
Bilevel optimization for bunching mitigation and eco-driving of
electric bus lines

Downloaded from: https://research.chalmers.se, 2021-12-11 21:19 UTC

Citation for the original published paper (version of record):
Lacombe, R., Gros, S., Murgovski, N. et al (2021)
Bilevel optimization for bunching mitigation and eco-driving of electric bus lines
IEEE Transactions on Intelligent Transportation Systems, In press
http://dx.doi.org/10.1109/TITS.2021.3095267

N.B. When citing this work, cite the original published paper.

©2021 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Bilevel optimization for bunching mitigation and
eco-driving of electric bus lines

Rémi Lacombe, Sébastien Gros, Nikolce Murgovski, and Balázs Kulcsár

Abstract—The problems of bus bunching mitigation and the
energy management of groups of vehicles have traditionally
been treated separately in the literature and been formulated
in two different frameworks. The present work bridges this
gap by formulating the optimal control problem of the bus line
eco-driving and regularity control as a smooth, multi-objective
nonlinear program. Since this nonlinear program has only a
few coupling variables, it is shown how it can be solved in
parallel aboard each bus, such that only a marginal amount
of computations need to be carried out centrally. This procedure
leverages the structure of the bus line by enabling parallel
computations and reducing the communication loads between
the buses, which makes the problem resolution scalable in terms
of the number of buses. Closed-loop control is then achieved by
embedding this procedure in a model predictive control. Stochastic
simulations based on real passengers and travel times data are
realized for several scenarios with different levels of bunching for
a line of electric buses. Our method achieves fast recoveries to
regular headways as well as energy savings of up to 9.3% when
compared with traditional holding or speed control baselines.

Index Terms—Bus bunching, electric buses, optimal control,
nonlinear programming.

I. INTRODUCTION

ELECTRIC vehicles offer a promising way to mitigate the
increasing greenhouse gases emissions of the transport

sector. Electric buses in particular combine no tailpipe emis-
sions and lower energy consumption than other types of city
buses [1] with the lower marginal emissions that urban public
transit has in general [2]. However, bus lines are inherently
unstable systems, and they have long been known to develop
bus bunching if left uncontrolled [3], [4]. One late bus may
cause the accumulation of passengers at stops downstream,
which acts as a positive feedback loop on the bus and further
increases its delay. Likewise, an early bus encounters fewer
passengers at stops than expected, and may ultimately catch up
with the preceding bus at which point the buses start bunching.
The increased service delays incurred by this so-called bus
bunching phenomenon may in turn significantly increase the
passenger delays, which may eventually discourage users from
choosing to use public transport [5].
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Networks of electric buses potentially present an additional
challenge for any control strategy, namely that electric buses
may have charging constraints due to the limited autonomy of
their batteries, whereas traditional diesel buses usually manage
to complete an entire day in operation with one full tank [6].
Consequently, a model for the energy consumption might be
needed in order to anticipate how control actions affect the
battery state of charge of any controlled bus. This type of pre-
dictive model-based control for vehicles has been extensively
used in the literature to minimize the energy consumption
during driving missions in various types of environment [7]-
[11]. In particular, some authors have designed controllers
for the energy management of plug-in hybrid electric buses
[12], [13]. However, these works focus mainly on the energy
consumption of each individual bus, and as such overlook
the operational aspects of the bus line and the issue of bus
bunching.

Traditional methods to mitigate bus bunching rely mostly on
station-based interventions such as stop skipping or holding
buses at bus stops. Transit agencies often implement the
latter strategy in an ad-hoc manner to maintain their buses
on schedule, but better trade-offs between holding time and
commercial speed can usually be achieved [14]. The control
strategy developed in that paper, which is based only on real-
time information of the bus line, has even be extended to a
full bus network [15]. Other authors have further investigated
the benefits of the bus holding strategy in various types of
settings. The effects of overtaking among buses have been
studied in detail in [16] and [17], while [18] explored the
impact of including information about the phases of signalized
intersections, and [19] modeled the merging of independent
bus lines. In addition, control performances have been shown
to be further improved for the bus line control problem in
[20] and [21] when also including some predictive information
about the expected bus travel times. This information can
for example be leveraged to reduce large gaps in service
by holding buses longer than is possible based on real-time
information only. That being said, the aforementioned papers
only include limited amounts of predictive information, and it
is only used to compute the next control step.

In recent years, many authors have opted for model-based
rolling horizon control strategies for the bus line problem.
These methods operate by solving a problem formulated in
the mathematical programming framework to choose a set of
control actions over a given time (or space) horizon. Most
papers in this vein choose bus holding at stops as their
main intervention method. Some research has been done on
complementing this strategy with the ability to skip bus stops
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[22] or to limit passengers boarding [23], and on applying
it to multiple bus lines [24], [25]. In these articles, control
commands are updated in an event-based fashion, typically
when one bus leaves a stop, and the mathematical programs
are solved centrally for the whole network. Since the focus
is put on station control, the inter-station bus dynamics are
most often ignored. In addition to that, but holding strategies
might suffer from a lack of space where buses can be held
in urban settings, and the absence of inter-station command
updates does not leverage fully the potential of real-time
communications between buses.

Another vein of research for the model-based predictive
control of buses explores inter-station intervention, which
often takes the form of speed control. In [26], a linear-
quadratic Gaussian control scheme is developed to adjust the
speed of a bus to that of the preceding bus in operation. The
authors in [27] assemble a model predictive control (MPC) to
compute the optimal velocity profile of each bus on a receding
horizon that extends to the next bus stop. This controller aims
to minimize deviations from the time-table and to enforce
regular headways. In [28], an hybrid MPC is used to regularize
bus spacings instead, while maintaining a high commercial
speed. But in all those papers, the aim is to fulfill a service-
oriented objective, and no attention is paid to the eco-driving
of the bus fleet as a result. To the best of our knowledge, only
[29] includes an energy minimization aspect to the bus line
control problem. In that paper, the authors develop a multi-
objective MPC scheme with includes energy and service-
related cost terms. However, the electric machine model used
and the sampling in time of the MPC warrant the inclusion
of integer variables in the objective function, thus resulting in
a non-smooth optimization problem which needs to be solved
centrally, and over short prediction horizons.

This paper extends and develops the MPC-based velocity
control strategy outlined in [30], which operates by adjusting
predicted time headways to improve both the regularity and
energy efficiency of the bus service. Some notable modeling
improvements over this reference are presented here. Namely,
the predicted bus mass is no longer assumed to be static, but
rather to evolve dynamically as a function of the passenger
demand at stops. In addition, the MPC is not made to track a
static target headway, but is now free to use adaptive headways
in order to enforce a regular bus service in any situation. The
speed of the surrounding traffic is now also explicitly included
in the predictive framework as a constraint on the bus speed.

The main contribution of this paper is to formulate the bus
line regularity control problem and the bus fleet eco-driving
problem in the same framework, and as a smooth nonlin-
ear program (NLP) with no integer variables. A resolution
procedure for the bilevel optimization problem obtained from
the decomposition of this NLP is proposed for the real-time
implementation of the control strategy in an MPC scheme.
This strategy is meant to be deployable in most bus line
settings since it alleviates the need for prior timetabling or
scheduling through the use of adaptive headways, and scalable
since it relies on computations carried out in parallel aboard
individual buses. The originality of our work lies in the fine-
grained modeling of the inter-station bus travels over long

Bus
Bus Stop
Headway

Fig. 1: Illustration of a circular bus route with a nonhomoge-
neous distribution of bus stops.

prediction horizons. No other study on bus line control focuses
on the eco-driving of individual buses to the best of our
knowledge, nor include such a detailed model of the bus
dynamics and energy consumption.

Note that the control strategy proposed in this paper has a
hierarchical architecture [31], since the MPC scheme operates
centrally to compute optimized reference trajectories. Inde-
pendent local bus controllers are then assumed to track these
references, but they are left outside the scope of this paper.

This article is organized as follows. The modeling of buses
and passengers is presented in Section II. In Section III, it
is explained how the general optimal control problem can be
reformulated and solved as a bilevel NLP, and embedded in an
MPC. Simulations results are shown and analyzed in Section
IV. Finally, the paper closes on some concluding remarks in
Section V.

II. BUS LINE MODELING AND CONTROL

In this section and in the one that follows, we present a
predictive control algorithm based on a deterministic model of
the bus line problem. The decisions taken by the algorithm are
therefore based on a representation of the averaged behavior
of the system. This algorithm is later applied in a stochastic
simulation environment in Section IV.

In order to ease the comprehension of the following model-
ing steps, we invite the reader to refer to Table VI and Table
VII in the Appendix, which offer a detailed summary of all
the notations introduced throughout the paper.

A. Modeling Assumptions

We consider n buses that travel continuously on a circular
route of length L with q bus stops. The buses are indexed
from 1 to n, where the bus with index 1 is the last one that
drove through the origin of the route. The bus route layout
is represented in Fig. 1. In what follows, we use modular
notations to account for the circular aspect of the route. Every
bus or stop index is written modulo n or q, respectively, and
every position is written modulo L.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

We assume that no overtaking among buses can take place,
and that their onboard capacity is not limited. This first
assumption is not very restrictive as our control strategy aims
to keep regular headways, which makes overtaking events un-
likely. Considering an infinite bus capacity is also a reasonable
assumption in the case of a prior tactical planning phase, as
motivated in [33]. The transit agency can be assumed to dis-
patch sufficiently many buses, such that their capacity is rarely
exceeded. Note also that explicitly taking capacity constraints
into account would result in adding integer variables to our
mathematical model, thus destroying the scalability of our
approach. Finally, the charging problem is not addressed here.

In this paper, we consider that no intervention strategy
other than speed control can be applied by the controller. In
particular, it cannot hold buses at stops longer than needed for
the boarding and alighting operations to complete, and it is
assumed that these operations can only take place at designated
bus stops. Note that augmenting the controller with e.g. a
holding strategy or the ability to limit passengers boarding is
possible in theory. However, we chose to restrict our analysis
to the case where only speed control is allowed, both for
addressing situations where station-based interventions cannot
be implemented (e.g. in dense urban environments) and as a
way to evaluate the benefits that can be expected from the
speed control strategy itself.

We further assume that the bus line is operated without
any prior timetable, such that only headway regularity is of
interest. This fits urban settings well, where the high service
frequency results in uncoordinated arrivals of passengers at
bus stops [34]. As a result, this is a common assumption in
the bus bunching literature [21], [23]. We consider perfect
communications of the relevant information between the buses
and a central node (which can itself be a bus) when computing
control trajectories. When a control trajectory is generated by
the algorithm, it is assumed that the buses implement it as
such, as would be the case with e.g. autonomous buses. The
issue of the lack of precision or compliance from the drivers
is outside the scope of this paper.

B. Longitudinal Bus Dynamics

The longitudinal dynamics of a bus i ∈ I[1,n] along a fixed
route can be written with the position si and the bus speed vi
as state variables:

ṡi(t) = vi(t), (1a)
mi(si, t)v̇i(t) = Fm,i(t)− Fb,i(t)− Fd,i(vi)− Fr,i(si),

(1b)

where Fm,i is the motor force at the wheels, Fb,i is the force
generated by the friction brakes, Fd,i is the aerodynamic drag,
and Fr,i gathers the rolling resistance and the gravitational
pull. The explicit dependence in t has been omitted from
Fd,i, and Fr,i in (1) for simplicity. The mass of the bus mi

is considered to be a function of both space and time to
account for the influence of the travel time on the amounts

of passengers encountered at the stops. The exact model used
for the mass is discussed later in this section. Furthermore,

Fd,i(vi, t) =
1

2
ρAbuscavi(t)

2, (2a)

Fr,i(si, t) = gmi(si, t)
(
sin θ(si) + cr cos θ(si)

)
, (2b)

where ρ is the air density, Abus is the frontal area of the vehicle,
ca is the aerodynamic air drag coefficient, cr is the rolling
resistance coefficient, and θ is the road gradient [35].

In order to ease the modeling of bus stops, as becomes clear
in the next section, a change of the independent variable in
(1)-(2) is proposed. The dynamics are now considered with
respect to the position s, which means that e.g. the bus speed
vi now denotes a function of the variable s. This variable
change to the space domain is common in the predictive cruise
control literature, and additional details can be found in [8]-
[10]. One of the immediate benefits of this transformation is
that the nonlinearities coming from the space-dependent road
gradient in (2b) are removed, since the position is no longer
a state. Instead, the travel time ti is now chosen as a state
variable. Similarly, the quadratic nonlinearity in (2a) can be
removed with an extra variable change, namely by choosing
the kinetic energy per mass unit Ei(s) = 1

2v
2
i (s) as a state

variable instead of the velocity vi. As a result, the state-space
representation of bus i is:

dEi(s)

ds
=

1

mi(s, ti)
(Fm,i(s)− Fb,i(s)− ρAbuscaEi(s))

− g(sin θ(s) + cr cos θ(s)), (3a)
dti(s)

ds
=

1√
2Ei(s)

+ ∆stop,i(s, ti), (3b)

where the states and control inputs can be assembled as
xi(s) = [Ei(s), ti(s)]

> and ui(s) = [Fm,i(s), Fb,i(s)]
>, re-

spectively. A delay term ∆stop,i is added to the travel time
dynamics in order to capture the dwell times of bus i at
bus stops. Its exact expression is presented later in this
section, when passengers modeling is discussed. Perfect state
measurement is assumed in the rest of this paper.

There is a price to pay for the space domain variable change
however, which is that the vehicles can not have zero speed, as
imposed by (3b). This is usually not an issue for cruise control
on highways, but it becomes problematic for city buses. One
way to address this limitation is to enforce a lower bound
constraint on the speed everywhere on the route, which is
henceforth noted ventry. This bound is assumed to have a very
low, non-zero value, and to be the speed at which buses drive
when entering and exiting bus stops. This way, (3) is able to
capture the bus dynamics properly, and any additional delay
entailed when reaching zero speed at stops is added through
∆stop,i.

In addition, the bus velocity can be limited by e.g. the
surrounding traffic or the legal speed limits. Such constraints
are formulated on the kinetic energy instead, as:

1

2
v2min(s, ti) ≤ Ei(s) ≤

1

2
v2max(s, ti), (4)

where vmin and vmax are the lower and upper bounds on the
speed, respectively. In order to enforce a non-zero bus velocity,
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Fig. 2: Efficiency map of the motor, as a function of its speed
and torque. The black lines denote the torque constraints.

the lower speed bound verifies vmin(s, ti) ≥ ventry > 0, ∀s, ∀ti.
Likewise, the bus stops can be accounted for by imposing
vmin(sl, ti) = vmax(sl, ti) = ventry, ∀l ∈ I[1,q], ∀ti, where sl is
the location of the bus stop with index l.

Remark 1: The speed bounds can have any general smooth
shape. They may be chosen to have large spatial variations,
to account for different traffic conditions at different places
of the route for example, or large temporal variations, to
model different traffic regimes at different times of the day
for instance. Note that vmin and vmax can even be updated in
operation to include real-time traffic speed information, e.g. if
each bus communicates the current state of traffic downstream
to the following buses.

C. Energy Consumption Model

The motor speed ωm,i and torque Tm,i of a bus i ∈ I[1,n]
can be related to its longitudinal force and speed through:

Tm,i(s) =
rwη(Fm,i)

Mf
Fm,i(s), ωm,i(s) =

Mf

rw

√
2Ei(s),

(5)
where rw is the wheel radius and Mf is the final gear ratio.
The transmission efficiency η captures the feature of an electric
motor (EM) to be able to operate both in traction and in
generation. It models the transmission losses by taking value
1/ηf when Fm,i(s) ≥ 0 and ηf when Fm,i(s) < 0, where ηf
is the efficiency coefficient of the final gear.

Due to the power limitations of the motor, the torque has
to satisfy the constraint:

|Tm,i(s)| ≤ min(Tmax, Pmax/ωm,i(s)), (6)

where Tmax is the maximum motor torque and Pmax is the
maximum power that the motor can supply continuously [35].

In this paper, the battery is modeled as an open circuit
voltage connected in series to an internal resistance. Then,
the internal battery power Pb,i(Tm,i, ωm,i) balances the power
dissipated over the internal resistance, a constant load con-
sumed by auxiliary devices and the electrical power of the
EM [7], [12]. The EM electrical power is modeled by fitting
a polynomial function to the data shown in Fig. 2, including
second order terms in Tm,i and up to fifth order terms in ωm,i

[8]. Other models may be used for the battery and the EM,

Bus i Bus i + 1

stop i1
...

stop ij−1 stop ij
...

stop iqi

m
j

i
m

j−1

i
m1

i
m0

i

Fig. 3: Prediction horizon for bus i, where the successive mass
values at the stops downstream are shown.

but in the general case, the battery power can be considered
as a nonlinear and monotonically increasing function in Tm,i

and ωm,i [8], [13].

D. Bus Stops and Passengers

Let pi be the current position of each bus i ∈ I[1,n] on
the route. We assume that each bus is controlled over a finite
spatial horizon, which we refer to as prediction horizon, or
simply horizon, hereafter. Since part of our goal is to enforce
a regular bus service, we choose to let the horizon of each
bus stretch all the way to the preceding bus. The horizon for
bus i is thus the interval [pi, pi+1]. This way, the predicted
forward headway with bus i+ 1, noted Hi, is by construction
nothing else than the difference between the terminal travel
time ti(pi+1) and the current simulation time t0. This avoids
the need to resort to an indirect proxy, such as e.g. bus spacings
[28], to enforce headway regularity. Indeed, this particular
proxy might not be adapted to certain settings, such as a route
with a non-homogeneous distribution of bus stops. Note that
this means that the horizons are not overlapping here, and
that their union covers the full route 1. This comes at a price,
however, since bus overtaking cannot be captured with this
choice of control horizons. Indeed, if one bus is about to
overtake another, its prediction horizon shrinks to zero. But
recall that it has been assumed previously that no overtaking
event can take place here.

In these settings, the bus stops are distributed among the
horizons of the buses. Let Si be the subset of size qi of
the bus stops found on the horizon of bus i. For the sake
of simplicity, we may consider a relative indexing of these
stops, Si = {i1, ..., iqi}, in the order that they are visited by
the bus. The position sij , ij ∈ Si, at which any stop lies on the
horizon is then reached by bus i at time ti(sij ). An illustration
of the complete horizon for bus i is displayed in Fig. 3.

It is assumed that the arrivals of passengers at any stop
ij ∈ Si are modeled as a homogeneous Poisson process with
parameter λij [36]. Since overtaking is not allowed, the last
bus to have visited stop ij is the one directly preceding bus i,
i.e. bus i+ 1. Let tji+1 be the time at which it departed from
stop ij . Note that it does not refer to the travel time of bus i+1
on its own horizon, but rather denotes a fixed scalar since it
refers to a past event. Having introduced these notations, we
can now write that bus i expects to find λij (ti(sij )− tji+1)
passengers on average when reaching stop ij , i.e. that the

1Other horizon types are possible, such as shrinking horizons to the next
stop [27]. By choosing to have long and variable inter-bus horizons we gain
direct access to the time headways, at the expense of the problem’s complexity.
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amount of passengers increases linearly with respect to the
travel time. For simplicity, we assume that the numbers of
boarding and alighting passengers at stops are real variables.
The delay term introduced in the travel time dynamics (3b) to
capture the behavior of buses at stops can then be expressed
as:

∆stop,i(s, ti) =


2ts + bλij (ti(sij )− tji+1) if s = sij ,

ij ∈ Si,
0 otherwise.

(7)
In this equation, the delay for the bus to reach zero speed from
the lowest allowed speed ventry and open its doors (and vice-
versa) is noted ts, and the boarding time for each passenger is
noted b. It is assumed that the boarding and alighting opera-
tions can be carried out in parallel (e.g. through different doors
of the bus). Since the boarding operation usually takes longer,
the delay caused by alighting passengers is not included [36].
Note that the travel time ti is a piecewise continuous function
in space as a result, due to the jumps caused by ∆stop,i when
driving through bus stops.

E. Evolution of the Mass

Similarly to the travel time, the mass mi of bus i is
affected by passengers boarding and alighting from the bus. It
is a piecewise constant function in space, since passengers
exchange can only take place at bus stops, and it is also
dependent on the travel time since this affects the passengers
loads encountered by the bus at the stops downstream. To
derive an expression for mi, one can start by noticing that it
can only take qi + 1 distinct values over the horizon of bus
i since qi bus stops are encountered. Let {m0

i ,m
1
i ...,m

qi
i }

be the set of the successive values taken by mi, where the
dependency in the travel time has been dropped for notational
brevity, and where m0

i is the initial mass of bus i. The
evolution of mi over the horizon of bus i is illustrated in
Fig. 3.

For any j ∈ I[1,qi], the new mass value mj
i past stop ij can

be computed recursively from the previous one mj−1
i as:

mj
i = (1−µij )(mj−1

i −memp)+mpaxλij
(
ti(sij )−tji+1

)
, (8)

where mpax is the average passenger mass, memp is the mass
of the empty bus, and where µij is the alighting proportion
of onboard passengers at stop ij [36]. Note that µij is then
a fixed scalar in [0, 1] which can be set from historical
passenger flow data. The right-hand side of (8) thus models
the onboard passengers staying on the bus (first term), and
the new boarding passengers (second term), the load of which
increases with the travel time needed to reach that stop. This
expression prevents the mass from ever becoming smaller than
memp since only a fraction of the onboard passengers alight at
each stop.

From this recursive formulation, one can prove by induction
that mj

i can be written as an explicit function of the travel time

and the initial mass:

mj
i = m0

i

j∏
l=1

(1− µil)−memp

j∑
l=1

j∏
r=l

(1− µir )

+mpax

j∑
l=1

j∏
r=l+1

(1− µir )λil(ti(sil)− tli+1). (9)

It can be noted from this expression that the mass too depends
linearly on the travel time.

Now that the set {m0
i ,m

1
i ...,m

qi
i } is known, we may use

it to assemble the mass function mi as:

mi(s, ti) = mj
i (ti), ∀s ∈ [sij , sij+1 ], ∀j ∈ I[0,qi], (10)

where indices i0 and iqi+1 are used to refer to the two stops
bordering the horizon of bus i, and where the dependency of
each mj

i , j ∈ I[1,qi], in the travel time is now written explicitly.

III. BILEVEL OPTIMIZATION AND RECEDING HORIZON
CONTROL

In this section, a general optimal control problem (OCP) is
assembled based on the model developed throughout the previ-
ous section. Since problems of this type are unpractical to treat
as such, the OCP is first rewritten as a smooth NLP through
a tight relaxation of some of the problem constraints. This
NLP is then decomposed into a high-level problem and several
independent bus-level problems. Since each bus-level problem
only contains the information related to a single bus, one
can envision a physically distributed resolution of this bilevel
decomposition where buses can act as independent computing
nodes. Lastly, we present how this resolution framework can
be embedded in an MPC to address the challenges of real-time
control in urban settings.

A. Optimal Control Formulation

A predictive bus line model can now be derived from the
modeling steps taken in Section II. Recall that we noted
Hi the predicted forward headway of bus i with the pre-
ceding bus i + 1, and that it also denotes the predicted
travel time of bus i on its control horizon. Writing the
state and control input vectors x(s) = [x1(s), ..., xn(s)]> and
u(s) = [u1(s), ..., un(s)]>, where xi(s) = [Ei(s), ti(s)]

> and
ui(s) = [Fm,i(s), Fb,i(s)]

>, the energy-aware bus line control
problem can be formulated as the following OCP:

min
x(s),u(s)

n∑
i=1

1

2
ΛiH

2
i + α

n∑
i=1

(Hi −Hi−1)2

+ β

n∑
i=1

∫ pi+1

pi

Pb,i(Tm,i, ωm,i)√
2Ei(s)

ds, (11a)

s.t. ∀i ∈ I[1,n] :

Ei(pi) = E0
i , ti(pi) = t0, (11b)

Hi = ti(pi+1)− t0, (11c)
(3), (4), (6), (11d)

where the state dynamics (3) and the constraints (4), (6) are
enforced for all s ∈ [pi, pi+1] for each bus i, and where
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the bus mass can be computed explicitly from (9) and (10).
The initial reduced kinetic energy of bus i is E0

i , and the
initial simulation time is noted t0. The motor speed and
torque are expressed in terms of the state and control variables
through (5) in the expressions that use them. The objective
function (11a) is weighted by Λi, which is defined as a
ratio involving passengers arrival rates at stops downstream,
Λi =

∑
ij∈Si

λij/
∑q

l=1 λl, and by the positive coefficients
α and β that account for the trade-off between the different
objectives.

Note that (11) is based on the nominal bus line model. As a
result, the optimal trajectories obtained when solving this OCP
may not be tracked perfectly since the system may be subject
to external disturbances in practice. This point is discussed
further when introducing the receding horizon control idea at
the end of this section.

In this formulation, the buses do not try to track a predefined
service headway, but rather aim to adapt their predicted head-
ways to whichever common headway is optimal. The rationale
for this is that the desirable headway for service regularity
might change depending on e.g. the amount of disturbances ap-
plied to the system [21]. The predictive information available
can therefore be leveraged to try to find this optimal headway.

In the economic objective function (11a):
• The first term is a look-ahead term which rewards short

headways proportionally to Λi for each bus i. These
coefficients account for the differences in the passengers
affluence at stops downstream among the prediction hori-
zons, and are used as proxies to minimize passengers
waiting times at stops. For instance, a bus entering the
inner city center where many passengers might be waiting
is given a higher incentive to have a short headway than
one traveling towards the outskirts of the city.

• The second term introduces a look-back feature which
penalizes the deviations of successive headways. In other
words, it introduces some coupling between successive
buses, such that each bus also adapts its driving behavior
to the following bus.

• The third term is the amount of battery energy required
for each bus to drive to the end of its prediction horizon.
This sets an incentive for buses to adapt their driving
behavior accordingly, and is motivated by the observation
that different trajectories with similar travel times can
have a vastly different energy consumption.

The first two objectives focus on bus headways and directly
aim to improve the overall passenger experience, while the
last objective focuses on the energy consumption, which is
meaningful to the service provider. Therefore, these three
objectives may promote opposed control actions since e.g.
enforcing shorter headways usually requires a higher energy
consumption. Hence, the trade-off coefficients α and β must be
calibrated carefully depending on the application considered.

B. Direct Reformulation of the OCP

As a next step towards the resolution of the problem
presented, we propose a direct optimal control reformulation
of (11). The prediction horizon of each bus i is split into N

uniform shooting intervals of varying length ∆si, due to the
unequal horizon lengths. We assume a piecewise constant in-
put parametrization, i.e. ui(s) = ui,k , s ∈ [si,k, si,k+1), where
si,k = pi + k∆si, and a multiple-shooting ’discretization’
of the dynamics [37]. Since the shooting points might often
’miss’ the exact locations of the bus stops, the latter are
assumed to be located at the closest shooting point instead,
i.e. sij = si,k , ij ∈ Si , where the k-th shooting point is the
one closest to stop ij . The direct reformulation can now be
written as an NLP:

min
X,U

n∑
i=1

1

2
ΛiH

2
i + α

n∑
i=1

(Hi −Hi−1)2

+ β

n∑
i=1

N−1∑
k=0

J(xi,k, ui,k), (12a)

s.t. ∀i ∈ I[1,n] :

Ei,0 = E0
i , ti,0 = t0, (12b)

Hi = ti,N − t0, (12c)
xi,k+1 = F (xi,k, ui,k), k ∈ I[0,N−1], (12d)
g(xi,k, ui,k) ≤ 0, k ∈ I[0,N−1], (12e)

where Xi = [xi,0, ..., xi,N ]>, and Ui = [ui,0, ..., ui,N−1]> are
vectors gathering the optimization variables relative to bus i,
and where X = [X1, ..., Xn]>, and U = [U1, ..., Un]>. The
numerical integration of the state dynamics (3) is carried out
over s ∈ [si,k, si,k+1] by the function F (xi,k, ui,k), starting
from xi,k and with the input ui,k. Similarly, the function
J(xi,k, ui,k) carries out the numerical integration of the
function Pb,i/

√
2Ei over s ∈ [si,k, si,k+1] to find the energy

consumed. In both cases, the Runge-Kutta method is used. A
discretized version of (10) can be obtained easily for the bus
mass, as it is already piecewise constant in space, and used in
(12d). Finally, the function g gathers the inequality constraints
from (4) and (6).

Remark 2: One important feature of NLP (12) is that no
additional integer variables need to be added to detect the
bus stops. Indeed, each bus stop is automatically associated
with a shooting point. If the problem had been formulated
in time rather than in space however, integer variables would
have been needed since the correspondence between shooting
points and bus stops would have been dependent on the control
inputs. Note also that this discretization step removes the
previous discontinuities of the mass and the travel time at the
stops. Formulating a smooth NLP is crucial for being able to
deploy second-order optimization methods later on, which are
a powerful tool to solve such problems.

The only non-smooth part in (12) now comes from the
discretization of the torque constraints (6). Indeed, the motor
torque is not continuously differentiable in zero due to the
different transmission efficiency when the EM operates in
traction or in generation, as can be seen from (5). This
can by dealt with by lifting the NLP, i.e. by adding ad-
ditional optimization variables in order to obtain a smooth
modified version. Here, we introduce separate longitudinal
force variables for each motor regime (traction or gen-
eration), such that Fm,i,k = Ft,i,k − Fg,i,k , ∀k ∈ I[0,N−1] ,
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∀i ∈ I[1,n]. The discretized control input vector then becomes
ui,k = [Ft,i,k, Fg,i,k, Fb,i,k]>. The torque constraints (6) may
now be rewritten as:

0 ≤ Ft,i,k ≤
ηfPmax√

2Ei,k

, Ft,i,k ≤
ηfMfTmax

rw
, (13a)

0 ≤ Fg,i,k ≤
Pmax

ηf
√

2Ei,k

, Fg,i,k ≤
MfTmax

ηfrw
, (13b)

thus removing any non-smoothness from (12), since the motor
torque Tm,i,k can now be expressed as:

Tm,i,k =
rw

ηfMf
Ft,i,k −

ηfrw
Mf

Fg,i,k. (14)

With these new expressions, the lifted version of (12) is the
smooth NLP:

min
X,U

n∑
i=1

1

2
ΛiH

2
i + α

n∑
i=1

(Hi −Hi−1)2

+ β

n∑
i=1

N−1∑
k=0

J̃(xi,k, ui,k), (15a)

s.t. ∀i ∈ I[1,n] :

(12b), (12c), (12d), (15b)
g̃(xi,k, ui,k) ≤ 0, k ∈ I[0,N−1], (15c)

where J̃ and g̃ are very similar to J and g in (12), except
that the torque expression (14) is used to compute the energy
consumption J̃ , and that the inequality constraints g̃ include
the modified torque constraints (13) instead of the original
ones (5)-(6).

Now, it remains to show that this smooth relaxation (15)
of the original problem (12) is tight, i.e. that both problems
have the same solution (including the same optimal values for
the longitudinal force). Fortunately, this can be proved rather
easily with a mild assumption on the battery power Pb,i. This
result is formalized in Proposition 1, the proof of which is
given in Appendix A.

Proposition 1: The lifted version (15), where the torque
constraints are enforced through (13) and where the torque
is expressed as (14), has the same solution as the original
problem (12).

C. Decomposition
Solving the lifted version (15) of the fully-centralized NLP

as such presents some difficulties. The nonlinear dynamics
from (3b) cause it to be non-convex, and the size of the
problem might become large depending on the scenario size.
In addition, the resolution of this NLP would have to be
carried out centrally, which might make the method sensitive
to communication issues with the vehicles in the case of a real-
life implementation. As the goal is for the problem to be solved
repeatedly in a receding horizon fashion thereafter, we propose
to make it more tractable through a bilevel decomposition.

The problem can be split into a line-level (or high-level)
problem, and bus-level subproblems:

min
H

n∑
i=1

1

2
ΛiH

2
i + α(Hi −Hi−1)2 + βVi(Hi), (16a)

s.t. Hi ∈ dom(Vi), i ∈ I[1,n], (16b)

Bus i − 1Central  nodeBus i + 1

Bus i

Fig. 4: Resolution scheme of the decomposed problem. The
arrows denote the remote communication between the central
node and the buses. Note that the buses do not need to share
information with each other in these settings.

Vi(Hi) = min
Xi,Ui

N−1∑
k=0

J̃(xi,k, ui,k), (17a)

s.t. Ei,0 = E0
i , ti,0 = t0, (17b)

ti,N = t0 +Hi, (17c)
xi,k+1 = F (xi,k, ui,k), k ∈ I[0,N−1], (17d)
g̃(xi,k, ui,k) ≤ 0, k ∈ I[0,N−1], (17e)

where H = [H1, ...,Hn]>, where Vi(Hi) is the optimal cost
of the bus-level NLP (17) for a given Hi and where dom(Vi)
at the high-level denotes the feasible set of (17) for bus i. Note
here that g̃ includes the inequality constraints (13), and that
the motor torque appearing in the expression of J̃ is computed
according to (14), as mentioned previously.

Remark 3: Due to the non-convexity of the bus-level
subproblems (17), no guarantees of global optimality can be
obtained, in general. However, this type of decomposition
is known to conserve global optimality in the convex case
[38]. The proof proposed in that work can be adapted to the
non-convex case to show that the decomposed problem (16)-
(17) has the same set of KKT points [39] as the original
problem (12). Under some mild assumptions, this is equivalent
to saying that these two problems have the same set of local
minima [39].

Remark 4: Some of the computations of (16)-(17) can be
carried out in parallel since the only coupling terms between
the buses have been gathered at the high-level. This opens
the door to a physically distributed resolution where the bus-
level NLPs (17) could be solved independently aboard each
bus, while only (16) would be solved centrally, as illustrated
in Fig. 4. The amount of information that would need to be
exchanged between the central node and the buses in that case
is quite low, as it is motivated when discussing the resolution
procedure in Appendix B.

Constraint (16b) is important to guarantee the feasibility of
each bus-level problem with respect to the terminal constraint
(17c). Since the feasible set dom(Vi) gathers the possible ter-
minal travel times for bus i, it is in fact an interval with static
bounds, and can be expressed as dom(Vi) = [Hmin

i , Hmax
i ].

Therefore, (16b) may simply be rewritten as a set of linear
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inequality constraints. The two bounds of each feasible set can
be computed as the solutions to the optimization problems:

Hmin
i = min

Xi,Ui

ti,N , (18a)

s.t. (17b), (17d), (17e), ∀k ∈ I[0,N−1], (18b)

and,

Hmax
i = min

Xi,Ui

− ti,N , (19a)

s.t. (17b), (17d), (17e), ∀k ∈ I[0,N−1], (19b)

which are the minimum and the maximum time problems,
respectively. They too may be solved in parallel, aboard the
concerned buses.

This bilevel decomposition of the original problem is not
a panacea, however. The high-level problem (16) remains a
non-convex NLP, with an objective function defined implicitly
through (17). Different tools can be deployed to solve it.
Here, we chose to combine some results from parametric
optimization [40] with a second-order optimization method,
which was in part motivated by the better convergence rates
of such methods. The details of the Sequential Quadratic
Programming (SQP) [39] algorithm implemented can be found
in Appendix B. In what follows, we assume that the resolution
of the decomposed problem has been carried out.

D. Receding Horizon Control

Urban buses typically evolve in an environment which
can be highly dynamic and uncertain since many different
types of actors interact in a restricted space. However, the
control decisions obtained from solving (16)-(17) are based on
deterministic predictions, which ignore the stochastic distur-
bances coming from the real system. In order to reject these
disturbances, closed-loop control is introduced by using an
MPC [32].

Despite having expressed the commands and the dynamics
in the space domain up to that point, we choose to sample the
MPC in time. The rationale for this is that the time needed for
each bus to travel a given distance may change a lot depending
on where the bus is located on the route. For instance, running
an MPC sampled in space would result in no command update
for any bus dwelling at a stop, thus potentially ignoring
new information coming from the other buses. Opting for
synchronous updates instead makes it possible to be computing
new commands constantly. The MPC sampling time, which
is noted T hereafter, could for example be calibrated on the
computation time needed to solve the decomposed problem
(16)-(17) in order to apply command updates as frequently as
possible.

By sampling the MPC in time however, a bus might travel
through a fractional number of shooting points during any
MPC stage. In this case, its new states can be interpolated
from the previous state trajectories when the next stage begins.
Since the buses move relatively to each other between MPC
stages, their prediction horizon length changes constantly.
Using a constant number of shooting points N for each
horizon guarantees that each NLP (17) has a constant size
over time, regardless of the horizon length. Since these NLPs

are the main bottleneck in terms of computation time, having
a constant N ensures that T can be chosen in a way that
guarantees that the full problem (16)-(17) can always be solved
before the next MPC update.

A summarized pseudo-code representation of the MPC is
given in Algorithm 1. The state variable is to be understood
as containing the current information available about the whole
system, including e.g. the last departure times from stops or the
horizon lengths. The system evolution function implements
during T time units the control trajectories U obtained by
solving the decomposed problem. It then returns the updated
state of the bus line based on the evolution of the real
system, at which point new commands can be computed. A
data structure containing the complete state history is finally
returned when the control has been applied during the desired
period of time.

Algorithm 1: MPC for the bus line problem

1 initialize state, time ← 0, data ← {}
2 while time− time end < 0 do
3 X , U ← solve (16)-(17)
4 state ← system evolution (state, X , U , T )
5 data ← {data, state}
6 time ← time + T
7 end
8 return data

In this algorithm, the system evolution function is assumed
to represent some local bus controllers which can track the
optimized reference trajectories X and U generated at each
sampling instant. As a result, the entire bus line control
structure can be said to have a hierarchical architecture [31].
The tracking control layer can be assumed to operate at a
higher frequency than that of the MPC, and to guarantee
critical safety constraints such as e.g. collision avoidance with
surrounding vehicles, including the other controlled buses. The
implementation of this additional control layer is outside the
scope of this paper, however.

IV. SIMULATIONS

In this section, the proposed MPC strategy outlined in
Algorithm 1 is tested in simulations capturing realistic bus
operations.

A. Simulations Setup and Route Layout

Historical data from bus line 17 in Gothenburg, Sweden, is
used to calibrate the simulations. This urban bus line serves
a total of 28 stops during one full trip, several of which
are located in the inner city center. In addition, this route
makes the buses drive through a hilly terrain, as shown in
Fig. 5, which means that their driving profiles must be adapted
accordingly by the MPC in order to be energy-efficient [8]. We
focus on transit operations during rush hour in the simulations
as this presents the biggest challenge from a control point
of view. The upper bound vmax for the bus velocity used
in the predictions is extrapolated from several real driving
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Fig. 5: Route layout of bus line 17. The bus stops are placed according to their altitude on the route, and it is indicated which
of them serve as control points for the holding baseline. The solid red line is the average maximum speed obtained from
historical bus driving profiles, and is used as the upper velocity bound vmax. The dashed lines indicate the speed limit on each
road segment, as well as the lower velocity bound ventry.

profiles in order to represent the disturbances coming from
the surrounding traffic. Fig. 5 displays how vmax changes at
different places of the route, depending e.g. on the speed limit.
Note that vmax is assumed to be only space-dependent here.
The advantage of having a detailed velocity profile instead of
e.g. a simple piecewise constant function is that it enables fine-
grained predictions of the energy consumption over the route.
The passengers arrival rates λl and alighting proportions µl at
every stop l ∈ I[1,q] are directly inferred from the historical
data.

Each simulation run consists of two hours of bus operation
during rush hour, and each starts with 8 buses in total.
In these simulations, the MPC is sampled with T = 30 s.
Unlike the prediction framework used in the MPC, which is
fully deterministic, the simulations include several sources of
stochastic disturbances to account for the unpredictability of
a real transit system. (i) The accumulation of passengers at
each bus stop l ∈ I[1,q] is sampled from a Poisson process with
parameter λl. (ii) Similarly, the number of alighting passengers
at l is sampled from a binomial distribution depending on
the alighting proportion µl and the load of the bus arriving
at l [36]. (iii) Lastly, the maximum velocity at which buses
can travel is increased (or decreased) by a certain percentage
of vmax on each inter-stop segment separately. The deviation
percentages are sampled from a normal distribution centered
around 0 and with a constant variance σ2

traffic. They are meant
to model the fluctuations of the real traffic conditions around
their historical average, as well as the differences in traffic
conditions across different segments of the route. In order to
account for the evolution of traffic conditions over time, these
disturbances are resampled every two and a half minutes. Note
that the speed upper bound obtained may have to be adapted
ex post facto to comply with the legal speed limit on each
segment (which is either 50 km/h or 70 km/h). This means that

larger values of σtraffic tend to slow down the system on average
since vmax is not usually much lower than the legal speed limit.
It the simulations, we chose to set σ2

traffic = 10 m2/s2 in order
to model moderate deviations from the historical average.

In [30], it was observed that the speed constraint functions
in (4) can affect significantly the performances of the control
algorithm. In particular, choosing a high value for the lower
bound vmin leads to limited speed adjustments possibilities, and
might impair the ability of the controller to regularize bus oper-
ations. Therefore, we chose to set vmin(s) = ventry,∀s ∈ [0, L],
in order to investigate the full potential of the proposed
method, and where it is assumed that vmin does not depend
on time either. Note that the buses are never made to travel
at such a low speed in practice, except in the case of extreme
bunching.

The modeling and simulation aspects are implemented in
MATLAB. The symbolic framework CasADI [41] is used
to assemble the NLPs (17) and (22), which are then solved
with the primal-dual interior point solver IPOPT and with the
active-set solver qpOASES, respectively.

B. Baselines

We compare the proposed MPC strategy with two baselines
relying on different intervention strategies, namely a classical
headway-based holding baseline, and a proportional-integral
(PI) controller. The former method relies on simple rule-based
control actions at a subset of bus stops, named control points,
where each bus may be held for long periods of times in
order to compensate unstable headways. Holding methods in
general are the ones most commonly implemented by transit
agencies in practice, which motivates the inclusion of one
as a baseline. On the other hand, the PI-controller has an
intervention strategy similar to that of the proposed MPC since
it computes longitudinal force commands to adjust the bus
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TABLE I: Initial positions of the buses and corresponding average deviations from homogeneous spacings for all scenarios.
All the values below are given in meters.

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Mean deviation
Scenario 1 50 2111.5 4173 6234.5 8296 10357.5 12419 14480.5 0
Scenario 2 100 2300 4300 6200 8500 10600 12600 14500 46
Scenario 3 1000 3500 5250 6900 8800 12945 14745 15635 314
Scenario 4 1000 3000 4500 6000 9700 14000 14900 15700 421
Scenario 5 100 1000 5000 7300 11000 13900 14900 15500 446
Scenario 6 1350 5800 6350 7820 9300 9750 15000 15950 596
Scenario 7 1755 8305 9025 13200 15300 15500 15900 16385 741
Scenario 8 100 900 1350 1725 2060 9350 10650 14325 796
Scenario 9 250 650 4000 4250 4920 13100 13420 13620 924
Scenario 10 3250 4700 5200 5800 6200 6950 7300 7850 1319

speed in operation. Like the MPC, it is not allowed to hold
buses at the control points. Each baseline is presented in-depth
below.

Holding baseline: This control method makes the buses
travel at the maximum possible speed between stops. At the
control points, it holds buses if necessary, until they can be
dispatched from each control point according to a predefined
target headway. In other words, when a bus is ready to leave
a control point, two situations can occur:
• If the last bus departure from that control point occurred

more than one target headway ago, the bus leaves the
control point immediately.

• Otherwise, the bus is held at the control point until the
time where the last departure occurred precisely one
target headway ago, at which point the bus leaves the
control point.

Based on the rush hour timetables for bus line 17, the target
headway is set to 5 minutes in the simulations. Note that it
is only used by the two baselines, but not by the proposed
MPC, which is based on adaptive headways, and as such does
not need any predefined target. It is assumed that the route
has two control points and that the holding baseline can hold
the buses there without any time constraint. In order to mimic
real-life operations, they are chosen as stops where the transit
agency already performs bus holding in practice. One control
point is chosen to be the central station of Gothenburg, as it is
the stop with the highest passenger flow in our dataset, and the
other is chosen to be the stop which is the farthest away from
the city center, as it corresponds to the actual bus terminus of
the line. The location of these control points on the route is
shown in Fig. 5.

PI-controller: This controller operates along the same lines
as the PI-controller presented in [28]. The main difference
here is that instead of spacing errors, we consider the error
between the current position of a given bus and the shifted
position of the preceding bus. More precisely, the position
of the preceding bus is shifted backward in time by one
target headway, i.e. 5 minutes here. More details on this
error term can be found in [27]. The control inputs are then
updated in discrete-time proportionally to the current error,
with proportionality constant KI , and to the current rate of
change of this error, with proportionality constant KP . In other
words, KI is the integral gain and KP is the proportional gain
of the controller. These parameters can be tuned to decide
how fast and with what amplitude the PI-controller updates

its control input based on the errors observed. We invite the
reader to refer to [28] for further information on the design of
this controller. In order to make the comparison with the MPC
accurate, we consider that the control input provided by the
PI-controller is the longitudinal force too. In the simulations,
these control inputs are updated with a period of 1s.

Contrary to the MPC, the PI-controller does not include any
predictive information about the route or the passengers, but
can only apply reactive control based on the current errors
observed. Note also that the state constraints introduced in the
modelling section cannot be directly included in the design
of this controller. Instead, they are enforced in the simulation
framework, in case the PI-controller returns a control input
which is not feasible given the current state of traffic.

C. Performance Metrics

In order to assess the regularity of bus service, we use the
squared coefficient of variation of headways, noted CV 2, as
a performance indicator. It can be defined as:

CV 2 =
σ2
hw

µ2
hw

(20)

for any given set of headways, where µhw and σhw denote the
sample mean and sample standard deviation of this set, respec-
tively. Lower values of CV 2 therefore correspond to stable
headways, up to perfectly balanced headways if CV 2 = 0.
In addition, one can show that the average passengers waiting
time is directly proportional to CV 2 if the passengers arrive
at stops following a Poisson process [42], so that CV 2 can
be used as a proxy to monitor passengers waiting times at
stops. Since transit agencies ultimately aim to provide good
service to their passengers, we focus on the set of headways
observed at each bus stop in the simulations, i.e. what the
passengers would be experiencing in practice. This set of
observed headways is used to compute CV 2 according to (20).

Transit agencies might also value the commercial speed
of their vehicles as it can e.g. affect the waiting times of
passengers already on board. In fact, there is a trade-off
between regular and short headways since the intervention
methods studied are built around preventing some buses from
traveling as fast as possible along the route, either by slowing
them down or by holding them at stops. The commercial
speed is monitored by looking at the sample mean µhw of the
observed headways, as it correlates directly with the average
speed of the buses.
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In addition to these two passengers-related metrics, the
amount of battery energy consumed to enforce the different
control methods is also studied.

D. Experiments

Several scenarios are generated, each with different initial
spacings of the buses, as a way to evaluate the control
strategies in different operational settings. Namely, these 10
scenarios are meant to cover most levels of bus bunching. They
are ordered from 1 to 10 based on the mean deviation from
homogeneous spacings that the buses have at the beginning of
the simulations. Scenarios 1 and 10 represent two extreme sit-
uations: buses with homogeneous spacings and buses bunched
into one broad cluster, respectively. The initial state of the bus
line at the start of the simulations for every scenario can be
found in Table I. Each scenario is simulated 5 times in order
to provide an averaged representation. For each simulation,
the same sample of traffic-related disturbances is used by all
control methods to compare them on an equal footing.

The number of shooting points for each MPC horizon is
chosen as N = 200. This is enough for the Runge-Kutta
method to simulate the bus dynamics with a good accuracy
over potentially long horizons, such as those that come up
in the last few scenarios. Increasing the number of shootings
points in these extreme cases only marginally improves the ac-
curacy, while increasing the computation time, thus motivating
our choice for N .

Likewise, the parameters α and β, which regulate the trade-
off between the objective terms in the optimization problem
solved by the MPC, are kept fixed for all simulations. They are
calibrated by running the MPC in an intermediately bunched
environment (scenario 5) and in fully deterministic settings for
several different values of these parameters. Table II provides
the performances obtained for several parameters pairs. The
one which achieves the best CV 2 score while keeping µhw

within 10 seconds of what is achieved by the holding baseline
is chosen. This sets a bound on how slowly the MPC is
allowed to operate the buses on average, since better CV 2

scores and better energy savings could potentially be achieved
at the price of slowly-traveling buses. Transit agencies may
adjust these parameters accordingly, depending on what they
value the most. In what follows, we then assume that α = 2
and β = 2.78 s/kW.

The gains KI and KP of the PI-controller are tuned in a
similar way. The same deterministic simulation settings are
used, with the same requirement on the commercial speed
of the buses. It was found that KI = 10 and KP = 10
achieved the best regularity performances. Note that the trade-
off between headway regularity, commercial speed, and energy
consumption is not reflected as explicitly when tuning these
gains as it is when setting the weights in the objective function
of the MPC, where each weight has a clear physical meaning.
This in turn might make the design phase harder to handle
for transit agencies when using a PI-controller. Table VII in
the Appendix gathers the rest of the numerical values for the
parameters used in the simulations.

TABLE II: Performance indicators for deterministic simula-
tions of scenario 5 with different parameters α and β for the
MPC. The headway-related indicators are averaged over all
bus stops.

α β CV 2 µhw[s] Energy [kWh]
0.5 0.278 0.053 325 267

2.78 0.054 328 260
27.8 0.127 330 256

2 0.278 0.029 331 264
2.78 0.025 330 262
27.8 0.033 337 250

20 0.278 0.029 347 249
2.78 0.029 348 249
27.8 0.021 351 244

Holding 0.056 320 287

E. Results

Fig. 6 presents the evolution of the performance indicators
for scenario 5, which corresponds to an intermediate level of
initial bunching. Note that unlike Fig. 6c and Fig. 6b, Fig. 6a
displays the sample mean and sample standard deviation of
the bus headways for only one simulation instance of scenario
5. This is meant to showcase the convergence profile of each
method, but the observations below can be easily generalized
to all other simulation instances.

As can be seen in Fig. 6a, all control strategies manage
to dissipate the initial service irregularities and to reach
roughly homogeneous headways after some time, despite the
permanent disturbances coming from the passengers and from
traffic. The MPC algorithm converges naturally to headways
of around 5 minutes once regular service is restored, thereby
confirming that a target headway of 5 minutes was a sensible
choice for the baselines.

It can be observed on this figure that the controllers have
different convergence profiles. Indeed, the MPC first leverages
its adaptive feature to set higher headway commands to the
buses during the first 30 minutes of simulation. This results
in a strong initial increase of the average headways observed,
but it enables a faster convergence to homogeneous headways
as the standard deviation decreases much earlier than for
the baseline buses. Since the holding controller makes the
buses travel at maximum speed, their headways remain low on
average. However, it takes a longer time to dissipate the initial
bunching since all the buses must reach the control points first,
and wait there for possibly long periods of time. In addition,
the standard deviation of the headways of the MPC-controlled
buses is consistently lower than that of the baseline buses
during the last hour of simulation. One of the main reasons
for this is that the MPC relies on its models to anticipate
the expected quantities of passengers at upcoming stops. It
can thereby take preemptive action to slow down or speed
up buses accordingly, hence keeping low headway variations.
The PI-controller, on the other hand, only reacts to current
observations, which results in a higher headway variability.
In addition, it must be noted that these two control methods
are able to react immediately if any bus starts falling behind
schedule, while the holding controller has to wait for the
concerned bus to reach the next control point. This accounts
in part for the better headway regularity performances of the
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Fig. 6: Results for scenario 5. In these figures, the shaded areas are bounded above and below by the maximum and minimum
metrics values observed among all the simulations of scenario 5 for the control strategy concerned. (a) Temporal evolution of
the average headways at stops, for one simulation instance of this scenario (solid lines). The dashed lines are plotted one sample
standard deviation away from the average lines to indicate the current dispersion of headways in this simulation instance. (b)
Average total energy consumption of the buses over time (solid lines). (c) Average squared coefficient of variation of headways
CV 2 at each of the stops (solid lines).

TABLE III: Headway-related indicators, averaged over all bus
stops, for all scenarios.

CV 2 µhw[s]
Scenario MPC PI Holding MPC PI Holding

1 0.005 0.005 0.017 319 331 309
2 0.004 0.004 0.017 316 330 308
3 0.020 0.033 0.064 332 338 318
4 0.027 0.035 0.063 336 342 320
5 0.024 0.037 0.087 341 346 328
6 0.037 0.052 0.148 339 345 329
7 0.058 0.097 0.233 356 354 346
8 0.107 0.210 0.421 376 372 363
9 0.135 0.187 0.355 362 363 359
10 0.408 0.540 0.801 428 406 408

MPC and PI-controller over the holding baseline.
Fig. 6c comes as the logical consequence of the previous

observations. It displays the CV 2 score at each bus stop for
the controllers. The CV 2 score of the MPC is consistently
lower than that of the holding baseline at nearly every bus stop
across all simulation instances, and is lower than that of the PI-
controller at about half of the bus stops, both CV 2 scores being
roughly the same at the other half. In other words, the MPC
algorithm achieves more stable headways at stops, according

to (20), which translates directly into lower average passengers
waiting times, as explained previously. It can also be seen
on this figure that the holding baseline dispatches buses most
regularly at the two control points (which have indices 13
and 28), as expected. The few stops located right after the
control points benefit from the regular incoming flow of buses,
and have relatively low CV 2 scores too. The regularity of
the uncontrolled baseline buses eventually worsens until the
next control point is reached, hence making CV 2 adopt a
characteristic sawtooth pattern. Similarly, the CV 2 scores of
the PI-controller have a similar shape than that of the CV 2

scores of the MPC, indicating that headway regularity may be
harder to enforce locally at some of the stops. Finally, Fig. 6b
showcases the better energy efficiency of our control algorithm
when compared with both baselines.

The same general patterns, in terms of headway regulariza-
tion and energy consumption, are also found when investigat-
ing the other scenarios. Table III gathers the CV 2 scores and
the average headways for all the scenarios. As expected, these
two indicators increase with the strength of the initial bunching
since the controllers need to exert a stronger slowing control
on the buses in that case, and regular headways are thereby
restored later in the simulation. The CV 2 scores observed
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are orders of magnitude apart across scenarios, showing how
strongly bunching can affect the quality of the service provided
by the bus line.

Another clear pattern emerges from these results: buses
controlled by the MPC algorithm are slightly slower on
average than those controlled by the holding method, but they
manage to achieve much better CV 2 scores. Indeed, the MPC-
controlled buses may have 10 to 20 seconds longer headways
on average, but their CV 2 scores are 2 to 4 times lower. This
essentially means that the MPC regularizes headways faster
and more consistently than the holding baseline. Ultimately,
this results in lower passengers waiting times at the price of
a slightly lower commercial speed. The conclusion is a bit
different when comparing the MPC with the PI-controller. In
scenarios with weak bunching, the two controllers have similar
CV 2 scores, but the baseline buses are slower. The situation
is reversed for scenarios with intermediate to strong bunching,
where the commercial speed of the buses is comparable, but
where the MPC achieves a better headway regularity than the
PI-controller. Finally, it should noticed that the PI-controller
too outperforms the holding baseline in terms of headway
regularity, but at the price of a lower commercial speed. The
MPC and PI-controller display clear similarities here again, but
the predictive feature of the MPC enables it to systematically
outcompete the PI-controller in terms of service performances.

Note that the MPC-controlled buses could have been made
to travel faster with a different choice of trade-off parameters,
albeit increasing their CV 2 score in doing so. However, it was
observed that the general conclusion would have remained the
same, even with different sets of parameter values.

Table IV displays the energy consumed by the buses for
all control methods. The values presented are averaged over
all simulation instances for any given scenario. It can be
observed that the MPC algorithm consistently has a better
energy efficiency than the two baselines, and enables energy
savings of up to 9.3% over the best performing baseline. In
addition, no baseline is clearly better than the other in terms
of energy consumption. The PI-controller has a more intensive
energy consumption for scenarios with strong bunching, while
the reverse is true for scenarios with weak bunching. This
observation may seem surprising since the holding-controlled
buses always travel at the maximum speed, while the PI-
controlled has the ability to adjust the speed of the buses in
operation. However, it is useful to remember here that the
holding baseline is allowed to have buses dwell indefinitely
at stops, where they do not consume any energy. On the
other hand, both the MPC algorithm and the PI-controller
require buses to constantly be on the move when not picking
passengers up. This difference in the intervention strategy
of each method explains our previous observation. This is
also why the performance indicator monitored is the total
energy consumption rather than e.g. the energy consumption
per distance unit. It accounts for the intervention difference
between the two classes of methods, and aims at giving some
indications of the actual energy savings that can be expected
for the transit agency when implementing an energy-aware
velocity control method over generic baselines.

In the simulations, the MPC leverages its predictive feature

TABLE IV: Total energy consumed by the buses in all
scenarios (in kWh). The energy savings denote the energy
efficiency improvement of the MPC over the best performing
baseline in each scenario.

Scenario MPC PI Holding Energy savings
1 275 295 302 6.8%
2 278 297 304 6.4%
3 265 291 294 8.9%
4 263 290 292 9.3%
5 257 285 282 8.9%
6 264 289 284 7.0%
7 251 282 271 7.4%
8 247 277 261 5.4%
9 252 279 267 5.6%
10 242 273 246 1.6%

to generate energy-efficient driving profiles for the buses, e.g.
by decreasing their speed before steep downhill sections in
order to empty their kinetic energy buffers, thus avoiding
unnecessary braking. By doing so, it manages to compensate
the longer dwell times of the holding-controlled buses, and to
surpass the myopic commands of the PI-controller, even when
it operates buses at a lower commercial speed, since it lacks
an eco-driving component. In addition, Table IV suggests that
the expected energy savings depend on the initial bunching
strength. For scenarios with strong bus bunching, the holding
controller holds buses for a longer part of the simulation
in order to regularize headways, thus consuming less energy
compared with the MPC. This also explains why the holding
controller starts having a lower energy consumption than the
PI-controller as the bunching strength increases. Therefore, it
can be concluded that the expected energy savings from the
MPC are the largest in the case of intermediate to no bunching.

F. Reaction to a Major Perturbation in the Service

The previous series of experiments investigated how the
control methods fare when recovering from bus bunching
during normal operations, but one may go one step further
and see how they each adapt to a major disturbance (one bus
breaking down) during the recovery process.

Some simulations of scenario 5 in which the last bus of
the line is removed after one hour of simulation time are run.
The control methods have mostly stabilized the headways by
that time, so that the effects of the bus breakdown can be
clearly seen. The simulations are then carried on as before
for one more hour. To be fair to the holding strategy and to
the PI-controller, the target headway is increased to 6 minutes
when the breakdown occurs. This is meant to provide them
with a reasonable goal, since only 7 buses are then available.
This scenario is simulated 5 times for each controller, and the
averaged results are presented in Table V.

It can be observed from Fig. 7a that all control methods
slow the buses down right after the breakdown occurs. As
in the previous experiments, the MPC temporarily increases
the headway commands of the buses. It then decreases them
again until the headways are stabilized around the new natural
headway of the bus line (around 6 minutes). It must also be
noted from this figure that all methods manage to converge
to stabilized headways faster than when dissipating the initial
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Fig. 7: Results for scenario 5 in the case where one bus breaks down after one hour of simulation (dashed vertical lines).
As before, the shaded areas are bounded by the most extreme metrics values observed. (a) Average headways at stops for
one simulation instance (solid lines). (b) Average total energy consumption. (c) Average squared coefficient of variation of
headways CV 2 at each of the stops (solid lines).

TABLE V: Average performance indicators for scenario 5 in
the case of a bus breakdown halfway through the simulation.

MPC PI Holding
CV 2 0.027 0.037 0.087
µhw [s] 376 376 357
Energy [kWh] 243 275 269

bunching. The reason for this is that the breakdown happens
when buses already have roughly homogeneous headways,
thus creating only one large gap in service, which is then easier
to bridge. Fig. 7b and Fig. 7c present the energy consumption
over time and the CV 2 scores at the stops, respectively. The
patterns are similar to those of Fig. 6b and Fig. 6c, with the
exception that the overall energy consumption now increases
more slowly after one bus is removed from the line.

The headway sample means presented in Table V are larger
than those obtained in the previous version of scenario 5,
which was expected since less buses are running during the
second half of the simulation. Likewise, the overall energy
consumption is lower than it was previously, but the energy
savings from the MPC remain similar (9.7% against 8.9%
before). However, the CV 2 scores are nearly the same as
they were before. This may seem counter-intuitive since the
system is now subject to additional disturbances, but it is
good to recall here that the sample mean of the headways

appears in the definition of CV 2 in (20). In this particular
case, the increase of the headway variability thus seems to be
offset by the increase of the headway sample mean. But as
far as the comparison in the performances of the controllers is
concerned, the same general conclusions as for the previous
series of experiments can be drawn from this modified version
of scenario 5.

V. CONCLUSION

This paper developed a model and a velocity control strategy
for a line of electric buses. Thanks to a variable change
to the space domain in the modeling step, the impractical
complexity of mixed-integer problems could be avoided by
modeling bus stops without resorting to additional integer
variables. The optimal control problem assembled from the
model could then be reformulated into a smooth NLP, after
additional variables had been added to lift the problem and get
rid of its discontinuities. In contrast to other studies, the choice
of variable horizons to the preceding buses made it possible
to regularize time headways directly in the NLP instead of
having to use an indirect proxy for headway regularity, such
as bus spacings. By leveraging some powerful results from
parametric optimization, a bilevel optimization scheme was
proposed to decompose and solve this NLP, which was then
embedded in an MPC to enforce closed-loop control.
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Extensive simulations were carried out to investigate the
headway regularization and energy savings performances of
the proposed MPC strategy for different degrees of bus bunch-
ing in a real bus line. It was found that the MPC systematically
achieved better headway regularity when compared with a
classical holding baseline but had a slightly lower commercial
speed on average. In addition, the predictive feature of the
MPC enabled it to outcompete a simple PI-controller with a
similar speed control intervention strategy. Consequently, the
MPC was able to provide a more reliable service to passengers
and to lower their waiting times at stops. The MPC was
also able to recover from bunching faster than the baseline
controllers by temporarily slowing down the buses to allow
any late bus to catch up on schedule. These observations were
found to be consistent across scenarios with various bunching
strengths, and also in a scenario where the breakdown of one of
the buses in operation acts as a major line disturbance. Due to
the longer dwell times at stops of holding-controlled buses in
highly-bunched settings, the energy savings of the MPC were
highest for low and intermediate levels of bus bunching. We
report savings of up to 9.3% in such favorable cases, which the
MPC was able to achieve by adopting energy-efficient driving
strategies when adjusting the bus velocities.

This work aimed to demonstrate that the bus fleet eco-
driving problem could be treated in conjunction with the bus
line regularity control problem, and formulated in a framework
that enables its real-time implementation. Indeed, large-scale
NLPs can generally be solved in real-time with purpose-built
solvers, as demonstrated in [44]. The proposed control strategy
is scalable, since the bus-level NLPs can be solved in parallel
aboard buses, and adaptive, as it can be deployed on any bus
line without requiring any prior target headway. In addition,
the limited quantity of information that needs to be exchanged
between the buses and the central node makes the approach
robust to losses or noisy communication data.

The framework presented in this paper could be adapted
to include additional charging-related constraints on top of
the energy minimization objective. The scheduling of the
charging decisions could then be investigated by including a
limited driving range for the electric buses, which could be
complemented well with a stochastic MPC to include a more
thorough modeling of the external disturbances. The real-time
implementability of the problem could also be addressed by
designing an efficient solver tailored for that purpose. Other
future research directions of interest include considering bus
capacity constraints, and extending our approach to an entire
bus network, with several lines interacting in shared corridors.

APPENDIX

A. Proof of Proposition 1

The lifted NLP (15) only differs from the original problem
(12) through the modified torque constraints (13) and torque
expression (14). A careful examination of the torque con-
straints (5)-(6) and (13) is enough to conclude that they define
the same feasible set for the longitudinal force and the torque
in both problems, and thus do not affect optimality. It remains
to show that the different expressions for the torque (5) and

(14) do not affect optimality either. A sufficient condition for
this is if the same longitudinal force values yield the same
torque values in both problems. In that case, both the original
and the lifted problems would behave the same, and hence
have the same optimal solution. This requires an additional
assumption, however.

Assumption 1: The battery power Pb,i is a monotonically
increasing function in the motor torque Tm,i.

Note that Assumption 1 is not very restrictive, as it merely
states that a higher motor torque systematically causes more
energy to be drawn from, or supplied to, the battery. We can
now prove the following proposition.

Proposition 2: Under Assumption 1, any value Fm,i,k,
k ∈ I[0,N−1] , i ∈ I[1,n], of the longitudinal force yields the
same motor torque value in both the original and the lifted
version of the NLP.

Proof: First, let us observe from (5) and (14) that the torque
value is the same if and only if Ft,i,k and Fg,i,k are mutually
exclusive (i.e. they cannot be non-zero simultaneously) in the
lifted NLP, where Fm,i,k = Ft,i,k − Fg,i,k holds.

Since ηf < 1, it can be noticed in the torque expression
(14) that rw/(ηfMf ) > ηfrw/Mf > 0. It follows from this
observation that:

Tm,i,k ≥
rw

ηfMf
Fm,i,k if Fm,i,k > 0, (21a)

Tm,i,k ≥
ηfrw
Mf

Fm,i,k if Fm,i,k ≤ 0, (21b)

where Tm,i,k is defined according to (14). Note that the lower
bounds in these inequalities are reached when either Ft,i,k

or Fg,i,k is zero, depending on the scenario. According to
Assumption 1, the battery power Pb,i is minimized for the
lowest feasible torque, which here corresponds to the case
where Ft,i,k or Fg,i,k are mutually exclusive. In other words,
any solution for which the inequality in (21) is strict would
require more energy while delivering the same longitudinal
force. Consequently, the torque value in the lifted NLP is set
to the same value as in the original NLP for any Fm,i,k. �

Since Proposition 2 holds, the optimal solution of the
two problems is the same, which concludes the proof of
Proposition 1.

B. Resolution of the Decomposed Problem (16)-(17)

This appendix presents how the high-level NLP (16) can be
solved by deploying an SQP algorithm. Under the assumptions
that Linear Independent Constraint Qualification (LICQ) and
Second Order Sufficient Condition (SOSC) hold [39], the
Newton steps taken by the SQP algorithm can be computed
by solving the following quadratic program (QP):

min
H+

n∑
i=1

1

2
ΛiH

+
i

2
+ α(H+

i −H
+
i−1)2 + βV̂i,Hi

(H+
i ),

(22a)

s.t. H+
i ∈ [Hmin

i , Hmax
i ], i ∈ I[1,n], (22b)

where H+ = [H+
1 , ...,H

+
n ]> is the next primal solution, and

where V̂i,Hi is a quadratic approximation of Vi around the
point Hi. Note that Vi is the only term that needs to be
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TABLE VI: Summary of the main notations used in the paper
(appendices excluded). The subscripts i, l, and k consistently
refer to the bus with index i, the stop with index l, and the
shooting point with index k, respectively.

Variable Definition
si Bus position
vi Bus velocity
mi Bus mass
Fm,i Longitudinal force
Fb,i Braking force
θ Road gradient
Ei Kinetic energy per mass unit
ti Travel time
xi, ui State and control input vectors for bus i
x, u State and control input vectors for all buses
∆stop,i Dwell time at stop
vmin Lower bound of the bus velocity
vmax Upper bound of the bus velocity
sl Stop position
ωm,i Motor speed
Tm,i Motor torque
Pb,i Battery power
pi Initial bus position
Hi Predicted headway with the preceding bus
t0 Initial simulation time
Si Set of stops on the horizon of bus i
qi Number of stops on the horizon of bus i
λl Passengers arrival rate at stop l
tji+1 Time when the preceding bus left stop ij on the horizon of

bus i
m0

i Initial bus mass
mj

i Mass of bus i when leaving stop j on its horizon
µl Alighting proportion of passengers at stop l
Λi Weighting ratio based on passengers rates on the horizon of

bus i
E0

i Initial kinetic energy
∆si Length of each shooting interval on the horizon of bus i
si,k Position of the k-th shooting point on the horizon of bus i
Xi, Ui Vectors of state and control optimization variables for bus i
X , U Vectors of state and control optimization variables for all

buses
F Numerical integration of the state dynamics
J Numerical integration of the battery power
g Inequality constraints
Ft,i Longitudinal force in traction
Fg,i Longitudinal force in generation
J̃ Lifted version of J
g̃ Lifted version of g
Vi Optimal cost of the bus-level NLP for bus i
dom(Vi) Feasible set of the bus-level NLP for bus i
Hmin

i Minimum terminal travel time of bus i on its horizon
Hmax

i Maximum terminal travel time of bus i on its horizon
µhw Sample mean of the observed headways
σhw Sample standard deviation of the observed headways
CV 2 Squared coefficient of variation of headways

modified in (16) in order to obtain the local QP approximation
(22), since the remaining terms in the objective are already
quadratic functions, and all the constraints are linear.

In order to approximate Vi, let us first observe that each
bus-level problem (17) is a parametric NLP, with a scalar
parameter Hi, i ∈ I[1,n]. Therefore, the implicit function Vi is
the parametric optimal cost function of the bus-level problem
for bus i [40]. Likewise, we can define the primal-dual solution
of (17) as an implicit function of Hi, and note it zi. Some
results from parametric optimization may now be used to find
an expression for V̂i,Hi

.
The bus-level NLP (17) for bus i can be solved for any

fixed parameter value Hi by using primal-dual interior point

TABLE VII: Numerical values of the parameters used in the
simulations in Section IV.

Parameter Definition Numerical value
n Number of buses 8
L Route length 16492 m
q Number of bus stops 28
ρ Air density 1.18 kg/m3

Abus Bus frontal area 8.36 m2

ca Aerodynamic drag coefficient 1
cr Rolling resistance coefficient 0.0047
ventry Bus speed around bus stops 1.39 m/s
rw Wheel radius 0.49 m
Mf Final gear ratio 2.8
ηf Efficiency coefficient of the final gear 0.98
Tmax Maximum motor torque 5614 Nm
Pmax Maximum power that the motor can

supply continuously
290 kW

ts Time needed for a bus to stop at (or
depart from) a stop

3 s

b Passenger boarding time 1.5 s
mpax Average passenger mass 60 kg
memp Mass of an empty bus 12000 kg
α Trade-off coefficient weighing regular

successive headways
2

β Trade-off coefficient weighing energy
consumption

2.78 s/kW

N Number of sampling intervals on each
bus horizon

200

T MPC sampling time 30 s
σ2

traffic Variance of the deviation percentages
from vmax

10 m2/s2

KI Integral gain of the PI-controller 10
KP Proportional gain of the PI-controller 10

algorithms [39]. The relaxation of the KKT conditions used
by these algorithms creates a smooth modified version of the
problem. If LICQ and SOSC also hold at the solution zi(Hi),
then the parametric functions Vi and zi are twice continuously
differentiable locally. The implicit function theorem can now
be applied to compute the first-order variations of Vi around
Hi as:

dVi
dHi

∣∣∣∣
Hi

=
∂Li

∂Hi

∣∣∣∣
zi(Hi),Hi

(23)

where Li is the Lagrange function of the NLP [40]. The
second-order variations of Vi can then be computed through
a simple application of the chain rule to (23):

d2Vi
dH2

i

∣∣∣∣
Hi

=

(
∂2Li

∂H2
i

+∇2
HiziLi

dzi
dHi

)
zi(Hi),Hi

(24)

where this function is well-defined everywhere thanks to the
smoothing of the problem mentioned earlier. As a result, the
following Taylor approximation of Vi may be used in (22):

V̂i,Hi
(H+

i ) = Vi(Hi) +
dVi
dHi

∣∣∣∣
Hi

∆Hi +
1

2

d2Vi
dH2

i

∣∣∣∣
Hi

∆Hi
2,

(25)
where ∆Hi = H+

i −Hi.
The computation of the term dzi

dHi
in (24) is not straight-

forward as it requires the first-order derivatives of the KKT
conditions [43]. However, they can generally be obtained
at a small computational cost. Computing the rest of the
terms in (23) and (24) is significantly easier. The quadratic
approximation (25) can consequently be used in (22) when
running the SQP algorithm. Note that the primal-dual solution
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of the bus-level problem is needed each time (25) is computed
around a new parameter value. Therefore, the NLP (17) must
be solved again each time a Newton step is taken by solving
(22). These two problems are then solved sequentially until
convergence of the SQP method. The complete resolution pro-
cedure is summarized in Algorithm 2, where the computations
are assumed to be distributed between the buses and a central
node, as illustrated in Fig. 4.

Algorithm 2: SQP procedure for solving the de-
composed optimization problem (16)-(17). C denotes
centrally-run computations, while i denotes computa-
tions carried out aboard bus i.

1 i: solve NLPs (18) and (19) and send {Hmin
i , Hmax

i } to
central node

2 C: initialize H , H+

3 while ‖H+ −H‖2 > Tol do
4 C: H ← H+ and send H to buses
5 for i ∈ I[1,n] do
6 i: V̂i,Hi

← solve NLP (17), then (25)
7 i: send V̂i,Hi to central node
8 end
9 C: H+ ← solve QP (22)

10 end
11 C: H ← H+ and send H to buses
12 ∀i: Xi, Ui ← solve NLP (17)
13 return H , X1, U1, ..., Xn, Un

As the main computational bottleneck lies in solving the
bus-level NLPs, only few computations are needed at the cen-
tral node. It can also be observed that very few variables need
to be exchanged between the central node and the individual
buses during the procedure. Consequently, the communication
loads remain very small.

Note that since the high-level NLP (16) is non-convex,
the SQP method deployed in Algorithm 2 converges to a
local minimum, which may or may not be the global solution
of the problem. In general, SQP methods have robust con-
vergence properties, even from remote starting points. Their
convergence can notably be improved by using e.g. quasi-
Newton approximations, in case of ill-posed subproblems, or
backtracking line search methods [39]. However, we observed
that taking these precautions was not necessary to guarantee
the convergence of Algorithm 2 in practice. As a result, the
convergence rate of the SQP method in that case is quadratic,
under some LICQ and SOSC assumptions [39], which is the
best that can be expected when solving this type of problems.
In the simulations of Section IV, Algorithm 2 systematically
reached convergence in 2 to 3 iterations in each of the
scenarios studied.
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