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Mutations in human genes that increase the risk for severe influenza infection

O. I. Kiselev1, A. B. Komissarov1, O.S.Konshina1#, M.N.Dmitrieva1, E.G.Deyeva1, T.V.Sologub1, V.I.Pokrovskiy2

1 Research Institute of Influenza, Saint Petersburg, Russian Federation
2 Central Research Institute of Epidemiology, Moscow, Russian Federation
# Corresponding author: Olga Konshina, 197376, St. Petersburg, Prof. Popova str., 15/17, E-mail: olga_konshina@influenza.spb.ru

DOI: 10.18527/2500-2236-2015-2-1-10-18
Keywords: influenza, gene polymorphism, genetic control
Received March 14, 2015 Accepted July 22, 2015 Published September 10, 2015

ABSTRACT

The system of genetic control of innate immune responses to influenza infection and gene function allows for the 
development of systemic treatment of influenza with a focus on the phenotype of mutations based on individual 
genetic susceptibility to severe disease and/or the development of complications.

INTRODUCTION 

Analysis of the morbidity and mortality patterns of 
influenza in worldwide practice is based on studies of 
the age distribution and detection of risk groups [1-6]. 
At the same time, morbidity and mortality significantly 
depend on the distinctive genetic characteristics of 
individual populations and ethnic groups. On the one 
hand, the direct connection is established between a 
complicated course of influenza and haplotype HLA 
(Human Leukocyte Antigenes). On the other hand, the 
analysis of a number of gene polymorphisms, which 
determine the level of anti-viral defense, confirms 
that the contribution of single mutations and single-
nucleotide polymorphisms (SNP) to the morbidity and 
mortality from influenza is significantly higher than 
was previously considered [7-12]. Large scale studies on 
population genetics and sensitivity to influenza prove 
that the anti-epidemic actions in different regions of the 
country should be planned in accordance to the specific 
genetic characteristics of population.

It is also evident that in the process of anti-influenza 
vaccine development it is necessary to consider the 
possibility of the vaccine’s “genetic” orientation toward 
large population groups, as well as little to no reaction 
in response to vaccination in individuals with certain 
haplotypes of HLA [11,12]. Based on the results of genetic 
polymorphism analysis it is possible to conclude that in 
influenza therapy - in the case of mass morbidity, which 
is distinctive to pandemics - it is necessary to consider 
the possibility of a complicated course of disease caused 
by a defect in a certain part of the immune system and/or 
anti-viral defense. The understanding of genetic basics 
of pathology of infectious diseases, including influenza, 
could considerably change the vaccination practice as 
well as the basics of therapy itself. To that end, it is 
necessary to systematize the available information on 
genomes and the corresponding markers, distinctive 
for the cases with inadequate or pathological reaction 

to influenza and other accompanying infections. The 
SNP of the genes, listed and characterized below, is 
connected with the enhancement of human sensitivity 
to influenza or complicated course of this disease 
[9,13,14]. 

The role of interferon-induced transmembrane 
protein 3 (IFITM3) gene polymorphism in infectious 
pathology

Gene (IFITM3). One of the significant discoveries made 
during the years, passed after the last pandemic, was the 
detection of polymorphism in gene IFITM3 in groups 
of patients who developed a severe course of disease, 
caused by influenza virus A(H1N1)pdm09, with fatal 
complications in a number of cases (Fig.1) [9, 13-21]. 

Gene IFITM3 belongs to the family of genes that are 
induced by type I interferons (IFN). The IFITM3 protein is 
a transmembrane protein containing two transmembrane 
domains. Its functional activity is connected with human 
resistance to the strains of A(H1N1)pdm09 virus and 
many other infections, including Dengue and West Nile 
hemorrhagic fevers [13]. The protein IFITM3 exists in 
different isoforms; one of the most prevalent isoforms 
lacks the N-terminus domain (Fig.2) [18-21]. Analysis of 
this phenomenon led to the identification of a splicing 
site mutation that determines the enhanced human 
sensitivity to pandemic influenza [19, 20]. 

The analysis of the protein IFITM3 mechanism 
of action showed that it blocks the cells infection by 
preventing the entry of viral particles via endocytosis. 
[22]. This protein was shown to suppress the infection 
of Ebola, HIV-1 (human immunodeficiency virus type I), 
hepatitis C, and Dengue viruses [13]. It was also shown 
that IFITM3 protein suppresses the S-protein dependent 
endocytosis of Middle East Respiratory Syndrome 
coronavirus (MERS-CoV) [23], preventing the virus 
genetic material from entering the cell.
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The wide spectrum of IFITM3 protein antiviral 
activity is caused by the protein’s profound effect on the 
stability of complex ATPhase of vacuoles (v-ATPhase) 
and endosomes. The interaction of v-ATPhase with 
endosomes, which leads to the relocation of Clatrin and 
pH reduction, plays an important role in the endocytosis 
of viruses [24]. This process is extremely attractive as a 
drug discovery target because it plays a key role in the cell 

infection process. It was established that classical Clatrin 
and v-ATPhase inhibitors are effective viral reproduction 
inhibitors and belong to broad-spectrum class of 
medicines. It turned out that Arbidol also belongs to this 
group of inhibitors [25]. Thus, one more mechanism of 
Arbidol action was revealed, which could explain its wide 
spectrum antiviral activity. However, the interaction 
of protein IFITM3 with viruses on the Clatrin pathway 

Fig. 1. The structure of the IFITM3 gene, the main coding transcripts and the corresponding proteins. The mutation leading to the 
formation of the alternative splicing site in exone 1 is shown as a vertical red line (single-nucleotide polymorphism rs12252 T/C). Start-
codons are marked as black triangles, protein coding exones of IFITM3 gene are shown in blue, the 1-21 fragment of protein IFITM3 [26] 
is shown in green.

Fig.2. The scheme of IFTM3 protein.  
N-end sequence 1-MNHTVQTFFSPVNSGQPPNYE-21, which is absent in the shortened mutant protein, is shown in green.
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of virus particles internalization on the early infection 
phases could not be restricted to the mechanism of anti-
viral defense. 

Two different transcripts could be formed during 
the expression of the IFITM3 gene – the full transcript 
and the shortened transcript version, which encodes 
the protein sequence, lacking the N-end 21 amino acid 
fragment [21]. 

In general, the IFITM3 protein is a restriction factor 
for virus reproduction, acting by the formation of the 
cells resistance to the different types of viruses. However, 
the detailed mechanisms of anti-viral defense formation 
in cells remain unknown in spite of the protein IFITM3 
discovery. As it was shown in a number of publications 
[18-20], mice with silenced IFITM3 gene had a more 
complicated course of influenza than mice with wild 
IFTIM3 gene. There is a known mutation of this gene in 
humans: substitution of Thymidine by Cytosine in the 
1st intron splicing site [18]. 

The connection of this mutation to the severity of 
influenza A(H1N1)pdm09 was studied in a European 
population group [19]. In this study, the frequency 
of hospitalizations was the criteria of complications 
during the development of infection. Patients who 
were hospitalized with severe influenza and/or the 
complications caused by influenza were found to have an 
enhanced frequency of homozygosity for a rare C allele of 
gene IFITM3. The frequency of SNP rs12252-C in patients 
with severe influenza totals 5.3% versus 0.3% (which is 
common) for the European population. Interestingly, the 
frequency of occurrence of SNP rs12252-C in Chinese 
populations was significantly higher. The genotype  
frequency CC reached approx. 25% in the Chinese 
populations. Among the patients in China who had 
severe forms of influenza the occurrence of genotype CC 
reached up to 69% (Fig.3).

The results on allelic frequencies of the IFITM3 
gene described here were obtained by the authors by 
the statistical data processing of 1,000 genomes [19]. 
The IFITM3 allelic frequency varied significantly in 
different populations. However, among members of the 
Han population, originating in the Southern province 
and inhabiting Eastern, Southern, and central China, 
the frequency of CC genotype rs12252 has been found to 
be as high as 69%. As a result of the detailed analysis of 
IFITM3 allelic frequency in the population and influenza 
morbidity (mortality), the authors come to the conclusion 
that the high frequency of occurrence of CC genotype 
contributes to the epidemiology of influenza in China. 
As a matter of fact, it is precisely in China that high 
frequencies of massive influenza breakouts are recorded 
that often lead to pandemics. 

The discovery of correlation between genotype IFITM3 
rs12252 and the clinical pattern of influenza infection 
prompted interest to study the separate components 
of “cytokine storm” in patients with the variant IFITM3 
gene [21]. These studies were conducted with patients 
infected with the pathogenic strain of A(H7N9) influenza 
virus that is currently in circulation. The patterns of 
expression of the following markers of “cytokine storm” 

were analyzed: MPC-1 (Monocyte Chemoattractant 
Protein-1), IL-1β (Interleukin-1β), IL-6, IL-8, IL-10, 
ТNF-α (Tumor Necrosis Factor), IFN-γ and C-reactive 
protein [27]. The authors studied the level of content 
of these proteins in peripheral blood. As a result of this 
study, it was established that the patients with genotype 
CC have more active synthesis and higher level of the 
secretion of protein MPC-1 in comparison with patients 
with CT or TT genotypes (Fig.3). The severity of disease 
also had direct correlation with these parameters  – 
genotype CC and excessive nonspecific immune 
response. Furthermore, the authors have conducted the 
study of cytokines (MIP-1α, MIP-1β, IL-1β, IL-6 and IL-8) 
in the lungs of dead patients. It turned out that the level 
of content of some pro-inflammatory cytokines in lungs 
was 100–1,000 times higher than in the peripheral blood. 
Thus, the development of “cytokine storm” is aided by 
IFITM3 rs12252 gene mutation.

To conclude the discussion of the role of gene 
IFITM3 polymorphism in infectious pathology it should 
be mentioned that the SNP rs12252 contributes to the 
development of Kawasaki syndrome – the early children’s 
vasculitis [15]. This abnormality is also common for certain 
population groups of South-East Asia and it could lead 
to a severe complication, such as aortic aneurysm [28]. It 
should be mentioned that influenza infection provokes 
vasculitis, including cerebral vasculitis, which suggests 
that the influenza infection affects the development of 
the pathology of the cardiovascular system.

Polymorphism of genes, which make an additional 
contribution to the severity of influenza infection

Gene polymorphisms have been studied in order to 
understand the susceptibility of populations to infectious 
diseases and their severe progression. These studies 
have fundamental significance for pediatric practice and 
global epidemic processes [9,14, 17]. The group of genes 
that have an impact on the development of complications 
over the course of influenza, is significantly widening 
over the years [9,17]. Table 1 presents a list of these 
genes and their probable role in the disruption of certain 
functions contributing to the eradication of influenza 
and other viral infections.

The lung surfactant proteins play an important role 
not only in providing the stability of oxygen transport 
but also in antibacterial and antiviral defense. Long-
term clinical observations showed that polymorphisms 
in genes that encode the surfactant proteins, and in 
particular the protein B (SP-B), play the key role in 
susceptibility to infections like influenza [29]. It was also 
established that the polymorphism of the SP-B gene is 
connected with a severe course of infection caused by the 
respiratory syncytial virus [30]. 

The role of complement system factors in bacterial 
and viral infections is very well known. In this respect, 
the role of the C1QBP gene polymorphism (Complement 
Component 1, Q subcomponent Binding Protein) in 
the complications of the course of influenza [8,33] is 
worth close attention. The gene C1QBP is encoding the 
protein C1QBP, which is a homotrimer in mature form. 
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Fig.3. The frequency of SNP rs12252 occurrence in the alleles of IFITM3 gene in different populations living in Asia and Europe.
A - the comparison of the genotypes in populations of China, Japan, Northern Europe and England;  
B - groups of patients: 1 - hospitalized patients, 2 - moderate severity influenza, 3 - severe course of influenza with complications; 
C - the frequency of alleles occurrence in patients with A(H1N1)pdm09 virus.
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The structural particularity of homotrimer C1QBP lies 
in asymmetric charge distribution on the surface of the 
molecule. This protein is interacting with a wide range 
of molecules involved in regulation of immune system: 
CDK13 [38], HRK [39], VTN [40], NFYB [41], FOXC1 [42], 
DDX21, DDX50, NCL [43], SRSF1, SRSF9 [44], CDKN2A 
[45] and other proteins including CD93 [46]. The function 
of C1QBP consists in antibody dependent cytolysis of 
infected cells with the involvement of complement and 
activation of phagocytosis. This protein is accumulated 
in mitochondrions during viral infection and inhibits 
signal transmission, which depends on RLR (RIG-I-like 
receptors), by interaction with the antiviral protein MAVS 
(Mitochondrial Anti-Viral signaling protein). The protein 
C1QBP is involved in the activation of blood coagulation 
cascade [47]. The action of C1QDP has pleiotropic 
character and depends on infection stage. 

CD55 (Complement Decay-Accelerating Factor; DAF) – 
acceleration factor for the complement decomposition – 
antigen of the Kromer system of blood types. DAF/CD55 
carries out anti-inflammatory functions by protecting 
cells from damage by a complement system as well as by 
the control of leucocytes migration to the inflammation 
center [47]. DAF/CD55 is expressed in vascular 
endothelium, mononuclears of peripheral blood and 
also in epithelial cells (including lung and endometrial 
epithelia) [48]. CD55 inhibits activation of C3 and C5 
components of complement system [49]. Significant 
level of expression of CD55 in respiratory epithelium 
stresses the importance of lungs protection from the 
damage caused as a result of excessive activation of the 
complement system. It is notable that the expression level 
of CD55 is regulated by progesterone and estrogen [50]. 

SNP in the gene’s CD55 (rs2564978 genotype T/T) 
promoter is associated with more severe course of influenza 

caused by A(H1N1)pdm09 virus [34]. As was established by 
experiments in vitro, the infection of cells by the influenza 
virus A(H1N1)pdm09 causes the intensification of the 
protein CD55 expression. Patients with T/T rs2564978 
genotype contain much less of CD55 on the surface of 
mononuclears of peripheral blood as compared with the 
patients with C/C and C/T genotypes [51]. 

The activation of the complement system makes a 
significant contribution to the lung tissue damage over 
the course of influenza infection. High levels of C3, C5b-
9 and MLB were detected in the lungs of mice infected 
with influenza A(H5N1) viruses, while the administration 
of C3aR antagonist significantly reduced the degree of 
inflammation in the lung tissue [52]. 

The mutation in the gene’s CD55 promoter, which 
apparently leads to the reduction of its expression, 
disrupts innate lungs defense mechanisms against 
the damage induced by complement during influenza 
infection leading to a higher chance of severe disease 
course and lethal outcome. 

Discussion of the correlation of human genes 
polymorphism with severity of influenza course brings 
up the problem of inadequate reaction of the innate 
immunity to infection. It is known that the activation of 
transcription of genes, encoding the proinflammatory 
cytokines, plays an important role in pathogenesis of 
severe influenza [21]. 

The system of genetic control of the innate immune 
response towards influenza infection as well as the 
functions of genes that are involved in downward 
regulation of the expression of genes, encoding the 
proinflammatory cytokines is of particular interest.  

Gene SOCS4 (Suppressor of Cytokine Signaling 4) 
holds one of the key positions in the hierarchy of genetic 
control of the activation of proinflammatory cytokines 
synthesis [36]. 

Table 1. Genes, whose mutations and polymorphism lead to complications during the course of influenza infection.

Gene Functions of the encoded protein Defect Reference

IFITM3 Factor of antiviral defense on the 
endosomes level

Defect of inner cell’s antiviral defense on the initial 
infection step (endosomes)

[18,19,21, 25]

SP-B Surfactant protein
B – lungs surfactant

Pneumocytes defense, stability of teeth ridge, oxygen 
transport and clearance of viruses and bacteria

[29,30]

FCGR2A Fc-receptor – factor of infectious 
virus clearance

Defect of virus clearance [31,32]

C1QBP Factor of the complement system Defect of the complement system and complement 
dependent cytolysis of infected cells

[8,9,33]

DAF/CD55 Factor of the complement decom-
position acceleration, antigen of 
the Kromer blood group system 

Defect of the natural mechanisms of the lungs’ de-
fense from the damage caused by complement in the 
course of influenza infection

[34]

MBL2 Mannose-binding cell lectin Natural immunity regulation defect [35]

SOCS4 Suppressor of the cytokine depen-
dent signal systems

Defect of control of cytokine synthesis and activity 
(possible development of the “cytokine storm”)

[27,36]

SECISBP2 Complex of Se – dependent en-
zymes

Defect of the antioxidant system [37]
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The interest in the genetic control of these processes 
is natural. Recently, it was established that the genes 
of SOCS family play an important role in restraint 
of nonspecific natural immune response to different 
pathogens. Particularly, it primarily relates to the protein 
SOCS4 – the suppressor of cytokine signal systems 4. 
As a downward regulator of cytokine synthesis control, 
this protein belongs to the key factors of defense from 
excessive proinflammatory reaction to influenza virus. 
The proteins of this family control the innate and 
adaptive immune response by inhibiting the signaling 
pathway JAK/STAT [36].

SECISBP2 – gene, encoding the enzymatic complex 
(Sec Insertion Sequence Binding Protein 2), which in turn 
ensures the inclusion of selenocysteine in the protein 
structure [37]. Enzymes containing selenocysteine are 
the members of the cell’s Red-Ox defense system from 
oxygen radicals. Generation of oxygen radicals is the cells 
reaction to the majority of pathogenic microorganisms 
including viruses [37]. In the case of hereditary mutations 
in SECISBP2 gene, the acceleration of oxygen active forms 
synthesis leads to the systematic enhancement of cellular 
sensitivity to insulin. This is observed in mice with 
knocked out gene that encodes the antioxidant enzyme 
glutathione peroxidase 1, which contains selenium. 
The presence of gene SECISBP2 mutations in humans 
is clinically manifested by azoospermia, axial muscular 
dystrophy, disorder of T-lymphocytes proliferation 
and suppression of immune system in general. A high 
degree of lipid oxidation by peroxide and DNA oxidative 
damage, reduction of DNA damage reparation potential 
and shortening of telomeres are observed in individuals 
with these mutations. The pleiotropic effect of mutations 
in SECISBP2 gene is caused by the disruption of functions 
of the whole selenoproteome [37]. This hereditary defect 
should be especially prominent in the case of influenza 
infection and influenza-caused pneumonia. It is known 
that the influenza antioxidant therapy can provide 
significant clinical results in the area of intoxication 
syndrome relief and prevention of cardiovascular 
complications [52].

CONCLUSION

The understanding of genetic polymorphism in certain 
genes enables to direct the development of the systematic 
influenza therapy with the focus on phenotypic 
changes, caused by mutations, with consideration of the 
distribution degree of the hereditary susceptibility to 
severe course of influenza among groups of genetic risk 
and population, in general. 

In spite of the possibility of the wide distribution of 
mutations in the identified group of genes, related to the 
enhanced sensitivity to influenza, it should be recognized 
that the presentation level of the viral antigens within 
the certain population groups with the different types of 
HLA [10, 12] remains most important.

Mortality from influenza is registered in the acute 
period of the illness and usually on the peak of the 
epidemic, and then, as a “postponed mortality”, in the 
period from 1 to 3 months after the course of the disease. 
Most commonly, the lethal outcome is connected with 
the accompanying diseases, usually with cardiovascular 
pathology - namely heart attack and stroke. 

Thus, these factors should be taken in account while 
analyzing the genetic background of the population.

CITATION

Kiselev OI, Komissarov AB, Konshina OS, Dmitrieva MN, 
Deyeva EG, Sologub TV, Pokrovskiy VI. Mutations in 
human genes that increase the risk for severe influenza 
infection. MIR J, 2015; 2(1), 10-18, doi: 10.18527/2500-
2236-2015-2-1-10-18.

COPYRIGHT

© 2015 Konshina et al. This is an open access article 
distributed under the terms of the Creative Commons 
AttributionNonCommercial-ShareAlike 4.0 International 
Public License (CC BY-NC-SA), which permits unrestricted 
use, distribution, and reproduction in any medium, as 
long as the material is not used for commercial purposes, 
provided the original author and source are cited.

REFERENCES 

1. Karpova LS, Sominina AA, Dmitrieva MN, Popovtseva 
NM, Stolyarova TP, Kiselev OI, Comparison of 
influenza pandemic in Russia in 2009-2010 with the 
following epidemics involving influenza A(H1N1)
pdm09 (2011-2014). Epidemiology and preventive 
treatment by vaccination 2014; 79, 6, pp. 8 – 9 (in 
Russian).

2. Monto AS. The risk of seasonal and pandemic 
influenza: prospects for control. Clin Infect Dis 2009; 
48, Suppl 1, S20-5.

3. Taubenberger JK, Morens DM. 1918 Influenza: the 
mother of all pandemics. Emerg Infect Dis 2006; 
12,15-22.

4. Wagner AP, McKenzie E, Robertson C, McMenamin 
J, Reynolds A, Murdoch H. Automated mortality 
monitoring in Scotland from 2009. Euro Surveill 
2013; 18, 20451.

5. Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay 
DK, Cheng PY, Bandaranayake D, Breiman RF, Brooks 
WA, Buchy P, Feikin DR, Fowler KB, Gordon A, Hien 
NT, Horby P, Huang QS, Katz MA, Krishnan A, Lal 
R, Montgomery JM, Molbak K, Pebody R, Presanis 
AM, Razuri H, Steens A, Tinoco YO, Wallinga J, Yu H, 
Vong S, Bresee J, Widdowson MA. Estimated global 
mortality associated with the first 12 months of 
2009 pandemic influenza A H1N1 virus circulation: 
a modelling study. Lancet Infect Dis 2012; 12, 687-95.



The risk of severe influenza infection

mir-journal.org 16  Volume 2     Number 1     2015

6. Davila J, Chowell G, Borja-Aburto VH, Viboud C, 
Grajales Muniz C, Miller M. Substantial Morbidity 
and Mortality Associated with Pandemic A/H1N1 
Influenza in Mexico, Winter 2013-2014: Gradual Age 
Shift and Severity. PLoS Curr 2014; 6.

7. Arankalle VA, Lole KS, Arya RP, Tripathy AS, Ramdasi 
AY, Chadha MS, Sangle SA, Kadam DB. Role of host 
immune response and viral load in the differential 
outcome of pandemic H1N1 (2009) influenza virus 
infection in Indian patients. PLoS ONE 2010; 5.

8. Webb SA, Pettila V, Seppelt I, Bellomo R, Bailey M, 
Cooper DJ, Cretikos M, Davies AR, Finfer S, Harrigan 
PW, Hart GK, Howe B, Iredell JR, McArthur C, Mitchell 
I, Morrison S, Nichol AD, Paterson DL, Peake S, 
Richards B, Stephens D, Turner A, Yung M. Critical 
care services and 2009 H1N1 influenza in Australia 
and New Zealand. N Engl J Med 2009; 361,1925-34.

9. Oshansky CM, Thomas PG. The human side of 
influenza. J Leukoc Biol 2012; 92, 83-96.

10. Alexander J, Bilsel P, del Guercio MF, Marinkovic-
Petrovic A, Southwood S, Stewart S, Ishioka G, 
Kotturi MF, Botten J, Sidney J, Newman M, Sette A. 
Identification of broad binding class I HLA supertype 
epitopes to provide universal coverage of influenza A 
virus. Hum Immunol 2010; 71, 468-74.

11. Hertz T, Oshansky CM, Roddam PL, DeVincenzo 
JP, Caniza MA, Jojic N, Mallal S, Phillips E, James I, 
Halloran ME, Thomas PG, Corey L. HLA targeting 
efficiency correlates with human T-cell response 
magnitude and with mortality from influenza A 
infection. Proc Natl Acad Sci U S A 2013; 110,13492-7.

12. Hertz T, Nolan D, James I, John M, Gaudieri S, Phillips 
E, Huang JC, Riadi G, Mallal S, Jojic N. Mapping the 
landscape of host-pathogen coevolution: HLA class 
I binding and its relationship with evolutionary 
conservation in human and viral proteins. J Virol 
2011; 85, 1310-21.

13. Brass AL, Huang IC, Benita Y, John SP, Krishnan 
MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden 
L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge 
SJ. The IFITM proteins mediate cellular resistance to 
influenza A H1N1 virus, West Nile virus, and dengue 
virus. Cell 2009; 139, 1243-54.

14. Hui DS, Hayden FG. Editorial commentary: Host and 
viral factors in emergent influenza virus infections. 
Clin Infect Dis 2014; 58, 1104-6.

15. Bowles NE, Arrington CB, Hirono K, Nakamura T, 
Ngo L, Wee YS, Ichida F, Weis JH. Kawasaki disease 
patients homozygous for the rs12252-C variant of 
interferon-induced transmembrane protein-3 are 
significantly more likely to develop coronary artery 
lesions. Mol Genet Genomic Med 2014; 2, 356-61.

16. Rowley AH, Baker SC, Shulman ST, Rand KH, 
Tretiakova MS, Perlman EJ, Garcia FL, Tajuddin 
NF, Fox LM, Huang JH, Ralphe JC, Takahashi K, 
Flatow J, Lin S, Kalelkar MB, Soriano B, Orenstein 
JM. Ultrastructural, immunofluorescence, and RNA 
evidence support the hypothesis of a “new” virus 

associated with Kawasaki disease. J Infect Dis 2011; 
203, 1021-30.

17. Horby P, Nguyen NY, Dunstan SJ, Baillie JK. The 
role of host genetics in susceptibility to influenza: 
a systematic review. PLoS ONE 2012; 7, e33180.

18. Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith 
SE, Chin CR, Feeley EM, Sims JS, Adams DJ, Wise 
HM, Kane L, Goulding D, Digard P, Anttila V, Baillie 
JK, Walsh TS, Hume DA, Palotie A, Xue Y, Colonna 
V, Tyler-Smith C, Dunning J, Gordon SB, Smyth RL, 
Openshaw PJ, Dougan G, Brass AL, Kellam P. IFITM3 
restricts the morbidity and mortality associated with 
influenza. Nature 2012; 484, 519-23.

19. Zhang YH, Zhao Y, Li N, Peng YC, Giannoulatou E, Jin 
RH, Yan HP, Wu H, Liu JH, Liu N, Wang DY, Shu YL, 
Ho LP, Kellam P, McMichael A, Dong T. Interferon-
induced transmembrane protein-3 genetic variant 
rs12252-C is associated with severe influenza in 
Chinese individuals. Nat Commun 2013; 4, 1418.

20. Everitt AR, Clare S, McDonald JU, Kane L, Harcourt 
K, Ahras M, Lall A, Hale C, Rodgers A, Young DB, 
Haque A, Billker O, Tregoning JS, Dougan G, Kellam P. 
Defining the range of pathogens susceptible to Ifitm3 
restriction using a knockout mouse model. PLoS ONE 
2013; 8, e80723.

21. Wang Z, Zhang A, Wan Y, Liu X, Qiu C, Xi X, Ren Y, 
Wang J, Dong Y, Bao M, Li L, Zhou M, Yuan S, Sun J, 
Zhu Z, Chen L, Li Q, Zhang Z, Zhang X, Lu S, Doherty 
PC, Kedzierska K, Xu J. Early hypercytokinemia is 
associated with interferon-induced transmembrane 
protein-3 dysfunction and predictive of fatal H7N9 
infection. Proc Natl Acad Sci U S A 2013; 111, 769-74.

22. Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen 
LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass 
AL. IFITM3 inhibits influenza A virus infection by 
preventing cytosolic entry. PLoS Pathog 2011; 7, 
e1002337.

23. Wrensch F, Winkler M, Pohlmann S. IFITM proteins 
inhibit entry driven by the MERS-coronavirus spike 
protein: evidence for cholesterol-independent 
mechanisms. Viruses 2014; 6, 3683-98.

24. Wee YS, Roundy KM, Weis JJ, Weis JH. Interferon-
inducible transmembrane proteins of the innate 
immune response act as membrane organizers by 
influencing clathrin and v-ATPase localization and 
function. Innate Immun; 18, 834-45.

25. Blaising J, Levy PL, Polyak SJ, Stanifer M, Boulant S, 
Pecheur EI. Arbidol inhibits viral entry by interfering 
with clathrin-dependent trafficking. Antiviral Res 
2013; 100, 215-9.

26. Cunningham F, Amode MR, Barrell D, Beal K, Billis 
K, Brent S, Carvalho-Silva D, Clapham P, Coates 
G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier 
T, Hunt SE, Janacek SH, Johnson N, Juettemann T, 
Kahari AK, Keenan S, Martin FJ, Maurel T, McLaren W, 
Murphy DN, Nag R, Overduin B, Parker A, Patricio M, 
Perry E, Pignatelli M, Riat HS, Sheppard D, Taylor K, 
Thormann A, Vullo A, Wilder SP, Zadissa A, Aken BL, 
Birney E, Harrow J, Kinsella R, Muffato M, Ruffier M, 



 Volume 2     Number 1     2015 17 mir-journal.org 

The risk of severe influenza infection

Searle SM, Spudich G, Trevanion SJ, Yates A, Zerbino 
DR, Flicek P. Ensembl 2015. Nucleic Acids Res; 43, 
D662-9.

27. Ramirez-Martinez G, Cruz-Lagunas A, Jimenez-
Alvarez L, Espinosa E, Ortiz-Quintero B, Santos-
Mendoza T, Herrera MT, Canche-Pool E, Mendoza 
C, Banales JL, Garcia-Moreno SA, Moran J, Cabello 
C, Orozco L, Aguilar-Delfin I, Hidalgo-Miranda A, 
Romero S, Suratt BT, Selman M, Zuniga J. Seasonal and 
pandemic influenza H1N1 viruses induce differential 
expression of SOCS-1 and RIG-I genes and cytokine/
chemokine production in macrophages. Cytokine 
2013; 62, 151-9.

28. Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. 
Acute encephalopathy associated with influenza and 
other viral infections. Acta Neurol Scand Suppl 2007; 
186, 45-56.

29. To KK, Zhou J, Song YQ, Hung IF, Ip WC, Cheng 
ZS, Chan AS, Kao RY, Wu AK, Chau S, Luk WK, Ip 
MS, Chan KH, Yuen KY. Surfactant protein B gene 
polymorphism is associated with severe influenza. 
Chest 2014; 145:1237-43.

30. Puthothu B, Forster J, Heinze J, Heinzmann A, 
Krueger M. Surfactant protein B polymorphisms are 
associated with severe respiratory syncytial virus 
infection, but not with asthma. BMC Pulm Med 2007; 
7, 6.

31. Zarychanski R, Stuart TL, Kumar A, Doucette S, Elliott 
L, Kettner J, Plummer F. Correlates of severe disease 
in patients with 2009 pandemic influenza (H1N1) 
virus infection. CMAJ 2010; 182, 257-64.

32. Worgall S, Bezdicek P, Kim MK, Park JG, Singh R, 
Christofidou-Solomidou M, Prince A, Kovesdi I, 
Schreiber AD, Crystal RG. Augmentation of pulmonary 
host defense against Pseudomonas by FcgammaRIIA 
cDNA transfer to the respiratory epithelium. J Clin 
Invest 1999; 104, 409-18.

33. La Ruche G, Tarantola A, Barboza P, Vaillant L, Gueguen 
J, Gastellu-Etchegorry M. The 2009 pandemic 
H1N1 influenza and indigenous populations of the 
Americas and the Pacific. Euro Surveill 2009; 14.

34. Zhou J, To KK, Dong H, Cheng ZS, Lau CC, Poon VK, 
Fan YH, Song YQ, Tse H, Chan KH, Zheng BJ, Zhao GP, 
Yuen KY. A functional variation in CD55 increases the 
severity of 2009 pandemic H1N1 influenza A virus 
infection. J Infect Dis 2012; 206, 495-503.

35. Zuniga J, Buendia-Roldan I, Zhao Y, Jimenez L, Torres 
D, Romo J, Ramirez G, Cruz A, Vargas-Alarcon G, 
Sheu CC, Chen F, Su L, Tager AM, Pardo A, Selman 
M, Christiani DC. Genetic variants associated with 
severe pneumonia in A/H1N1 influenza infection. 
Eur Respir J 2011; 39, 604-10.

36. Kedzierski L, Linossi EM, Kolesnik TB, Day EB, Bird 
NL, Kile BT, Belz GT, Metcalf D, Nicola NA, Kedzierska 
K, Nicholson SE. Suppressor of cytokine signaling 4 
(SOCS4) protects against severe cytokine storm and 
enhances viral clearance during influenza infection. 
PLoS Pathog 2014; 10, e1004134.

37. Schoenmakers E, Agostini M, Mitchell C, 
Schoenmakers N, Papp L, Rajanayagam O, Padidela 
R, Ceron-Gutierrez L, Doffinger R, Prevosto C, 
Luan J, Montano S, Lu J, Castanet M, Clemons N, 
Groeneveld M, Castets P, Karbaschi M, Aitken S, 
Dixon A, Williams J, Campi I, Blount M, Burton H, 
Muntoni F, O’Donovan D, Dean A, Warren A, Brierley 
C, Baguley D, Guicheney P, Fitzgerald R, Coles A, 
Gaston H, Todd P, Holmgren A, Khanna KK, Cooke M, 
Semple R, Halsall D, Wareham N, Schwabe J, Grasso 
L, Beck-Peccoz P, Ogunko A, Dattani M, Gurnell 
M, Chatterjee K. Mutations in the selenocysteine 
insertion sequence-binding protein 2 gene lead to 
a multisystem selenoprotein deficiency disorder in 
humans. J Clin Invest 2010; 120, 4220-35.

38. Even Y, Durieux S, Escande ML, Lozano JC, Peaucellier 
G, Weil D, Geneviere AM. CDC2L5, a Cdk-like kinase 
with RS domain, interacts with the ASF/SF2-
associated protein p32 and affects splicing in vivo. 
J Cell Biochem 2006; 99, 890-904.

39. Sunayama J, Ando Y, Itoh N, Tomiyama A, Sakurada K, 
Sugiyama A, Kang D, Tashiro F, Gotoh Y, Kuchino Y, 
Kitanaka C. Physical and functional interaction between 
BH3-only protein Hrk and mitochondrial pore-forming 
protein p32. Cell Death Differ 2004; 11, 771-81.

40. Lim BL, Reid KB, Ghebrehiwet B, Peerschke EI, Leigh 
LA, Preissner KT. The binding protein for globular 
heads of complement C1q, gC1qR. Functional 
expression and characterization as a novel vitronectin 
binding factor. J Biol Chem 1996; 271, 26739-44.

41. Chattopadhyay C, Hawke D, Kobayashi R, Maity SN. 
Human p32, interacts with B subunit of the CCAAT-
binding factor, CBF/NF-Y, and inhibits CBF-mediated 
transcription activation in vitro. Nucleic Acids Res 
2004; 32, 3632-41.

42. Huang L, Chi J, Berry FB, Footz TK, Sharp MW, 
Walter MA. Human p32 is a novel FOXC1-interacting 
protein that regulates FOXC1 transcriptional activity 
in ocular cells. Invest Ophthalmol Vis Sci 2008; 49, 
5243-9.

43. Yoshikawa H, Komatsu W, Hayano T, Miura Y, Homma 
K, Izumikawa K, Ishikawa H, Miyazawa N, Tachikawa 
H, Yamauchi Y, Isobe T, Takahashi N. Splicing factor 
2-associated protein p32 participates in ribosome 
biogenesis by regulating the binding of Nop52 
and fibrillarin to preribosome particles. Mol Cell 
Proteomics 2011; 10, M110 006148.

44. Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews 
DA, Russell WC, Akusjarvi G. The splicing factor-
associated protein, p32, regulates RNA splicing by 
inhibiting ASF/SF2 RNA binding and phosphorylation. 
EMBO J 1999; 18, 1014-24.

45. Reef S, Shifman O, Oren M, Kimchi A. The autophagic 
inducer smARF interacts with and is stabilized by the 
mitochondrial p32 protein. Oncogene 2007; 26, 6677-
83.

46. Ghebrehiwet B, Lu PD, Zhang W, Keilbaugh SA, Leigh 
LE, Eggleton P, Reid KB, Peerschke EI. Evidence that 



The risk of severe influenza infection

mir-journal.org 18  Volume 2     Number 1     2015

the two C1q binding membrane proteins, gC1q-R 
and cC1q-R, associate to form a complex. J Immunol 
1997; 159, 1429-36.

47. Sakuma M, Morooka T, Wang Y, Shi C, Croce K, Gao 
H, Strainic M, Medof ME, Simon DI. The intrinsic 
complement regulator decay-accelerating factor 
modulates the biological response to vascular injury. 
Arterioscler Thromb Vasc Biol 2010; 30, 1196-202.

48. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, 
Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, 
Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, 
Navani S, Szigyarto CA, Odeberg J, Djureinovic D, 
Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, 
Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk 
JM, Hamsten M, von Feilitzen K, Forsberg M, Persson 
L, Johansson F, Zwahlen M, von Heijne G, Nielsen 
J, Ponten F. Proteomics. Tissue-based map of the 
human proteome. Science 2015; 347, 1260419.

49. Kuttner-Kondo LA, Mitchell L, Hourcade DE, Medof 
ME. Characterization of the active sites in decay-
accelerating factor. J Immunol 2001; 167, 2164-71.

50. Nowicki B, Nowicki S. DAF as a therapeutic target 
for steroid hormones: implications for host-
pathogen interactions. Adv Exp Med Biol 2013; 
735, 83-96.

51. Shang Y, Chai N, Gu Y, Ding L, Yang Y, Zhou J, 
Ren G, Hao X, Fan D, Wu K, Nie Y. Systematic 
immunohistochemical analysis of the expression of 
CD46, CD55, and CD59 in colon cancer. Arch Pathol 
Lab Med 2014; 138, 910-9.

52. Sun S, Zhao G, Liu C, Wu X, Guo Y, Yu H, Song H, Du 
L, Jiang S, Guo R, Tomlinson S, Zhou Y. Inhibition of 
complement activation alleviates acute lung injury 
induced by highly pathogenic avian influenza H5N1 
virus infection. Am J Respir Cell Mol Biol 2013; 49, 
221-30.


