
A Rewriting Logic Approach to Type Inference: Technical Report

Charles M. Ellison Traian Serbanuta Grigore Rosu

March 28, 2008

Abstract

Meseguer and Rosu [MR04,MR07] proposed rewriting logic semantics (RLS) as a programing language
definitional framework that unifies operational and algebraic denotational semantics. Once a language is
defined as an RLS theory, many generic tools are immediately available for use with no additional cost to
the designer. These include a formal inductive theorem proving environment, an efficient interpreter, a
state space explorer, and even a model checker. RLS has already been used to define a series of didactic
and real languages [MR04,MR07], but its benefits in connection with defining and reasoning about type
systems have not been fully investigated yet.

This paper shows how the same RLS style employed for giving formal definitions of languages can
be used to define type systems. The same term-rewriting mechanism used to execute RLS language
definitions can now be used to execute type systems, giving type checkers or type inferencers. Since both
the language and its type system are defined uniformly as theories in the same logic, one can use the
standard RLS proof theory to prove properties about languages and type systems for those languages.

The proposed approach is exemplified by defining Milner’s polymorphic type inferencer W as a
rewrite logic theory and using the definition: (1) to prove its soundness using Wright and Felleisen’s
standard preservation and progress methodology [WF94], and (2) to obtain a type inferencer by executing
the definition in the Maude rewrite engine. The inferencer obtained “for free” was tested against
implementations used in some current functional languages. It was found to be quite competitive—for
example, it outperformed SML’s type inferencer in all experiments.

To show that the proposed rewriting approach and the resulting type inferencers scale, Milner’s simple
language is extended with multiple-binding let and letrec, with lists, and with references and side effects.
The resulting type inferencer, able to detect weak polymorphism, is only slightly slower than the one for
Milner’s simpler language. No proofs are given for the extended type system.

We also demonstrate the technique on a number of other languages and type systems, including a
simple imperative language, a simply typed, and a polymorphic lambda calculus.

Contents

1 Introduction 3

2 Rewriting Logic, RLS, and K 3

3 Defining Milner’s W Type Inferencer 7

4 Proofs 10
4.1 α : Set[ConfigItem]L → Set[ConfigItem]T . 10
4.2 Preservation and Progress . 10

5 Extending the type inferencer with lists, references and side effects 11

6 Implementations 12
6.1 Implementing K in Maude . 12
6.2 Defining W in K-Maude . 14

7 Conclusions and Further Work 15

8 Definition and Proof Schema 17

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

9 Simple Imperative Language 17
9.1 simplek Language . 17

9.1.1 Structural . 17
9.1.2 Semantic . 18

9.2 simplek Type Checker . 18
9.2.1 Structural . 18
9.2.2 Semantic . 19

9.3 simplek α . 19
9.4 simplek Proofs . 19

9.4.1 Preservation . 19
9.4.2 Progress . 20

10 Monomorphic λ Calculus 21
10.1 λ Calculus Language . 21

10.1.1 Structural . 21
10.1.2 Semantic . 21

10.2 λ Calculus Type Checker . 21
10.2.1 Structural . 21
10.2.2 Semantic . 21

10.3 λ Calculus α . 22
10.4 λ Calculus Proofs . 22

10.4.1 Preservation . 22
10.4.2 Progress . 23

11 Poly λ Calculus 24
11.1 Poly λ Calculus Language . 24

11.1.1 Structural . 24
11.1.2 Semantic . 24

11.2 Poly λ Calculus Type Inferencer . 24
11.2.1 Structural . 24
11.2.2 Inference Rules . 24
11.2.3 Equations . 25
11.2.4 Unification . 25

11.3 Poly λ Calculus α . 25
11.4 Poly λ Calculus Proofs . 25

11.4.1 Preservation . 25
11.4.2 Progress . 26

12 W 27
12.1 Exp Language . 27

12.1.1 Structural Rules . 27
12.1.2 Semantic Rules . 27

12.2 W . 27
12.2.1 Structural Rules . 27
12.2.2 Inference Rules . 28
12.2.3 Abstract Structural Rules . 28
12.2.4 Abstract Inference Rules . 28

12.3 α : Set[ConfigItem]E → Set[ConfigItem]W . 29
12.4 Proofs . 29

12.4.1 Preservation . 29
12.4.2 Progress . 34

2

1 Introduction

This is a preliminary report on using the K Technique for type systems. This document omits numerous
proof details, and there are likely many errors in the proof details that are explained. Again, this is supposed
to be viewed as a preliminary document and not a finished work by any means.

Rewriting logic has been proposed and used as a semantic foundation for the definition and analysis
of languages; see Meseguer and Rosu [MR04, MR07, Ros06] and the references there. Also, in its SOS’05
precursor, [MR07] proposed using the same rewriting logic technique to define type systems and policy checkers
for languages; more precisely, to rewrite integer values to their types and to maintain and incrementally
rewrite a program until it becomes a type or other desired abstract value. That idea was further explored
by Rosu in [Ros06], but, at our knowledge, not used yet to define complex, polymorphic type systems;
additionally, [Ros06] provides no implementation, no proofs, and no empirical evaluation of the idea. A
similar idea has been recently proposed by Kuan, MacQueen and Findler [KMF07] in the context of
Felleisen etal.’s reduction semantics with evaluation contexts [FH92,WF94] and Matthews etal.’s PLT Redex
system [MFFF04].

In this paper we show how the same rewriting logic semantics (RLS) framework and definitional style
employed in giving formal semantics to languages can be used to also define type systems as rewrite logic
theories. This way, both the language and its type system(s) can be defined using the same formalism,
facilitating reasoning about programs, languages and type systems. We use Milner’s polymorphic type
inferencer W [Mil78] for the EXP language to exemplify our technique. We give one rewrite logic theory for
W and use it both for proving its correctness against a rewrite theory defining EXP and for obtaining an
efficient, executable type-inferencer. This paper makes three novel contributions:

1. Shows how non-trivial type systems are defined as RLS theories in a uniform way, following the same
style used for defining programming languages and other formal analyses for them;

2. Proposes a type soundness proof technique for languages and type systems defined as RLS theories; and

3. Shows that RLS definitions of type systems, when executed on existing rewrite engines, yield competitive
type inferencers.

Related work. In addition to the work mentioned above, there has been other previous work combining
term rewriting with type systems. For example, [BKVV05] describes a method of using rewriting to add
typecheck notations to a program. Their work consists entirely of an example typechecker, with no analysis or
exposition. Also, pure type systems, which are a generalization of the λ-cube [Bar91], have been represented
in in membership equational logic [SM04], a subset of rewriting logic. There is a large body on term graph
rewriting [BvEG+87,Plu98] and its applications to type systems [Ban92,FPST07]. There are similarities with
our work, such as using a similar syntax for both types and terms, and a process of reduction or normalization
to reduce programs to their types. A collection of theoretical papers on type theory and term rewriting can
be found in [KK00]. Adding rewrite rules as annotations to a particular language in order to assist a separate
algorithm with type checking has been explored [HdM], as well as adding type annotations to rewrite rules
that define program transformations [Mam07]. Much work has been done on defining type systems modularly
and proving them sound [LP03,LCH07,KN06]. Much of the recent work in mechanically verified proofs of
type soundness has been stimulated by the PoplMark Challenge [ABF+05].

Section 2 introduces RLS and the K definitional style, and gives an RLS definition of Milner’s Exp
language. Section 3 defines Milner’s W algorithm as an RLS theory and reports on some experiments.
Section 4 shows our approach to prove type soundness when both a language and its type system are defined
as RLS theories. Section 5 extends the language with lists, references and side effects, showing that our
technique scales. Section 6 discusses our implementations and Section 7 concludes the paper.

2 Rewriting Logic, RLS, and K

Term rewriting is a standard computational model supported by many systems. Meseguer’s rewriting
logic [Mes92], not to be confused with term rewriting, organizes term rewriting modulo equations as a logic
with a complete proof system and initial model semantics. Meseguer and Rosu’s rewriting logic semantics
(RLS) [MR04, MR07] aims at making rewriting logic a foundation for programming language semantics
and analysis that unifies operational and algebraic denotational semantics. Rosu’s K language definitional
style [Ros06] optimizes the use of RLS by means of a definitional technique and a specialized notation. We

3

briefly discuss these and then show how Milner’s Exp language [Mil78] can be defined as an RLS theory using
K. The rest of the paper employs the same technique to define type systems as RLS theories.

A term rewrite system (TRS) consists of a set of uninterpreted operations over one or more syntactic
categories called sorts, and a set of rewrite rules of the form l→ r where l and r are terms that may contain
variables. Term rewriting is a method of computation that works by progressively changing (rewriting) a
term by using the rules of a TRS. A rule can apply to the entire term being rewritten, or to any subterm of
the term. The rewriting process continues as long as it is possible to find a matching subterm. When no
matching subterms are found, the rewriting process terminates, with the final term being the result of the
computation. Rewriting, like other methods of computation, can continue forever.

There are a large number of term rewriting engines, including ASF [vdBHKO02], Elan [BKK+98],
Maude [CDE+02], OBJ [GWM+00], Stratego [Vis03], and others, some of which are capable of executing
several million rewrites per second. Rewriting is also a fundamental part of existing languages and theorem
provers. Term rewriting is inherently parallel, since non-overlapping parts of a term can be rewritten at the
same time, and thus fits well with current trends in system architecture.

In contrast to term rewriting, which is just a method of computation, rewriting logic is a computational
logic built upon equational logic, proposed by Meseguer [Mes92] as a logic for true concurrency. In equational
logic, a number of sorts (types) and equations are defined, specifying which terms are equal. Equal terms are
members of the same equivalence class; in other words, equal terms are regarded as being identical. Rewriting
logic adds rules to equational logic, thought of as irreversible transitions: a rewrite theory is an equational
theory extended with rewrite rules. Rewriting logic admits a complete proof system and an initial model
semantics [Mes92] that makes inductive proofs valid.

Rewriting logic is connected to term rewriting in that all the equations l = r can be transformed into term
rewriting rules l→ r. This provides a means of taking a rewriting logic theory, together with an initial term,
and “executing” it. Any of the exiting rewrite engines can be used for this purpose. Some of the engines, for
example Maude [CDE+02], provide even richer support than execution, such as an inductive theorem prover,
a state space exploration tool, a model checker, and more.

Rewriting logic semantics (RLS), proposed by Meseguer and Rosu [MR04, MR07], builds upon the
observation that programming languages can be defined as rewriting logic theories. By doing so, one gets
essentially “for free” not only an interpreter and an initial model semantics for the defined language, but
also a series of formal analysis tools obtained as instances of existing tools for rewriting logic. Operationally
speaking, the major difference between conventional reduction semantics, with [FH92] or without [Plo04]
evaluation contexts, and rewriting logic semantics is that the former typically impose contextual restrictions
on applications of reduction steps and the reduction steps happen one at a time, while the latter imposes no
such restrictions. To avoid undesired applications of rewrite steps, one has to obey certain methodologies
when using rewriting logic. In particular, one can capture the conventional definitional styles by appropriate
uses of conditional rules. Consequently, one can define a language many different ways in rewriting logic. In
this paper, we use Rosu’s K technique [Ros06], which is inspired from abstract state machines [Gur95] and
continuations [SW00], and which glosses over many rewriting logic details that are irrelevant for programming
languages.

The idea underlying K is to represent the program configuration as a nested “soup” (multiset) of
configuration item terms representing the current infrastructure needed to process the remaining program or
fragment of program; these may include the current computation (a continuation-like structure), environment,
store, remaining input, output, analysis results, bookkeeping information, etc. The set of configuration items
is not fixed and is typically different from definition to definition. K assumes lists, sets and multisets over
any sort whenever needed; for a sort S, List[S] or SList denotes comma-separated lists of terms of sort S,
and Set[S] or SSet denotes white space separated sets of terms of sort S. For both lists and sets, we use
“·” as unit (nil, empty, etc.). If one means a different list- or set-separator, then one writes it as an index;
for example, Listy[S] stays for y-separated lists of terms of sort S. List and sets admit straightforward
equational definitions in rewriting logic (list = associative binary operator, set = associative, commutative
and idempotent binary operator). Formally, configurations have the following structure:

ConfigItemLabel ::= (descriptive name, e.g., k, env, store)
ConfigItem ::= ConfigItemLabel(S)

(S can be any sort, including Config)
Config ::= Set[ConfigItem]

The advantage of representing configurations as nested “soups”, is that language rules only need to mention

4

applicable configuration items. This is one aspect of K’s modularity. We can add or remove elements from
the configuration set as we like, only impacting rules that use those particular items. Rules do not need to be
changed to match what the new configuration looks like.

The most important configuration item, present in all K definitions and “wrapped” with the ConfigItemLabel
k, is the computation, denoted by K. Computations generalize abstract syntax by adding a special list
construct (associative operator) y :

K ::= KConstant | KLabel(List[K]) | Listy[K]
KConstant ::= (one per constant language construct, e.g., skip)

KLabel ::= (one per non-constant language construct)
Result ::= (finished computations)

The first two constructs for K capture any programming language syntax, under the form of an abstract
syntax tree. If one wants more K syntactic categories, then one can do that, too, but we prefer to keep only
one here. In our Maude implementation, thanks to Maude’s mixfix notation for syntax and implicit reflective
capabilities, we actually write programs using the mixfix notation when defining the syntax, and using the
K AST-like notation when defining the semantics; in other words, we write “if b then s1 else s2” in the
syntactic part of the definition and “if then else (b, s1, s2)” in the semantics part. Maude’s implicit parser
will generate the second representation from the first transparently to the user. In other implementations of
the K, one may need to use an explicit parser to achieve the same effect. From here on, we take a liberty to
interchangeably use either the mixfix or the AST notation for syntax. The distinctive K feature is y .

Intuitively, k1 y k2 says “process k1 then k2”. How this is used and what the meaning of “process” is left
open and depends upon the particular definition. For example, in a concrete semantic language definition it
can mean “evaluate k1 then k2”, while in a type inferencer definition it can mean “type and accumulate type
constraints in k1 then in k2”, etc. A K definition consists of two types of sentences: structural equations and
rewrite rules. Structural equations carry no computational meaning; they only say which terms should be
viewed as identical and their role is to transparently modify the term so that rewrite rules can apply. Rewrite
rules are seen as irreversible computational steps and can happen concurrently on a match-and-apply basis.
The following are examples of structural equations:

a1 + a2 = a1 y � + a2

a1 + a2 = a2 y a1 + �
if b then s1 else s2 = b y if � then s1 else s2

Note that, unlike in evaluation contexts, � is not a “hole,” but rather part of a KLabel, carrying the obvious
“plug” intuition; e.g., the KLabels involving � above are � + , + �, and if � then else , respectively. To
avoid writing such obvious, distracting, and mechanical structural equations, the author of K proposes to
annotate the language syntax with strict attributes when defining language constructs: a strict construct is
associated an equation as above for each of its subexpressions. If an operator is intended to the strict in
only some of its arguments, then the positions of the strict arguments are listed as arguments of the strict
attribute; for example, the above three equations correspond to the attributes strict for + and strict(1)
for if then else . We generate all these structural equations automatically from strictness attributes in our
implementation (see Section 6).

The following are examples of rewrite rules:

i1 + i2 → i, where i is the sum of i1 and i2
if true then s1 else s2 → s1
if false then s1 else s2 → s2

Structural equations can be applied back and forth; for example, the first equation for + can be applied
left-to-right to “schedule” a1 for processing; once evaluated to i1, the equation is applied in reverse to “plug”
the result back in context, then a2 is scheduled with the second equation left-to-right, then its result i2
plugged back into context, and then finally the rewrite rule can apply to irreversible apply the computational
step. Special care must be taken so that side effects are propagated appropriately: they are only generated at
the leftmost side of the computation.

Milner defined and proved the correctness of his W type inferencer in the context of a simple higher-order
language that he called Exp [Mil78]. Recall that W is the basis for the type checkers of all statically typed
functional languages, including ML, OCAML, HASKELL, etc. Exp is a simple expression language containing

5

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Bools, ints, etc.)

| λVar .Exp
| Exp Exp [strict]
| µVar .Exp
| if Exp then Exp else Exp [strict(1)]
| let Var = Exp in Exp [let x = e in e′ = (λx.e′) e]
| letrec Var Var = Exp in Exp

[letrec f x = e in e′ = let f = µf.(λx.e) in e′]

Figure 1: K-Annotated Syntax of Exp

Val ::= λVar .Exp | ...(Bools, ints, etc.)
Result ::= Val

KProper ::= µVar .Exp
ConfigItem ::= k(K)

Config ::= Val | JKKL | JSet[ConfigItem]KL

JeKL = Jk(e)KL
Jk(v)KL = v
k((λx.e) v
e[x← v]

〉

k(µ x.e
e[x← µ x.e]

〉

if true then e1 else e2 → e1
if false then e1 else e2 → e2

Figure 2: K Configuration and Semantics of Exp

lambda abstraction and application, conditional, fix point, and “let” and “letrec” binders. To exemplify K
and also to remind the reader of Milner’s Exp language, we next define it using K. Figure 1 shows its K
annotated syntax and Figure 2 shows its K semantics. We also use this to point out some other K notational
conventions. Note that application is strict in both its arguments (call-by-value) and that let and letrec are
desugared. Additionally, syntactic constructs may be annotated with desugaring equations. In Figure 2,
we see that λ-abstractions are defined as values, which are also Results in this definition; Results are not
further “scheduled” for processing in structural equations. Since Exp is simple, there is only one ConfigItem
needed, wrapped by ConfigItemLabel k. The first two equations initialize and terminate the computation
process. The third applies the β-reduction when (λx.e) v is the first item in the computation; we here used
two another K pieces of notation: list/set fragment matching and the two-dimensional writing for rules. The
first allows us to use angle brackets for unimportant fragments of lists or sets; for example, (T 〉 matches a
list whose prefix is T , 〈T) matches a list whose suffix is T , and 〈T 〉 matches a list containing a contiguous
fragment T ; same for sets, but the three have the same meaning there. Therefore, parentheses represent
respective ends of a list/set, while angled brackets mean “the rest”. The second allows us to avoid repetition
of contexts; for example, instead of writing a rule of the form C[t1, t2, ..., tn]→ C[t′1, t

′
2, ..., t

′
n] (rewriting the

above-mentioned subterms in context C) listing the context (which can be quite large) C twice, we can write
it C[t1

t′1

, t2
t′2

, ..., tn
t′n

] with the obvious meaning, mentioning the context only once. The remaining Exp semantics

is straightforward. Note that we used the conventional substitution, which is also provided in our Maude
implementation.
The Exp syntax and semantics defined in Figures 1 and 2 is all we need to write in our implementation of K.
To test the semantics, one can now execute programs like the factorial:

letrec f x = if x <= 0 then 1 else x * f(x - 1)

in f (f 5)

Our definition yields, when run in Maude, an integer of 199 digits in 12,312 rewrites and about 0.2 seconds.

6

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Bools, ints, etc.)

| λVar .Exp
| Exp Exp [strict]
| µVar .Exp
| if Exp then Exp else Exp [strict]
| let Var = Exp in Exp [strict(2)]
| letrec Var Var = Exp in Exp

[letrec f x = e in e′ = let f = µf.(λx.e) in e′]

Figure 3: K-Annotated Syntax of Exp for W

Type ::= ... | int | bool | Type 7→ Type | TypeVar
Eqn ::= Type = Type

Eqns ::= Set[Eqn]
(t = t)→ ·
(t1 7→ t2 = t′1 7→ t′2)→ (t1 = t′1), (t2 = t′2)
(t = tv)→ (tv = t) when t 6∈ TypeVar
tv = t, tv = t′ → tv = t, t = t′ when t, t′ 6= tv
tv = t, t′v = t′ → tv = t, t′v = t′[tv ← t]

when tv 6= t′v, tv 6= t, t′v 6= t′, and tv ∈ vars(t′)

Figure 4: Unification

3 Defining Milner’s W Type Inferencer

We next define Milner’s W type inferencer [Mil78] using the same K approach. Figure 3 shows the new
K annotated syntax for W ; it changes the conditional to be strict in all its arguments, and desugars let
making it strict in its second argument (because let is typed differently than its desugaring). Unification
over type expressions is needed and defined in Figure 4. Fortunately, unification is straightforward to define
equationally using set matching; we define it using rewrite rules, though, to emphasize that it is executable
(tv ∈ TypeVar). The first rule in Figure 4 eliminates non-informative type equalities. The second distributes
equalities over function types to equalities over their sources and their targets; the third swaps type equalities
for convenience (to always have type variables as lhs’s of equalities); the fourth ensures that, eventually, no
two type equalities have the same lhs variable; finally, the fifth rule canonizes the substitution. As expected,
these rules take a set of type equalities and eventually produce a most general unifier for them:

Theorem 1. Let γ ∈ Eqns be a set of type equations. Then:

• The five-rule rewrite system above terminates (modulo AC); let θ ∈ Eqns be the normal form of γ.

• γ is unifiable iff θ contains only pairs of the form tv = t, where tv 6∈ vars(t); if that is the case, then we
identify θ with the implicit substitution that it comprises, that is, θ(tv) = t when there is some type
equality tv = t in θ, and θ(tv) = tv when there is no type equality of the form tv = t in θ.

• If γ is unifiable then θ is idempotent (i.e., θ ◦ θ = θ) and is a most general unifier of γ.

Therefore, the five rules above give us a simple rewriting procedure for unification. The structure of θ in
the second item above may be expensive to check every time the unification procedure is invoked; in our
Maude implementation of the rules above, we sub-sort (once and for all) each equality of the form tv = t
with tv 6∈ vars(t) to a “proper” equality, and then allow only proper equalities in the sort Eqns (the improper
ones remain part of the “kind” [Eqns]). If γ ∈ Eqns is a set of type equations and t ∈ Type is some type
expression, then we let γ[t] denote θ(t); if γ is not unifiable, then γ[t] is some error term (in the kind [Type]
when using Maude).

Figure 5 shows the K definition of W . The configuration has four items: the computation, the type
environment, the set of type equations (constraints), and a counter for generating fresh type variables. Due
to the strictness attributes, we can assume that the corresponding arguments of the language constructs (in

7

Result ::= Type
TEnv ::= Map[Name,Type]
Type ::= ... | let(Type)

ConfigItem ::= k(K) | tenv(TEnv) | eqns(Eqns)
| nextType(TypeVar)

Config ::= Type | JKKL | JSet[ConfigItem]KL
JeKL = Jk(e) tenv(·) eqns(·) nextType(t0)KL
J〈k(t) eqns(γ)〉KL = γ[t]

i→ int, true→ bool, false→ bool,
(and similarly for all the other desired basic values)

k(t1 + t2
int

〉 eqns〈 ·
t1 = int, t2 = int

〉

(and similarly for all the other standard operators)
k(x

(γ[t])[tl← tl′]
〉 tenv(η) eqns(γ) nextType(tv

tv + |tl|
)

when η[x] = let(t), tl = vars(γ[t])− vars(η)
and tl′ = tv . . . (tv + |tl| − 1)

k(x
η[x]
〉 tenv(η) when η[x] 6= let(t)

k(λx.e
(tv → e) y restore(η)

〉 tenv(η
η[x← tv]

) nextType(tv
tv + 1

)

K ::= · · · | Type→ K [strict(2)]
k(t1 t2

tv

〉 eqns〈 ·
t1 = t2 → tv

〉 nextType(tv
tv + 1

)

k(µx.e
e y?=(tv) y restore(η)

〉 tenv(η
η[x← tv]

) nextType(tv
tv + 1

)

k(t→ ?=tv
·
〉 eqns〈 ·

tv = t
〉

k(let x = t in e
e y restore(η)

〉 env(η
η[x← let(t)]

)

k(if t then t1 else t2
t1

〉 eqns〈 ·
t = bool, t1 = t2

〉

Figure 5: K Configuration and Semantics of W

which these constructs were defined strict) have already been “evaluated” to their types and the corresponding
type constraints have been propagated. Lambda and fix-point abstractions perform normal bindings in
the type environment, while the let performs a special binding, namely one to a type wrapped with a new
“let” type construct. When names are looked up in the type environment, the “let” types are instantiated
with fresh type variables for their “universal” type variables, namely those that do not occur in the type
environment.

We believe that the K definition above of W is as simple, if not simpler, to understand as the original
W procedure proposed by Milner in [Mil78]. However, note that the procedure in [Mil78] is an algorithm,
almost an implementation, rather than a formal definition. Our K definition above is nothing but an ordinary
rewriting logic theory, the same as the definition of Exp itself. That should not, and indeed it does not,
mean that our K definition, when executed, must necessarily be slower than an actual implementation of W .
Experiments using Maude show that our K definition of W is comparable, or even outperforms, state of the
art implementations of type inference in conventional functional languages. In our experiments, it was faster
than the type inferencers of SML and Haskell, and only about twice slower than that of OCAML. Concretely,

8

- n = 10 n = 11 n = 12 n = 13 n = 14
OCAML (version 3.09.3) 0.6s 3M 2.2s 2M 8.3s 5M 32.0s 8M 124.9s 13M
Haskell (ghci version 6.8.1) 1.5s 25M 5.2s 28m 21.8s 31M 107.4s 38 M 614.7s 61M
SML (version 110.59) 4.9s 76M 14.7s 110M 111.4s 324M 2129.2s 950M internal error
W in K/Maude2.3 with memo 1.4s 11M 5.9s 33M 23.8s 70M 98.0s 197M 395.9s 653M
W in K/Maude2.3 without memo 2.5s 10M 7.6s 24M 26.2s 51M 97.5s 156M 367.5s 574M
!W in K/Maude2.3 with memo 1.4s 12M 5.7s 34M 22.8s 70M 91.9s 198M 377.4s 654M
!W in K/Maude2.3 without memo 2.4s 11M 7.4s 25M 26.0s 52M 96.9s 156M 359.6s 575M
W in PLT/Redex1 >1h - - - -
W in OCAML 105.9s 1.9M 9m14 2.4M >1h 2.7M - -

Table 1: Speed of various W implementations

the program (which is polymorphic in 2n + 1 type variables!)

let f0 = λx.λy.x in
let f1 = λx.f0(f0x) in

let f2 = λx.f1(f1x) in
...

let fn = λx.fn−1(fn−1x) in fn

takes the time/space resources shown in Table 1 to be type checked using OCAML, Haskell, SML, our K
definition executed in Maude, and an “off-the-shelf” implementation of W using OCAML, respectively. These
experiments have been conducted on a 3.4GHz/2GB Linux machine. Only the user time has been recorded.
Except for SML, the user time was very close to the real time; for SML, the real time was 30% larger than
the user time. These ratios appear to scale and are preserved for other programs, too. Moreover, an extension
to W , which we call !W , containing lists, products, side effects (through referencing, dereferencing and
assignment) and weak polymorphism did not add any noticeable slowdown. Therefore, our K definitions
surprisingly yield quite realistic implementations of type checkers/inferencers when executed on efficient
rewrite engines While calculating the numbers above, Maude run at an average of 3 million rewrites per
second. In Maude, memoization can be enabled by adding the attribute “[memo]” to operations whose
results one wants memoized; in our case, we only experimented with memoizing the “built-in” operation
vars : Type -> Set{TypeVar} in k-prelude.maude, which extracts the set of type variables that occur in
a type. Memoization appears to pay off when the polymorphic types are small, which is typically the case.

Our Maude “implementation” of an extension2 of the K definition of W above has about 30 lines of code.
How is it be possible that a formal definition of a type system that one can write in 30 lines of code can be
executed as is more efficiently than well-engineered implementations of the same type system in widely used
programming languages? We think that the answer to this question involves at least two aspects. On the one
hand, Maude, despite its generality, is itself a well-engineered rewrite engine implementing state-of-the-art
AC matching and term indexing algorithms [Eke96]. On the other hand, our K definition makes intensive
use of what Maude is very good at, namely AC matching. For example, note the fourth rule in our rewrite
definition of unification3 that precedes Theorem 1: the type variable tv appears twice in the lhs of the rule,
once in each of the two type equalities involved. Maude will therefore need to search and then index for two
type equalities in the set of type constraints which share the same type variable. Similarly, but even more
complicatedly, the fifth rule involves two type equalities, the second containing in its t′ some occurrence of the
type variable tv that appears in the first. Without appropriate indexing to avoid rematching of rules, which is
what Maude does well, such operations can be very expensive. Moreover, note that our type constraints can
be “solved” incrementally (by applying the five unification rewrite rules), as generated, into a most general
substitution; incremental solving of the type constraints can have a significant impact on the complexity of
unification as we defined it, and Maude indeed does that (one can see it by tracing/logging Maude’s rewrite
steps).

1Times for PLT/Redex for lower values of n are as follows: for n = 7: 5.0s; for n = 8: 181s; and for n = 9: 1358.9s
2With conventional arithmetic and boolean operators added for writing and testing our definition on meaningful programs
3Type unification is “built-in” in K: it is defined as shown above in k-prelude.maude.

9

4 Proofs

Our proofs of type soundness feel very mechanical. There are a number of near-trivial lemmas that must be
proved for each of the syntactic constructs of the language, after which the properties of preservation and
progress follow.

We use a few conventions to shorten statements. The variables I, V , E, and K stand for integers, values,
expressions, and computation items respectively. Additionally, we add L and T subscripts on constructs that
are shared between both the Exp language and the W algorithm. We then only mention the system in which
reductions are taking place if it is not immediately clear from context. A statement like T |= R

∗−→ R′ means
that R reduces to R′ under the rewrite rules for T . Finally, for convenience in proofs, our rules are rewritten
to match only at the top of the continuation. We can do this without changing the semantics since our rules
are orthogonal [Klo92].

We have defined and proved soundness for a number of simple type systems including one for an imperative
language, as well as simply typed lambda calculus, lambda calculus with let-polymorphism, and Milner’s W
algorithm. Each definition and proof followed the same basic schema, which we outline below:

1. Define a function from Language Configurations to Type Configurations (α)

2. Preservation: If JEKT
∗−→ τ and JEKL

∗−→ V for some type τ and value V , then JV KT
∗−→ τ .

(a) Lemma: Structural rules preserve type

(b) Lemma: If JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R, then T |= α(R) ∗−→ τ .

(c) Lemma: If T |= α(V) ∗−→ τ then JV KT
∗−→ τ .

3. Progress: For any expression E where JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R, either R = V for
some V , or ∃R′ such that R −→ R′.

(a) Lemma: Inversion of the Typing Relation

(b) Lemma: Every subterm of a well-typed term is well typed

Further details and more proofs like it can be found in [Ano07a].

4.1 α : Set[ConfigItem]L → Set[ConfigItem]T

A distinguishing feature of our technique is that we use an abstraction function, α, to enable us to convert
between a configuration in the language domain to a corresponding configuration in the typing domain.
Using an abstraction function in proving soundness is a technique used frequently in the domain of processor
construction, as introduced in [HSG98], or compiler optimization [KSK06,KSK07].

Lemma 1. Any reachable configuration in the language domain can be transformed using structural rules
into a unique expression.

Proof. This follows from two key points. One, you cannot use the structural rules to transform an expression
into any other expression, and two, each structural rule can be applied backwards even after semantic rules
have applied.

We now define α: α(JEKL) = JEKT
By lemma 1, we know this definition of α is well-defined for all reachable configurations, and homomorphic

with respect to structural rules. While the α presented in this paper is, in effect, the identity function, we
have experimented with much more complicated αs which lead us to believe the technique scales [Ano07a].

4.2 Preservation and Progress

For the complete proofs of preservation and progress, see section 12.4.

10

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Booleans, integers, etc.)

| funVarList→ Exp | Exp ExpList
| let VarList = ExpList in Exp
| letrec VarList = ExpList in Exp
| if Exp then Exp else Exp
| ref Exp | & Var | ! Exp | Exp := Exp
| [ExpList] | car Exp | cdr Exp | null? Exp
| cons Exp Exp | Exp ; Exp

Figure 6: Syntax of !W

5 Extending the type inferencer with lists, references and side
effects

In this section we would like to emphasize the fact that, by using rewriting (in the style promoted by this
paper), one can easily extend the definition of a type inferencer with little or no impact on the performance.
Indeed, as experiments show, time needed for typing programs of the original definitions will remain the same
under the new one. This is largely due to the fact that rewriting engines efficiently index rules in such a way
that rules orthogonal to the previous ones will add no additional overhead. Moreover, we believe that adding
new constructs orthogonally will facilitate reusing the original soundness proof when proving soundness for
the extended type system.

We have extended the language Exp by adding lists and references and allowing multiple parameters in
functions. The difficulty of typing functional programs in the presence of references is well known and has
been intensively studied; e.g., [Tof90,DM82,AMGR93,LW91,Wri95]. In this paper we take a conservative
approach, by disallowing programs in which the reference types need to be made weakly polymorphic upon
instantiation. For example, we disallow programs like

let r = ref list() in r

or

let f = fun x -> ref x in
let r = f (fun x -> x) in r

because they require the introduction of a weak type variable, but will accept programs like

let f = fun x -> ref [] in f

because here the reference is protected by a lambda abstraction and not yet activated, and also programs like

let f = fun x -> ref x in
let r = f 3 in r

because when determining the type of r, the reference type is instantiated to a concrete type. We chose to
reject programs which require weak types rather than defining a mechanism for managing weak type variables,
since that seems to be orthogonal to this definition and our goal here is to show that extensions do not have
a big negative performance effect for programs written using the original definition.

That is, we allow functions with multiple arguments, let constructs binding multiple variables, references,
lists and sequential composition, in addition to the existing definition. For type checker purposes, all
operations defined above (except lambda abstractions and lets) are considered strict in all arguments. ref,
! and := are the standard reference, dereference and assignment operators one can find in functional
languages with imperative features and have the same meaning as in ML. & gives a pointer to the value held
by a variable – for this feature to be possible one has to consider an environment-based memory model for
the language.

We only describe the definition of the type inferencer, for the extended language. Since it is an extension
of W with references, let us name it !W . Before defining the type inferencer, we first have to extend the

11

standard set of types with reference and list types, say that they preserve ground types, and finally define a
new sort RefType for types having only ground reference types unprotected by lambda abstractions. These
can be defined as follows:

Type ::= . . . | let Type | ref Type | list Type | unit
GroundType ::= . . . | ref GroundType | list GroundType

RefType ::= TypeVar | GroundType | list RefType
| TypeList→ Type

GroundType is defined in the K prelude together with Type and as a subsort of it. GroundType is syntactically
constrained to only contain types constructed without the use of type variables. Therefore, whenever we
extend Type with new type constructs, we also need to extend GroundType with the corresponding constructs.
Types containing only references to ground-types unprotected by abstractions are defined as subsort RefType
of Type, which reduces the check of whether a program should be rejected or not to a membership condition,
easily and efficiently implemented into the rewrite engine.

Figure 7 presents the definition of a type inferencer for !W . bind and bindTo are standard operators
for environments/typed environments and are considered part of the K prelude. Specifically, bind(xl) on
top of the continuation creates fresh locations (types in this case) for variables xl and assigns them to the
variables in the environment. bindTo(xl) expects a list of locations/types on top of it and binds the variables
to those locations. mkFunType and mkLet are standard operators for types, also defined in the K prelude.
mkFunType(xl) expects a type t on top of it, looks up the types tl for variables in xl in the environment,
producing as output the type tl→ t. mkLet expects a list of types on top of it and replaces that list of types
with the list of corresponding let types, by applying a let type constructor on top of each.

The above definition disallows weak polymorphism by rejecting programs for which weak types would
be needed. We are currently researching ways of adding weak polymorphism to this type system without a
negative effect on the performance of the inferencer.

6 Implementations

There have been two types of implementations in this project. One consists of an implementation of K in
Maude, to facilitate the second type of implementations, namely of a dozen of languages, type systems,
and domain-specific dynamic and static checkers. All these are documented and available for download
at [Ano07b]. We here can only briefly discuss these, showing only the complete definitions of unification and
W .

6.1 Implementing K in Maude

Our implementation consists of one file, k-prelude.maude, defining the basic bricks of K: generic lists, sets,
maps, computations and configurations. In addition, k-prelude also provides language-independent generic
features common to many languages, such as: stores (for languages with imperative features), environments,
a generic mechanism for generating fresh items (names, locations, types) in the configuration, generic binders
and substitution for languages based on substitution, types, type environments and type unification. The
k-prelude concludes with the definition of an algorithm which uses the reflective capability of Maude to
read strictness attributes from an annotated syntax and generate the equations abstracted by them. These
definitions are ultimately not Maude-specific; they can be implemented in any language/formalism with
support for rewriting. Note, however, that Maude is rewriting logic; in other words, using Maude guarantees
one that K definitions do not escape the formal universe of rewriting logic, so both efficient executions and
formal proofs are possible using the same definition.

k-prelude has about 800 lines of Maude code and defines 52 modules. We only show one such module
below, namely the one defining type unification, which generalizes the one given in Figure 4 to lists of types,
needed for more complex type inferencers, such as the one in Section 5:

mod EQNS is including CONFIG + COMMON-TYPE .

sorts Eqn Eqns . subsort Eqn < Eqns . var Eqn : Eqn .

var Eqns : Eqns . vars T T’ T1 T2 T1’ T2’ : Type .

var Tc : TypeConst . vars NeTl NeTl’ : NeList{Type} .

4% = bind(xl) y el y addEqns(xl) y mkLet(·) y bindTo(xl)

12

Result ::= Type
TEnv ::= Map[Name,Type]

ConfigItem ::= k(K) | tenv(TEnv) | eqns(Eqns)
| nextType(TypeVar)

Config ::= Type | JKKL | JSet[ConfigItem]KL
JeKL = Jk(e) tenv(·) eqns(·) nextType(tv)KL
J〈k(t) eqns(γ)〉KL = γ[t]

i→ int, true→ bool, false→ bool,
k(t1 + t2

int
〉 eqns〈 ·

t1 = int, t2 = int
〉

k(x
t′[tl← tl′]

〉 tenv(η) eqns(γ) nextType(tv
tv + |tl|

)

when η[x] = let(t), t′ = γ[t], t′ : RefType,
tl = vars(γ[t])− vars(η) and tl′ = tv . . . (tv + |tl| − 1)

k(x
η[x]
〉 tenv(η) when η[x] 6= let (t)

k(λxl.e
bind(xl) y e y mkFunType(xl) y restore(η)

〉 tenv(η)

k(t tl
tv

〉 eqns〈 ·
t = tl→ tv

〉 nextType(tv
tv + 1

)

k(letxl = el in e
el y mkLet(·) y bindTo(xl) y e y restore(η)

〉 tenv(η)

results(t
·
〉y mkLet〈 ·

let (t)
) results(·

tl
) y mkLet(tl)

·
k(letrecxl = el in e

%4 y e y restore(η)
〉tenv(η)

k(if t then t1 else t2
t1

〉

k([tl]
list tv

〉 eqns(Γ, ·
tv ∗= tl

) nextType(tv
tv + 1

)

where t ∗= ·
·

and ·
tv = t

, tv ∗= (t
·
〉

k(cdr t
list tv

〉 eqns(Γ, ·
t = list tv

) nextType(tv
tv + 1

)

k(car t
tv

〉 eqns(Γ, ·
t = list tv

) nextType(tv
tv + 1

)

k(null? t
bool

〉 eqns(Γ, ·
t = list tv

) nextType(tv
tv + 1

)

k(cons t1 t2
t2

〉 eqns(Γ, ·
t2 = list t1

)

& t→ ref t
k(! t

tv

〉 eqnsΓ, ·
t = ref tv

nextType(tv
tv + 1

)

k(t1 := t2
unit

〉 eqnsΓ, ·
t1 = ref t2

k(t1 ; t2
t2

〉 eqnsΓ, ·
t1 = unit

Figure 7: K Configuration and Semantics of the !W type inferencer

13

vars Tv Tv’ : TypeVar . vars Tl Tl’ : List{Type} .

op empty : -> Eqns .

op _,_ : Eqns Eqns -> Eqns [prec 30 assoc comm id: empty] .

eq Eqn, Eqn = Eqn .

op _=_ : List{Type} List{Type} -> [Eqns] [prec 20] .

eq (nil = nil) = empty .

eq ((T,NeTl) = (T’,NeTl’)) = (T = T’), (NeTl = NeTl’) .

eq (T = T) = empty .

eq (Tl --> T = Tl’ --> T’) = (Tl = Tl’), (T = T’) .

ceq (T = Tv) = (Tv = T) if not T :: TypeVar .

cmb Tv = T : Eqn if not(Tv in vars(T)) .

op eqns_ : Eqns -> ConfigItem .

eq (Tv = T, Tv = T’) = (Tv = T, T = T’) .

ceq (Tv = T, Tv’ = T’) = (Tv = T, Tv’ = T’[Tv <- T])

if Tv in vars(T’) .

op _[_] : Eqns Type -> Type .

eq (empty).Eqns[T] = T .

eq (Tv = T’, Eqns)[T] = Eqns[T[Tv <- T’]] .

endm

Sort Eqn stays for one equation and sort Eqns for sets of type equations/constraints. The subsort
keyword is used to say that an equation is identified with the singleton set of equations. After declaring
variables, the set constructors are declared: the empty set, and the concatenation/union of sets which is
associative, commutative and with identity empty. The fact that , is used to specify sets is emphasized
by the idempotency equation Eqn,Eqn = Eqn. Constraints are expressed as equalities between lists of
types (singleton lists are identified with types). Since solving the constraints may not only lead to a correct
substitution, we chose to let constraints be of “error” kind [Eqns]. Next two equations say that empty
constraints should be discharged and a constraint build form two lists should be transformed into a list of
constraints. Next equation if for discharging identity constraints, and the next one for splitting functional
constraints into constraints involving their components. An important detail is the membership assertion
introduced by the cmb keyword, which defines which constraints are acceptable equations: those in which the
lhs is a variable not occurring in the rhs. Next equations canonize the constraints and the last two define how
a set of constraints applies to a type. Since Maude uses by default an innermost strategy for reduction, one
can assume that all previous equations were applied yielding a canonical substitution.

6.2 Defining W in K-Maude

Figure 9 presents the complete definition of W in K-Maude, including both its syntax and semantics.
The syntax of Exp is annotated with the corresponding strictness attributes, using Maude’s metadata
attribute. inc is used to include existing modules. Module NAME-INT-BOOL-SYNTAX in k-prelude provides
definitions for names, integers and booleans, each of them with their corresponding sort, #Name, #Bool, and
#Int, respectively. BINDER-SYNTAX provides the sort Exp, together with a generic binding operation on it:
__._ : Binder #Name Exp -> Exp and several standard constants of sort binder (e.g., “lambda” and “fix”).
There is a straightforward equivalence between order-sorted signatures in mixfix notation (to which Maude
adheres) and context free grammars. Sorts introduce non-terminals, subsorts give non-terminal renamings
and operation declarations are grammar productions, the names of the operators giving the terminals of
the grammar. E.g., the subsorting introduced by the subsorts constraint are translated into the three
productions: Exp ::= ... | #Int | #Bool | #Name. Similarly,

let_=_in_ : #Name Exp Exp -> Exp

precisely corresponds to the CFG production

Exp ::= let #Name = Exp in Exp,

introducing the terminals “let”, “=” and “in”. The keyword ops allows us to introduce multiple construct
definitions at the same time, provided that they have the same signature/attributes. Since strictness is specific
to K, we use the metadata free-form attribute to specify strictness constraints for operations. Attributes like
precedences and gathering are used for parsing reasons. This module contains only one equation, desugaring
letrec to let and fix.

14

mod EXP-SYNTAX is inc NAME-INT-BOOL-SYNTAX + BINDER-SYNTAX .

subsorts #Int #Bool #Name < Exp .

op _+_ : Exp Exp -> Exp

[gather(E e) prec 33 metadata "strict"] .

op _*_ : Exp Exp -> Exp

[gather(E e) prec 31 metadata "strict"] .

op _<=_ : Exp Exp -> Exp [prec 37 metadata "strict"] .

op _and_ : Exp Exp -> Exp

[gather(E e) prec 55 metadata "strict"] .

op not_ : Exp -> Exp [prec 53 metadata "strict"] .

op __ : Exp Exp -> Exp

[prec 10 gather(E e) metadata "strict"] .

op if_then_else_ : Exp Exp Exp -> Exp [metadata "strict"] .

op let_=_in_ : #Name Exp Exp -> Exp [metadata "strict(2)"] .

op letrec__=_in_ : #Name #Name Exp Exp -> Exp .

vars F X : #Name . vars E E’ : Exp .

eq (letrec F X = E in E’)

= (let F = fix F . (lambda X . E) in E’) .

endm

Figure 8: K-Maude definition of W —syntax

The remaining code in Figure 9 defines the structure of the configuration and the semantics of W . In
order to increase the modularity of K-Maude by defining generic variants of substitution and code generation,
as well as to automatically generate structural equations from strictness attributes, we choose to work with a
meta-representation of terms in our current implementation, taking full benefit of the reflective capabilities
offered by Maude. When defining the semantics of a language in K-Maude, we first “lift”, or “swallow” the
syntax of the language into K under the form of ASTs, which are then used to give the actual semantics. The
configuration module imports modules for handling the K-ification of AST “leafs” whose syntax is built-in
(names, types, etc.) into their semantic counterparts. For example, #Name’s semantic correspondent is Name.
This module references the META-K module, which defines syntax for ASTs and computations, together with
functions mkK and downK which allow moving from the syntax level to the AST level and back. Module
COMMON-TENV provides types, the definition of a typed environment, mapping names to types, together with
the definition of the unification presented in Section 6. It also references CONFIG, which introduces Config
and the k ConfigItemLabel. COMMON-META-BINDER associates the generic syntax definition for binders to their
semantic counterpart and gives generic rules for substitution and free variables. The configuration module
defines an operation [[]] which starts the evaluation of an expression. Sort Type is subsorted into Config
as it is the resulting sort of the execution. The first equation places the AST of the input expression e into a
fresh execution environment: the computation wrapper (k) contains the AST of e, the type environment
wrapper (tenv) contains the empty environment, the type constraints set wrapper (eqns) contains the empty
set and the wrapper of the fresh type generator (nextType) contains the initial fresh type. The last rule of this
module is the one for the end of the execution, when only a type remains in the computation. Then this type,
resolved using the accumulated constraints becomes the type of the program. Module W-EXP-K-SEMANTICS
imports the configuration module, and the automatically generated strictness module. Equations in this
module closely and mechanically follow the definition in Figure 5, with syntax being represented in an AST
style.

Defining the syntax using Maude’s mixfix is a ”bonus” that using Maude provides. In principle, one could
define directly the semantics, using the mete-representation and then execute the semantics on program given
directly in the meta-notation. In other words, the syntax and the semantics are disconnected and can be
advanced/improved independently; in particular, one can provide an external parse if one is not happy with
Maude’s.

7 Conclusions and Further Work

We have shown that rewriting logic, through K, is amenable for defining feasible type inferencers for
programming languages and proving type soundness for those definitions. Doing the proof of soundness for

15

mod W-EXP-K-CONFIGURATION is inc EXP-SYNTAX

+ META-NAME-TYPE-DOWN + COMMON-TENV + COMMON-META-BINDER .

var E : Exp . var T : Type .

var C : Set{ConfigItem} . var Eqns : Eqns .

op [[_]] : Exp -> Config .

subsort Type < Config .

eq [[E]] = [[k(mkK(E)) tenv(empty)

eqns(empty) nextType(t(0))]] .

eq [[k(T) eqns(Eqns) C]] = Eqns[T] .

endm

mod W-EXP-K-SEMANTICS is

including W-EXP-K-CONFIGURATION + EXP-K-STRICTNESS .

vars T T’ T0 T0’ T1 T2 : Type . var Eqns : Eqns .

var L : KLabel . vars Tl Tl’ : List{Type} .

var TEnv : Env{Type} . var X : Name . vars E K : K .

eq ’#int(K) = int . eq ’#bool(K) = bool .

--- standard operators

ceq k(L(T1,T2) -> K) eqns(Eqns)

= k(int -> K) eqns(Eqns, T1 = int, T2 = int)

if L == ’_+_ or L == ’_*_ .

eq k(’_<=_(T1,T2) -> K) eqns(Eqns)

= k(bool -> K) eqns(Eqns, T1 = int, T2 = int) .

eq k(’_and_(T1,T2) -> K) eqns(Eqns)

= k(bool -> K) eqns(Eqns, T1 = bool, T2 = bool) .

eq k(’not_(T) -> K) eqns(Eqns)

= k(bool -> K) eqns(Eqns, T = bool) .

--- functional operators

mb ’__._(B:Binder,X,E) : KProper .

op let : Type -> Type .

ceq k(X -> K) tenv(TEnv) eqns(Eqns)nextType(T0)

= k(T’[Tl <- Tl’] -> K) tenv(TEnv) eqns(Eqns) nextType(T0’)

if let(T) := TEnv[X] /\ T’ := Eqns[T]

/\ Tl := mkList(vars(T’) - vars(TEnv))

/\ T0’ := T0 + length(Tl) /\ Tl’ := T0 ... (T0’ + (-1)) .

eq k(X -> K) tenv(TEnv) eqns(Eqns) nextType(T0)

= k(TEnv[X] -> K) tenv(TEnv) eqns(Eqns) nextType(T0)

[owise] .

eq k(’__._(binder(’lambda),X,E) -> K) tenv(TEnv) nextType(T)

= k(E -> mkFunType(T) -> restore(TEnv) -> K)

tenv(TEnv[X <- T]) nextType(T + 1) .

eq k(’__(T1,T2) -> K) eqns(Eqns) nextType(T)

= k(T -> K) eqns(Eqns, T1 = T2 --> T)nextType(T + 1) .

eq k(’__._(binder(’fix),X,E) -> K) tenv(TEnv) nextType(T)

= k(E -> addEqn(T) -> restore(TEnv) -> K)

tenv(TEnv[X <- T]) nextType(T + 1) .

eq k(’let_=_in_(X,T,E) -> K) tenv(TEnv)

= k(E -> restore(TEnv) -> K) tenv(TEnv[X <- let(T)]) .

eq k(’if_then_else_(T,T1,T2) -> K) eqns(Eqns)

= k(T1 -> K) eqns(Eqns, T = bool, T1 = T2) .

Figure 9: K-Maude definition of W —semantics

16

W and other systems using K have led us to believe that this kind of proofs should be easily automatable
using Maude’s inductive theorem prover. We strongly adhere to the program proposed by the PoplMark
Challenge [ABF+05], and would like to approach it using the proposed novel methodology.

8 Definition and Proof Schema

1. Language Definition

2. Type System Definition

3. Define a function from Language Configurations to Type Configurations (α)

4. Preservation: If JEKT
∗−→ τ and JEKL

∗−→ V for some type τ and value V , then JV KT
∗−→ τ .

(a) Lemma: Structural rules preserve type

(b) Lemma: If JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R, then T |= α(R) ∗−→ τ .

(c) Lemma: If T |= α(V) ∗−→ τ then JV KT
∗−→ τ .

5. Progress: For any expression E where JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R, either R = V for
some V , or ∃R′ such that R −→ R′.

(a) Lemma: Inversion of the Typing Relation
(b) Lemma: Every subterm of a well-typed term is well typed

9 Simple Imperative Language

We wanted to start with a near-trivial language to do our initial proofs. We chose a simple imperative
language with if statements, comparison, while statements, and assignment. Expressions can only be of two
types—integer or boolean. Variables can only be assigned integers.

9.1 simplek Language

9.1.1 Structural

J KL : Exp → Val
}

. .

J K
kL(K) state(·)

KL (1)

JkL(V) state()KL ≡ V (2)

[] : State×Var→ Int
}

. .
{

kL(X
S[X]

〉 state(S) (3)

+ : Exp × Exp → Exp
not : Exp → Exp

and : Exp × Exp → Exp
< : Exp × Exp → Exp

:= : Var× Exp → Exp

. .

kL(K + K ′

K y � + K ′
〉 (4)

kL(K + K ′

K ′ y K + �
〉 (5)

kL(not K
K y not �

〉 (6)

kL(K and K ′

K y � and K ′
〉 (7)

kL(K and K ′

K ′ y K and �
〉 (8)

kL(K < K ′

K y � < K ′
〉 (9)

kL(K < K ′

K ′ y K < �
〉 (10)

kL(X :=K
K y X :=�

〉 (11)

17

; : Exp × Exp → Exp
if then else : Exp × Exp × Exp → Exp
while do : Exp × Exp → Exp

 . .

kL(K ; K ′

K y � ; K ′
〉 (12)

kL(if K then S else S ′

K y if � then S else S ′
〉 (13)

kL(while K do K ′

if K then (K ′ ; while K do K ′) else skip
〉 (14)

9.1.2 Semantic

[←] : State×Var× Int→ State
true : → Val
false : → Val
skip : → Exp

kL(([X , I])[X]
I

〉 (15)

kL(S[X]
0
〉 if X /∈ S (16)

([X ,] S)[X ← I] −→ [X , I] S (17)
S[X ← I] −→ [X , I] S if X /∈ S (18)

kL(I + I ′

I +int I
′
〉 (19)

kL(B andB ′

B andbool B
′
〉 (20)

kL(notB
notbool B

〉 (21)

kL(I < I ′

I <int I ′
〉 (22)

kL(skip ; K
K

〉 (23)

k(X :=I
skip

〉 state(S
S[X ← I]

) (24)

kL(if true then S else S ′

S
〉 (25)

kL(if false then S else S ′

S ′
〉 (26)

9.2 simplek Type Checker

9.2.1 Structural

J KT : Exp → Type
}

. .

J E
kT (E)

KT (27)

JkT (τ)KT ≡ τ (28)

18

9.2.2 Semantic

[←] : State×Var× Int→ State
true : → Val
false : → Val
skip : → Exp
Int : → Type
Bool : → Type
Statement : → Type

. . . .

V : Int −→ Int (29)
B : Bool −→ Bool (30)

skip −→ Statement (31)
S[X] −→ Int (32)

Int + Int −→ Int (33)
Bool and Bool −→ Bool (34)

not Bool −→ Bool (35)
Int < Int −→ Bool (36)

Statement ; K −→ K (37)
X :=Int −→ Statement (38)

if Bool then τ else τ −→ τ (39)
while Bool do Statement −→ Statement (40)

9.3 simplek α

α : StateL → StateT
}

. .

{
α(JEKL) = JEKT (41)

α(JkL(K) state()KL) = JkT (K)KT (42)

α : KL → K T
}

. .
{
α(K) = JK KT (43)

9.4 simplek Proofs

9.4.1 Preservation

Lemma 2. Let E be an expression such that JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R. Then
T |= α(R) ∗−→ τ .

Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. α(R) = α(JEKL) and we define α(JEKL) as JEKT by rule 41, so by
assumption we have α(R) = τ .

Induction case Assume JEKL
n−→ R and T |= α(R) ∗−→ τ . If no steps can be taken from R then the

property holds vacuously, so assume an n+ 1 step can be taken to get to a state R′. This step could be
any one of the rules of the language. We consider each individually.

Rule 2 R = JkL(V) state()KL

α(R) By Rule
JkT (V)KT 42
JV KT 27

R′ = V

α(R′) By Rule
JV KT 43

Rule 19 R = JkL(I : Int+ I ′ : Int y K) state()KL

α(R) By Rule
JkT (I + I ′ y K)KT 42
JkT (Int + I ′ y K)KT 29
JkT (Int + Int y K)KT 29
JkT (Int y K)KT 33

R′ = JkL(I +int I
′ y K) state()KL

19

α(R′) By Rule
JkT (I +int I

′ y K)KT 42
JkT (Int y K)KT 29

Rule 24 R = JkL(X :=I : Int y K) state(S)KL
α(R) By Rule
JkT (X :=I y K)KT 42
JkT (X :=Int y K)KT 29
JkT (Statement y K)KT 38

R′ = JkL(skip y K) state(S[V ← I])KL

α(R′) By Rule
JkT (skip y K)KT 42
JkT (Statement y K)KT 31

Rule 25 R = JkL(if true then S else S ′ y K) state()KL
α(R) By Rule
JkT (if true then S else S ′ y K)KT 42
JkT (if true then τ else S ′ y K)KT assm.
JkT (if true then τ else τ y K)KT assm.
JkT (τ y K)KT 39

R′ = JkL(S y K) state()KL

α(R′) By Rule
JkT (S y K)KT 42
JkT (τ y K)KT assm. & topOfStack lemma

This actually isn’t correct since we don’t know whether reducing a type alone on the stack is the
same as reducing it within a context. Easiest fix is to add kT to the front of all the typing rules.

Rule 14 R = JkL(while K do K ′ y J) state()KL

α(R) By Rule
JkT (while K do K ′ y J)KT 42
JkT (Statement y J)KT assm. & 40

R′ = JkL(if K then (K ′ ; while K do K ′) else skip y J) state()KL

α(R′) By Rule
JkT (if K then (K ′ ; while K do K ′) else skip y J)KT 42
JkT (if Bool then (Statement ; while Bool do Statement) else skip y J)KT assm. & 40
JkT (if Bool then (Statement ; Statement) else skip y J)KT 40
JkT (if Bool then Statement else skip y J)KT 37
JkT (if Bool then Statement else Statement y J)KT 31
JkT (Statement y J)KT 39

9.4.2 Progress

Lemma 3. All expressions on the stack are either the only thing on the stack, or immediately preceding an
expression with a hole.

Lemma 4. If E1 +E2 is an expression such that JE1 +E2KT
∗−→ τ , then JE1KT

∗−→ Int and JE2KT
∗−→ Int

Lemma 5. If E1 +E2 is an expression such that JE1 +E2KT
∗−→ τ , then if JE1KL

∗−→ V : Val, we have that
JV KT

∗−→ Int.

Proof. This follows by Preservation and lemma 4.

20

Lemma 6. If E is an expression such that JEKT
∗−→ τ , then if L |= { k(E y K) state(S) } ∗−→ { k(V :

Val y K) state(S ′) } for some K , S, and S ′, then V : τ .

Lemma 7. Let E be an expression such that JEKT = τ . Then for any sub-expression S of E, if L |= { k(S y
K) state(S) } ∗−→ { k(V : Val y K) state(S ′) } for some K , S, and S ′, then V has the expected type.

Lemma 8. Any reachable configuration can be transformed using structural rules into an expression.

Lemma 9 (Progress). Let E be an expression such that JEKT = τ and JEKL
∗−→ R for some R. Either

R = V : Val for some V , or ∃R′ such that R −→ R′.

Proof. Let E be an expression such that JEKT = τ and JEKL
∗−→ R for some τ and R.

Induction on the size of the expression for R implied by lemma 8. If there are no operators, then the
expression is a value and we are done. If there is one operator then the key subexpressions must all be values,
and by lemma 7 we know we can apply the appropriate rule to reduce the expression.

Now in the inductive case, assume all expressions of size less than n that type are either values or can
take a step. Consider an expression of size n that types. If all of its key subexpressions are values, then we
can apply one of the language rules on the expression directly. If not, then there must be a key subexpression
that is not a value, so we can move it in front using a structural rule, then by inductive assumption, we know
we can take a step on that expression.

10 Monomorphic λ Calculus

10.1 λ Calculus Language

10.1.1 Structural

J KL : Exp → Val
J KL : Set[ConfigItem]→ Val
kL() : K → Set[ConfigItem]

 .

J E
kL(E)

KL (44)

JkL(V)KL ≡ V (45)
K K ′ ≡ K y �K ′ (46)
K K ′ ≡ K ′ y K� (47)

10.1.2 Semantic

λ : . : Var× Type× Exp → Val
: Exp × Exp → Exp

[/] : Exp × Exp ×Var→ Exp

 .
{

kL((λX :τ . E)(V : Val)
E[V /X]

〉 (48)

10.2 λ Calculus Type Checker

10.2.1 Structural

J KT : Exp → Type
J KT : Set[ConfigItem]→ Type
kT () : K → Set[ConfigItem]

 .

J E
kT (E)

KT (49)

JkT (τ)KT ≡ τ (50)
K K ′ ≡ K y �K ′ (51)
K K ′ ≡ K ′ y K� (52)

τ → K ≡ K y τ → � (53)

10.2.2 Semantic

• : → Type
→ : Type× Type→ Type

}
. .

{
λX :τ .K −→ τ → K [τ/X] (54)

(τ → τ ′)(τ) −→ τ ′ (55)

21

10.3 λ Calculus α

α : Result→ Result
}

. .

α(JEKL) = JEKT (56)

α(JkL(K)KL) = JkT (K)KT (57)
α(V : Val) = JV KT (58)

10.4 λ Calculus Proofs

Lemma 10. Alpha is a total function over all reachable configurations of the language, modulo the structural
rules of the language.

Lemma 11. Any reachable configuration of the language is equivalent under the structural rules to exactly
one configuration of the form JEKL for some expression E.

Lemma 12. The structural rules of the type system preserve type.

Lemma 13. If the language rules or the typing rules reduce an expression to a form where only structural
rules apply, then that form is unique up to the structural rules.

Lemma 14. If JkT (E[τ ′/X] y K)KT
∗−→ JkT (τ y K)KT and JkT (V y K ′)KT

∗−→ JkT (τ ′ y K ′)KT , then
JkT (E[V /X] y K)KT

∗−→ JkT (τ y K)KT .

Proof. Assume JkT (E[τ ′/X] y K)KT
∗−→ JkT (τ y K)KT and JkT (V y K ′)KT

∗−→ JkT (τ ′ y K ′)KT for some
τ ′, X , τ and V . We will do an induction on the size of E.

Base Case: Consider expressions E of size 0. These include only variable names. If E = X then
JkT (E[τ ′/X] y K)KT = JkT (τ ′ y K)KT and JkT (E[V /X] y K)KT = JkT (V y K)KT which by
assumption reduces to JkT (τ ′ y K)KT . We see that the property holds in this case.

Alternatively, if E = Y where Y 6= X then JkT (E[τ ′/X] y K)KT = JkT (Y y K)KT . However, this
cannot reduce to any type because we cannot type single variables. Therefore, this case cannot occur
under the assumptions.

Inductive Case: Assume the above property holds for all expressions up to size n. Consider an expression
of size n+ 1. It is either a lambda expression or an application expression.

If it is a lambda expression, we see that JkT (E[τ ′/X] y K)KT = JkT ((λY :σ .E ′)[τ ′/X] y K)KT . Using
the typing rule and properties of substitution, we see that this reduces to JkT (σ → (E ′[σ/Y])[τ ′/X] y
K)KT . Finally, this is equivalent to JkT ((E ′[σ/Y])[τ ′/X] y σ → � y K)KT by the structural rule.

Similarly, we see that JkT (E[V /X] y K)KT = JkT ((λY : σ .E ′)[V /X] y K)KT for some σ and
E ′. Using the typing rule and properties of substitution, we see that this reduces to JkT (σ →
(E ′[σ/Y])[V /X] y K)KT = JkT ((E ′[σ/Y])[V /X] y σ → � y K)KT . Because we must be able to
type this, we now see by inductive assumption that this is the same as JkT ((E ′[σ/Y])[τ ′/X] y σ →
� y K)KT , which is also the same as above, so the property holds in this case.

If it is an application expression, . . .

10.4.1 Preservation

Lemma 15 (Preservation). Let E be an expression such that JEKT
∗−→ τ and JEKL

∗−→ R for some τ and
R. Then T |= α(R) ∗−→ τ .

Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. Then R = JEKL. By 56 we see that α(R) = JEKT . By assumption,
this reduces to τ , so we have that α(R) ∗−→ τ .

Induction case Assume JEKL
n−→ R and α(R) ∗−→ τ . If no steps can be taken from R then the property

holds vacuously, so assume an n+ 1 step can be taken to get to a state R′. This step could be any one
of the structural or semantic rules of the language. We consider each individually.

22

Rule 44 R = JEKL

α(R) By Rule
JEKT 56

R′ = JkL(E)KL

α(R′) By Rule
JkT (E)KT 57
JEKT 49

Rule 45 R = JkL(V)KL

α(R) By Rule
JkT (V)KT 57

R′ = V

α(R′) By Rule
JV KT 58
JkT (V)KT 50

Rules 46 and 47 These follow because the type system has corresponding structural rules 51 and 52.

Rule 48 R = JkL((λX :τ ′ . E)(V : Val) y K)KL

α(R) By Rule
JkT ((λX :τ ′ . E)(V : Val) y K)KT 57
JkT ((τ ′ → E[τ ′/X])(V : Val) y K)KT 54
JkT ((τ ′ → E[τ ′/X])(τ ′) y K)KT Assm.
JkT (E[τ ′/X] y K)KT 55

R′ = JkL(E[V /X] y K)KL

α(R′) By Rule
JkT (E[V /X] y K)KT 57
JkT (E[τ ′/X] y K)KT Above & Lemma 14

10.4.2 Progress

Lemma 16 (Progress). Let E be an expression such that JEKT = τ and JEKL
∗−→ R for some R. Either

R = V : Val for some V , or ∃R′ such that R −→ R′.

Proof. Let E be an expression such that JEKT = τ and JEKL
∗−→ R for some τ and R. We know by lemma 11

that any such R is equivalent under the structural rules to something of the form JE ′KL and therefore
JkL(E ′)KL for some expression E ′. This expression can be one of a few forms, namely, a variable, a lambda
expression, or an application expression. We consider each individually.

(X : Var) If E ′ is just a variable name, we know by preservation that this should type to τ , but there is no
rule allowing us to type variables. Therefore, this case cannot arise.

(λX :τ ′ . E ′′) In this case, E ′ is a value so the property holds.

(E ′′)(E ′′′) We know by preservation that this should type to τ . The only way that is true is if E ′′ is a
lambda term or if some subexpression of E ′′ is an application with a lambda expression on the left. In
either case, we know we can take the corresponding step in the language.

We see that in all cases the property holds.

23

11 Poly λ Calculus

In this section we present the full polymorphic lambda calculus with constants as described in [WF94]. We
take advantage of the correspondence between their type system and one where let bindings are substituted.
This change vastly simplifies our proof because it causes the type system to be more like the language
semantics.

11.1 Poly λ Calculus Language

11.1.1 Structural

J KL : Exp → Val
J KL : Set[ConfigItem]→ Val
kL() : K → Set[ConfigItem]

J E
kL(E)

KL (59)

JkL(V)KL ≡ V (60)
EE ′ ≡ E y �E ′ (61)

(V : Val)E ≡ E y V� (62)
let X be E in E ′ ≡ E y let X be � in E ′ (63)

11.1.2 Semantic

λ . : Var× Exp → Val
let be in : Var× Exp × Exp → Exp

: Exp × Exp → Exp
Y : → Val
δ(,) : Const× ClosedVal→ ClosedVal
[/] : Exp × Exp ×Var→ Exp

. .

kL((λX . E)(V : Val)
E[V /X]

〉 (64)

kL(let X be V : Val in E
E[V /X]

〉 (65)

kL((C : Const)(V : Val)
δ(C , V)

〉 (66)

kL(Y(V : Val)
V (λX . (YV)X)

〉 (67)

11.2 Poly λ Calculus Type Inferencer

11.2.1 Structural

J KT : Exp → Type
J KT : Set[ConfigItem]→ Type
kT () : K → Set[ConfigItem]
eqns() : Set[Equation]→ Set[ConfigItem]
nextType() : TypeVar→ Set[ConfigItem]
t() : Nat→ TypeVar

.

J E
kT (E y solve) eqns(·) nextType(t(0))

KT (68)

J〈kT (τ) eqns(·)〉KT ≡ τ (69)
K K ′ ≡ K y �K ′ (70)
K K ′ ≡ K ′ y K� (71)

τ → K ≡ K y τ → � (72)

11.2.2 Inference Rules

λ . : Var× Exp → Exp
: Exp × Exp → Exp

let be in : Var× Exp × Exp → Exp
TypeOf : Const→ TypeScheme

 .

kT (λX . E
τv → E[τv/X]

〉 nextType(τv
next(τv)

) (73)

kT (τ τ ′

τv

〉 eqns(·
τ = τ ′ → τv

〉 nextType(τv
next(τv)

) (74)

kT (let X be E in E ′

E ′[E/X]
〉 (75)

kT (C
instantiate(TypeOf (C))

〉 (76)

instantiate : TypeScheme→ K
}

.

kT (instantiate(∀(·).τ)

τ
〉 (77)

kT (instantiate(∀〈τv
·
〉. τ
τ [τv ′/τv]

)〉 nextType(τv
′

next(τv ′)
) (78)

24

Y : → Val
}{ kT (Y

((τv → next(τv))→ τv → next(τv))→ τv → next(τv)
〉 nextType(τv

next(next(τv))
) (79)

11.2.3 Equations

= : Type× Type→ Equation [comm]
}

. .

(τ = τ) = · (80)

τ1 → τ2 = τ ′1 → τ ′2
(τ1 = τ ′1), (τ2 = τ ′2)

(81)

11.2.4 Unification

solve : → K
}

. .

kT (τe

τe[τ/τv]
y solve〉 eqns((τv = τ)E

E [τ/τv]
)⇐ τv /∈ vars(τ) (82)

kT (τ y solve
·
〉 eqns(·) (83)

11.3 Poly λ Calculus α

α : Result→ Result
}

.

α(JEKL) = JEKT (84)

α(JkL(K)KL) = JkT (K y solve) eqns(·) nextType(t(0))KT (85)
α(V : Val) = JV KT (86)

11.4 Poly λ Calculus Proofs

11.4.1 Preservation

Lemma 17 (Preservation). Let E be an expression such that JEKT
∗−→ τ and JEKL

∗−→ R for some τ and
R. Then T |= α(R) ∗−→ τ .

Proof. The proof proceeds by induction on the number of steps taken to get from JEKL to R.

Base Case Assume no steps were taken. Then R = JEKL. By 84 we see that α(R) = JEKT . By assumption,
this reduces to τ , so we have that α(R) ∗−→ τ .

Induction case Assume JEKL
n−→ R and α(R) ∗−→ τ . If no steps can be taken from R then the property

holds vacuously, so assume an n+ 1 step can be taken to get to a state R′. This step could be any one
of the structural or semantic rules of the language. We consider each individually.

Rule 59 R = JEKL

α(R) By Rule
JEKT 84
JkT (E y solve) eqns(·) nextType(t(0))KT 68

R′ = JkL(E)KL

α(R′) By Rule
JkT (E y solve) eqns(·) nextType(t(0))KT 85

Rule 64 R = JkL((λX . E)(V : Val) y K)KL

25

α(R) By Rule
JkT ((λX . E)(V : Val) y K y solve) eqns(·) nextType(t(0))KT 85
JkT (λX . E y �V y K y solve) eqns(·) nextType(t(0))KT 70
JkT (t(0)→ E[t(0)/X] y �V y K y solve) eqns(·) nextType(t(1))KT 73
JkT (E[t(0)/X] y t(0)→ � y �V y K y solve) eqns(·) nextType(t(1))KT 72
JkT (α y t(0)→ � y �V y K y solve) eqns(E) nextType(t(1))KT assm.
JkT (t(0)→ α y �V y K y solve) eqns(E) nextType(t(1))KT 72
JkT ((t(0)→ α)β y K y solve) eqns(E) nextType(t(1))KT assm.
JkT (t(1) y K y solve) eqns((t(0)→ α) = (β → t(1)) · E) nextType(t(2))KT 74

We see t(1) = α by unification, and that V ∗−→ t(0) and E[t(0)/X] ∗−→ α

R′ = JkL(E[V /X] y K)KL

α(R′) By Rule
JkT (E[V /X] y K y solve) eqns(·) nextType(t(0))KT 85

By a lemma similar to the one we used in the simply-typed lambda calculus, we know E[V /X] ∗−→ α.

Rule 65 R = JkL(let X be V : Val in E y K)KL

α(R) By Rule
JkT (let X be V : Val in E y K y solve) eqns(·) nextType(t(0))KT 85
JkT (E[V /X] y K y solve) eqns(·) nextType(t(0))KT 75

R′ = JkL(E[V /X] y K)KL

α(R′) By Rule
JkT (E[V /X] y K y solve) eqns(·) nextType(t(0))KT 85

Rule 66 R = JkL((C : Const)(V : Val) y K)KL

α(R) By Rule
JkT ((C : Const)(V : Val) y K y solve) eqns(·) nextType(t(0))KT 85
JkT ((instantiate(TypeOf (C)))V y K y solve) eqns(·) nextType(t(0))KT 76
JkT ((τ1 → τ2)V y K y solve) eqns(·) nextType(t(0))KT assm.
JkT ((τ1 → τ2)τ ′ y K y solve) eqns(E) nextType(t(0))KT assm.
JkT (t(0) y K y solve) eqns((τ1 → τ2 = τ ′ → t(0)) · E) nextType(t(1))KT 74

R′ = JkL(δ(C , V) y K)KL

α(R′) By Rule
JkT (δ(C , V) y K y solve) eqns(·) nextType(t(0))KT 85
JkT (τ2 y K y solve) eqns(·) nextType(t(0))KT above & δ-typeability

11.4.2 Progress

Lemma 18 (Progress). Let E be an expression such that JEKT
∗−→ τ and JEKL

∗−→ R for some R. Either
R = V : Val for some V , or ∃R′ such that R −→ R′.

Proof. Let E be an expression such that JEKT
∗−→ τ and JEKL

∗−→ R for some τ and R. We know by
lemma 11 that any such R is equivalent under the structural rules to something of the form JE ′KL and
therefore JkL(E ′)KL for some expression E ′. This expression can be one of a few forms, namely, a variable, a
lambda expression, or an application expression. We consider each individually.

(X : Var) If E ′ is just a variable name, we know by preservation that this should type to τ , but there is no
rule allowing us to type variables. Therefore, this case cannot arise.

(λX :τ ′ . E ′′) In this case, E ′ is a value so the property holds.

26

(E ′′)(E ′′′) We know by preservation that this should type to τ . The only way that is true is if E ′′ is a
lambda term or if some subexpression of E ′′ is an application with a lambda expression on the left. In
either case, we know we can take the corresponding step in the language.

We see that in all cases the property holds.

12 W

12.1 Exp Language

12.1.1 Structural Rules

J KE : Exp → Val
J KE : Set[ConfigItem]→ Val
kE () : K → ConfigItem

: Exp × Exp → Exp
let be in : Var× Exp × Exp → Exp
if then else : Exp × Exp × Exp → Exp

+ : Exp × Exp → Exp

JEKE ≡ JkE (E)KE (87)
JkE (V)KE ≡ V (88)

EE ′ ≡ E y �E ′ (89)
EE ′ ≡ E ′ y E� (90)

let X be E in E ′ ≡ E y let X be � in E ′ (91)
if E then E1 else E2 ≡ E y if � then E1 else E2 (92)

K + K ′ ≡ K y � + K ′ (93)
K + K ′ ≡ K ′ y K + � (94)

12.1.2 Semantic Rules

fix . : Var× Exp → Exp
}

. .

kE (I : Int+ I ′ : Int
I +int I

′
〉 (95)

kE ((λX . E)(V : Val)
E[V /X]

〉 (96)

kE (let X be V : Val in E
E[V /X]

〉 (97)

kE (if true then E else E ′

E
〉 (98)

kE (if false then E else E ′

E ′
〉 (99)

kE (fix X . E
E[fix X . E/X]

〉 (100)

12.2 W

12.2.1 Structural Rules

J KW : Exp → Type
J KW : Set[ConfigItem]→ Type
kW () : K → ConfigItem
eqns() : Set[Equation]→ ConfigItem
nextType() : TypeVar→ ConfigItem
t() : Nat→ TypeVar

JEKW ≡ JkW (E) tenv(·) eqns(·) nextType(t(0))KW (101)
J〈kW (τ) eqns(E)〉KW ≡ E [τ] (102)

EE ′ ≡ E y �E ′ (103)
EE ′ ≡ E ′ y E� (104)

if K then S else S ′ ≡ K y if � then S else S ′ (105)
if K then S else S ′ ≡ S y if K then � else S ′ (106)
if K then S else S ′ ≡ S ′ y if K then S else � (107)

let X be K in K ′ ≡ K y let X be � in K ′ (108)
τ → K ≡ K y τ → � (109)

27

12.2.2 Inference Rules

restore() : Environment→ K
Int : → Type
Bool : → Type

 .

kW (τ y restore(Γ)
·

〉 env(
Γ

) (110)

I : Int −→ Int (111)
true −→ Bool (112)
false −→ Bool (113)

}

kW (X

(E [τ])[tl← tl′]
〉 tenv(Γ) eqns(E) nextType(τv

τv + |tl|
)⇐= Γ[X] = let(t), tl = vars(E [τ])− vars(Γ) and

tl′ = τv . . . (τv + |tl| − 1) (114)

λ . : Var× Exp → Exp
→ : Type× Type→ Type

}{
kW (λX . E

(τv → E) y restore(Γ)
〉 tenv(Γ

Γ[X ← τv]
) nextType(τv

next(τv)
) (115)

: Exp × Exp → Exp
let be in : Var× Exp × Exp → Exp

}

kW (τ + τ ′

Int
〉 eqns〈 ·

τ = Int · τ ′ = Int
〉 (116)

kW (τ1τ2
τv

〉 eqns(·
τ1 = τ2 → τv

) nextType(τv
next(τv)

) (117)

kW (let X be τ in E
E y restore(Γ)

〉 tenv(Γ
Γ[X ← let(τv)]

) (118)

kW (if τ then τ1 else τ2
τ1

〉 eqns〈 ·
τ = Bool · τ1 = τ2

〉 (119)

12.2.3 Abstract Structural Rules

JEK
Ŵ
≡ Jk

Ŵ
(E) tenv(·) subst(ID)K

Ŵ
(120)

J〈k
Ŵ

(τ) subst(θ)〉K
Ŵ
≡ θ(τ) (121)

EE ′ ≡ E y �E ′ (122)
EE ′ ≡ E ′ y E� (123)

if K then S else S ′ ≡ K y if � then S else S ′ (124)
if K then S else S ′ ≡ S y if K then � else S ′ (125)
if K then S else S ′ ≡ S ′ y if K then S else � (126)

let X be K in K ′ ≡ K y let X be � in K ′ (127)
τ → K ≡ K y τ → � (128)

12.2.4 Abstract Inference Rules

θ : TypeVar→ TypeVar which we extend over K , TypeEnv, θs, and K̂ in the natural way (to be made explicit
later).

θ ⊕ (τ1 = τ2) = θ ⊗ (θ(τ1) = θ(τ2))

θ ⊗ (τ1 = τ2) =

θ if τ1 = τ2

θ[τ1 ← τ2] if τ1 ∈ TypeVar
θ[τ2 ← τ1] else if τ2 ∈ TypeVar
θ ′ ⊕ (τ ′1 = τ ′2)⊕ (τ ′′1 = τ ′′2) if τ1 6= τ2 and τ1 = τ ′1 → τ ′′1 and τ2 = τ ′2 → τ ′′2
⊥ otherwise

We define the reduction relation −̂→ as −̂→ =−→; θ. We further identify configurations Jk
Ŵ

(K 1) tenv(Γ1) subst(θ1)K
Ŵ

and Jk
Ŵ

(K 2) tenv(Γ2) subst(θ2)K
Ŵ

where ∃ a bijection ι : TypeVar→ TypeVar, extended in the usual way,
such that ι(K 1) = K 2, ι(Γ1) = Γ2, and ι(θ1) = θ2.

28

k
Ŵ

(τ y restore(Γ)
·

〉 tenv(
Γ

) (129)

I : Int −→ Int (130)
true −→ Bool (131)
false −→ Bool (132)

k
Ŵ

(X
τ [tl← tl′]

〉 tenv(Γ) where Γ[X] = let(τ), tl = vars(τ)− vars(Γ), and tl ′ = |tl | fresh type variables (133)

k
Ŵ

(X
Γ[X]

〉 tenv(Γ) where Γ[X] 6= let() (134)

k
Ŵ

(λX . E
(τv → E) y restore(Γ)

〉 tenv(Γ
Γ[X ← τv]

) where τv is a fresh type variable (135)

k
Ŵ

(let X be τ in E
E y restore(Γ)

〉 tenv(Γ
Γ[X ← let(τv)]

) where τv is a fresh type variable (136)

k
Ŵ

(fix X . E
E y?=(τv) y restore(Γ)

〉 tenv(Γ
Γ[X ← τv]

) where τv is a fresh type variable (137)

k
Ŵ

(τ y ?=(τv)
·
〉 subst(θ

θ ⊕ (τ = τv)
) (138)

k
Ŵ

(τ + τ ′

Int
〉 subst(θ

θ ⊕ (τ = Int)⊕ (τ ′ = Int)
) (139)

k
Ŵ

(τ1τ2
τv

〉 subst(θ
θ ⊕ (τ1 = τ2 → τv)

) where τv is a fresh type variable (140)

k
Ŵ

(if τ then τ1 else τ2
τ1

〉 subst(θ
θ ′

) where θ ′ = θ ⊕ (τ1 = τ2)⊕ (τ = Bool) (141)

12.3 α : Set[ConfigItem]E → Set[ConfigItem]W

A distinguishing feature of our technique is that we use an abstraction function, α, to enable us to convert
between a configuration in the language domain to a corresponding configuration in the typing domain.
Using an abstraction function in proving soundness is a technique used frequently in the domain of processor
construction, as introduced in [HSG98], or compiler optimization [KSK06,KSK07].

Lemma 19. Any reachable configuration in the language domain can be transformed using structural rules
into a unique expression.

Proof. This follows from two key points. One, you cannot use the structural rules to transform an expression
into any other expression, and two, each structural rule can be applied backwards even after semantic rules
have applied.

We now define α:
α(JEKE) = JEKW (142)

By lemma 19, we know this definition of α is well-defined for all reachable configurations, and homomorphic
with respect to structural rules.

12.4 Proofs

12.4.1 Preservation

Definition 1 (Generalizes relation). A type τ is said to generalize a type τ ′ (written τ � τ ′) if ∃θ.θ(τ) = τ ′

where θ is a substitution over type variables.

Definition 2 (Type Equivalance). A type τ is said to be type equivalent to τ ′ if τ � τ ′ and τ ′ � τ .

29

Lemma 20.
Jk

Ŵ
(K 1) tenv(Γ) subst(θ)K

Ŵ
−̂→Jk

Ŵ
(K 2) tenv(Γ′) subst(θ ′)K

Ŵ

iff
Jk

Ŵ
(K 1 y K) tenv(Γ) subst(θ)K

Ŵ
−̂→Jk

Ŵ
(K 2 y θ ′(K)) tenv(Γ′) subst(θ ′)K

Ŵ

Lemma 21. θ � θ ⊕ E

Lemma 22. If
Jk

Ŵ
(K) tenv(Γ) subst(θ)K

Ŵ
−̂→Jk

Ŵ
(K ′) tenv(Γ′) subst(θ ′)K

Ŵ

then θ � θ ′.

Lemma 23. If
Jk

Ŵ
(E) tenv(Γ) subst(θ)K

Ŵ

∗̂−→ Jk
Ŵ

(τ) tenv(Γ′) subst(θ ′)K
Ŵ

then Γ′ = θ ′(Γ).

Lemma 24. If
Jk

Ŵ
(E) tenv(Γ) subst(θ)K

Ŵ

∗̂−→ Jk
Ŵ

(τ1) tenv(Γ′) subst(θ ′)K
Ŵ

then if
Jk

Ŵ
(E) tenv(Γ[X ← τ]) subst(θ)K

Ŵ

∗̂−→ Jk
Ŵ

(τ2) tenv(Γ′′) subst(θ ′′)K
Ŵ

for some fresh type variable τ , we have that τ2 � τ1.

Lemma 25. If

Jk
Ŵ

(E) tenv(Γ[X ← τ]) subst(θ)K
Ŵ

∗̂−→ Jk
Ŵ

(τ1) tenv(Γ′) subst(θ ′)K
Ŵ

then if
Jk

Ŵ
(E) tenv(Γ[X ← τ ′]) subst(θ)K

Ŵ

∗̂−→ Jk
Ŵ

(τ2) tenv(Γ′′) subst(θ ′′)K
Ŵ

for types τ ′ � τ , we have that τ2 � τ1.

Lemma 26. If
Jk

Ŵ
(E) tenv(Γ) subst(θ)K

Ŵ

∗̂−→ Jk
Ŵ

(τ1) tenv(θ ′(Γ)) subst(θ ′)K
Ŵ

and E contains no X , then

Jk
Ŵ

(E) tenv(Γ[X ← τ]) subst(θ)K
Ŵ

∗̂−→ Jk
Ŵ

(τ1) tenv(θ ′(Γ)[X ← τ]) subst(θ ′)K
Ŵ

for a fresh τ .

Lemma 27. If
Jk

Ŵ
(E) tenv(Γ) subst(θ)K

Ŵ

∗̂−→ Jk
Ŵ

(τ1) tenv(Γ1) subst(θ1)K
Ŵ

and τ is a fresh type variable, then for any X ,

Jk
Ŵ

(E) tenv(Γ[X ← τ]) subst(θ)K
Ŵ

∗̂−→ Jk
Ŵ

(τ2) tenv(Γ2) subst(θ2)K
Ŵ

and τ2 � τ1 and θ2 � θ1.

Lemma 28 (Env ⇒ Rep). If

• Jk
Ŵ

(V) tenv(Γ) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(τV) tenv(Γ1) subst(θ1)K
Ŵ

• Jk
Ŵ

(E) tenv(Γ1[X ← τV]) subst(θ1)K
Ŵ

∗̂−→ Jk
Ŵ

(τE) tenv(Γ2) subst(θ2)K
Ŵ

then Jk
Ŵ

(E[X ← V]) tenv(Γ) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(τR) tenv(Γ3) subst(θ3)K
Ŵ

) where τR � τE and θ3 � θ2.

Proof. We will do an induction on the size (number of operators) of E. (Incidentally, Γ1 = θ1(Γ), Γ2 =
θ2(Γ1[X ← τV]), and Γ3 = θ3(Γ).

30

Base Case: Consider an expression E of size 0. These include only variable names and constants.

Inductive Case: Consider an expression E of size n+ 1. It could be any of the expressions of the language,
and we consider each in turn. Assume the above property holds for all expressions up to size n.

Consider the case when E is a lambda expression. We assume

Jk
Ŵ

(V) tenv(Γ) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(τV) tenv(Γ1) subst(θ1)K
Ŵ

) (143)

and

Jk
Ŵ

(λY . E) tenv(Γ1[X ← τV]) subst(θ1)K
Ŵ

∗̂−→ Jk
Ŵ

(E y K) tenv(Γ1[X ← τV][Y ← τ]) subst(θ1)K
Ŵ

(144)
∗̂−→ Jk

Ŵ
(τE y θ2(K)) tenv(Γ′) subst(θ2)K

Ŵ
(145)

∗̂−→ Jk
Ŵ

(θ2(τ)→ τE) tenv(Γ′′) subst(θ2)K
Ŵ

(146)

(147)

for K = (τ → �) y restore(Γ1[X ← τV]). We want to show that

Jk
Ŵ

((λY . E)[X ← V]) tenv(Γ) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(τR) tenv(Γ3) subst(θ3)K
Ŵ

(148)

with τR � θ2(τ)→ τE and θ3 � θ2.

We first notice that there can be no Y in V , so by lemma 26 and assumption 143, we know that

Jk
Ŵ

(V) tenv(Γ[Y ← τ]) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(τV) tenv(Γ1[Y ← τ]) subst(θ1)K
Ŵ

) (149)

Furthermore, by lemma 27,

Jk
Ŵ

(E) tenv(Γ1[Y ← τ][X ← τV]) subst(θ1)K
Ŵ

∗̂−→ Jk
Ŵ

(τ ′E) tenv(Γ′2) subst(θ ′2)K
Ŵ

(150)

for some τ ′E � τE and θ ′2 � θ2. Now we can apply the inductive hypothesis to conclude

Jk
Ŵ

(E[X ← V]) tenv(Γ[Y ← τ]) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(τS) tenv(Γ3) subst(θ3)K
Ŵ

(151)

with τS � τ ′E � τE and θ3 � θ ′2 � θ2.

So now we know that

Jk
Ŵ

((λY . E)[X ← V]) tenv(Γ) subst(θ0)K
Ŵ

∗̂−→ Jk
Ŵ

(E[X ← V] y K) tenv(Γ[Y ← τ]) subst(θ0)K
Ŵ

(152)
∗̂−→ Jk

Ŵ
(θ3(τ)→ τS) tenv(Γ3) subst(θ3)K

Ŵ
(153)

All that remains to be shown is that θ3(τ)→ τS � θ2(τ)→ τE . We know:

1. ∃θ.∀τv.θ(θ3(τv)) = θ2(τv)

2. ∃θ′.θ′(τS) = τE

3. θ2(τE) = τE

4. θ3(τS) = τS

5. τ is a base type

This is true if ∃θ′′.θ′′(θ3(τ)→ τS) = θ2(τ)→ τE , or equivalently we can find a θ′′ st

1. θ′′(θ3(τ)) = θ2(τ)

2. θ′′(τS) = τE

31

We will construct an appropriate unifier θ′′. Assume τ ∈ τS . Then θ3(τ) = τ by 4.

θ′′(τv) =

{
θ2(τv) if τv = τ

θ′(τv) if τv ∈ vars(τS)
(154)

This is well-defined if θ2(τ) = θ′(τ).

Assume τ ∈ τE . We know θ2(τ) = τ by 3 and θ ′(τE) = τE by 2, and since τ ∈ τE , θ ′(τ) = τ .

Assume τ /∈ τE . By 1 we know θ(τ) = θ2(τ).

Lemma 29. If W |= α(V) ∗−→ τ then JV KW
∗−→ τ

Proof. This follows directly from the W rewrite rules for values.

Lemma 30. If JEKW
∗−→ τ and JEKE

∗−→ R for some τ and R, then W |= α(R) ∗−→ τ ′ for some τ ′ unifiable
with τ .

Proof. The proof proceeds by induction on the number of steps taken to get from JEKE to R.

Base Case Assume no steps were taken. Then R = JEKE . By the definition of α, we see that α(R) = JEKW .
By assumption, this reduces to τ , so we have that α(R) ∗−→ τ .

Induction Case Assume JEKE
n−→ R and α(R) ∗−→ τ . If no steps can be taken from R then the property

holds vacuously, so assume an n+ 1 step can be taken to get to a state R′. This step could be any one
of the structural or semantic rules of the language. We consider each individually:

Rule 87 through 94 These all follow from lemma 19.

Rule 95 R = JkE (I : Int+ I ′ : Int y K)KE Now we work with α(R):

α(R) = α(JkE (I + I ′ y K)KE)

which reduces to:
JkW (I + I ′ y K) tenv(·) eqns(·) nextType(0)KW

by the definition of α. This then reduces to:

JkW (Int + Int y K) tenv(·) eqns(·) nextType(0)KW

because we reduce integers to Int. This then reduces to:

JkW (Int y K) tenv(·) eqns(Int = Int, Int = Int) nextType(0)KW

by applying the reduction rule for addition. Finally, we can reduce this to:

JkW (Int y K) tenv(·) eqns(·) nextType(0)KW

by applying one of the rules of unification twice. Now we work with R′. We start with:

α(R′) = α(JkE (I +int I
′ y K)KE)

which reduces to:
JkW (I +int I

′ y K) tenv(·) eqns(·) nextType(0)KW

by the definition of α. This immediately reduces to:

JkW (Int y K) tenv(·) eqns(·) nextType(0)KW

because we reduce integers to Int. So, we now have that α(R) and α(R′) both reduce to the same
configuration. We know by inductive assumption that α(R) ∗−→ τ . Since α(R) and α(R′) both
reduce to the same configuration, α(R) ∗−→ τ also. This completes the case.

32

Rule 96 R = JkE ((λX . E)(V : Val) y K)KE

α(R) By Rule
JkW ((λX . E)(V : Val) y K) tenv(·) eqns(·) nextType(t(0))KW 142
JkW (λX . E y �V y K) tenv(·) eqns(·) nextType(t(0))KW 122
JkW ((t(0)→ E) y restore(·) y �V y K) tenv([X, t(0)]) eqns(·) nextType(t(1))KW 135
JkW (E y (t(0)→ �) y restore(·) y �V y K) tenv([X, t(0)]) eqns(·) nextType(t(1))KW 128
JkW (τ1 y (t(0)→ �) y restore(·) y �V y K) tenv([X, t(0)]) eqns(E) nextType(τv)KW ind assum
JkW ((t(0)→ τ1) y restore(·) y �V y K) tenv([X, t(0)]) eqns(E) nextType(τv)KW 128
JkW ((t(0)→ τ1) y �V y K) tenv(·) eqns(E) nextType(τv)KW 129
JkW ((t(0)→ τ1)V y K) tenv(·) eqns(E) nextType(τv)KW 122
JkW (V y (t(0)→ τ1)� y K) tenv(·) eqns(E) nextType(τv)KW 123
JkW (τ2 y (t(0)→ τ1)� y K) tenv(·) eqns(E ′) nextType(τv ′)KW ind assum
JkW ((t(0)→ τ1)τ2 y K) tenv(·) eqns(E ′) nextType(τv ′)KW 123
JkW (τv ′ y K) tenv(·) eqns(E ′ · (t(0)→ τ1 = τ2 → τv

′)) nextType(τv ′)KW 140

In the above we see that

• JkW (E y K 1) tenv([X, t(0)]) eqns(·) nextType(t(1))KW
∗−→

JkW (τ1 y K 1) tenv([X, t(0)]) eqns(E) nextType(τv)KW

• JkW (V y K 2) tenv(·) eqns(E) nextType(τv)KW
∗−→

JkW (τ2 y K 2) tenv(·) eqns(E ′) nextType(τv ′)KW .
• t(0) = τ2

• τ1 = τv
′

R′ = JkE (E[V /X] y K)KE

α(R′) By Rule
JkW (E[V /X] y K) tenv(·) eqns(·) nextType(t(0))KW 142
JkW (τv ′ y K) tenv(·) eqns(·) nextType(t(0))KW Lemma 28

Rule 97 R = JkE (let X be V : Val in E y K)KE

α(R) By Rule
JkE (let X be V in E y K) tenv(·) eqns(·) nextType(t(0))KW 142
JkW (V y let X be � in E y K) tenv(·) eqns(·) nextType(t(0))KW 127
JkW (τ1 y let X be � in E y K) tenv(·) eqns(·) nextType(τv)KW ind assum & Lemma
JkW (let X be τ1 in E y K) tenv(·) eqns(E) nextType(τv)KW 127
JkW (E y restore(·) y K) tenv([X , let(τ1)]) eqns(E) nextType(τv)KW 136
JkW (τ2 y restore(·) y K) tenv([X , let(τ1)]) eqns(E ′) nextType(τv ′)KW ind assum
JkW (τ2 y K) tenv(·) eqns(E ′) nextType(τv ′)KW 129

In the above we see that

• JkW (E y K 1) tenv([X, let(τ1)]) eqns(E) nextType(τv)KW
∗−→

JkW (τ2 y K 1) tenv([X, let(τ1)]) eqns(E ′) nextType(τv ′)KW

• JkW (V y K 2) tenv(·) eqns(E) nextType(t(0))KW
∗−→

JkW (τ1 y K 2) tenv(·) eqns(E ′) nextType(τv)KW .

R′ = JkE (E[V /X] y K)KE

α(R′) By Rule
JkW (E[V /X] y K) tenv(·) eqns(·) nextType(t(0))KW 142
JkW (τv ′ y K) tenv(·) eqns(·) nextType(t(0))KW Lemma 28

33

Rule 98 R = JkE (if true then E else E ′ y K)KE

α(R) By Rule
JkE (if true then E else E ′ y K) tenv(·) eqns(·) nextType(t(0))KW 142
JkE (if Bool then E else E ′ y K) tenv(·) eqns(·) nextType(t(0))KW 131
JkE (E y if Bool then � else E ′ y K) tenv(·) eqns(·) nextType(t(0))KW 125
JkE (τ y if Bool then � else E ′ y K) tenv(·) eqns(E) nextType(τv)KW ind assum
JkE (if Bool then τ else E ′ y K) tenv(·) eqns(E) nextType(τv)KW 125
JkE (E ′ y if Bool then τ else � y K) tenv(·) eqns(E) nextType(τv)KW 126
JkE (τ ′ y if Bool then τ else � y K) tenv(·) eqns(E ′) nextType(τv ′)KW ind assum
JkE (if Bool then τ else τ ′ y K) tenv(·) eqns(E ′) nextType(τv ′)KW 126
JkE (τ y K) tenv(·) eqns(E ′ ·Bool = Bool · τ = τ ′) nextType(τv ′)KW 141

R′ = JkE (E y K)KE

α(R′) By Rule
JkW (E y K) tenv(·) eqns(·) nextType(t(0))KW 142
JkW (τ y K) tenv(·) eqns(E) nextType(τv)KW topOfStack for types

Rule 99 This proceeds like rule 98.

Rule 100 R = JkE (fix X . E y K)KE

α(R) By Rule
JkE (fix X . E y K) tenv(·) eqns(·) nextType(t(0))KW 142

R′ = JkE (E[fix X . E/X] y K)KE

α(R′) By Rule
JkW (E[fix X . E/X] y K) tenv(·) eqns(·) nextType(t(0))KW 142

Theorem 1 (Preservation). If JEKW
∗−→ τ and JEKE

∗−→ V for some type τ and value V , then JV KW
∗−→ τ

Proof. This follows directly from lemmas 29 and 30.

12.4.2 Progress

Lemma 31. If JkE (E y K 1)KE
∗−→ JkE (V y K 1)KE , then JkE (E y K 2)KE

∗−→ JkE (V y K 2)KE for any
K1 and K2.

Proof. This follows by simple inspection of the reduction rules.

Lemma 32. If JV KW
∗−→ τ and τ is unifiable with Int, then τ = Int.

Proof. The only things unifiable with Int are Int itself and an arbitrary τ . Because there is no way to type
a value to an arbitrary τ , it must type to Int itself.

Lemma 33. If E1 + E2 is an expression such that JE1 + E2KW
∗−→ τ , then if JE1KE

∗−→ V , we have that
JV KW

∗−→ Int.

Proof. This follows by first noting there is no way to reduce an addition expression on the top of the stack to
a type except by applying the rule 139. Therefore, we know that JE1KW

∗−→ τ1. By preservation, we then
know that if JE1KE

∗−→ V , it must be the case that JV KW
∗−→ τ ′ for some τ ′ unifiable with τ . By lemma 32,

we then know τ = Int and we are done.

Definition 3 (Key Subexpression). Any subexpression of an expression that must be reduced to a value
before the entire expression can be reduced is called a key subexpression. For example, E is the only key
expression in if E then E1 else E2, but both E and E ′ are key subexpressions in EE ′.

34

Lemma 34. Let E be an expression such that JEKW
∗−→ τ . For any key subexpression S of E, if JkE (S y

K)KE
∗−→ JkE (V y K)KE for some K , then V has the expected type.

Proof. This follows from lemma 31 and all lemmas like 33 for each key subexpression of each expression.

Theorem 2 (Progress). For any expression E where JEKW
∗−→ τ and JEKE

∗−→ R for some τ and R, either
R = V for some V , or ∃R′ such that R −→ R′.

Proof. Let E be an expression such that JEKW
∗−→ τ and JEKE

∗−→ R for some τ and R.
The proof proceeds by induction on the size of the expression E for configuration R implied by lemma 19.

Base Case If there are no operators in E, then the expression is a value and we are done. If there is one
operator in E, then the key subexpressions must all be values, and by lemma 34 and inspection of our
rewrite rules to ensure we covered all expressions, we know we can apply the appropriate reduction.

Induction Case Assume all expressions of size less than n that type are either values or can take a step.
Consider an expression of size n that types. If all of its key subexpressions are values, then by lemma
34 we can apply one of the language rules on the expression directly. If not, then there must be a key
subexpression that is not a value, so we can move it in front using a structural rule, then by inductive
assumption, we know we can take a step on that expression.

References

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce,
Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The poplmark challenge. In TPHOLs ’05, volume 3603
of LNCS, pages 50–65. Springer, 2005.

[AMGR93] Andrew Appel, David MacQueen, Lal George, and John Reppy. Standard ML of New Jersey
release notes (version 0.93). Technical report, AT&T Bell Laboratories, November 1993.

[Ano07a] Anonymous. -1-. Technical Report —, —, 2007.

[Ano07b] Anonymous. -2-. Technical Report —, —, 2007.

[Ban92] Richard Banach. Simple type inference for term graph rewriting systems. In CTRS ’92, volume
656 of LNCS, pages 51–66, 1992.

[Bar91] Henk Barendregt. Introduction to generalized type systems. J. Functional Programming,
1(2):125–154, 1991.

[BKK+98] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Christophe
Ringeissen. An overview of ELAN. ENTCS, 15, 1998.

[BKVV05] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT
Tutorial, Examples, and Reference Manual. Department of Information and Computing Sciences,
Universiteit Utrecht, August 2005. (Draft).

[BvEG+87] Hendrik Pieter Barendregt, Marko C. J. D. van Eekelen, John R. W. Glauert, Richard Kennaway,
Marinus J. Plasmeijer, and M. Ronan Sleep. Term graph rewriting. In PARLE (2), volume 259
of LNCS, pages 141–158. Springer, 1987.

[CDE+02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada.
Maude: specification and programming in rewriting logic. Theor. Comput. Sci., 285(2):187–243,
2002.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In POPL ’82,
pages 207–212. ACM, 1982.

35

[Eke96] Steven Eker. Fast matching in combinations of regular equational theories. In WRLA ’96,
volume 4 of ENTCS, pages 90–109, 1996.

[FH92] Matthias Felleisen and Robert Hieb. A revised report on the syntactic theories of sequential
control and state. J. TCS, 103(2):235–271, 1992.

[FPST07] Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion: indexed types now! In
PEPM ’07, pages 112–121. ACM, 2007.

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Specification and validation methods,
pages 9–36. Oxford University Press, Inc., New York, NY, USA, 1995.

[GWM+00] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouan-
naud. Introducing OBJ. In Software Engineering with OBJ: algebraic specification in action.
Kluwer, 2000.

[HdM] Yorck Hunke and Oege de Moor. Aiding dependent type checking with rewrite rules.

[HSG98] Ravi Hosabettu, Mandayam K. Srivas, and Ganesh Gopalakrishnan. Decomposing the proof of
correctness of pipelined microprocessors. In CAV ’98, volume 1427 of LNCS, pages 122–134.
Springer, 1998.

[KK00] Fairouz Kamareddine and Jan Willem Klop, editors. Special issue on Type Theory and Term
Rewriting: a collection of papers, volume 10(3). Oxford University Press, 2000.

[Klo92] Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–117.
Oxford University Press, 1992.

[KMF07] George Kuan, David MacQueen, and Robert Bruce Findler. A rewriting semantics for type
inference. In ESOP ’07, volume 4421 of LNCS, pages 426–440. Springer, 2007.

[KN06] Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. TOPLAS, 28(4):619–695, 2006.

[KSK06] Aditya Kanade, Amitabha Sanyal, and Uday P. Khedker. A PVS based framework for validating
compiler optimizations. In SEFM ’06, pages 108–117. IEEE Computer Society, 2006.

[KSK07] Aditya Kanade, Amitabha Sanyal, and Uday P. Khedker. Structuring optimizing transformations
and proving them sound. In COCV ’06, volume 176(3) of ENTCS, pages 79–95. Elsevier, 2007.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of standard
ml. In POPL ’07, pages 173–184. ACM, 2007.

[LP03] Michael Y. Levin and Benjamin C. Pierce. Tinkertype: a language for playing with formal
systems. J. Functional Programing, 13(2):295–316, 2003.

[LW91] Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In POPL ’91,
pages 291–302. ACM, 1991.

[Mam07] Azamatbek Mametjanov. Types and program transformations. In OOPSLA ’07 Companion,
pages 937–938. ACM, 2007.

[Mes92] José Meseguer. Conditioned rewriting logic as a unified model of concurrency. J. TCS,
96(1):73–155, 1992.

[MFFF04] Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. A visual
environment for developing context-sensitive term rewriting systems. In RTA ’04, volume 3091
of LNCS, pages 301–311. Springer, 2004.

[Mil78] Robin Milner. A theory of type polymorphism in programming. J. Computer and System
Sciences, 17(3):348–375, 1978.

36

[MR04] José Meseguer and Grigore Rosu. Rewriting logic semantics: From language specifications to
formal analysis tools. In IJCAR ’04, volume 3097 of LNCS, pages 1–44. Springer, 2004.

[MR07] José Meseguer and Grigore Rosu. The rewriting logic semantics project. J. TCS, 373(3):213–237,
2007. Also appeared in SOS ’05, volume 156(1) of ENTCS, pages 27–56, 2006.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004. Original version: University of Aarhus Technical
Report DAIMI FN-19, 1981.

[Plu98] Detlef Plump. Term graph rewriting, 1998.

[Ros06] Grigore Rosu. K: a Rewrite-based Framework for Modular Language Design, Semantics,
Analysis and Implementation. Technical Report UIUCDCS-R-2006-2802, Computer Science
Department, University of Illinois at Urbana-Champaign, 2006.

[SM04] Mark-Oliver Stehr and José Meseguer. Pure type systems in rewriting logic: Specifying typed
higher-order languages in a first-order logical framework. In Essays in Memory of Ole-Johan
Dahl, volume 2635 of LNCS, pages 334–375. Springer, 2004.

[SW00] Christopher Strachey and Christopher P. Wadsworth. Continuations: A Mathematical Semantics
for Handling Full Jumps. Higher-Order and Symb. Computation, 13(1/2):135–152, 2000.

[Tof90] Mads Tofte. Type inference for polymorphic references. Information and Computation, 89(1):1–
34, 1990.

[vdBHKO02] Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling language
definitions: the ASF+SDF compiler. ACM TOPLAS, 24(4):334–368, 2002.

[Vis03] Eelco Visser. Program Transf. with Stratego/XT: Rules, Strategies, Tools, and Systems. In
Domain-Specific Program Generation, pages 216–238, 2003.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

[Wri95] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation,
8(4):343–355, 1995.

37

