈ĤCM(�)〉2 + 4

3
h̄�〈ĤCM(�)〉, (28)

and identifying

ωN = arg minω∈ω±〈ĤCM(ω)〉. (29)

We can then define the operator N̂CM(ωN ) analogous to
Eq. (23) and evaluate its expectation value NCM(ωN ) which
will be small if the wave function factorizes.

B. The relation between different metrics

There is an interesting connection between ξCM and
NCM(ωξ ), i.e., the two different metrics expressed in terms of
the same CM oscillator frequency ωξ . We pick ωξ since the
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two frequencies ωξ and ωN are equal in the limit Nmax → ∞
if the state is separable as in Eq. (9). Consider a factorized
state with

|�〉CM = ∣∣φωξ

NL
〉
, (30)

i.e., it is a HO state with frequency ωξ , radial quantum number
N , and orbital angular momentum L. Then we have

NCM(ωξ ) = 2N + L, (31)

〈
R2

CM

〉 = b(ωξ )2

(
2N + L + 3

2

)
, (32)

and
〈
P2

CM

〉 = h̄2

b(ωξ )2

(
2N + L + 3

2

)
. (33)

Using the definitions of the two metrics we find that they
become equal in this scenario:

ξCM =
√〈

R̂2
CM

〉〈
P̂2

CM

〉
h̄

− 3

2
= 2N + L = NCM(ωξ ). (34)

Now consider the possibility that |�〉CM is a linear super-
position

|�〉CM =
∑

i

ci

∣∣φNiLi

〉
(35)

of HO states |φNiLi〉 = a†
NiLi

|〉. To simplify further calcula-
tions we introduce

A =
∑

i

|ci|2
(

2Ni + Li + 3

2

)
(36)

and B =
∑
i, j

c∗
i c j (

√
Ni(Ni + Li + 1/2)δNi,N j+1

+ √N j (N j + Li + 1/2)δNi+1,N j )δLi,L j (37)

where A, B are real and A � 3/2. Then we find

NCM(ωξ ) = A − 3

2
, (38)

〈
R2

CM

〉 = b2(A − B), (39)

and
〈
P2

CM

〉 = h̄2

b2
(A + B), (40)

which gives

ξCM =
√

A2 − B2 − 3
2 . (41)

It is clear from Eqs. (38) and (41) that

NCM(ωξ ) − ξCM = A

2
[ε + O(ε2)], (42)

where we have assumed that ε ≡ B2/A2 � 1. Therefore, the
difference between these two metrics can be used as a measure
of how much of the CM state is in higher excitations. The
off-diagonal sum B can only be nonzero if there exists i, j
such that ci, c j 	= 0 with |Ni − N j | = 1 and Li = L j .

It turns out that a similar relation can be derived if we have
CM mixing such that the CM state is not a pure quantum state.
Then we find that ξCM 	= NCM if there does not exist any HO

basis in which the CM density matrix

(ρCM)i, j = 〈�NCSM|a†
NiLi

aN jL j |�NCSM〉 (43)

is diagonal. In this situation the coefficients A and B in
Eqs. (38) and (41) are given by

A =
∑

i

(ρCM)i,i

(
2Ni + Li + 3

2

)
(44)

and B =
∑
i, j

(ρCM)i, j
(√Ni(Ni + Li + 1/2)δNi,N j+1

+ √N j (N j + Li + 1/2)δNi+1,N j

)
δLi,L j . (45)

In conclusion, when finding that ξCM, NCM > 0 we cannot
know if the CM state is a pure quantum state or a mixed one.
Only the situation ξCM = NCM = 0 assures a proper separation
of the intrinsic and CM parts of the eigenstate as in Eq. (9).

C. Benchmark of center-of-mass metrics

To benchmark the CM analysis metrics we consider an
interacting many-body system in an external HO trap with
Hamiltonian

Ĥ trap = T̂int + V̂2NF + ĤCM(ωtrap), (46)

where we use the 2NF part of N2LOsat as a realistic interaction
V̂2NF. Then we compute the NCSM ground state of 4He for dif-
ferent basis frequencies h̄� ∈ {8, 12, . . . , 32, 36} MeV while
keeping the trapping potential frequency fixed at h̄ωtrap =
20 MeV. The metrics described in Sec. III A are then evaluated
for the ground state.

While this Hamiltonian depends on the CM coordinate—
such that translational invariance is explicitly broken—it is
still block diagonal in a CM part and an intrinsic part. There-
fore, it is possible to precisely control the CM part of the
ground state and this property makes it a suitable bench-
mark of the CM metrics. However, it is not equivalent to the
non-block-diagonal CM coupling of the NO2B-approximated
Hamiltonian.

We compute the expectation values 〈R2
CM〉, 〈P2

CM〉, and
〈ĤCM(ω)〉 for each NCSM model space (Nmax, h̄�). This al-
lows us to extract the optimal decoupling frequencies ωξ and
ωN and to test the decoupling by evaluating the metrics ξCM

and NCM(ωN ). In addition, the standard CM-decoupling met-
ric NCM(�) can be evaluated—although it is expected to fail
when ωtrap 	= �. All of these quantities are plotted in Fig. 2.

We numerically confirm that all three metrics, shown in
the top row of Fig. 2, become equal to zero when the basis
frequency � is equal to the trap frequency. However, while
NCM(�) in panel (c) fails to reveal the decoupling for other
basis frequencies, the two metrics NCM(ωN ) and ξCM, shown
in panels (a) and (b), respectively, do indicate decoupling by
exhibiting small values.

The fact that both NCM(ωN ) and ξCM are larger for small
basis frequencies indicates that a superposition of excited
HO states is needed to describe the CM ground state in this
truncated space (see the Appendix). However, for h̄� > h̄ωtrap

the metrics are very small already at modest Nmax, indicating
a good CM state representation with these basis frequencies.
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FIG. 2. CM-excitation metrics and HO frequencies of 4He computed with an external trap Ĥ trap (46) with h̄ωtrap = 20 MeV using different
basis frequencies h̄�. Note in particular that the two metrics NCM and ξCM—shown in panels (a) and (b), respectively—are very similar and
that both of them correctly identify the trap frequency for a wide range of basis frequencies—see panels (d) and (e). In contrast, the standard
metric NCM(�), shown in panel (c), does not reveal the actual decoupling except for � = ωtrap. The differences shown in panels (h) and (i) are
multiplied by a factor 1000.

The corresponding optimal frequencies, h̄ωN and h̄ωξ

shown in panels (d) and (e), do approach the trap frequency
as Nmax increases. For Nmax = 0, where there is a single SD
basis state, this analysis will always return the basis frequency
as the optimal one, as shown by the diagonal, straight line.

Finally, the differences between the optimal frequencies
found via the ξCM and NCM methods are shown in panel (f),
while the differences between the two metrics are displayed
in panels (h) and (i). As a general conclusion we find that the
two analysis methods provide basically identical results, but
that the ξCM metric is easier to implement and compute. Fur-
thermore, the problem of representing a HO state of another
frequency than that of the truncated HO basis hampers the
analysis at small basis frequencies (see the Appendix).

IV. NO2B RESULTS

In this section we present a numerical study of the SR-
NO2B approximation in the HO SD basis applied to the
doubly magic systems 4He and 16O. All results shown here
are obtained with the realistic nuclear interaction model
N2LOsat [32]. Throughout this paper we will compare results
obtained with full and with NO2B-approximated 3NFs.

We employ the Jacobi-coordinate version of the NCSM
[35,36] to compute the ground state of 4He with full 3NF.
The normal ordering is performed in the M-scheme SD basis
and we employ the NCSM code PANTOINE [37,38] to perform
the diagonalization. Unfortunately, the huge number of 3NF
matrix elements in the M-scheme SD basis limits our stud-
ies to model spaces Nmax � 10. Specifically, with Nmax = 10
we have 5.4 × 109 elements while Nmax = 12 would require
66.5 × 109.

For 16O we are limited by the size and the number of
nonzero elements of the Hamiltonian matrix. With NO2B-
approximated interactions we use PANTOINE and reach model
spaces Nmax � 8 with up to D = 6 × 108 basis states. With
full 3NFs we use the no-core shell-model Slater determinant
(NCSD) code [39] and are able to reach model spaces Nmax � 6
corresponding to D = 1.6 × 106.

The direct comparison between results obtained with full
and NO2B-truncated 3NFs allows us to focus on the size of
the approximation error as a function of the mass number
and model space parameters. The origin of the approximation
error will here be analyzed in terms of possible CM mixing.
In this context it is important to point out that all calculations
in the M-scheme SD basis are performed without a Lawson
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FIG. 3. The ground-state energy of 4He computed with the
N2LOsat interaction for fixed basis frequency h̄� = 20 MeV. The
result with only the 2NF interaction (green, dashed line) is com-
pared with the full Hamiltonian including 3NFs (blue, solid line)
and with the NO2B-approximated one (orange, dotted line), corre-
sponding to Eqs. (1) and (20), respectively. The dashed horizontal
line indicates the converged N2LOsat ground-state energy Egs =
−28.43 MeV [32].

projection term acting on the CM coordinates. Instead, we will
employ the metrics presented in Sec. III A as diagnostic tools.

A. Ground-state energy of 4He

We first compute the ground-state energy of 4He at
the fixed basis frequency h̄� = 20 MeV, which is close
to the position of the variational minimum for this system
with the N2LOsat interaction. Results are shown in Fig. 3 as a
function of increasing NCSM truncation Nmax and compared
to the converged result Egs = −28.43 MeV [32].

At this basis frequency, we find that the NO2B approx-
imation captures the Nmax behavior of the results obtained
with the full Hamiltonian to within 1%. This means that the
approximation error in the total binding energy is smaller than
250 keV. We can also observe the importance of the 3NF
since a full removal of this part of the Hamiltonian (green
dashed line in Fig. 3) leads to approximately 2 MeV under-
binding.

However, the magnitude of the NO2B-approximation er-
ror turns out to be highly sensitive to the choice of basis
frequency. This finding is highlighted in Fig. 4 where
the binding energy per nucleon is computed for h̄� ∈
{8, 12, . . . , 32, 36} MeV. The solid lines in the upper panel
correspond to Egs/A computed with the full Hamiltonian,
while the dashed ones correspond to the NO2B-approximated
3NF. The difference between these two results is shown in the
lower panel as a function of the basis frequency.

There seems to be an optimal frequency h̄� ≈ 20 MeV for
which the approximation error is very small as we transition
from under- to overbinding with the NO2B truncation. For
higher frequencies there is an increasing difference between
the NO2B and the full-3NF results. Note also that the NO2B
truncation at Nmax = 0 is identical to the full Hamiltonian as
the single reference state is the only basis state.

The main hypothesis of this paper is that the explicitly
broken translational symmetry of the NO2B Hamiltonian can
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FIG. 4. (a) The ground-state energy per nucleon of 4He com-
puted with the N2LOsat interaction for different h̄�. The solid lines
show results with full inclusion of the 3NF, while the dashed lines
correspond to NO2B-approximated 3NF. Although the convergence
rate is h̄� dependent, the full 3NF results converge towards the
exact result (horizontal dashed line) while the results with the NO2B
approximation do not. (b) The NO2B-approximation error �E ≡
E 3NF

gs − ENO2B
gs per nucleon where E 3NF

gs and ENO2B
gs are the ground-

state eigenenergies of Eqs. (1) and (20), respectively.

become the origin of a strong h̄� dependence of the approxi-
mation error. Consequently, the NCSM eigenstates might not
necessarily separate into a product of CM and intrinsic states.

To test this hypothesis we evaluate the CM metrics, ξCM

and NCM—defined in Sec. III A—and the corresponding CM
oscillator-state frequencies ωξ and ωN . These results are
shown in Fig. 5. We observe that h̄ωξ � h̄� for large basis
frequencies. However, the ξCM metric clearly indicates that
there is no CM separation in this scenario so the value of ωξ

does not really have any significance.
In contrast, for small basis frequencies we have a clear

factorization of the eigenstate, as indicated by both metrics,
and we also find that the extracted frequencies are very similar
and very close to the basis frequency. There is a transition
region around h̄� ≈ 20 MeV where the metrics indicate CM
separation at a frequency that is slightly larger than the basis
one.

The finding that CM mixing is less of a concern for small
basis frequencies also indicates that the NO2B-approximation
error of �500 keV/A in this region is due to the neglected,
residual 3NF. As shown in the lower panels of Fig. 5 we
find that both ξCM and NCM do become very small for basis
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FIG. 5. CM analysis for 4He eigenstates obtained with the NO2B
Hamiltonian. The frequency h̄ωξ from Eq. (27) is shown in panel
(a) and the difference h̄ωN − h̄ωξ is shown in panel (b). Note that
the basis frequency h̄� is equal to both h̄ωN and h̄ωξ at Nmax = 0, as
shown by the gray line with circle markers. The CM metric ξCM from
Eq. (41) is shown in panel (c) and the difference NCM(ωN ) − ξCM in
panel (d).

frequencies below ≈20 MeV, indicating a separation between
the CM and intrinsic parts of the 4He ground state. However,
as the basis frequency increases beyond 20 MeV both mea-
sures increase drastically, suggesting that there is no longer
any separation. The frequencies h̄ωN and h̄ωξ start to differ
visibly from the basis frequency already at 16 MeV, which
is below the observed optimal frequency. This indicates that
the NO2B approximation does affect the CM state, albeit very
weakly.

While the approximation error at low basis frequencies can
be attributed to neglected 3NF contributions, we note that this
error is in general entangled with the effects of CM mixing
such that the total approximation error cannot be written as a
simple sum with two independent contributions. Furthermore,
both these errors have a complicated, nonlinear dependence
on the basis frequency via the reference state. The 3NF con-
sists of both long- and short-distance contributions, which will
be emphasized differently by reference states obtained with
different basis frequencies. The observed optimal frequency
h̄� ≈ 20 MeV corresponds to a cancellation of residual 3NF
and CM effects. We expect both these errors to increase with
increasing h̄�.

B. Ground-state energy of 16O

We will now study the NO2B approximation when per-
forming NCSM calculations of the 16O nucleus. For this
system we are limited to Nmax � 8 for Hamiltonians includ-
ing only 2NFs, and Nmax � 6 when using the Hamiltonian
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FIG. 6. (a) The ground-state energy per particle of 16O com-
puted with the N2LOsat interaction for different h̄�. The solid lines
show results with full inclusion of the 3NF (only available for a
subset of HO frequencies and up to Nmax = 6), while the dashed
lines correspond to NO2B-approximated 3NF. The horizontal dashed
line is the converged N2LOsat result computed with the CC method
[32]. (b) The NO2B-approximation error �E ≡ E 3NF

gs − ENO2B
gs per

particle where E 3NF
gs and ENO2B

gs are the ground-state eigenenergies of
Eqs. (1) and (20), respectively.

with full 3NFs. Such differences in computational limits are
the main reason for using the NO2B approximation in the
first place. In this paper, NCSM computations with the full
3NF for 16O are only performed at a few basis frequencies:
h̄� = 16, 20, 24, 36 MeV.

In addition, it is well known that CM effects are suppressed
in heavier systems since the excitation of CM motion is ener-
getically costly. Accordingly, in Fig. 6 we find that the NO2B
approximation captures the Nmax dependence of the ground-
state energy results rather well for a wide frequency range.
Note, however, that we are relatively far from convergence at
Nmax = 8 when using large basis frequencies. For compari-
son, we also show the converged result from CC calculations
Egs/A = −7.78 MeV [32].

The lower panel of Fig. 6 shows that the NO2B-
approximation error is on the order of �100 keV/A, cor-
responding to ≈1.5 MeV in the total binding energy (just
over 1%).
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FIG. 7. CM analysis for 16O eigenstates obtained with the NO2B
Hamiltonian. The frequency h̄ωξ from Eq. (27) is shown in panel
(a) and the difference h̄ωN − h̄ωξ is shown in panel (b). Note that
the basis frequency h̄� is equal to both h̄ωN and h̄ωξ at Nmax = 0, as
shown by the gray line with circle markers. The CM metric ξCM from
Eq. (41) is shown in panel (c) and the difference NCM(ωN ) − ξCM in
panel (d).

The evaluated CM metrics are shown in Fig. 7, confirming
the satisfactory factorization of the eigenstate. In fact, both
NCM and ξCM are orders of magnitude smaller for 16O com-
pared to 4He. Moreover, the HO frequency of the CM state is
very close to the one for the basis across the frequency range
we explore.

The small magnitude of CM effects in 16O indicates that
the total approximation error is mainly due to the residual 3NF
that is neglected in the NO2B approximation. It is quite likely
that the magnitude of this error will increase slightly with
increasing Nmax, similar to observations for 4He in Fig. 4(b).
Finally it seems from Fig. 6(b) that h̄� � 20 MeV again
represents an optimal frequency, but it would have been in-
teresting to also have Nmax = 8 results for 16O.

C. Point proton radii of 4He and 16O

As a final set of results we also analyze the NO2B-
approximation error in the point-proton radii of 4He and
16O (see Figs. 8 and 9, respectively). For 4He we find a
rather large approximation error and—unlike the results for
ground-state energies—there does not seem to exist an opti-
mal frequency where the error is at a minimum.

For 16O we find a good agreement between results with
NO2B approximated and the full Hamiltonian, even though
the point-proton radius shows a much slower convergence rate
for very high basis frequencies. The approximation error is
�0.01 fm. When comparing the radius predictions for 4He
and 16O we again find that the NO2B-approximation error
and ensuing CM contamination decrease with increasing mass

0 2 4 6 8 10

Nmax

1.25

1.50

1.75

2.00

2.25

r p
t−

p
[fm

]

(a)

h̄Ω [MeV]

8

12

16

20

24

28

32

36

r3NF
pt−p rNO2B

pt−p

rNNLOsat
pt−p

10 15 20 25 30 35

h̄Ω [MeV]

0.00

0.02

0.04

0.06

Δ
r p

t−
p

[fm
]

(b)
Nmax

0
4

6
8

10

FIG. 8. The point-proton radius of 4He computed with either full
or NO2B-approximated 3NF. The large difference between low and
high frequencies is due to slower convergence of NCSM calculations
at low frequencies.

number, as expected. It is also interesting to note that the
maximal NO2B-approximation error for the total energy per
particle and point-proton radius are both reduced by roughly
a factor of 10 when going from A = 4 to 16, at least for the
range of oscillator frequencies that we explore here.

V. DISCUSSION

There is a dilemma between the need to include 3NFs in
nuclear calculations to achieve increased physical accuracy
and precision, and the significant increase in computational
complexity caused solely by the inclusion of 3NFs in ab
initio methods. In this paper we have studied the SR-NO2B
approximation of 3NFs, that aims to reduce the computational
complexity to that of 2NFs while still capturing the most
important effects of the 3NF physics. Our study is performed
in the framework of the NCSM method.

The SR-NO2B approximation utilizes Wick’s theorem to
expand the 3NF potential in a sum of constant, one-, two-,
and three-body operators that are normal ordered relative to a
nonvacuum reference state |�ref〉, taken to be a single SD. In
this paper the reference state is constructed in the HO basis
and we explore the sensitivity of computed observables to
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FIG. 9. The point-proton radius of 16O computed with either full
or NO2B-approximated 3NF. The large difference between low and
high frequencies is due to slower convergence of NCSM calculations
at low frequencies.

the choice of the basis frequency. If the reference state is a
good approximation to the ground state of the nucleus, then
the normal-ordered three-body term can be discarded as it is
legitimate to assume that it will have a negligible contribution
to the ground-state energy.

A problem with the SR-NO2B approximation is that it
breaks the translational symmetry of the underlying Hamil-
tonian. In this paper we have focused on the consequences
of this symmetry breaking by introducing CM metrics and
studying the NO2B-approximation error for energies and radii
of 4He and 16O.

The main findings and conclusions of this study are as
follows.

(1) Translational invariance is explicitly broken in the
NO2B approximation. The truncation of the normal-ordered
Hamiltonian operator introduces a CM dependence of the
reference state, which can lead to CM mixing even if a total-
energy truncated NCSM basis is used.

(2) Metrics are important for assessing the CM mixing
in eigenstates obtained with the SR-NO2B approximation.
We have found that the previously introduced ξCM and NCM

metrics are useful for this purpose.
(3) The comparison of different CM metrics can reveal more

information about the details of the CM factorization. Zero

metrics, ξCM = NCM(ωξ ) = 0, imply proper CM factorization
with the CM part in its ground state. However, nonzero met-
rics do not help us determine whether we have a mixed state
or a linear superposition.

(4) The ability of the NO2B approximation to describe the
4He ground-state energy depends strongly on the NCSM basis
frequency h̄�. The NO2B-approximation error is the smallest
for h̄� = 20 MeV, but it increases significantly for larger
basis frequencies. A very weak dependence is observed for
smaller frequencies. Both CM metrics indicate negligible CM
mixing at small frequencies, and strongly increasing mixing
at large ones.

(5) The CM problem is much less significant for the ground
state of 16O. For this system the differences between the
NO2B-approximated ground-state energies and the full-3NF
ones do not exhibit any significant basis-frequency depen-
dency. Furthermore, there seems to be no significant CM
mixing, since both ξCM and NCM are small.

(6) We recommend further investigations of the CM prob-
lem in the NO2B approximation also when using other basis
functions. In this paper we have focused on the SR-NO2B
approximation with a HO basis. However, reference states
constructed from other single-particle bases might yield better
results. In particular the Hartree-Fock and the natural orbit
bases are being used in some many-body solvers and results
could be analyzed in a similar fashion as in this paper.

(7) A general analysis of CM factorization can be performed
with the squared CM density matrix. The metrics, ξCM and
NCM, used in this paper can only detect a CM factorization
if the CM wave function is a Gaussian. A more general
approach might be to consider the trace of the squared CM
density matrix. We will only have a pure CM quantum state
if tr{ρ2

CM} = 1; in every other case tr{ρ2
CM} < 1. However, in

practice this analysis method requires the trace to be computed
in a sufficiently large basis.

(8) Expectation values of other observables than ground-
state energies can be strongly affected by the use of the NO2B
approximation. Expectation values are computed with respect
to the eigenstates, and might therefore exhibit a stronger CM-
mixing effect. While we did compute the approximation error
for point-proton radii—and found that it was particularly large
for 4He—the general effects of the NO2B approximation on
other observables were not fully analyzed in this paper.
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APPENDIX: REPRESENTATIONS
IN A TRUNCATED BASIS

It is not possible to fully represent a HO ground state with
a frequency ωN in a truncated HO basis with frequency � 	=
ωN . Therefore, it is possible for the metrics NCM(ωN ) and ξCM

to be nonzero even if the eigenstate is factorized:∣∣�NO2B
GS

〉
NCSM = |�GS〉int ⊗ |�GS〉CM (A1)

where |�GS〉CM is a HO ground state with frequency ωN . Here
we will study eigenstates of the HO CM Hamiltonian (22).
In particular, NCM(ωN )—which is the smallest eigenvalue to
N̂CM(ωN ) in the current, truncated NCSM basis—is shown in

Fig. 10 as a function of ωN/�. Note that the horizontal axis
is logarithmic. It is obvious that this metric is not necessarily
zero even if we have a factorized product state.

We also observe in Fig. 10 that NCM(ωN ) is invariant under
the transformation ωN

�
→ �

ωN
. Here we will demonstrate this

algebraically. The analytical expression for the matrix ele-
ments ĤCM(ωN ) in the CM-coordinate HO basis |N ,L〉 with
frequency � is

〈N ′,L′|ĤCM(ωN )|N ,L〉

=
{(

1 + ωN
2

�2

)
h̄�

2
(2N + L + 3/2)δN ′,N

− 3

2
h̄ωNδN ′N +

(
1 − ωN

2

�2

)
h̄�

2

× [√N (N + L + 1/2)δN ′+1,N

+
√
N ′(N ′ + L + 1/2)δN ′,N+1

]}
δL′,L. (A2)

Therefore the matrix elements of N̂CM(ωN ) can be written

〈N ′,L′|N̂CM(ωN )|N ,L〉 =

= 1

2

{(
�

ωN
+ ωN

�

)
(2N + L + 3/2)δN ′,N

− 3

2
δN ′N +

(
�

ωN
− ωN

�

)

× [√N (N + L + 1/2)δN ′+1,N

+
√
N ′(N ′ + L + 1/2)δN ′,N+1

]}
δL′,L. (A3)

The diagonal is invariant under the transformation ωN
�

→ �
ωN

,
but the off-diagonal terms change sign. However, since the
matrix is symmetric and tridiagonal, the off-diagonal terms
will be squared in the characteristic equation, eliminating
the sign change. Thus the characteristic equation is invariant
for ωN

�
→ �

ωN
. It follows then that the eigenvalues must be

invariant too. Since NCM(ωN ) is the lowest eigenvalue this
demonstrates that it also must be invariant under ωN

�
→ �

ωN

in accordance with Fig. 10.
If NCM(ωN ) ≈ NCM(ωN ) then |�NO2B

GS 〉NCSM is separated in
a HO-CM ground state and some intrinsic state. If, on the
other hand, NCM(ωN ) � NCM(ωN ) then the CM state is not
a HO ground state.
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