
Combining Equational Tree Automata
Over AC and ACI Theories?

Joe Hendrix1 and Hitoshi Ohsaki2

1 University of Illinois at Urbana-Champaign
jhendrix@uiuc.edu

2 National Institute of Advanced Industrial Science and Technology
ohsaki@ni.aist.go.jp

Abstract. In this paper, we study combining equational tree automata
in two different senses: (1) whether decidability results about equational
tree automata over disjoint theories E1 and E2 imply similar decidability
results in the combined theory E1 ∪ E2; (2) checking emptiness of a lan-
guage obtained from the Boolean combination of regular equational tree
languages. We present a negative result for the first problem. Specifically,
we show that the intersection-emptiness problem for tree automata over
a theory containing at least one AC symbol, one ACI symbol, and 4
constants is undecidable despite being decidable if either the AC or ACI
symbol is removed. Our result shows that decidability of intersection-
emptiness is a non-modular property even for the union of disjoint the-
ories. Our second contribution is to show a decidability result which im-
plies the decidability of two open problems: (1) If idempotence is treated
as a rule f(x, x)→ x rather than an equation f(x, x) = x, is it decidable
whether an AC tree automata accepts an idempotent normal form? (2) If
E contains a single ACI symbol and arbitrary free symbols, is emptiness
decidable for a Boolean combination of regular E-tree languages?

1 Introduction

Tree automata are a theoretical tool with applications in many areas, includ-
ing sufficient completeness of algebraic specifications [2, 8], protocol verifica-
tion [4, 5], type inference [3], and theorem proving [13]. Many different frame-
works have been proposed for addressing these applications as each framework
must balance the often competing goals of expressive power and tractability of
different operations. In our own applications [7, 8], the most important proper-
ties are a decidable emptiness problem, and closure under Boolean operations
and equational congruences. Regular tree automata satisfy two of these prop-
erties, however they are not closed under arbitrary equational congruences. For
example, the set of terms equivalent modulo associativity to a term in a regular
tree language may not be a regular tree language [16].

Many extensions to tree automata have been proposed to remedy this prob-
lem, including multitree automata [14], equational tree automata [16], and two-
way alternating equational tree automata [25]. These extensions allow one to
? Research supported by ONR Grant N00014-02-1-0715

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


recognize terms equivalent modulo an equational theory, however multitree au-
tomata are only defined for AC theories and the other frameworks lack closure
under Boolean operations. Due to this problem, propositional tree automata were
proposed in [9]. They are closed under both an equational theory and Boolean
operations — but have an undecidable emptiness problem.

A separate issue in equational tree automata is that few properties are decid-
able for arbitrary theories. Consequently, most work on equational tree automata
focuses on particular equational theories where one or more symbols satisfies
combinations of specific equations such as associativity (A), commutativity (C),
and idempotence (I). This restriction is unavoidable due to decidability issues,
but leaves open the question as to whether these results can be combined. For
example, tree automata over a theory EAC with an AC symbol and free symbols
are effectively closed under intersection [18], and tree automata over a theory
EACI with an ACI symbol and free symbols are also effectively closed under in-
tersection [24]. Does this imply that tree automata over the combined theory
EAC ∪ EACI are effectively closed under intersection as well?

Our first contribution is to show that tree automata over EAC ∪ EACI are
not effectively closed under intersection. Moreover, the intersection-emptiness
problem, which is decidable for tree automata over EAC and EACI separately, is
undecidable for tree automata over the combined theory EAC ∪ EACI. We obtain
this result by showing that every alternating tree language [25] over a theory
E can be effectively expressed as the intersection of two regular tree languages
over a theory E ′ containing E and an additional ACI symbol. Since the emptiness
problem for alternating AC-tree automata is undecidable [25], it follows that so is
intersection-emptiness for regular tree automata over EAC∪EACI. Since emptiness
is always decidable for regular equational tree automata, it follows that regular
tree automata over EAC ∪ EACI are not effectively closed under intersection.

Our result implies that both the decidability of intersection-emptiness and
effective closure under intersection are non-modular properties, even for disjoint
theories. Modularity is an important property to have, because it aids in the
process of decomposing complex problems into simpler parts which can be rea-
soned about separately. For example, the Shostak [21] and Nelson-Oppen [15]
combination methods have been fundamental to the development of automated
theorem provers that combine the capabilities of many different decision proce-
dures. Given the importance of modularity, we decided to further analyze how
the interaction between the AC symbol and ACI symbol led to undecidability.

Our second contribution is to define a restricted class of tree automata over
a theory E with AC and ACI symbols which are closed under equational congru-
ences. We further show that the emptiness problem is decidable for the Boolean
closure of tree languages in that class — a problem which we call the propo-
sitional emptiness problem as it closely relates to the emptiness problem for
propositional tree automata. The tree automata in the restricted class we con-
sider are called AC-intersection free and subjects each ACI symbol + in E to one
of two constraints: (1) either the clauses in the automaton where + appears must
satisfy certain syntactic restrictions to avoid simulating the intersection clauses

2



of alternating tree automata; or (2) the idempotence equation x + x = x in E
must be treated as a rewrite rule x+x→ x as in the tree automata with normal-
ization framework of [17]. In that framework, some of the equations in E may be
treated as rewrite rules in a confluent and terminating rewrite theory R. Rather
than computing the congruence closure of the tree language modulo E , terms are
first normalized by rewriting with R modulo the remaining equations E ′ ⊆ E ,
and then checked for membership in the underlying equational tree languages
L(A/E ′). Their framework has different semantics than standard equational tree
automata, but is often able to obtain better closure and decidability properties.

An important consequence of our second contribution is that it simultane-
ously solves two open problems: (1) We show that the emptiness problem is
decidable for tree automata with normalization over idempotence rules and AC
equations. This problem was mentioned in [17] and left unsolved. (2) We show
that the propositional emptiness problem is decidable for equation tree automata
over the theory EACI containing a single ACI symbol and arbitrary free symbols.
This problem is interesting, because equational tree automata over EACI are not
closed under complementation [23]. Its decidability also has a further implication
— propositional emptiness is a non-modular property. Our earlier undecidabil-
ity result implies that propositional emptiness is undecidable for equational tree
automata over EAC∪EACI, while propositional emptiness is decidable for EAC [18].

One underlying goal in this work is to develop better tree automata tech-
niques for non-linear theories. This is important in applications such as sufficient
completeness checking where existing techniques either do not support rewrit-
ing modulo axioms [2] or are restricted to left-linear rewrite rules [8]. Although
sufficient completeness checking is undecidable in general for specifications with
non-linear rules and rewriting modulo AC [12], our decidability results show that
sufficient completeness is decidable modulo AC when the every non-linear rule
in the specification has the form f(x, x)→ r. It would be interesting to see if the
techniques presented here can be extended to other forms of non-linear rules.

This paper is organized as follows. In Section 2, we review basic concepts
from rewriting and tree automata. In Section 3, we show how alternating tree
languages can be expressed as the intersection of two regular tree languages.
In Section 4, we define a subclass of equational tree automata, which we call
AC-intersection free, and state a decidability result which solves the two open
problems discussed previously, and in Section 5, we present our algorithm for
showing the previous decidability result. Finally, we discuss related work and
suggest avenues for future research in Section 6.

2 Preliminary Definitions

We assume the reader is familiar with equational logic and rewriting as well as
tree automata [1].

3



2.1 Equational and Rewrite Theories

An equational theory E = (F,E) consists of a signature F together with a set of
equations l = r with l, r ∈ TF (X). For each term t ∈ TF (X), we let [t]E denote
the equivalence class of terms equal to t with respect to the equivalence relation
=E induced by E . We just write [t] for [t]E when the theory can be inferred from
the context, and we let TE denote the F -algebra whose universe TE consists of
the equivalence classes of TF formed by =E .

A rewrite theory R is a set of rewrite rules of the form l → r with l, r ∈
TF (X). A term t ∈ TF (X) rewrites to u ∈ TF (X) module E , denoted t→R/E u
if there is rule l→ r ∈ R, context C, and substitution θ such that t =E C[lθ] and
u =E C[rθ]. A term t is R/E-irreducible if it cannot be further rewritten. We
write t↓R/Eu if there is a term v ∈ TF (X) such that t→∗R/E v and u→∗R/E v. A
rewrite theoryR is terminating modulo E if→+

R/E is well-founded.R is confluent
if t →∗R/E u and t →∗R/E v implies u↓R/Ev. If R is terminating and confluent
modulo E , then for all t ∈ TF , there effectively exists an R/E-irreducible term
t↓R/E ∈ TF that is unique up to =E . We let CanR/E ⊆ TE denote the canonical
term algebra whose universe is the set of E-equivalence classes ofR/E-irreducible
terms.

In this paper, we restrict our attention to equational theories E only contain-
ing axioms with the following forms:

(x+ y) + z = x+ (y + z) x+ y = y + x x+ x= x
associativity commutativity idempotence

Relative to an equational theory E , if a symbol f ∈ F does not appear in any of
the equations, we say it is a free symbol. If f ∈ F appears in associativity and
commutativity equations but no other equations, we say that it is an AC sym-
bol. Finally, if f ∈ F appears in associativity, commutativity, and idempotence
equations, we say that it is an ACI symbol. We shall restrict our attention to
equational theories where each symbol is a free, AC, or ACI symbol.

2.2 Tree Automata

We treat tree automata as collections of Horn clauses of particular forms as
in [25]. A regular E-tree automaton A is a finite set of Horn clauses each with
the form:

p(f(x1, . . . , xn))⇐ p1(x1), . . . , pn(xn) regular clause

where f ∈ F has arity n and p, p1, . . . , pn are elements of a finite set of unary
predicate symbols called the states of the automaton. In some definitions, tree
automata may also contain ε-clauses of the form p(x) ⇐ q(x), but these can
be eliminated without loss of expressive power. We write A/E ` p(t) if p(t) is
entailed by the axioms in A∪E . There are a variety of different inference systems
for entailment with equivalent semantics, and when it is necessary to refer to a

4



equivalence
t =E u A/E ` p(u)

A/E ` p(t)

membership
A/E ` A1θ . . . A/E ` Anθ

A/E ` Aθ if A⇐A1 . . . An ∈ A

Fig. 1. Inference System for A/E

specific inference steps, we use the inference rules in Fig. 1, For an equational
theory E = (F,∅) with no equations, we write A ` p(t) for A/E ` p(t).

We keep the acceptance condition separate from the automaton itself, and
since the automaton only recognizes languages that are closed modulo E , we
define languages as subsets of TE rather than TF . For each state p belonging to
A, the language recognized by p in A, denoted Lp(A/E) ⊆ TE , is defined by

Lp(A/E) = { [t] ∈ TE | A/E ` p(t) }. (1)

One fundamental result from [25] about regular E-tree automata is:

Theorem 1. For each theory E and regular E-tree automaton A,

A/E ` p(t) ⇐⇒ (∃u ∈ [t]E)A ` p(u).

For an arbitrary theory E , the class of languages recognized by regular E-tree
automata is closed under union, but not under intersection or complementation.
Motivated by this fact, an equational tree automata framework called proposi-
tional tree automata is introduced in [9] that is effectively closed under Boolean
operations in all theories. The key idea is to use a propositional formula rather
than a set of final states as the acceptance condition for defining the language rec-
ognized by the automaton. In this paper, we present an alternative formalization
that preserves the basic idea. Given a tree automaton A with states Q, we ex-
tend (1) from languages Lp(A/E) recognized by a state p to languages Lφ(A/E)
recognized by a propositional formula φ constructed from atomic predicates Q
and Boolean connectives ∧ and ¬:

Lφ1∧φ2(A/E) = Lφ1(A/E) ∩ Lφ2(A/E) L¬φ1(A/E) = TE \ Lφ1(A/E).

There are many decision problems that have been studied in the context of
tree automata. The membership problem for E is the problem of deciding for
an equivalence class [t] ∈ TE , E-tree automaton A and state p in A whether
[t] ∈ Lp(A/E). The emptiness problem for E is the problem of deciding for
an E-tree automaton A and state p whether Lp(A/E) = ∅. This problem is
decidable in linear time for an arbitrary theory E using Theorem 1 and standard
tree automata techniques [1]. The intersection-emptiness problem for E is the
problem of deciding for an E-tree automatonA and states p1, . . . , pn ofA whether

5



Lp1(A/E) ∩ · · · ∩ Lpn
(A/E) = ∅. Finally, the propositional emptiness problem

for E is the problem of deciding for an E-tree automaton A with states Q and
propositional formula φ over atomic predicates Q whether Lφ(A/E) = ∅.

It is known that both the intersection-emptiness and propositional emptiness
problem is decidable for regular equational tree automata over a theory EAC

with AC and free symbols [16]. In contrast, both intersection-emptiness and
propositional emptiness are undecidable for regular equational tree automata
over a theory EA with associative and free symbols [18]. As an example of a tree
automata framework where intersection-emptiness is decidable and propositional
emptiness is undecidable, we refer the reader to the monotone AC tree automata
framework of [19].

3 Alternating Tree Automata

One extension to tree automata is the alternating tree automata framework
of [22] which was extended to the equational case in [25]. In a Horn-clause repre-
sentation, an alternating tree automaton is a tree automaton which in addition
to regular clauses, may also contain intersection clauses of the form:

p(x)⇐ p1(x), p2(x) intersection clause.

Alternating E-tree automata are closed under both intersection and union, but
are not always closed under complementation. If E is the free theory, i.e., E =
(F,∅), then the class of languages recognized by alternating and regular au-
tomata coincide. However, this is often not the case for other theories. For ex-
ample, alternating AC-tree automata are strictly more powerful than regular
AC-automata. In particular, the emptiness problem is undecidable for alternat-
ing AC-tree automata [25].

Our first new result in this paper is to show that every alternating E-tree
language is isomorphic to the intersection of two regular E ′-tree languages where
E ′ is the theory obtained by adding a fresh ACI symbol ◦ to E .

Theorem 2. Let E = (F,E) and E ′ = (F ′, E′) be equational theories such that
E ′ contains the symbols and equations in E and adds a fresh ACI operator ◦.

Given an alternating E-tree automaton A with states Q, one can effectively
construct a regular E ′-tree automaton B containing the states Q and an additional
fresh state k such that

– For all p∈Q and t∈TF , A/E ` p(t) ⇐⇒ B/E ′ ` p(t).
– For all t∈TF ′ , B/E ′ ` k(t) ⇐⇒ TF ∩ [t]E′ 6= ∅.

Proof. Let B be the automaton containing the following clauses:

– B contains all of the clauses in A that are not intersection clauses;
– for each intersection clause p(x) ⇐ p1(x), p2(x) in A, B contains the clause
p(x1 ◦ x2)⇐ p1(x1), p2(x2); and

6



– for each symbol f ∈ F with arity n, B contains the clause
k(f(x1, . . . , xn))⇐ k(x1), . . . , k(xn).

We first show that A/E ` p(t) implies B/E ′ ` p(t) for all p ∈ Q. Since B
contains all the clauses in A other than the intersection clauses, all we need to
show is that B∪E ′ entails each intersection clause q(x)⇐ q1(x), q2(x) in A. This
is immediate, because B must contain the clause q(x1 ◦x2)⇐ q1(x1), q2(x2), and
so B entails q(x ◦ x)⇐ q1(x), q2(x). The theory E ′ contain the axiom x ◦ x = x,
and thus B ∪ E ′ entails q(x)⇐ q1(x), q2(x).

We now show that B/E ′ ` p(t) implies A/E ` p(t) for all p ∈ Q. If B/E ′ `
p(t) then by Theorem 1 there is a term u ∈ TF ′ such that t =E′ u such that
B ` p(u). We construct a term v ∈ TF such that u =E′ v and A/E ` p(v). Since
t =E′ u =E′ v and neither t nor v contain the added symbol ◦, it is not difficult
to show that t =E v, and thus A/E ` p(t).

We construct the term v ∈ TF from the proof that B ` p(u) by analyzing
the proof bottom-up starting from the leaves. Each inference step that does not
use a clause containing the idempotence symbol ◦ has a direct corresponding
inference step using the clauses in A and can be handled easily. On the other
hand, given an inference step of the form

B ` q1(u1) B ` q2(u2)
B ` q(u1 ◦ u2)

with q(x1 ◦x2)⇐ q1(x1), q2(x2) in B, we first observe that u1 =E′ u2 =E′ u1 ◦u2,
because u1 ◦ u2 is a subterm of u, and u is equivalent to t ∈ TF which does not
contain the symbol ◦. By induction, we know that for i ∈ [1, 2], there is a term
vi ∈ TF such that ui =E′ vi and A/E ` qi(vi). As v1 =E′ u1 =E′ u2 =E′ v2 and
both v1 and v2 are in TF , it follows that v1 =E v2, and thus A/E ` p2(v1). By
using the intersection clause p(x)⇐ p1(x), p2(x) inA, it follows thatA/E ` p(v1)
and thus we are done as v1 =E u1 =E u1 ◦ u2.

Finally, we show that B/E ′ ` p(t) if and only if TF ∩ [t]E′ 6= ∅ for all t ∈ TF ′ ,
by observing that B ` k(u) iff u is in TF , and so by Theorem 1,

B/E ′ ` k(t) ⇐⇒ (∃u∈ [t]E′) B ` k(u) ⇐⇒ TF ∩ [t]E′ 6= ∅.

ut

From this theorem, it follows that for each p ∈ Q, the languages Lp(A/E) and
Lp(B/E ′) ∩ Lk(B/E ′) are isomorphic with the bijective mapping

hp : [t]E ∈ Lp(A/E) 7→ [t]E′ ∈ Lp(B/E ′) ∩ Lk(B/E ′).

Although this connection between alternating and regular languages seems
worth further study, our main interest in this result is that allows us to use
the result in [25] about the undecidability of emptiness for alternating AC-tree
automata to show that intersection-emptiness is undecidable for regular tree
automata over a theory E with both an AC and ACI symbol.

7



Corollary 1. If E is an equational theory with 4 constants, an AC symbol,
and an ACI symbol, then the intersection-emptiness problem for regular tree
automata over E is undecidable.

Proof. Let EAC denote the equational theory obtained by removing the ACI sym-
bol from E . The theory EAC is torsion-free according to the definition in [25] with
regard to the 4 constants, and consequently the emptiness problem is undecid-
able for alternating EAC-tree automata by Prop. 11 in [25]. By Theorem 2, for
each alternating automaton A, we can construct a regular E-tree automaton B
such that Lp(A/EAC) = ∅ iff Lp(B/E) ∩ Lk(B/E) = ∅. ut

The theory E in the previous statement can be partitioned into disjoint the-
ories EAC and EACI where EAC contains the AC symbol and EACI contains the ACI
symbol and the constants are split freely between them. Intersection-emptiness
is decidable for both EAC [18] and EACI [24], but as the previous statement shows
it is undecidable for E = EAC ∪ EACI. It follows that intersection-emptiness is
a non-modular property for equational tree automata even for combinations of
disjoint theories.

4 AC-Intersection Free Tree Automata

Having shown that intersection-emptiness is undecidable in general for equa-
tional tree automata over a theory E with AC and ACI symbols, we have decided
to search for a restricted subclass of equational tree automata over E for which
not only is intersection-emptiness decidable, but so is the propositional empti-
ness problem. Our search for this class began by trying to eliminate the main
culprit that led to the undecidability result in Cor. 1 — the ability of clauses
with ACI symbols to simulate the intersection clauses of an alternating AC-tree
automata.

The solution we have found is to subject each ACI symbol ◦ in E to one of two
constraints: (1) either the clauses in the automaton where ◦ appears must satisfy
certain syntactic restrictions explained below; or (2) the idempotence equation
x◦x = x in E must be treated as a rewrite rule x◦x→ x as in the tree automata
with normalization framework of [17]. We first define the syntactic restrictions:

Definition 1. Let E be an equational theory E in which each symbol is AC, ACI,
or free. A regular E-tree automaton A is AC-intersection free iff for each clause
in A with the form p(x1 ◦ x2) ⇐ p1(x1), p2(x2) where ◦ ∈ F is an ACI symbol,
it is the case that for all q1, q2 ∈ Q, and AC or ACI symbols + 6= ◦,

p1(x1 + x2)⇐ q1(x1), q2(x2) ∈ A =⇒ p(x1 + x2)⇐ q1(x1), q2(x2) ∈ A.

One important observation is that AC-intersection free automata are closed
under disjoint unions — that is given two AC-intersection free E-tree automata
A and B such that the states have been renamed so that the states in A and
B are disjoint, the union E-tree automaton C = A ∪ B is also AC-intersection

8



free. Moreover, Lp(A/E) = Lp(C/E) for each state p in A, and Lq(B/E) =
Lq(C/E) for each state q in A. Since we will soon show that the propositional
emptiness problem is decidable for AC-intersection free automata, it follows that
the emptiness of an arbitrary Boolean combination of AC-intersection free tree
languages is decidable even if the languages are defined in different automata.

This syntactic restriction may be too strong in some applications, and so
we also study a different approach to handling idempotence equations that is
suggested by the tree automata with normalization framework of [17]. A tree
automaton with normalization (TAN) A is equipped with a rewrite system R
that is confluent and terminating modulo an equational theory E . A term t is
accepted by TAN A if its normal form [t↓R/E ] is in the underlying equational
tree language L(A/E). This framework borrows the fundamental idea in term
rewriting, namely that some of the equations in a theory E ′ are best handled
by orienting them as rewrite rules in a rewrite system R in a way so that R
is confluent and terminating modulo the remaining equations E ⊆ E ′. As R is
terminating and confluent modulo E , the language is closed with respect to both
the equations in E and the equations obtained from the rules in R.

Our interest in the TAN framework stems from the fact that if RI is a rewrite
system containing idempotence rules f(x, x)→ x for some of the AC symbols in
a theory E with free, AC, and ACI symbols, then RI is confluent and terminating
modulo E . This suggests that as an alternative to the restrictions in Def. 1, we
can treat some of the idempotence equations as rules, and still have a class of tree
automata closed modulo both the equations in E and the underlying equations
in RI. By handling the idempotence equations as rules, we avoid the problem
of simulating intersection clauses, because that simulation relies on applying
idempotence in the direction x→ x+ x.

By requiring that each ACI symbol either satisfies the syntactic constraints
in the definition of AC-intersection free automata, or treats the idempotence
equation as a rule as in the tree automata with normalization approach, we
describe an algorithm in the next section whose correctness implies the following:

Theorem 3. Let E = (F,E) be a theory with free, AC, and ACI symbols, and
let RI be a rewrite theory where the only axioms are idempotence rules of the
form x+ x→ x for an AC symbol + ∈ F .

If A is an AC-intersection free E-tree automaton with states Q and φ is a
propositional formula with atomic predicates Q, it is decidable whether

CanRI/E ∩ Lφ(A/E) = ∅.

One important observation about this theorem is that it implies the decidability
of two open questions both of which can be viewed as special cases:

The first open question settled by Theorem 3 is the problem of deciding the
emptiness of the language accepted by a tree automata with normalization over
an equational theory EAC with AC and free symbols and a rewrite system RI

containing idempotence equations for some of the AC symbols in EAC. Specifi-
cally, we want to decide whether CanRI/EAC

∩ Lp(A/EAC) = ∅ for each EAC-tree

9



automaton A and state p in A. The problem was mentioned in [17], but left
unsolved. Theorem 3 solves this problem, because EAC contains no ACI sym-
bols and thus every EAC-tree automaton is AC-intersection free. One observation
made in [17] is that for tree automaton with normalization, the decidability of
the emptiness problem only depends on the left hand sides of the rules in R. It
follows that if the emptiness problem is decidable when R contains idempotence
rules x+x→ x, it is also decidable when R contains nilpotence rules x+x→ 0.

The second open question settled by Theorem 3 is the problem of deciding
the propositional emptiness of equational tree automata over a theory EACI with
a single ACI symbol and free symbols. This problem is interesting, because equa-
tional tree automata over EACI are not closed under complementation [23], and
so the propositional emptiness problem is not reducible to the emptiness prob-
lem in this theory. Theorem 3 solves this problem, because EACI contains only a
single ACI symbol, and thus every EACI-tree automaton is AC-intersection free.
Solving the propositional emptiness problem also shows that both subsumption
(Lp(A/EACI) ⊆ Lq(B/EACI)) and universality (Lp(A/EACI) = TEACI

) are decidable
for equational tree automata over EACI, and both problems appear to be open.
Additionally, since intersection-emptiness is undecidable for equational tree au-
tomata over EAC∪EACI due to Cor. 1, it follows that propositional emptiness over
EAC ∪ EACI is undecidable as well. However, propositional emptiness is decidable
for EAC [18] and implied to be decidable for EACI by Theorem 3. It follows that
propositional emptiness is also a non-modular property for the combination of
disjoint theories.

5 Decision Procedure

In this section, we define an algorithm that solves the decision problem posed
in Theorem 3. We begin with a discussion of our overall approach, and how
any solution to check the emptiness of a regular equational tree language over
a theory containing idempotence axioms appears to also require being able to
compute the size of a language. We then present results about terms whose root
is a free symbol in Section 5.1, and present results abouts terms whose root is
an AC or ACI symbol in Section 5.2. In Section 5.3, we present our function
for estimating the number of distinct equivalence classes that reach a particular
profile. Finally, in Section 5.4, we present the algorithm itself, and verify its
correctness.

For this section, E = (F,E) denotes a theory in which each symbol is AC,
ACI, or free,RI denotes a rewrite system where the only axioms are idempotence
rules of the form x+ x→ x for an AC symbol + ∈ F , and A denotes a regular
AC-intersection free E-tree automaton with states Q. At times it is useful to treat
all the idempotence equations as idempotence rules. We let EAC ⊆ E containing
only the associativity and commutativity equations in E , and we let R̂I denote
the rewrite system containing the rules in RI as well as a rule x + x → x for
each equation x + x = x in E . It can be observed that R̂I is terminating and
confluent modulo EAC, so for all RI/E-irreducible terms t, u ∈ TF , t =E u iff

10



t↓R̂I/EAC
=EAC

u↓R̂I/EAC
. For all [t], [u] ∈ CanRI/E , we say that [t] is a flattened

subterm of [u], denoted [t] Eflat [u], if either:

– u↓R̂I/EAC
=EAC

f(u1, . . . , un) with f a free symbol and t↓R̂I/EAC
=EAC

ui for
some i ∈ [1, n], or

– u↓R̂I/EAC
=EAC

u1+· · ·+un with + an AC or ACI symbol, n ≥ 2, root(ui) 6= +
for all i ∈ [1, n], and t↓R̂I/EAC

=EAC
ui for some i ∈ [1, n].

Our algorithm is similar to the subset construction algorithm in [9] for check-
ing the propositional emptiness of equational tree automata over A and AC
symbols. For each [t] ∈ TE , the profile of [t], denoted profile([t]), is a pair that
contains all the information about [t] relevant to the algorithm.

Definition 2. Let profile : TE → F×P(Q) be the function such that:

profile([t]) = (root(t↓R̂I/EAC
), statesA/E([t])).

where statesA/E([t]) = { p ∈ Q | A/E ` p(t) }.

Note that root(t↓R̂I/EAC
) is uniquely determined as EAC only contains associativity

and commutativity axioms which do not change the root symbol of a term.
For an automaton B with states Q′ over a theory E ′ = (F ′, E′) with free, A,

and AC symbols, we presented a semi-algorithm in [9] for constructing the set

det(B) = { (f, P ) ∈ F ′×P(Q′) | (∃[t] ∈ TE′) root([t]) = f ∧ statesB/E′([t]) = P }.

By computing this set, we can decide if Lφ(B/E ′) 6= ∅ by checking for a profile
(f, P ) ∈ det(B) such that P |= φ where P |= φ is defined inductively:

P |=φ1 ∧φ2 iff P |=φ1 and P |=φ2 P |=¬φ iff P 6|=φ P |= p iff p∈P

For solving the problem in Theorem 3, this approach is inadequate for two
reasons: (1) We want to decide whether CanRI/E ∩ Lφ(A/E) = ∅ rather than
deciding whether Lφ(A/E) = ∅. (2) Both E and R may contain idempotence
axioms, and idempotence appears to require constructing a structure that not
only allows checking it there exists a term with a particular profile, but also how
many distinct terms have that profile. We illustrate this with an example. Let
EACI be the theory containing an ACI symbol ◦ and constants a, b, and c, and
let B be the EACI-tree automaton with the rules:

p1(a) p1(b) p2(x1 ◦ x2)⇐ p1(x1), p1(x2) p3(x1 ◦ x2)⇐ p1(x1), p2(x2).

In this automaton, one can observe that

Lp2(B/EACI) = Lp3(B/EACI) = { [a ◦ a], [a ◦ b], [b ◦ b] },

and consequently Lp3∧¬p2(B/EACI) = ∅. Now consider the automaton B′ con-
taining the clauses in B and the additional clause p1(c). One can observe that
Lp3∧¬p2(B′/EACI) = { [a ◦ b ◦ c] }. The language Lp3∧¬p2(B′/EACI) is not empty,

11



because there are 3 distinct elements in Lp1(B′/EACI), whereas Lp1(B/EACI) only
contains 2 elements. It is relatively straightforward to generalize this idea, so
that for any positive integer n ∈ N and tree automaton B over E with a state p,
we can construct an tree automaton B′ over the theory E ′ containing E as well
as a fresh ACI symbol ◦, and construct a formula φ over the states in B′ such
that

Lφ(B′/E) 6= ∅ ⇐⇒ |Lp(B/E)| = n.

Since a language may contain a (countably) infinite number of elements,
for reasoning about the size of the language, it is helpful to extended basic
arithmetic operators to ω. Specifically, we extend addition to ω so that it is still
commutative, and satisfies the equations

ω + ω = ω, and n+ ω = ω,

and we extend multiplication to ω so that it is still commutative, and satisfies
the equations

ω × ω = ω, 0× ω = 0, and n× ω = ω if n > 0.

Instead of a set, we construct a directed graph (DA,EA) with the nodes

DA = { d∈F×P(Q) | (∃[t]∈CanRI/E) profile([t]) = d },

and EA contains an edge d1 EA d2 iff there are [t], [u] ∈ CanR̂I/EAC
such that

profile([t]E) = d1, profile([u]E) = d2, and [t] Eflat [u]. The edge relation EA will be
used later in counting the number of equivalence classes with a given profile.

We incrementally construct (DA,EA) by starting with the empty graph
(D0,E0) = (∅,∅) and applying inference rules to form increasing larger sub-
graphs (D1,E1) ⊆ (D2,E2) ⊆ · · · ⊆ (DA,EA) until saturation. This pro-
cess terminates as the size of DA is at most |F | × 2|Q|. Each profile graph
(D,E) ⊆ (DA,EA) can be viewed as representing the (possibly infinite) subset
of CanRI/E that is already explored.

Definition 3. For each graph (D,E) ⊆ (DA,EA), let CanD,E denote the small-
est set containing each [t] ∈ CanRI/E if profile([t]E) ∈ D and for all [u] ∈ CanRI/E ,

[u] Eflat [t] =⇒ [u] ∈ CanD,E ∧ profile([u]) E profile([t]).

Furthermore, for each d ∈ D, we let profile−1
D,E(d) denote the elements in CanD,E

with profile d, i.e., profile−1
D,E(d) = { [t] ∈ CanD,E | profile([t]) = d }.

The graph (DA,EA) can be viewed as the graph where every RI/E-irreducible
term has been explored.

Lemma 1. For all (D,E) ⊆ (DA,EA),

(D,E) = (DA,EA) ⇐⇒ CanD,E = CanRI/E .

12



Proof. We first show that CanDA,EA = CanRI/E . As R̂I is confluent and terminat-
ing modulo EAC, it is sufficient to show that for each R̂I/EAC-irreducible term t ∈
TF , [t]E ∈ CanDA,EA . We prove this by structural induction on t. By definition,
profile([t]) ∈ DA, and so we only need to prove that for all R̂I/EAC-irreducible
terms u ∈ TF , if [u] Eflat [t], then [u] ∈ CanD,E and profile([u]) EA profile([t]).
There are two cases to consider:

– If t = f(t1, . . . , tn) where f is a free symbol. In this case, if u ∈ TF is a
R̂I/EAC-irreducible term such that [u] Eflat [t] then there is an i ∈ [1, n] such
that u =EAC

ti. By induction, we know that [ti]E ∈ CanDA,EA , and [ti] E [u]
by definition. Therefore, [t]E ∈ CanDA,EA .

– Otherwise u = u1 + · · · + un for some AC or ACI symbol + where n ≥ 2,
root(ui) 6= + for all i ∈ [1, n]. In this case, if u ∈ TF is a R̂I/EAC-irreducible
term such that [u] Eflat [t], then there is an i ∈ [1, n] such that u =EAC

ti.
By induction, we know that [ti]E ∈ CanDA,EA and by [ti] Eflat [u]. Therefore,
[t] ∈ CanDA,EA .

On the other hand, if CanD,E = CanRI/E , then for each [t] ∈ CanRI/E , we know
that profile([t]) ∈ D and consequently D = DA. Additionally, for all [t], [u] ∈
CanRI/E , if [t] Eflat [u], then we know profile([t]) E profile([u]). Consequently, E =
EA. ut

5.1 Free Symbols

For each free symbol f ∈ F , we define a function statesf which computes the
states of a term f(t1, . . . , tn) when the states for each term ti are already known:

Definition 4. Given a free symbol f ∈F with arity n, we define the function
statesf : P(Q)n → P(Q) such that for P1, . . . , Pn ⊆ Q, statesf (P1, . . . , Pn) ⊆ Q
is the smallest set containing a state p∈Q if either:

– A contains p(f(x1, . . . , xn))⇐ p1(x1), . . . , pn(xn) where pi ∈Pi for i ∈ [1, n],
– or A contains p(x1 ◦ x2)⇐ p1(x1), p2(x2) ∈ A with ◦ an ACI-symbol in E

and p1, p2 ∈ statesf (P1, . . . , Pn).

The following lemma relates statesA/E and statesf :

Lemma 2. For each term t = f(t1, . . . , tn) ∈ TF with f free in E,

statesA/E([t]) = statesf (statesA/E([t1]), . . . , statesA/E([tn])).

Proof. This lemma is straightforward to show if we first make a few observations.
For all p ∈ Q, we know by Theorem 1 that p ∈ statesA/E([t]) iff there is a term
u ∈ [t] such that A ` p(u). Since u is equivalent modulo E to a term whose root
symbol is the free symbol f , we know that u can only have two possible forms:

13



1. u = f(u1, . . . , un) with ui =E ti for i ∈ [1, n]. In this case, as A ` p(u), A
must contain a clause with the form p(f(x1, . . . , xn)) ⇐ p1(x1), . . . , pn(xn)
where A ` pi(ui) for i ∈ [1, n]. Furthermore, for i ∈ [1, n], ui =E ti and
A ` pi(ui) implies that pi ∈ statesA/E([ti]).

2. u = u1 ◦ u2 with ◦ is an ACI symbol u1 =E u2. In this case, as A ` p(u),
A must contain a clause with the form p(x1 ◦ x2) ⇐ p1(x1), p2(x2) where
A ` p1(u1) and A ` p2(u2). Furthermore, both u1 and u2 are smaller terms
equivalent modulo E to u and t, so p1, p2 ∈ statesA/E([t]).

For i∈ [1, n], let Pi = statesA/E([ti]). These two cases mirror the two rules
used in the definition of statesf , and so it is straightforward to show that for
all u =E t, A ` p(u) =⇒ p ∈ statesf (P1, . . . , Pn) by induction on the
proof used to show that A ` p(u). It is also straightforward to show that
p ∈ statesf (P1, . . . , Pn) =⇒ A/E ` p(t) by induction on the inference steps
used to construct statesf (P1, . . . , Pn). ut

Given a profile graph (D,E) ⊆ (DA,EA), the following lemma is useful for
determining the number of distinct equivalence classes in CanD,E with profile
(f, P ) ∈ DA where f is a free symbol.
Lemma 3. For each profile graph (D,E) ⊆ (DA,EA), and profile (f, P ) ∈ D
where f is a free symbol,∣∣profile−1

D,E(f, P )
∣∣ = ∑

(f1,P1),...,(fn,Pn)∈D
(∀i∈[1,n]) (fi,Pi) E (f,P )

statesf (P1,...,Pn) =P

n∏
i=1

∣∣profile−1
D,E(fi, Pi)

∣∣ . (2)

Note that if S = ∅, the sum
∑
x∈S f(x) = 0 while the product

∏
x∈S f(x) = 1.

Proof. For each [t] ∈ profile−1
D,E(f, P ), we may assume without loss of gener-

ality that t is R̂I/EAC-irreducible. It follows that t has the form f(t1, . . . , tn)
with [ti] ∈ CanD,E for each i ∈ [1, n]. Let Pi = statesA/E([ti]) for i ∈ [1, n].
As [t] is in CanD,E, we know that Pi E (f, P ). By Lemma 2, we know that
statesA/E([f(t1, . . . , tn)]) = P if and only if statesf (P1, . . . , Pn) = P . For each
tuple (d1, . . . , dn) ∈ Dn, let Canf (d1, . . . , dn) ⊆ CanD,E denote the set:

Canf (d1, . . . , dn) = { [f(t1, . . . , tn)] ∈ CanD,E | (∀i∈[1, n]) profile([ti]) = di }.

For distinct tuples ~d1, ~d2 ∈ Dn, it is not difficult to observe that the sets Canf (~d1)
and Canf (~d2) are disjoint. From these observations, we can conclude that:

|CanD,E(f, P )| =
∑

(f1,P1),...,(fn,Pn)∈D
(∀i∈[1,n]) (fi,Pi) E (f,P )

statesf (P1,...,Pn) =P

|Canf ((f1, P1), . . . , (fn, Pn))| . (3)

Moreover, for each tuple (d1, . . . , dn) ∈ Dn, it is not difficult to show that

|Canf (d1, . . . , dn)| =
∣∣profile−1

D,E(d1)
∣∣× · · · × ∣∣profile−1

D,E(dn)
∣∣ . (4)

Equation (2) follows immediately from (3) and (4). ut

14



5.2 AC and ACI Symbols

Similar to [9], we define a context free grammar G(+) for each AC or ACI symbol
+ ∈ F . Intuitively, the grammar captures inferences in the automaton A over
flattened terms with the form t1 + · · ·+ tn where root(ti) 6= + for i ∈ [1, n].

Definition 5. Given an AC or ACI symbol +∈F , we define the context free
grammar G(+) with terminals Σ(+) = (F\{+})×P(Q), non-terminals Q, and
production rules

G(+) = { p := p1p2 | p(x1 + x2)⇐ p1(x1) ∧ p2(x2) ∈ A}
∪ { p := (f, P ) | (f, P ) ∈ Σ(+) ∧ p∈P }.

For each state p ∈ Q, we let Lp(G(+)) denote the language generated by
p using the rules in G(+). For each non-terminal p ∈ Q, a Presburger formula
ψG(+),p(~x) can be constructed with free variables ~x = {xd }d∈Σ(+) whose models
M(ψG(+),p) ⊆ NΣ(+) equal the commutative image of Lp(G(+)) [20], i.e.,

M(ψG(+),p) = {#(w) | w ∈ Lp(G(+)) }.

where # : Σ(+)∗ → NΣ(+) maps each string to the vector counting the number
of occurrences of each letter in the string.

We first show that each parse tree for G(+) corresponds to a proof in A/E :

Lemma 4. For each term t = t1 + · · ·+ tn ∈ TF where n ≥ 1, + an AC or ACI
symbol, and root(ti↓R̂I/EAC

) 6= + for i ∈ [1, n],

#(profile([t1]), . . . , profile([tn])) ∈M(ψG(+),p) =⇒ A/E ` p(t).

Proof. We show this statement by induction on n ≥ 1. There are two cases to
consider:

– If n = 1, G(+) must contain the rule p := profile([t1]). This implies p ∈
statesA/E([t1]), and thus A/E ` p(t1).

– Otherwise n ≥ 2, and G(+) contains a rule p := p1p2 which can be viewed
as partitioning t1, . . . , tn into two sequences: (1) a sequence u1, . . . , um with
1 < m < n and #(profile([u1]), . . . , profile([um])) ∈M(ψG(+),p1) and (2) a se-
quence v1, . . . , vn−m with #(profile([v1]), . . . , profile([vn−m])) ∈M(ψG(+),p2).
Let u = u1 + · · · + um, and let v = v1 + · · · + vnm . As + is associative in
E , we know that t =E u + v. As both m and n − m are less than n, by
induction we know that A/E ` p1(u) and A/E ` p2(v). By the definition of
G(+), we know that A contains the clause p(x1 + x2)⇐ p1(x1), p2(x2), and
consequently A/E ` p(t). ut

Due to the possibility of idempotence equations in E , it is more complex
to show how a proof that A/E ` p(t) corresponds to a parse tree using the
production rules in G(+). We first show the following lemma, which relies on
our assumption that A is AC-intersection free.

15



Lemma 5. For each AC or ACI symbol + ∈ F , if A/E ` p(t), then there is a
term t1 + · · ·+ tn ∈ [t]E such that #(profile([t1]), . . . , profile([tn])) ∈M(ψG(+),p)
and root(ti) 6= + for i ∈ [1, n].

Proof. The term t1 + · · · + tn ∈ [t]E can be inductively constructed from the
proof used to show A/E ` p(t). Equivalence steps in that proof are trivial as the
inductive hypothesis immediately implies a suitable term can be constructed.
For membership steps, there are three cases to consider:

– If root(t↓R̂I/EAC
) 6= +, then we use Theorem 1 to find a u =E t such that

A ` p(u). We know that u↓R̂I/EAC
=EAC

t↓R̂I/EAC
, and thus root(u↓R̂I/EAC

) 6= +.
By definition p ∈ statesA/E([u]), and so G(+) must contain the rule p :=
profile([u]). Consequently, #(profile([u])) ∈M(ψG(+),p), and thus u↓R̂I/EAC

∈
[t]E is exactly the term we are looking for.

– If root(t) = +, then we let t = u+ v. The membership must have the form:

A/E ` p1(u) A/E ` p2(v)
A/E ` p(u+ v)

.

We construct u1+· · ·+um ∈ [u]E and v1+· · ·+vn ∈ [v]E by induction. Let ~u =
#(profile([u1]), . . . , profile([um])) and ~v = #(profile([v1]), . . . , profile([vn])).
We know A contains the clause p(x1 + x2) ⇐ p1(x1), p2(x2), and so G(+)
contains the rule p := p1p2. By induction, we know that ~u ∈ M(ψG(+),p1)
and ~v ∈ M(ψG(+),p2), and so ~u + ~v ∈ M(ψG(+),p). It follows that the term
(u1 + · · ·+ um) + (v1 + · · ·+ vn) ∈ [1]E satisfies the required conditions.

– Otherwise, we know that root(t↓R̂I/EAC
) = + while root(t) 6= +. It follows that

t must have the form t = u ◦ v for some ACI symbol ◦, and the membership
must have the form:

A/E ` p1(u) A/E ` p2(v)
A/E ` p(u ◦ v)

where u =E v =E t. We construct u1 + · · ·+un ∈ [u]E by induction. We know
that n ≥ 2, as u1 + · · · + un =E t implies root(u1 + · · · + un↓R̂I/EAC

) =+.
Let ~u = #(profile([u1]), . . . , profile([un])). By induction we know that ~u ∈
M(ψG(+),p1), and thus G(+) contains a rule of the form p1 := q1q2 as n ≥ 2.
It follows that A contains the rule p1(x1 +x2)⇐ q1(x1), q2(x2). As A is AC-
intersection free, it must also contain must contain the rule p(x1 + x2) ⇐
q1(x1), q2(x2). Thus G(+) contains the p := q1q2, and if we swap this rule
in for the rule p1 := q1q2 used to show ~u ∈ M(ψG(+),p1), it follows that
~u ∈ M(ψG(+),p). It follows that the term u1 + · · · + u1 ∈ [t]E satisfies the
required conditions. ut

For each AC symbol +, we can show:

Lemma 6. For each R̂I/EAC-irreducible term t = t1 + · · ·+ tn ∈ TF where + is
an AC symbol, n ≥ 1, and root(ti) 6= + for i ∈ [1, n],

A/E ` p(t) ⇐⇒ #(profile([t1]), . . . , profile([tn])) ∈M(ψG(+),p).

16



Proof. By lemma 4, if #(profile([t1]), . . . , profile([tn])) ∈M(ψG(+),p), then A/E `
p(t). On the other hand, if A/E ` p(t) then by Lemma 5, there is a term
u1 + · · · + um =E t such that #(profile([u1]), . . . , profile([um])) ∈ M(ψG(+),p)
and root(ui) 6= + for i ∈ [1,m]. As t1 + · · · + tn =E u1 + · · · + um, and + only
appears in associativity and commutativity equations, it follows that m = n
and #(profile([u1]), . . . , profile([um])) = #(profile([t1]), . . . , profile([tn])). Conse-
quently,

#(profile([t1]), . . . , profile([tn])) ∈M(ψG(+),p).

ut

For each ACI symbol ◦, we can show:

Lemma 7. For each R̂I/EAC-irreducible term t = t1 ◦ · · · ◦ tn ∈ TF where ◦ is
an ACI symbol, n ≥ 1, and root(ti) 6= ◦ for i ∈ [1, n],

A/E ` p(t) ⇐⇒
#(profile([t1]), . . . , profile([tn])) ∈M((∃~y) ~xv ~y ∧ ψG(◦),p(~y))

where ~x v ~y is the formula
∧

d∈Σ(◦)

xd ≤ yd ∧ ((yd > 0)⇒ (xd > 0)).

Proof. We let ~x = #(profile([t1]), . . . , profile([tn])) We first show that if there is
a ~y ∈ NF×P(Q) such that ~x v ~y and ψG(◦),p(~y) holds, then A/E ` p(t). Since
~x v ~y, we know that for each d ∈ Σ(◦), if yd > xd, then xd > 0 and consequently
there is a term td ∈ TF such that td = ti for some i ∈ [1, n]. We let u ∈ TF ,
denote the term u = t ◦ u1 ◦ · · · ◦ um where for each d ∈ D such that yd > xd,
there are exactly yd − xd distinct indices d(1), . . . , d(yd − xd) ∈ [1,m] such that
ud(i) = td. It is not difficult to show that u =E t as ◦ is ACI, and moreover
~x+ #(profile(u1), . . . , profile(um)) = ~y. It follows by Lemma 4 that A/E ` p(u),
and thus A/E ` p(t).

We now show that if A/E ` p(t), then there is a vector ~y ∈ NΣ(◦) such
that #(profile([t1]), . . . , profile([tn])) v ~y and ~y ∈ M(ψG(◦),p). In this case, by
Lemma 5, there is a term u1 ◦ · · · ◦ um =E t such that

#(profile([u1]), . . . , profile([um])) ∈M(ψG(◦),p).

and root(ui↓R̂I/EAC
) 6= ◦ for i ∈ [1,m]. As t is R̂I/EAC-irreducible, there must be

a surjective function h : [1,m] → [1, n] such that ui =E th(i) for i ∈ [1,m]. Let
~y = #(profile([u1]), . . . , profile([um])). For each d ∈ D, the existence of h implies
xd ≤ yd and the surjectivity of h implies that yd > 0 =⇒ xd > 0. ut

For each profile (+, P ) ∈ F×P(Q) with + an AC or ACI symbol, we use
G(+) in the definition of the Presburger formula ψ+,P (~x) which identifies terms
whose profile is (+, P ). For AC symbols + ∈ F , we let

ψ+,P (~x) = |~x| ≥ 2 ∧
^
p∈P

ψG(+),p(~x) ∧
^

p∈Q\P

¬ψG(+),p(~x)

17



where |~x| is the sum of the variables xd ∈ ~x. For ACI symbols ◦ ∈ F , we let

ψ◦,P (~x) = |~x| ≥ 2 ∧
^
p∈P

(∃~y) ~x v ~y ∧ ψG(◦),p(~y) ∧
^

p∈Q\P

¬(∃~y) ~xv ~y ∧ ψG(◦),p(~y)

The following lemma describes precisely how the models in M(ψ+,P ) corre-
spond to R̂I/EAC-irreducible terms with a particular profile.

Lemma 8. For each R̂I/EAC-irreducible term t = t1+· · ·+tn ∈ TF where + ∈ F
is an AC or ACI symbol, n ≥ 1, and root(ti) 6= + for i ∈ [1, n],

profile([t]) = (+, P ) ⇐⇒ #(profile([t1]), . . . , profile([tn])) ∈M(ψ+,P ).

Proof. Since t is R̂I/EAC irreducible, we know that profile([t]) = (+, P ) iff n > 2
and A/E ` p(t) ⇐⇒ p ∈ P for p ∈ Q. Let ~x = #(profile(t1), . . . , profile(tn)).

– If + is an AC symbol, then by Lemma 6, A/E ` p(t) ⇐⇒ ~x ∈M(ψG(+),p).
It follows that p ∈ P ⇐⇒ ∈M(ψG(+),p), and consequently

profile([t]) = (+, P ) ⇐⇒ ~x ∈M(ψ+,P ).

– Otherwise + is an ACI symbol, and by Lemma 7, A/E ` p(t) iff there
is a ~y ∈ NΣ(+) such that ~xv ~y and ~y ∈ M(ψG(+),p(~y)). It follows that
p ∈ P ⇐⇒ ~x ∈M((∃~y) ~xv ~y ∧ ψG(+),p(~y)), and consequently

profile([t]) = (+, P ) ⇐⇒ ~x ∈M(ψ+,P ).

ut

We now turn our attention to the problem of counting the number of distinct
elements in CanD,E with profile (+, P ) ∈ DA where + is an AC or ACI symbol.
For doing this, the classical choose function C : (N ∪ {ω })×N→ N ∪ {ω } which
has been partially extended to ω becomes quite useful.

C(n, k) = n!/(k!(n− k)!), C(ω, 0) = 1, and C(ω, k) = ω if k > 0.

For a symbol ◦ ∈ F that is ACI in E or AC in E andRI contains the rule x◦x→ x
appears in R, each equivalence class [t1 ◦ · · · ◦ tn] ∈ CanRI/E can be viewed as
a set { [t1], . . . , [tn] } ⊆ CanRI/E . For these symbols, the following classical result
about C becomes quite useful:

Proposition 1. Given a finite or countably infinite set A and natural number
k ≤ |A|, the total number of distinct subsets of A with size k equals C(|A| , k). ut

For an AC symbols + ∈ F where R does not contain an idempotence rule,
each equivalence class [t1 + · · · + tn] ∈ CanRI/E can be viewed as a multiset
{{ [t1], . . . , [tn] }} ∈ NCanRI/E . For these symbols, the following classical result
about C becomes quite useful:

18



Proposition 2. Given a non-empty finite or countably infinite set A and nat-
ural number k ∈ N, the total number of distinct multisets of A is given by the
formula C(|A|+ k − 1, k). ut

For a symbol ◦ is idempotent in E or R, we need the following result about
the size of profile−1

D,E(◦, P ):

Lemma 9. For each profile graph (D,E) ⊆ (DA,EA), and profile (◦, P ) ∈ D
where ◦ is a symbol that is idempotent in E or RI,∣∣profile−1

D,E(◦, P )
∣∣ = ∑

~u∈M(ψ◦,P,CanD,E
)

∏
dE(◦,P )

C(
∣∣profile−1

D,E(d)
∣∣ , ud) (5)

where ψ◦,P,CanD,E(~x) = ψ◦,P (~x) ∧
∧

dE (◦,P )

xd ≤
∣∣profile−1

D,E(d)
∣∣ ∧ ∧
d 6E (◦,P )

xd = 0.

Proof. For each ~v ∈ NΣ(◦), let profile−1
D,E,◦(~v) ⊆ Can∗D,E denote the set

profile−1
D,E,◦(~v) = { {[t1], . . . , [tn]}⊆CanD,E | (∀i, j ∈ [1, n]) i 6= j =⇒ ti 6=E tj

∧ #(profile([t1]), . . . , profile([tn])) = ~v }.

For each R̂I/EAC-irreducible term t ∈ TF such that [t]E ∈ profile−1
D,E(◦, P ), we

know that t must have the form t = t1 ◦ · · · ◦ tn where n ≥ 2. Moreover, we can
assume that each term ti is distinct with root(ti) 6= ◦ and [ti]E ∈ CanD,E for
i ∈ [1, n]. Let ~x = #(profile([t1]), . . . , profile([tn])). By Lemma 8, we know that
~t ∈ M(ψ◦,P ). As [ti] ∈ CanD,E for i ∈ [1, n], we know that xd ≤

∣∣profile−1
D,E(d)

∣∣
for d ∈ D. It follows that ~x ∈ M(ψ◦,P ). For distinct vectors ~u,~v ∈ NΣ(◦), we
know that profile−1

D,E,◦(~u) and profile−1
D,E,◦(~v) are disjoint sets, and consequently,∣∣profile−1

D,E(◦, P )
∣∣ = ∑
~u∈M(ψ◦,P,CanD,E

)

∣∣profile−1
D,E,◦(~u)

∣∣ . (6)

Moreover, if we partition equivalence classes in each set in profile−1
D,E,◦(~u) by

their profile, it can be observed that:∣∣profile−1
D,E,◦(~u)

∣∣ = ∏
dE(◦,P )

∣∣{P ⊆ profile−1
D,E(d) | |P | = ud }

∣∣ . (7)

Finally, by Prop. 1, it follows that for each k ≤
∣∣profile−1

D,E(d)
∣∣,∣∣{P ⊆ profile−1

D,E(d) | |P | = k }
∣∣ = C(

∣∣profile−1
D,E(d)

∣∣ , k). (8)

Equation (5) follows immediately from (6), (7), and (8). ut

For an AC symbol + is not idempotent in R, we need the following result
about the size of profile−1

D,E(+, P ):

19



Lemma 10. For each profile graph (D,E) ⊆ (DA,EA), and profile (+, P ) ∈ D
where + is an AC symbol in E that is not idempotent in RI,∣∣profile−1

D,E(+, P )
∣∣ = ∑
~u∈M(ψ+,P,CanD,E

)

∏
dE(+,P )

|profile−1
D,E(d)|>0

C(
∣∣profile−1

D,E(d)
∣∣+ud−1, ud) (9)

where ψ+,P,CanD,E(~x) = ψ+,P (~x) ∧
∧

dE (+,P )

|profile−1
D,E(d)|=0

xd = 0
∧

d 6E (+,P )

xd = 0.

Proof. For each ~v ∈ NΣ(+), let profile−1
D,E,+(~v) ⊆ Can∗D,E denote the set

{ {{[t1], . . . , [tn]}}∈NCanD,E | #(profile([t1]), . . . , profile([tn])) = ~v }.

For each [t]E ∈ profile−1
D,E(+, P ), we can assume that t is R̂I/EAC-irreducible and

t = t1 + · · ·+ tn where n ≥ 2, root(ti) 6= +, and [ti]E ∈ CanD,E for i ∈ [1, n]. Let
~t = #(profile([t1]), . . . , profile([tn])). By Lemma 8, we know that ~t ∈ M(ψ+,P ).
By the definition of CanD,E we know that for i ∈ [1, n], profile([ti]) E (+, P ).
For i ∈ [1, n], if ti has a profile d, then we know that ti ∈ profile−1

D,E,+(d) and
consequently

∣∣profile−1
D,E,+(d)

∣∣ > 0. It follows that ~t ∈ M(ψ+,P ). For distinct
vectors ~u,~v ∈ NΣ(+), we know that profile−1

D,E(~u) and profile−1
D,E(~v) are disjoint

sets. By putting the last two observations together, we can conclude that:∣∣profile−1
D,E(+, P )

∣∣ = ∑
~u∈M(ψ+,P,CanD,E

)

∣∣profile−1
D,E(~u)

∣∣ . (10)

Moreover, if we partition the elements of each multiset in profile−1
D,E(~u) by their

profile d, it is not difficult to show that∣∣profile−1
D,E(~u)

∣∣ = ∏
dE(+,P )

∣∣∣{ ~x ∈ Nprofile−1
D,E(d) | |~x| = ud }

∣∣∣ . (11)

Finally, by Prop. 2, it follows that for each k ∈ N and d ∈ D where profile−1
D,E(d)

is non-empty,∣∣∣{ ~x ∈ Nprofile−1
D,E(d) | |~x| = k }

∣∣∣ = C(
∣∣profile−1

D,E(d)
∣∣+ k − 1, k). (12)

Equation (9) follows immediately from (10), (11), and (12). ut

5.3 Computing the Size of a Language

We next present a function cntD,E : D → N ∪ {ω } which for each graph
(D,E) ⊆ (DA,EA) and profile d ∈ D, returns an estimate of the number of
elements in CanRI/E with the profile d. We show below that for each d ∈ D,∣∣profile−1

D,E(d)
∣∣ ≤ cntD,E(d) ≤

∣∣profile−1
DA,EA(d)

∣∣ . (13)

Before showing this, we first must define cntD,E.

20



Definition 6. For each (D,E) ⊆ (DA,EA), let cntD,E :D→N ∪ {ω } be the
function such that cntD,E(d) = ω if dE+d and otherwise

– For each constant c ∈ F , cntD,E(c, P ) = 1.
– For each free symbol f ∈ F with arity n > 0,

cntD,E(f, P ) =
∑

(f1,P1),...,(fn,Pn)∈D
(∀i∈[1,n]) (fi,Pi) E (f,P )

statesf (P1,...,Pn) =P

n∏
i=1

cntD,E(fi, Pi).

– For each symbol ◦ ∈ F that is idempotent in E or R, cntD,E(◦, P ) = ω if
|M(ψ◦,P,I)| = ω, and otherwise,

cntD,E(◦, P ) =
∑

~u∈M(ψ◦,P,I)

∏
dE(◦,P )

C(cntD,E(d), ud)

where ψ◦,P,I(~x) =ψ◦,P (~x) ∧
∧

dE (◦,P )

xd ≤ cntD,E(d) ∧
∧

d 6E (◦,P )

xd = 0.

– For each AC symbol + ∈ F that is not idempotent in E or R, cntD,E(+, P ) =
ω if |M(ψ+,P,AC)| = ω, and otherwise,

cntD,E(+, P ) =
∑

~u∈M(ψ+,P,AC)

∏
dE(+,P )

cntD,E(d)>0

C(cntD,E(d) +ud− 1, ud)

where ψ+,P,AC(~x) =ψ+,P (~x) ∧
∧

dE (+,P )
cntD,E(d)=0

xd = 0 ∧
∧

d 6E (+,P )

xd = 0.

For proving the computability and correctness of cntD,E, we define the well-
founded ordering C ⊆ E as follows:

d1 C d2 ⇐⇒ d1 E d2 ∧ ¬(d2 E+ d2).

It can be easily shown that C+ is well-founded. As D is finite, if C+ were not
well-founded, then there must be profiles d1, d2 ∈ D such that d1 C+ d2 C+ d1.
This leads to a contradiction, as C ⊆ E and d1 C+ d1 implies that for all d ∈ D,
d 6C d1.

Lemma 11. The function cntD,E is computable.

Proof. To show this, observe that if in evaluating cntD,E(d), we recursively call
cntD,E(d′) for some d′ ∈ D, then d′ C d. Since C is well-founded, it follows that
the chain of recursive calls is finite. Most of the other operations are straightfor-
ward to implement. For representing elements of N ∪ {ω }, an abstract data type
should be used that can represent any natural number as well as the constant
ω. Each of the formulas ψ appearing an expression M(ψ) are formulas in Pres-
burger arithmetic, and thus M(ψ) is effectively a semilinear set [6]. It follows
that one can easily decide whether |M(ψ)| = ω and enumerate the vectors if
M(ψ) is finite. ut

21



Before we can prove the claim made in equation (13), we need to show how
the edge relation EA can be used to detect when CanRI/E contains an infinite
number of equivalence classes with a given profile. To show this, we first define
the size of a term t ∈ TF , denoted size(t) to be the number of symbols in t.
Since the associativity and commutativity equations in EAC preserve the size of
a term, one can observe that if t =EAC

u, then size(t) = size(u).

Lemma 12. If d1 E+
A d2 for d1, d2 ∈ DA, then for all [t1] ∈ CanRI/E such

that profile([t1]E) = d1, there ∃[t2] ∈ CanRI/E such that profile([t2]E) = d2 and
size(t2↓R̂I/EAC

) > size(t1↓R̂I/EAC
).

Proof. We prove this by induction on the length of the chain of inferences used
to show d1 E+

A d2.
The inductive case is easier, and so we prove it first. In this case, we know

there is a profile d′ ∈ DA such that d1 E+
A d
′ E+
A d2. By our first induction

hypothesis we know that there is an equivalence class [t′] ∈ CanR̂I/EAC
such

that profile([t′]E) = d and size(t1) < size(t′). Our second induction hypothesis
then implies the existence of [t2] ∈ CanR̂I/EAC

such that profile([t2]E) = d2 and
size(t1) < size(t′) < size(t2).

In the base case, we know that d1EAd2. By the definition of EA, there must be
equivalence classes [u], [v] ∈ CanRI/E such that profile([u]) = d1, profile([v]) = d2,
and [u] Eflat [v]. Assuming profile([t1]) = d1, we construct t2 by analyzing why
[u] Eflat [v]. There are two cases to consider:

– If v↓R̂I/EAC
=EAC

f(v1, . . . , vn) where f is a free symbol and u =EAC
vi for

some i ∈ [1, n], then we let

t2 = f(v1, . . . , vi−1, t1, vi+1, . . . , vn).

Clearly, [t1] Eflat [t2]. We know that statesA/E([t1]) = statesA/E([u]), and con-
sequently statesA/E([t2]) = statesA/E([v]) by Lemma 2. As profile([v]) = d2 =
(f, statesA/E([v]), it follows that profile([t2]) = d2. Finally,

size(t2↓R̂I/EAC
) = 1 +

∑
j∈[1,n]\{i}

size(vj) + size(t1↓R̂I/EAC
),

and thus size(t2↓R̂I/EAC
) > size(t1↓R̂I/EAC

).
– Otherwise, v↓R̂I/EAC

=EAC
v1 + · · · + vn with + an AC or ACI symbol, n ≥

2, root(vi) 6= + for all i ∈ [1, n], and u =EAC
vi for some i ∈ [1, n]. If

t1↓R̂I/EAC
=EAC

vj for some j ∈ [1, n], then we let t2 = u and it trivially follows
that profile([t2]) = d2 and size(t2↓R̂I/EAC

) > size(t1↓R̂I/EAC
). Otherwise, we let

t2 = v1 + · · ·+ vi−1 + t1↓R̂I/EAC
+ vi+1 + · · ·+ vn.

We know that t1↓R̂I/EAC
6=EAC

vi for all i ∈ [1, n], and thus t2 is R̂I/EAC-
irreducible. It follows that size(t2↓R̂I/EAC

) > size(t1↓R̂I/EAC
). Since n > 2,

root(u) = +, and thus profile([u]) = d1 = (+, P ) for some P ⊆ Q. It
follows by Lemma 8 that #(profile([u1]), . . . , profile([un])) ∈ M(ψ+,P ). As
profile([t1]) = profile([u1]), it follows profile([t2]) = d2. ut

22



We can use the previous lemma to make the following observation:

Corollary 2. For all d ∈ DA, if dE+
A d, then

∣∣profile−1
DA,EA(d)

∣∣ = ω.

Proof. For all d ∈ DA, there is a [t] ∈ CanRI/E such that profile([t]) = d. If
dE+
Ad, then we can use Lemma 12 to construct an infinite sequence [t1], [t2], · · · ∈

CanRI/E of equivalence classes each with profile d and where size(ti↓R̂I/EAC
) <

size(tj↓R̂I/EAC
) for i < j. It follows that for all distinct i, j ∈ N, ti↓R̂I/EAC

6=EAC

tj↓R̂I/EAC
, and thus are also distinct modulo E . Consequently, CanRI/E contains

an infinite number of equivalence classes with profile d. ut

We are now ready to prove our previous claim in equation (13).

Lemma 13. For all profile graphs (D,E) ⊆ (DA,EA) and d ∈ D,∣∣profile−1
D,E(d)

∣∣ ≤ cntD,E(d) ≤
∣∣profile−1

DA,EA(d)
∣∣ . (13)

Proof. We prove (13) for all d ∈ D by induction on d with respect to the well-
founded relation C. In our inductive proof, there are four cases to consider:

– If dE+ d, then cntD,E(d) = ω, and thus
∣∣profile−1

D,E(d)
∣∣ ≤ cntD,E(d). On the

other hand, as E is a subset of EA, we know that d E+
A d. By Cor. 2, it

follows that
∣∣profile−1

DA,EA(d)
∣∣ = ω.

– If d = (c, P ) with c a constant, then because D ⊆ DA, we know there
is an equivalence class [t] ∈ CanRI/E such that root(t↓R̂I/EAC

) = c and
statesA/E([t]) = P . However, root(t↓R̂I/EAC

) = c implies that t =E c. As there
is only one equivalence class containing c, it follows that

∣∣profile−1
D,E(d)

∣∣ = 1
and

∣∣profile−1
DA,EA(d)

∣∣ = 1.
– If d = (f, P ) with f a free symbol with arity n > 0, then by using Lemma 3

with both (D,E) and (DA,EA), we can reduce (13) for d to the problem of
showing (13) for all d′ E d. However, this follows trivially by our induction
hypothesis as d 6E+ d and d′ E d implies d′ C d.

– If d = (◦, P ) with ◦ ∈ F idempotent in E or R, then we first note that for
all d′ ∈ D, d′ E d =⇒ d′ C d as d 6E+ d. It follows that we may assume
that equation (13) holds for each d′E d. This implies that M(ψ◦,P,CanD,E) ⊆
M(ψ◦,P,I) ⊆M(ψ◦,P,CanDA,EA

), and consequently by using Lemma 9, we can
reduce the problem of showing (13) for all d ∈ D to two problems: (1) for
all d′ E d and k ≤

∣∣profile−1
D,E(d′)

∣∣,
C(
∣∣profile−1

D,E(d′)
∣∣ , k) ≤ C(cntD,E(d′), k),

and (2) for all for all d′ E d and k ≤ cntD,E(d′),

C(cntD,E(d′), k) ≤ C(
∣∣profile−1

DA,EA(d′)
∣∣ , k).

Both of these problems follow easily from our induction hypothesis and the
definition of C.

23



Starting with the empty graph (D0,E0) = (∅,∅), we freely apply either of the rules
below to construct (Di+1,Ei+1) from (Di,Ei) subject to the condition that a rule may
only be applied if (Di+1,Ei+1) 6= (Di,Ei). The rules are applied until completion to
obtain the graph (D∗,E∗).

choose free symbol f ∈ F and (f1, P1), . . . , (fn, Pn) ∈ Di
Di+1 := Di ∪ { (f, statesf (P1, . . . , Pn)) }
Ei+1 := Ei ∪ { ((fj , Pj), (f, statesf (P1, . . . , Pn))) | j ∈ [1, n] }

choose AC or ACI symbol + ∈F and P ⊆Q s.t. (∃~x) ψ+,P,Di,Ei(~x)

Di+1 := Di ∪ { (f, P ) }
Ei+1 := Ei ∪ { (d, (f, P )) | d∈Di ∧ (∃~x) ψ+,P,Di,Ei(~x) ∧ xd> 0}

where if + is idempotent in E or R, then

ψ+,P,Di,Ei(~x) = ψ+,P (~x) ∧
^

d∈Σ(+)∩Di

xd ≤ cntDi,Ei(d) ∧
^

d∈Σ(+)\Di

xd = 0.

and if + is not idempotent in E or R, then

ψ+,P,Di,Ei(~x) = ψ+,P (~x) ∧
^

d∈Σ(+)∩Di
cntDi,Ei

(d) = 0

xd = 0 ∧
^

d∈Σ(+)\Di

xd = 0.

Fig. 2. Inference System for Constructing (D∗,E∗)

– Otherwise d = (+, P ) with + ∈ F an AC symbol that is not idempotent
in R. We first note that for all d′ E d, d′ C d as d 6E+ d. It follows that
we may assume (13) for each d′ E d. This implies that M(ψ+,P,CanD,E) ⊆
M(ψ+,P,AC) ⊆M(ψ+,P,CanDA,EA

), and consequently by using Lemma 10, we
can reduce the problem of showing (13) for all d ∈ D to two problems: (1)
for all d′ E d and k ∈ N where

∣∣profile−1
D,E(d′)

∣∣ > 0,

C(cntD,E(d′) + k − 1, k) ≤ C(
∣∣profile−1

DA,EA(d′)
∣∣+ k − 1, k),

and (2) for all d′ E d and k ∈ N where cntD,E(d′) > 0,

C(cntD,E(d′) + k − 1, k) ≤ C(
∣∣profile−1

DA,EA(d′)
∣∣+ k − 1, k).

Both of these problems follow easily from our induction hypothesis and the
definition of the choose function C. ut

5.4 Constructing (DA, EA)

The algorithm for a constructing the profile graph (D∗,E∗) is given Fig. 2. We
show that (D∗,E∗) = (DA,EA) in two steps. First, we show that (D∗,E∗) ⊆
(DA,EA) by showing that if (Di,Ei) ⊆ (DA,EA), then any graph (Di+1,Ei+1)
obtained by applying one of the inference rules in Fig. 2 is a subgraph of
(DA,EA). Since the initial graph (D0,E) = (∅,∅) ⊆ (DA,EA), this implies

24



that (D∗,E∗) ⊆ (DA,EA). Second, we prove that CanD∗,E∗ = CanRI/E , which
by Lemma 1 implies that (D∗,E∗) = (DA,EA).

The following lemma is essential to showing that (D∗,E∗) ⊆ (DA,EA):

Lemma 14. For all (Di,Ei) ⊆ (DA,EA), if (Di+1,Ei+1) is obtained from
(Di,Ei) by an inference step using the rules in Fig. 2, then (Di+1,Ei+1) ⊆
(DA,EA).

Proof. We consider three different cases separately:

– In the first case, suppose (Di+1,Ei+1) is obtained by applying the first rule
after choosing the free symbol f ∈ F and profiles (f1, P1), . . . , (fn, Pn) ∈
Di. Let P = statesf (P1, . . . , Pn). We must show that (f, P ) ∈ DA, and
(fj , Pj) EA (f, P ) for all j ∈ [1, n]. As Di ⊆ DA, we know that for each
j ∈ [1, n], there is an equivalence class [tj ] ∈ CanRI/E such that profile([tj ]) =
(fj , Pj). Let t = f(t1, . . . , tn). As f is free, we know that [t] ∈ CanRI/E , and
therefore profile([t]) ∈ DA Observe that profile([t]) = (f, P ) by Lemma 2,
and thus (f, P ) ∈ DA. For j ∈ [1, n], observe that [tj ] Eflat [t], and thus
(fj , Pj) EA (f, P ).

– In the second case, suppose (Di+1,Ei+1) is obtained by applying the second
rule after choosing the symbol ◦ ∈ F that is idempotent in E or R and
choosing a set P ⊆ Q. It is sufficient to show that (◦, P ) ∈ DA, and for
each ~x ∈ M(ψ+,P,Di,Ei

), if xd > 0, then d EA (◦, P ). We know that there
is at least one ~x ∈ M(ψ+,P,Di,Ei

). For each d ∈ Σ(◦) ∩ Di, we know that
xd ≤ cntDi,Ei(d). By Lemma 13, it follows that there are at least xd dis-
tinct equivalence classes [td(1)], . . . , [td(xd)] ∈ profile−1

DA,EA(D). Without loss
of generality, we may assume that each term td(i) is R̂I/EAC-irreducible. Let
t = t1 ◦ · · · ◦ tn be a term where each term tj corresponds to a unique term
td(k) for some d ∈ Di and k ∈ [1, xd]. The term t is R̂I/EAC-irreducible,
and #(profile([t1]), . . . , profile([tn])) = ~x. It follows that profile([t]) = (◦, P )
by Lemma 8, and so (◦, P ) ∈ DA. For each d ∈ Σ(◦), if xd > 0, then
[td(1)] Eflat [t], and consequently dEA (◦, P ).

– In the third case, suppose (Di+1,Ei+1) is obtained by applying the second
rule after choosing the symbol + ∈ F that is AC in E and not idempotent in
R and choosing a set P ⊆ Q. It is enough to show that (+, P ) ∈ DA, and for
each ~x ∈M(ψ+,P,Di,Ei

), if xd > 0, then dEA(+, P ). We know that there is at
least one ~x ∈M(ψ+,P,Di,Ei). For each d ∈ Σ(+), if xd > 0, then we know d ∈
Di and cntDi,Ei(d) > 0. It follows by Lemma 13 that there is an equivalence
class [td] ∈ CanDA,EA with profile d. Without loss of generality, we may
assume that td is R̂I/EAC-irreducible. Let t = t1 + · · ·+ tn be a term in which
for each d ∈ Σ(+), there are exactly xd distinct indices d(1), . . . , d(xd) ∈
[1, n] such that td(i) = td. It follows that #(profile([t1]), . . . , profile([tn])) = ~x,
and consequently profile([t]) = (+, P ) by Lemma 8, and so (+, P ). For each
d ∈ Σ(+) if xd > 0, then [td] Eflat [t], and thus dEA (+, P ). ut

The previous lemma implies that (Dn,En) ⊆ (DA,EA) for all n ∈ N . Since
(D∗,E∗) = (Dn,En) for some n ∈ N, it follows that (D∗,E∗) ⊆ (DA,EA.

25



Corollary 3.
(D∗,E∗) ⊆ (DA,EA)

ut

We now show that (D∗,E∗) can be viewed as having explored all the elements
in CanRI/E .

Lemma 15.
CanD∗,E∗ = CanRI/E .

Proof. As R̂I is confluent and terminating, it is enough to show by structural
induction that for each R̂I/EAC-irreducible term t, the equivalence class [t]E ∈
CanD∗,E∗ There are three cases to consider:

– In the first case, suppose t = f(t1, . . . , tn) with f a free symbol. By in-
duction ti ∈ CanD∗,E∗ for i ∈ [1, n], and consequently profile(ti) ∈ D∗. Let
profile(ti) = (fi, Pi), and let statesA/E([t]) = P . By Lemma 2, we know that
statesf (P1, . . . , Pn) = P . Since the first rule in Fig. 2 can not be applied to
generate a larger graph, we know that profile([t]) ∈ D∗ and for all i ∈ [1, n],
profile([ti]) E∗ profile([t]). Consequently, [t] ∈ CanD∗,E∗ .

– In the second case, suppose t = t1 ◦ · · · ◦ tn where ◦ an symbol that is
idempotent in E or R and root(ti) 6= ◦ for i ∈ [1, n]. By induction we
know that ti ∈ CanD∗,E∗ for i ∈ [1, n]. Let P = statesA/E([t]) and let ~x =
#(profile([t1]), . . . , profile([tn])). By Lemma 8 we know that ~x ∈ M(ψ◦,P ).
As all of the subterms t1, . . . , tn are distinct and also in CanD∗,E∗ , we know
by Lemma 13 that xd ≤ cntDi,Ei(d). It follows that ~x ∈M(ψ◦,P,Di,Ei), and
since the second rule in Fig. 2 cannot be applied to generate a larger graph,
we know that profile([t]) ∈ D∗ and for all i ∈ [1, n], profile([ti]) E profile([t]).
Consequently, [t] ∈ CanD∗,E∗ .

– In the final case, suppose t = t1 + · · · + tn with + an AC symbol in E that
is not idempotent in R and root(ti) 6= + for i ∈ [1, n]. By induction we
know that ti ∈ CanD∗,E∗ for i ∈ [1, n]. Let P = statesA/E([t]) and let ~x =
#(profile([t1]), . . . , profile([tn])). By Lemma 8 we know that ~x ∈ M(ψ+,P ).
As all of the subterms t1, . . . , tn are in CanD∗,E∗ , we know by Lemma 13
that if xd > 0, then cntDi,Ei

(d) > 0. It follows that ~x ∈M(ψ+,P,Di,Ei
), and

since the second rule in Fig. 2 cannot be applied to generate a larger graph,
we know that profile([t]) ∈ D∗ and for all i ∈ [1, n], profile([ti]) E profile([t]).
Consequently, [t] ∈ CanD∗,E∗ . ut

We are now able to prove the main result of this section.

Theorem 4. The graph (DA,EA) is effectively constructible.

Proof. We know by Lemma 15 that CanD∗,E∗ = CanRI/E . As (D∗,E∗) is a sub-
graph of (DA,EA) by Cor. 3, it follows by Lemma 1 that (D∗,E∗) = (DA,EA).
However, (D∗,E∗) can be constructed by applying each inference rule in Fig. 2 a
finite number of times. It is decidable whether an inference rule can be applied,

26



because each choice ranges over a finite set, the function cntD,E is computable
by Lemma 11 and each formula ψ◦,P,Di,Ei is expressible in Presburger arithmetic
after the value for cntDi,Ei(d) has been replaced with its computed numerical
value. ut

Theorem 3 can be as a corollary of Theorem 4.

Theorem 3. Let E = (F,E) be a theory with free, AC, and ACI symbols, and
let RI be a rewrite theory where the only axioms are idempotence rules of the
form x+ x→ x for an AC symbol + ∈ F .

If A is an AC-intersection free E-tree automaton with states Q and φ is a
propositional formula with atomic predicates Q, it is decidable whether

CanRI/E ∩ Lφ(A/E) = ∅.

Proof. By structural induction on φ, it is easy to show that

Lφ(A/E) 6= ∅ ⇐⇒ (∃P ⊆ Q)statesA/E(P ) |= φ.

It follows that

CanRI/E ∩Lφ(A/E) 6= ∅ ⇐⇒ (∃[t] ∈ CanRI/E) statesA/E([t]) |= φ

⇐⇒ (∃(f, P ) ∈ DA) P |= φ.

Since DA is finite and effectively constructible by Theorem 4, it follows that the
question of whether CanRI/E ∩Lφ(A/E) = ∅ is decidable. ut

6 Related Work and Conclusions

Our main contributions in this paper are: (1) We showed that every alternating
equational tree language can be expressed as the intersection of two regular equa-
tional tree languages by adding a fresh ACI symbol to the theory. This implies
that intersection-emptiness is undecidable for regular equational tree automata
over a theory with an AC and ACI symbol. (2) We studied the issue of modular-
ity in equational tree automata and showed that both intersection-emptiness and
propositional emptiness are non-modular properties even for disjoint theories. (3)
We presented a subclass of regular equational tree automata over theories with
AC and ACI symbols and showed the decidability of propositional emptiness for
that subclass. This result further implied that propositional emptiness is decid-
able for equational tree automata with one ACI symbol and tree automata with
normalization over a rewrite theory with idempotence rules and AC symbols.

One of our goals was to obtain decidability results over non-linear theo-
ries. In this direction there are numerous papers on extending tree automata
techniques to better handle non-linearity in adding constraints to the automata
rules [1, Chapter 4] as well as extending that idea to handle some equational
theories [11]. The problem of deciding whether a non-equational tree language
accepts an irreducible term for any set of linear or non-linear rules was shown

27



in [2], however the approach used here is quite different. The technique of count-
ing the number of distinct terms was influenced by similar issues in deciding the
emptiness of multitree automata [14], and our realization that Presburger arith-
metic is useful in the ACI case was inspired by the generalization of Parikh’s
theorem to arbitrary Kleene algebras in [10].

Although we have solved two open problems, our work suggests additional
questions that are worth exploring, including: (1) If we impose stronger con-
ditions on the theories such as linearity or collapse-freeness, can we combine
disjoint equational theories in a modular way? (2) Can the semi-decision proce-
dure for the associative case in [9] be extended to handle AC-intersection free
automata over theories with any combination of associativity, commutativity,
and idempotence? (3) Although ground reducibility modulo AC is undecidable
in general for non-linear rules [12], what other non-linear rules exist where empti-
ness is decidable for tree automata with normalization modulo AC?

References

[1] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available at:
http://www.grappa.univ-lille3.fr/tata, 2007.

[2] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. In-
formation and Computation, 187(1):123–153, 2003.

[3] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set constraints with
tree automata. In Proc. of CP97, volume 1330 of LNCS, pages 62–76. Springer,
1997.

[4] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability analysis over term
rewriting systems. J. Autom. Reasoning, 33(3–4):341–383, 2004.

[5] T. Genet and F. Klay. Rewriting for cryptographic protocol verification. In Proc.
of CADE-17, volume 1831 of LNCS, pages 271–290. Springer, 2000.

[6] S. Ginsburg and E. H. Spanier. Semiground, presburger formulas and languages.
Pacific Journal of Mathematics, 16:285–296, 1966.

[7] J. Hendrix and J. Meseguer. On the completeness of context-sensitive order-sorted
specifications. In Proc. of RTA’07, volume 4533 of LNCS, pages 229–245. Springer,
2007.

[8] J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for
linear order-sorted specifications modulo axioms. In Proc. of IJCAR, volume
4130 of LNCS, pages 151–155. Springer, 2006.

[9] J. Hendrix, H. Ohsaki, and M. Viswanathan. Propositional tree automata. In
Proc. of RTA’06, volume 4098 of LNCS, pages 165–174. Springer, 2006.

[10] M. W. Hopkins and D. Kozen. Parikh’s theorem in commutative kleene algebra.
In Proc. of LICS 1999, pages 394–401. IEEE Computer Society, 1999.

[11] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. In Proc. of IJCAR, volume 4130 of LNCS,
pages 557–571. Springer, 2006.

[12] D. Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Sufficient-completeness,
ground-reducibility and their complexity. Acta Inf., 28(4):311–350, 1991.

28



[13] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, Department
of Computer Science, University of Aarhus, January 2001. Notes Series NS-01-1.
Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

[14] D. Lugiez. Multitree automata that count. Theoretical Comput. Sci., 333(1–
2):225–263, 2005.

[15] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[16] H. Ohsaki. Beyond regularity: Equational tree automata for associative and
commutative theories. In Proc. of CSL, volume 2142 of LNCS, pages 539–553.
Springer, 2001.

[17] H. Ohsaki and H. Seki. Languages modulo normalization. In Proc. of FroCoS
2007, volume 4720 of LNCS, pages 221–236. Springer, 2007.

[18] H. Ohsaki and T. Takai. Decidability and closure properties of equational tree
languages. In Proc. of RTA’02, volume 2378 of LNCS, pages 114–128. Springer,
2002.

[19] H. Ohsaki, J.-M. Talbot, S. Tison, and Y. Roos. Monotone AC-tree automata. In
Proc. of LPAR, volume 3835 of LNCS, pages 337–351. Springer, 2005.

[20] R. J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
[21] R. E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1–12, 1984.
[22] G. Slutzki. Alternating tree automata. Theoretical Comput. Sci., 41:305–318,

1985.
[23] K. N. Verma. On closure under complementation of equational tree automata

for theories extending AC. In Proc. of LPAR 2003, volume 2850 of LNCS, pages
183–197. Springer, 2003.

[24] K. N. Verma. Two-way equational tree automata for AC-like theories: Decidability
and closure properties. In Proc. of RTA’03, volume 2706 of LNCS, pages 180–196.
Springer, 2003.

[25] K. N. Verma and J. Goubault-Larrecq. Alternating two-way AC-tree automata.
Information and Computation, 205(6):817–869, 2007.

29


