
A Decidable Class of Planar Linear Hybrid Systems

Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan, and Geir E.
Dullerud

University of Illinois at Urbana-Champaign.

Abstract. The paper shows the decidability of the reachability problem for pla-
nar, monotonic, linear hybrid automata without resets. These automata are a spe-
cial class of linear hybrid automata with only two variables, whose flows in all
states is monotonic along some direction in the plane, and inwhich the continu-
ous variables are not reset on a discrete transition.

1 Introduction

The use of embedded devices in safety critical systems, has prompted extensive re-
search in the formal modeling and analysis of hybrid systems. Hybrid automata[1] are
a widely used formalism for modeling such systems. These aremachines with finitely
many control states and finitely many real-valued variablesthat evolve continuously
with time. The transitions depend on the values of the continuous variables and they
change both the discrete control state as well as the values of the variables. The safety
of systems modelled by such automata can often be reduced to the question of whether
a certain state orregionof the state space can be reached during an execution. This is
called thereachability problem.

Due to its importance, the reachability problem for hybrid automata has been care-
fully investigated in the past couple of decades. The problem has been shown to be
decidable for special kinds of hybrid automata includingtimed automata[2], certain
special classes ofrectangular hybrid automata[6], ando-minimal hybrid automata[8].
These decidability results often rely on demonstrating theexistence of a finite, com-
putable partition of the state space that isbisimilar to the original system.

However, such decidability results are the exception rather than the norm. The
reachability problem remains stubbornly undecidable evenfor very simple and special
classes of hybrid automata, not just in the general case. Onesuch special class is that of
linear hybrid automata. In these automata each variable is constrained to evolve along a
constant slope (with time), and despite such simple dynamics, have been unamenable to
algorithmic analysis even in low dimension (i.e., with veryfew continuous variables).
Timed automata, where each variable evolves synchronouslywith a global clock, but
where the machine is allowed to compare clock values at the time of discrete transi-
tions 1, is undecidable even for systems with 6 clocks [2]. The case of general linear
hybrid automata in which variables are constrained to be compared only to constants,
remains undecidable even for just 3 variables [1]. Undecidability results for dynamical

1 The decidability result for timed automata holds when clocks are only compared with con-
stants.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems with piecewise constant derivative in 3 dimensions, and piecewise affine maps
in 2 dimensions [5] provide further evidence.

In this paper, we prove the decidability for a special class of linear hybrid automata
that areplanar, monotonicanddon’t have resets. Planar refers to the fact that the au-
tomata has only two variables. Monotonic refers to the fact that we require the existence
of a vectorρ such that the derivatives of the variables (viewed as a vector in the plane) in
all states have a positive projection alongρ; note, this does not mean that both variables
have positive derivatives in each state. Finally, the automaton does not reset/change the
values of the variables when taking a discrete transition.

The automaton model that we consider here is more general in some aspects, and
at the same time more restrictive in some aspects, when compared with other hybrid
automata models for which decidability results are known. First variables are not re-
stricted to clocks, like timed automata. Second, variablesare not required to have the
same slope in all states, or for them to be reset when the flow ischanged, as in some
rectangular hybrid automata. Next, transitions don’t havestrong resets that decouple the
continuous dynamics from the discrete, as in o-minimal systems. Finally, the guards and
invariants are not required to be disjoint, as in dynamical systems with piecewise con-
stant derivatives [3] or polygonal hybrid systems [4]. On the other hand, our automata
only have 2 variables, no resets, and monotonic flows.

Despite the restrictive dynamics and planarity, the decidability proof is very chal-
lenging. Like many decidability proofs in this area, we firstpartition the plane into
regions, which in our case are convex polygons formed by consideringlines associated
with the constraints appearing in the automaton description, and lines perpendicular to
the direction along which the flow is monotonic. Such regionshave a very special geo-
metric structure in that they are bounded by 2 to 4 line segments, at least one of which
is a line segment perpendicular to the monotonic direction.The first key idea in the
proof is to observe the existence of a lineℓ, perpendicular to the monotonic direction,
such that the behavior of the automaton beyondℓ is bisimilar to a finite state system.
Then reachability computation is broken up into two phases:the first phase computes
all points beforeℓ that are reachable, and the second phase constructs the finite bisimu-
lation for the points beyondℓ and does the search in the bisimilar transition system.

The computation of the reachable regions beforeℓ itself relies on observing that any
execution of the automaton can be seen as a concatenation of aseries ofalmost-inside
executions. An almost-inside execution is an execution that starts at the boundary of
a regionR, entersR, and then leaves to another boundary ofR, all the while staying
insideR, while taking both discrete and time steps. The first lemma weprove is that
the effect of such almost-inside executions is computable for all regions. However, in
order for the decidability proof to go through we need a stronger result for certain
special regions that we callright pinched triangles; we need to show that the effect
of concatenating finitely many almost-inside executions can be computed. We do this
through a tree construction reminiscent of the Karp-Millertree [7] for vector addition
systems. Finally, we solve the reachability result for regions beforeℓ by another tree
construction. A carefully counting argument coupled with the monotonicity of flows
ensures that this tree will be finite and hence effectively constructable.

2 An example

We will first illustrate our algorithm for deciding reachability on an example. Con-
sider the hybrid systemH given in Figure 1. It has five locationss1, · · · , s5, with flows
f1, · · · , f5, respectively, associated with them. The locations are labelled by their in-
variants. For example, the invariant associated with location s1 is y < 1, and this says
that the control of the system can be ins1 only if the value of the variabley is less than
1. When in a certain location the values of the variables change according to their flow.
If the system starts withx = 0 andy = 0 at locations1, and spends a unit time, then
the values of the variables would bex = 1 andy = 2. However in this case the system
is forced by the invariant to leave the location before half time unit. We note thatH is a
monotone linearhybrid system, where by linear we mean that the flows associated with
the locations are constants, and by monotone that the flows have a positive projection
along some direction, in this case thex-axis as shown in Figure 2.

s1 s2 s3

y < 1 x < 1

x > 1

s5 s4

f1 = (1, 2) f2 = (2, 3/2) f3 = (2, 7/4)

f5 = (2, 7/4) f4 = (1, −1)

∧x > 2

x + 2y > 2

x + 2y > 2

Fig. 1.Linear hybrid systemH

f1

f3 = f5

f2

f4

x

y

Fig. 2. Flows of the hybrid systemH

We will consider the following reachability problem: Is thelocations5 reachable
starting froms1 with x = 0 and y = 0? As shown in Figure 3, this translates to
checking if starting ins1 at pointO, we can reach the shaded region in locations5.

We first divide the plane into regions depending on the constraints in H. Corre-
sponding to each constraint ofH, there is a straight line, as shown by the solid lines in
Figure 3. We also add lines parallel to they-axis passing through the points of inter-
sections of these lines, if one does not already exist. As is easily seen, the interior of a
region is invariant with respect to the locations in that either it is contained in the invari-
ant of a location or is disjoint from it. Hence with each element of a region which is its
interior, its edge without the end-points or its vertex, we can associate a set of locations
whose invariants contain the element. For example, the set of locations corresponding
to the interior of region1 is {s1, s2, s3}.

The idea of the algorithm is to compute successors for the regions. Given a part of
an edge, called a subedge, and a location, the successor withrespect to a region is the set
of all points on the boundary of the region reachable by moving only in its interior, and
leaving and entering the boundary at most once. For example,starting from pointA in
locations3, we can reachJ by following flow f3 of s3 and moving only in the interior

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

O

A

C

K

I

B

D

F

G

E

J

H

L

y

x

1

3 4

5

2

6

Fig. 3. Regions of the hybrid systemH

of region3. Hence(s3, J) is in the successor of(s3, A). As a slightly more interesting
example, consider the problem of finding the successors of point O in region1. These
are exactly the points betweenA andB in locationss2 ands3, the points betweenB
andC in locationss1 ands3 and the pointB in locations3. We will represent this
succinctly as(s1, B

′C′), (s2, A
′B′), (s3, BC′) and(s3, A

′B), whereA′ indicates that
pointA itself is excluded. The above subedges are computed in the following way. The
locations corresponding to region1 ares1, s2 ands3. Let us consider the underlying
graph ofH restricted to locations and guards which contain region1. The same is shown
in Figure 4. We observe that any path fromO in locations1 spends time alternately ins1

f1 = (1, 2)

s1

f2 = (2, 3/2)

s2

f3 = (2, 7/4)

s3

Fig. 4.Underlying graph ofH restricted to region1

ands2, and then possibly makes a transition tos3 where it spends additional time before
reaching the boundary. We will show that the set of all pointsreachable by alternating
betweens1 ands2 is exactly the set of point in the cone generated byf1 andf2 which
are also in the interior of region1, namely, the points inside the parallelogramOABC
in the figure. This is true only becauses1 ands2 belong to the same strongly connected
component of the underlying graph corresponding to region1. We then show how to
compute the set of points reachable starting from these points with respect to the next

maximal strongly connected component, in this cases3. In this example it turns out that
the points reachable by moving alongf3 from points in the parallelogramOABC is
OABC itself.

Now coming back to our original problem of finding if there is an execution ofH
starting at pointO in locations1 to some point in the shaded region in locations5, we
will build a rooted tree, called thereachability tree. Its nodes are labelled with pairs
of locations and subedges and the root is labelled(s1, 0). The children of any node are
labelled with the elements of the successors of the label of the current node with respect
to every region it is adjacent to. The above computation is carried out with respect to
every region to the left of the linex = 2. This gives us the set of all pairs of locations
and points reachable on this line. Figure 5 shows some part ofthis tree.

(s3, BC′)

(s4, DE′)

(s3, IE) (s4, IE) (s4, LE′)(s4, F H)(s4, HE′)

(s3, BJ)

(s3, BE′)(s3, KE′)(s4, BE) (s4, KE)

(s1, O)

(s4, HG)

(s1, B′C′) (s2, A′B′) (s3, A′B)

(s3, BE′)(s4, BE′)

Fig. 5. Reachability tree

Our next goal is to show that this tree is finite. As a first step to achieve this, we prune
some branches of the tree. The node(s4, LE′) is removed from the tree as its parent
(s4, BE′) contains all the required information. The finiteness of thetree follows from
two observations, namely, the number of children of any nodeis finite and every path
in the tree is bounded. We can then apply Konig’s Lemma to conclude that the tree is
finite. To show that a path is finite, we have from the monotonicity of the flows that the
leftmost point of any child of a node is to the right of the leftmost point of the node. For
example, thex-coordinate of the left-most point ofO which isO itself is less than that
of A which is the leftmost point ofA′B, which is in its successor. However, there is a
priori nominimumdistance by which this shift to the right occurs. Such a boundexists
if the successor is with respect to a region which is a trapezium, like region1. It is not
clear for a “left-pinched triangle” like region6. However for this case we argue that
though a global minimum does not exist, given any path of the tree such a minimum
exists. In case of a “right-pinched triangle” like region2, even such a local minimum
does not exist. Hence, instead, in this case we compute the “transitive closure” of the
successor with respect to the region, which is the set of all points reachable on the
boundary by moving withinR and touching the boundary any number of times. We
show that this is computable when the constraints corresponding to the boundary are

strict. We then use the assumption that there are no adjacentright-pinched triangles, to
argue that the paths of the tree are finite.

We cannot continue with the construction of the tree beyond the linex = 2, because
all regions to the right of this line are unbounded. This might potentially lead to infinite
paths in the tree. So we stop building the tree at the linel which passes through the
leftmost vertex, and show that there is a finite bisimulationof the states corresponding
to the regions to the right of this line. This bisimulation can be computed. Hence we
can decide the reachability.

3 Preliminaries

3.1 Linear Hybrid Systems

A linear hybrid system(LHS) H is a tuple(S, S0, E, X,flow , inv , guard) where

– S is a finite set of locations,
– S0 ⊆ S is the set of initial locations,
– E ⊆ S × S is the set of edges,
– X = {y1, · · · , yn} is a finite set of variables,
– flow : S → Qn associates a flow with every state,
– inv : S → Guardsis a function associating an invariant with each state, and
– guard : E → Guardsis a function associating a guard with each edge,

whereGuards= 2C andC is a finite subset of{
∑n

i=1
aiyi ∼ bi | ai, bi ∈ Q,∼∈ {<, >

}}. We call the elements ofC which occur in the codomain ofinv andguard , the set
of constraintsassociated withH. The size ofX is called thedimensionof H.

We note that the definition of the hybrid system above deviates from the standard
definition in that we donot allow resetsand the constraints are restricted to bestrict

We define the semantics of anLHS in terms of atransition system. The transition
system ofH is a triple(X, X0,→), whereX = S×Rn is the set of states ofH, X0 ⊆ X
called the set of initial states consists of state(s, v) such thats ∈ S0 andv ∈ inv (s),
and thetransition relation→ is a binary relation on the set ofstatesX . The transition
relation→ is defined as the union ofdiscretetransitions→d andcontinuoustransitions
→c, which are defined as:

– (s, v) →d (s′, v′) if v = v′ and there existse = (s, s′) ∈ E such thatv ∈
inv(s) ∩ inv(s′) ∩ guard(e).

– (s, v) →c (s′, v′) if s = s′ and there existst ∈ R such thatt ≥ 0 andv′ =
v + flow(s)t, and for allt′ ∈ [0, t], v + flow(s)t′ ∈ inv(s).

An executionof H from a state(s1, v1) is a sequence of states(s1, v1) · · · (sn, vn) such
that for all1 ≤ i < n, (si, vi) → (si+1, vi+1). We then say that(sn, vn) is reachable
from (s1, v1), and denote it by(s1, v1) →∗ (sn, vn). We can represent an execution
(s1, v1)(s2, v2) · · · (sn, vn) as a functionσ : [0, t] → S+ × Rn. We defineσ as a
pair of functions(σ1, σ2), whereσ1 : [0, t] → S+ gives the sequence of locations
at any time point andσ2 : [0, t] → Rn gives the values of the variables. With each
(si, vi) → (si+1, vi+1) we associate adelaydi, wheredi = 0 if vi = vi+1, and

di = (vi+1 − vi)/flow (si) otherwise. Letti =
∑i

j=1
dj . We sett = tn−1. We define

σ1(t′) = si if t′ ∈ (ti−1, ti), otherwiseσ1(t′) = si · · · sj , wheret′ = ti andti−1 6=
ti = ti+1 = · · · = tj 6= tj+1. We defineσ2(t′) for t′ ∈ [ti−1, ti] inductively. We set
σ2(0) = v1 andσ2(t′) = σ2(ti−1) + flow (si)(t

′ − ti−1) for t′ ∈ [ti−1, ti]. A run of H

is an execution starting from an initial state.

3.2 Elements of the two dimensional plane

We define some elements of the two dimensional plane formed bystraight lines. A
convex closed polygonal setP is the intersection of finitely many closed half-planes.
We simply callP a convex polygon. Theinterior of P , denotedinterior(P), is the
intersection of finitely many open half-planes corresponding to the closed half-planes
of P . Theboundaryof P , denotedboundary(P), is P − interior(P). An edgeof P
is a maximal convex subset ofboundary(P). We denote the set of all edges ofP by
edges(P). A vertexof P is a point of intersection of two distinct edges ofP . The set of
all vertices ofP will be denoted byvertices(P).

We call a convex subset of an edge, asubedge. The end-points of a subedgee are
pointsa andb such thate consists of all points on the line segment joininga andb,
except possiblya andb themselves. We denote this byend-points(e) = {a} ∪ {b}. The
subset ofe without the end-points will be denotedopen(e), which ise− end-points(e).
The elements of the subedgee are then its end-points which are contained ine and the
open(e). This is denoted byelements(e) = {open(e)}∪{a | a ∈ end-points(e), a ∈ e}.
From now on, by a convex set, we mean a polygon, interior of a polygon, or a subedge
of a polygon.

3.3 Restricted hybrid systems

We call anLHS H monotoneif there exists anf ∈ Rn such that for all locationss of
H, flow (s).f > 0, where. is the standard dot product. We call such anf a directionof
H.

We will call a linear hybrid systemplanar, if its dimension is two. A planar lin-
ear hybrid system is said to besimple if no three distinct lines corresponding to its
constraints intersect at a common point, where the line corresponding to a constraint∑n

i=1
aiyi ∼ bi is the set of points satisfying

∑n

i=1
aiyi = bi.

3.4 Notations for planar hybrid systems

Let us fix a simple monotone planar linear hybrid systemH = (S, S0, E, X,flow , inv ,
guard) for the rest of the paper. LetX = {x, y} and fH be a direction ofH. Let
us fix our coordinate system such that thex-axis is parallel tofH and they-axis is
perpendicular to it. Given a subedgee we defineleft(e) to be the infimum of thex-
coordinates of the points ine andright(e) to be the supremum of thex-coordinates of
the points ine.

Let V be the set consisting of the points of intersections of the lines corresponding
to the constraints inH. Let us associate withH a set of lineswhich are parallel to the

y-axis and contain some point inV . We denote this bylines(H). We can order the lines
of H asl1, l2, · · · , lk such that for any1 ≤ i < j ≤ k, if vi andvj are the points inV
which are contained inli andlj respectively, thenleft(vi) < left(vj).

Let L be a set of lines which containslines(H) and the lines corresponding to the
constraints inH. We associate a set ofregionswith H which consists of polygons whose
interiors are non-empty and which are formed by choosing exactly one closed half-plane
corresponding to each line inL. We denote this byregions(H). We useregions(H, i, j)
to denote the regions ofH which are contained in the set of points between linesli and
lj of lines(H). Also regions(H, 0, j) andregions(H, i, k + 1) denote the set of regions
contained in the set of points which occur to the left oflj and the set of points which
occur to the right ofli, respectively. Note that two distinct regions inregions(H) have
non-intersecting interiors, and the union of all the regions gives us the whole planeR2.

Following are a few observations about the regions ofH:

1. The regions inregions(H, 0, 1) are unbounded and have two or three edges.
2. The regions inregions(H, 1, k) are either triangles, or trapeziums, or unbounded

regions with three edges. For the triangles, one of the edgesis contained in some
li and its vertex not on that edge is contained in eitherli+1 or li−1. If the vertex is
contained inli+1, then we call the triangle aright-pinched triangleotherwise we
call it a left-pinched triangle. For the trapeziums in this region, we will call its edge
a parallel edge if it lies on one of theli’s.

3. The regions inregions(H, k, k + 1) are unbounded with two or three edges.

From now on by a subedge we mean a subedge of the edge of some region in
regions(H). We abuse notation and call a pair(s, e) wheres ∈ S is a location ande a
subedge, also a subedge. However it will be clear from the context which one we mean.
The subedge(s, e) is said to contain the state(s, v) wherev ∈ e. Two subedges(s, e)
and(s′, e′) are said to be disjoint if the do not contain any common state.By a state
(s, v) or a subedge(s, e) being on a subedgee′ or a linel we meanv or e is contained
in e′ or l. Similarly we use regions also for pairs of states and regions.

We will focus on the following problems in the rest of the paper: the point-to-
point reachability and the region-to-region reachability. Thepoint-to-point reachabil-
ity problemis to decide given two states(s1, v1) and(s2, v2), if (s1, v1) →∗ (s2, v2).
The region-to-regionreachability problem is to decide given two location-region pairs
(s1, R1) and(s2, R2), if there exist pointsv1 ∈ R1 andv2 ∈ R2 such that(s1, v1) →

∗

(s2, v2).

4 Decidability of the reachability problem

In this section we show that the point-to-point and region-to-region reachability prob-
lems for simple monotone planar linear hybrid systems is decidable. We will continue
to use the notations introduced in the previous section. We first present a sketch of the
proof of decidability.

1. We first show that theedge-to-edge reachabilityproblem is decidable: given a
subedge(s, e) of a regionR ∈ regions(H, 0, k), we can compute the set of all
states onlk which are reachable from the states on the subedge.

2. We then show that there exists a computable finite bisimulation of the transition
system ofH restricted to the states on and afterlk which respects the partition
created by the elements of the regions inregions(H, k, k + 1).

3. We then use the above results to decide the point-to-pointand region-to-region
reachability.

4.1 Edge-to-edge reachability

In this section we solve the problem of finding the set of all states on the linelk reach-
able from a subedge(s, e) of some regionR ∈ regions(H, 0, k). Any execution from
a state in(s, e) to a state onlk can be broken up into a sequence of executions each
of which is such that they move within a single region and leave or enter its boundary
at most once. Our approach is to build a tree whose nodes represent subedges, and the
states corresponding to the nodes of the children of a node give the set of all points
reachable from the states in the parent node by executions which move within a region.
Then any path in the tree would correspond to executions starting from states in the
root. We call this thereachabilitytree. We show that the tree is computable and finite.
Then the set of all states in the tree which correspond to the states onlk will give us the
required.

We first compute the set of all states reachable from a subedgeby moving only
within a region. We define analmost-inside executionwith respect to a region to be an
execution which leaves the boundary of the region at most once and enters the boundary
of the region at most once, and at all times during the execution is in the region. An
almost-inside execution (AI-execution) from a state(s, v) to a state(s′, v′) with respect
to a regionR is an executionσ : [0, t] such thatσ1(0) containss andσ2(0) = v,
σ1(t) containss′ andσ2(t) = v′, and there existt1, t2 ∈ [0, t] such that for allt′ ∈
(0, t1]∪[t2, t), σ2(t′) ∈ boundary(R), and for allt′ ∈ (t1, t2), σ2(t′) ∈ interior(R). We
say that a subedge(s′, e′) is reachable from a subedge(s, e) by almost-inside executions
with respect to a regionR, if for everyv′ ∈ e′, there exists av ∈ e and anAI-execution
from (s, v) to (s′, v′). The successor of a subedge(s, e) with respect to a regionR is a
subedge ofR reachable from(s, e) by AI-executions with respect toR. We denote by
succ((s, e), R) the maximal successors of(s, e) with respect toR, where a successor
(s′, e′) is maximal if for every successor(s′, e′′), e′′ ⊆ e′.

Our first step is to show thatsucc((s, e), R) is computable. We use an auxiliary
functionpostin its computation, which is shown computable below.

Computing post Now we show that post of a set of points with respect to a set of flows
and a region is computable. We first make some necessary definitions.

Given pointsa and b in R2, a piecewise linear trajectoryfrom a to b following
the flowsF = {f1, f2, · · · , fn} is a sequence(fi1 , t1)(fi2 , t2) · · · (fim , tm) such that
ij ∈ {1, · · · , n}, tj ∈ R with tj ≥ 0 for 1 ≤ j ≤ m and b = a +

∑m

j=0
fij tj .

From now on by a trajectory we mean a piecewise linear trajectory. We can represent
the above trajectory froma to b as a functionτ : [0, t] → R2 wheret =

∑m

j=0
tj , and

for all t′ ∈ [0, t] τ(t′) = a +
∑j′−1

j=0
fij tj + fij′

(t −
∑j′−1

j=0
tj) wherej′ is the largest

number such that0 ≤ j′ ≤ m andt >
∑j′−1

j=0
tj .

We can now definepost(P, F, R) whereP is a convex set contained in a regionR
andF is a set of at most two flows.post(P, F, R) is the set of all pointsv ∈ R, such that
there is a trajectoryτ : [0, t] → R2 following flows in F such thatτ(0) ∈ P , τ(t) = v
andτ(t′) ∈ interior(R) for all t′ ∈ (0, t).

Lemma 1. Given a regionR ∈ regions(H, 0, k), flowsF such that|F | ≤ 2, and a
convex setP ⊆ R,

1. post(P, F, R) is computable.
2. post(P, F, R) can be expressed as a finite union of convex subsets ofR.

We first prove a few geometric properties, which we will use inthe proof of the
above lemma.

A set of flowsF = {f1, f2, · · · , fn} is monotoneif there exists a flowf such that
f · fi > 0 for all 1 ≤ i ≤ n. We callf a direction ofF . We call a flowfl in F the
lower flow of F with respect to the directionf if fl makes the smallest angle withf
among the flows inF and similarly a flowfu in F is called theupperflow whenfu

corresponds to the largest angle.
The next proposition says that following a set of monotone flowsF is equivalent to

following just the upper and lower flows ofF .

Proposition 1. LetF be a set of monotone flows with directionf , and letfl andfu be
the lower and upper flows. For any two pointsa andb in R2, if there exists a piecewise
linear trajectory froma to b which followsF , then there is one which follows{fl} ∪
{fu}.

Proof It follows from the fact that anyf ′ ∈ F can be expressed as a positive linear
combination offl andfu, f ′ = αfl + βfu whereα, β ≥ 0. ⊓⊔

Next we show that the set of points reachable inside a region by trajectories which
start in the region is same as the set of points reachable by trajectories restricted such
that they always move within the region.

Lemma 2. Let P be a convex polygon anda and b two points inP . Let f1 and f2

be two non-collinear flows inR2 such thatf1 points intoP at a, that is, there exists
t′ ∈ R>0 such thata + t′f1 is in interior(P). If there exists a trajectoryτ : [0, t] → R2

which follows{f1, f2} from a to b and follows each of them for some non-zero time,
then

1. if b is not a vertex ofP , then there exists a trajectoryτ ′ : [0, t] → R2 from a
to b which moves withinP except possibly for the end-points, that is,τ ′(t′) ∈
interior(P) for all 0 < t′ < t, and

2. if b is a vertex ofP , such aτ ′ exists if and only if there existb′ ∈ interior(P) and
t′ ∈ R>0 such thatb = b′ + t′f1 or b = b′ + t′f2.

Proof Proof of part 1If there exists a trajectoryτ which follows{f1, f2}, then there
exists one which followsf1 for time t1 and thenf2 for time t2. Let us call thisτ1.
Similarly there is a trajectoryτ2 which first followsf2 for time t2 and thenf1 for time
t1. We know that there is ats > 0 such thatτ1 is insideP in the interval(0, ts). If b

a

b

f1

f2

f2

f1

l′ l

To see this, letxy be the edge on which
b is a point. The linel alongxy partitions
the plane into two half planes, anda lies
on one of them.a cannot lie onl since oth-
erwisef1 andf2 will be along l. Suppose
that τ1 and τ2 approachb from the other
half-plane, which does not contain points
from P . Thenf1 andf2 point into the half-
plane containinga at point b. Hence ata
also they point into the half plane not con-
tainingb corresponding to the linel′ paral-
lel to l passing througha. This implies that
starting ata and following flows{f1, f2}
the only points reachable are those in the
half-plane corresponding tol′ which does
not containb. This contradicts the fact that
τ1 andτ2 are trajectories froma to b.

is a point in the interior ofP , then there existstf such that in the interval(t1 + t2 −
tf , t1 + t2], τ1 andτ2 are ininterior(P). If b is a point on the boundary ofP which is
not a vertex, thentf exists for at least one ofτ1 andτ2.

So one ofτ1 andτ2 reachesb from within P . First consider the case in whichτ1

reachesb from within P which is depicted below.

a

b

c

d

f2

f1p p′

q′

q

p p′

q

q′′

q′

a

b

d

There exist pointsp andp′ on ac andq andq′ on cb such thatp, p′, q andq′ lie
within P andpq is parallel top′q′. By convexity the trapeziumpp′q′q is contained inP .
Note thatpq is a direction forf1 andf2, andf1 points into the trapezium at points on
pq andf2 points into the trapezium at points onp′q′. We can now construct a trajectory
τP from a to b which moves withinP . τ moves froma to p′ and then followsf2 till it
reaches some point onpq when it switches to followingf1. It alternately followf1 and
f2 and switches the flow from one to the other when it reachesp′q′ andpq, respectively.
Before switching the flow the trajectory moves in the directionpq for at least distance
d. Hence there is a bound on the number of switches it takes for the trajectory to reach
some pointq′′ on qq′. From the pointq′′, τP follows q′′b to reachb.

In the case whenτ2 reachesb from within P , the proof is similar except that we
need to explicitly make sure that the pointsp, p′, q andq′ we choose are such thatf1

points into the trapezium at points onpq andf2 points into the trapezium at points on
p′q′. However this can be ensured by choosingp, p′ close toa andq, q′ close tob.
Proof of part 2If τ ′ exists, thenb′ exists asτ ′ reachesb′ along flowf1 or f2. If a b′

exists such thatb = b′ + t′fi, then by convexity ofP , all pointsb′′ = b′ + t′′fi are in
interior(P) where0 < t′′ < t. Hence one ofτ3−i reachesb from within P . Rest of the
proof is similar to the above case. ⊓⊔

Proof of Lemma 1 Using Lemma 2, we can compute the set of all points in R
reachable from a pointp by moving in the interior ofR except possibly for the end-
points. This is the set of points in the cone generated by the flows inF at pointp, with
the vertices ofR being in this set only if the satisfy the condition in Lemma 2.

Given any convex subsetP , we compute the set of points reachable from each of
the vertices ofP and take their convex hull. It is easy to see that this gives the set of
all points reachable from points inP . In the case whenP itself does not contain the
vertices, we remove the boundary of the convex hull computed.

Computing succ In the next lemma, we show thatsucc((s, e), R) is computable. A
notion that we use is that of the underlying graph of the hybrid system restricted to
those locations and edges whose invariants and guards respectively are satisfied by the
elements of a region. Given a set of pointsV , we define the underlying graph ofH with
respect toV to begraph(H, V) = (VH, EH,) such thatVH = {s ∈ S |V ⊆ inv(s)}
andEH = {e ∈ E |V ⊆ guard(e)}.

Lemma 3. Given a regionR ∈ regions(H) and a subedge(s, e) of R, succ((s, e), R)
is computable.

Proof Given a graphG, let us call the graph with the maximal strongly connected
components as vertices, the component graph ofG, and denote it asSCC(G). There
is an edge between two vertices inSCC(G) if there is one between two states of the
components in the original graph. Note that maximality of the components gives us that
SCC(G) is a directed acyclic graph.

We consider the maximal strongly connected components of the underlying graph
graph(H, interior(R)). An AI-execution from a state in(s, e) with respect toR would
correspond to some path inSCC(graph(H, interior(R))).

For each such pathπ = C1C2 · · ·Cn whereCi’s are the strongly connected compo-
nents, we compute the states on the boundary ofR reachable byAI-executions which
follow this path. We do the computation iteratively. We firstfind the states reachable by
moving only in the componentC1.

We do this in three steps. First we find the set of all states reachable from(s, e) on
the boundary ofR without moving into the interior ofR. Let us call thisA1. Next we
compute the set of all states reachable fromA1 by moving only in the interior ofR
except possibly for the end-points. Let us call this setA2. Finally we compute the set of
states on the boundary reachable from the boundary points inA2 by moving only along
the boundary. This gives us the set of all states inR reachable byAI-executions which
move only inside componentC1.

For the first and last step, we need to compute given a subedgee1 of an edgee2 of
the regionR, the set of all states on the edgee2 reachable by moving alonge2 from

states in(s, e1). We can then iteratively compute the set of all states on the boundary
reachable, since such an execution will correspond to a sequence of executions which
move along an edge, hit a vertex and then move along another edge and so on. The set
of all states one2 reachable from(s, e1) are all states inS × e3 wheree3 are the set of
all points one2 which are to the right of points one1, andS is the set of all locations
in graph(H, e) which are reachable froms by a path which goes through a state with a
flow along the edgee.

The second step is computed usingpost. Given a subedge(s, e1) in A1, S×(post(e1,
F, R)∩interior(R)) whereF is the maximum and minimum of the set of all flows in the
statesS in C1, give the set of all states in the interior ofR reachable. The set of states on
the boundary reachable in step2 are the states inS1 × (post(e1, F, R) ∩ boundary(R))
whereS1 is the set of states in bothgraph(H, interior(R)) andgraph(H, boundary(R)).

Suppose that we have found the set of all states in the interior and boundary reach-
able by the prefix of the pathπ till Ci. The set of all states in the interior ofR reachable
can be expressed as a set of pairs(s, P) whereP is a convex subset ofR ands is a
location. The set of states reachable by a prefix ofπ till Ci is then computed similar to
the above case except that instead of an edge we have a convex subset and instead of
the states inC1, we have the states ofCi.

Once we have found the set of states reachable alongπ, we can take the union of
all the states over all theπ’s to get the set of all states on the boundary reachable. Since
at each point in the procedure above we get a representation of the set of states on the
boundary reachable as a finite union of subedges, and the number of pathsπ is finite,
we can computesucc((s, e), R). ⊓⊔

Now that we have shown thatsucc((s, e), R) is computable, we can construct the
reachability tree. However we also want to show that the treeis finite, and we will show
this by ensuring that the paths in the tree are finite. We will do this by showing that
along any path the successors move to the right by at least some minimum distance.
In the case of a right-pinched triangle such a minimum does not exist. Hence we will
compute the transitive closure ofsucc, calledsucc∗ where we consider points reachable
by a sequence ofAI-executions such that the last state of an execution is same as the
first state of the next execution. The intuition behind this is that if we computesucc∗

instead ofsuccfor a subedge with respect to a region then we will not need to consider
thesuccof the elements insucc∗ with respect to the region, as those states are already
included insucc∗. We will see that the simplicity of the system can then be usedto
argue that the paths in the reachability tree are finite. Nextlemma says thatsucc∗ is
computable.

Lemma 4. Given a right-pinched triangleR in regions(H, 1, k) and a subedge(s, e)
of R, succ∗((s, e), R) is computable.

Proof Let the right-pinched triangleR beabc with the edgeab on someli andc on li+1

as shown in Figure 6. Let(s, e) be a subedge ofac. We first compute the set of all states
onac reachable by a sequence of one or moreAI -executions. For this, we build a tree
T∗(s, e) rooted at node(s, e). We will need the following new notion of successor. Let
us denote bysucc1((s1, e1), R) the set of states reachable onac by executions which
touchbc at most once in the following sense:succ1((s1, e1), R) = {(s2, e2) | (s2, e2) ∈

c

b

a

li li+1

Fig. 6.Right-pinched triangleabc

succ((s1, e1), R), e2 ⊆ ac} ∪ {(s3, e3) | (s3, e3) ∈ succ(s2, e2), e3 ⊆ ac, (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ bc}.

We now define how the tree is constructed. We will simultaneously mark nodes in
the partial tree constructed. The children of a node(s1, e1) are the elements(s2, e2) in
succ1((s1, e1), R) such that there is no node(s2,−) along the path from the root to the
node(s1, e1). For every element(s2, e2) in succ1((s1, e1), R) such that there is a node
(s2, e

′

2) along the path from the root to the node(s1, e1), we mark the node(s2, e
′

2).
Note that a node could get marked twice. The construction of tree will terminate since
it is finite, which is due to the fact that the number of children of any node is finite and
the height of the tree is bounded by the number of locations.

We now describe how to computesucc∗((s, e)) from the tree constructed above. We
form a setA which contains all the nodes ofT∗(s, e), and for each node(s1, e1) which
belongs to a subtree of some marked node, it contains(s1, full(e1)), wherefull(e1) is
the subedgee2 of ac such thatleft(e2) = left(e1) and right(e2) = right(c) and e2

contains the pointsleft(e1) andc if and only if e1 contains them.

A consists of all points onac′ reachable from(s, e) by moving only within the
triangle and touching the boundary any number of times. Firstly, any point inA is
reachable. This is because if from a state(s, v1) we can reach a state(s, v2) by an
executionσ, wherev2 is strictly to the right ofv1, then we can reach any point to the
right of v1 by taking a sequence of one or more executions whose transition sequence is
same as that ofσ but with possibly less time spent in each location. Similarly if (s1, e1)
can reach(s2, e2), then(s1, full(e1)) can reach(s2, full(e2)). This justifies taking the
full of all nodes in the subtree of a marked node. Secondly, suppose point(s′, v′) on
ac′ is reachable from a point(s, v) in (s, e) by an executionσ. Consider the sequence
of points onac′ reached by followingσ. If (s′, v′) is the first state onac′ corresponding
to s′ then(s′, v′) would belong to some node in the tree, otherwise it would belong to
thefull of a node belonging to a subtree of a marked node.

To compute the set of states onbc′ reachable, we observe that such a state is reach-
able only from anAI -execution starting from some state onac′. Hence the reachable
states onbc′ B can be computed by taking thesuccof the maximal subedges ofA.
Finally, if c is reachable then it is reachable by anAI -execution starting from a state on
ac′ or bc′, hence will be included in thesucc of the subedges inA or that ofB. Hence
all points insucc∗((s, e), R) can be computed. ⊓⊔

We show below that the set of all states reachable on the linelk is computable.
As already said before, we construct a tree using thesuccandsucc∗ to compute the
children of the nodes. The nodes of the tree will correspond exactly to the states on
edges of regions inregions(H, 0, k) reachable from some subedge of some region in it
for which the tree is built.

Lemma 5. Given a subedge(s∗, e∗) of a region in regions(H, 0, k), the set of all states
on lk reachable from some state on the subedge is computable.

Proof Construction of the reachability tree Treach((s
∗, e∗)). We construct the reach-

ability tree, in which the nodes correspond to subedges, andthe children of a node cap-
ture the set of all states reachable from the states of the current node byAI-executions. A
particular child of a node corresponds toAI-executions with respect to a single region.

We first definetsuccof a subedge with respect to a region which consists of states
reachable byAI-executions in this region. We break up the subedges into itselements,
because when computingtsucc, we require that all points of a subedge belong to the
same set of regions. Note that otherwise, the end-point of a subedge which is a vertex
could belong to a different set of regions than the subedge without the end-points.

For a subedge(s, e) of a regionR, tsucc((s, e, R)) is given by:

– If R is not a right-pinched triangle,tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈
succ((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k)}.

– If R is a right-pinched triangle,tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈ succ∗

((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k), R 6= R′}.

The root ofTreach((s
∗, e∗)) is∗. The children of∗ are the element of the set{(s∗, e∗, R) |

e∗ ∈ R, R ∈ regions(H, 0, k)}. The children of any node(s, e, R) are the elements of
tsucc((s, e, R)) which contain at least one state which has not occurred in thecurrent
node or any of its ancestors, that is, an element(s1, e1, R1) is present in thetsuccof
the current node(s, e, R) if for all nodes(s1, e2, R1) which is the current node or its
ancestor, there exists av such thatv ∈ e1 − e2.

Below we show that the treeTreach((s
∗, e∗)) is finite. First we make a few observa-

tions which are crucial in arguing the finiteness.

1. Let (s, e) and (s′, e′) be elements of subedges of a regionR. Then if (s′, e′) ∈
tsucc((s, e), R), thenleft(e) ≤ left(e′) andright(e) ≤ right(e′). This follows from
the monotonicity of the flows inH.

2. Given any regionR ∈ regions(H, 1, k), and(s, e) and(s′, e′) elements of subedges
of R which are not on theli’s such that(s′, e′) ∈ tsucc((s, e), R), we have:
(a) If R is a trapezium or an unbounded region, then eitherright(e′) is on someli

or there exists adR > 0 such thatright(e′) ≥ right(e) + dR.
(b) If R is a left-pinched triangle, then eitherright(e′) is on someli or there exists a

d which increases monotonically withright(e) such thatright(e′) ≥ right(e)+
d.

Proof Let R be a trapezium andd1 be the infimum of the set of distances between
points on different non-parallel edges ofR. Let θ be the maximum of the absolute
values of angles the flows inF make with the directionfH of H. Then if right(e′)

is not onli, thenright(e′) ≥ right(e) + dR, wheredR = d1 cos(θ). If R is an
unbounded region, thenright(e′) is onli.
If R is a left-pinched triangle, then taked1 to be the distance between the points
on the triangle where the linel passing through the right-end ofe intersects the
triangle. Then we have that ifright(e′) is not on someli, thenright(e′) ≥ right(e)+
d, whered = d1 cos(θ). Note thatd1 increases monotonically withright(e), and
henced. ⊓⊔

Finiteness ofTreach((s
∗, e∗))

Consider any pathπ = π0π1 · · · of Treach, whereπj = (sj , ej, Rj). From the
construction ofTreach, ej ⊆ Rj . Here are a few observations about the elements of
π:
(a) If Rj is a region inregions(H, 0, 1) (recall Rj is then unbounded) andej is

not a subedge ofl1, then it is one of the infinite edges ofRj (and not any
other subedge of it). Letn be the number of infinite subedges of regions in
regions(H, 0, 1). Then the number of elements inπ in which such infinite edges
occur is bounded by|S| × n × |regions(H, 0, 1)|.

(b) The number ofπj ’s in π such thatej belongs to someli is bounded byk× |S|.
This is due to the monotonicity of flows.

(c) There cannot be infinitely many elementsπj in π such thatRj is a trapezium
andej is a subedge of one of its non-parallel edges. Otherwise there would be
an infinite subsequenceπ′ = πi1πi2 · · · of π corresponding to such subedges.
From observation1 above, we haveleft(eij′

) ≥ left(eij) and right(eij′
) ≥

right(eij) for all j′ > j. This implies that for eachR ∈ regions(H, 1, k)
and s ∈ S, there is at most onej such thateij ∈ R and right(eij) is on
someli. Hence we can assume thatπ′ is infinite and does not contain edges
whose right end-points are on someli. Let d = min{dR |R is a trapezium in
regions(H, 1, k)}. Further from observation2(a), we have thatright(eij′

) ≥
right(eij) + d for all j′ > j. Sinced > 0 and right(eij) is bounded by the
right(p) for some pointp on lk, the number of elements inπ′ is finite.

(d) The number of elements inπ such thatRj is an unbounded region inregions
(H, 1, k) andej is a not on someli is also bounded, becauseright(ej+1) lies
on li+1. Hence the number of such nodes is bounded by twice the numberof
locations for each unbounded region.

(e) Now we consider the elements ofπ in whichRj is a left-pinched triangle. Let
us fix a left-pinched triangleR. Let e be an edge of aR, which is not parallel
to someli. Let us denote byDe the set ofright(ej) such thatej is not onli,
ej ⊆ e andRj = R. Let de bemin(De). Observe thatde > 0 and is equal
to theright(ej) for the smallestj satisfying the above condition. Letd be the
minimum of allde’s for all left-pinched triangles. By an argument similar to
the above case, we can conclude that the number ofj’s such thatRj is a left-
pinched triangle is bounded.

(f) The only kind of elements(sj , ej , Rj) of π which need to be considered are
those whereRj is a right-pinched triangle andej is not on anyli’s. Note that
from the construction ofTreach and the simplicity ofH, that is, no three distinct
lines corresponding to constraints are collinear, two suchelements do not occur

consecutively inπ. But since the number of all other kinds of element inπ is
finite and there has to be at least one element of another kind between two
successive elements of this kind, the number of elements of this kind in π is
also finite.

Henceπ is finite. Further since the number of children of any node in the tree
is finite, we can appeal to Konig’s lemma, to conclude that thetree itself is finite.
Computability ofTreach((s

∗, e∗)) follows from the computability ofsuccandsucc∗,
and its finiteness.

Correctness of the construction ofTreach It is easy to see that if a state(s, v)
belongs to a node(s, e, R), then there is an execution from(s∗, v∗) to (s, v) for
eachv ∈ e. The execution would follow the path from the root to(s, e, R) in the
tree.
Turning to the other direction of the proof, any executionσ from a state on a
subedge to a state on another subedge can be broken up into a sequence of exe-
cutionsσ1, σ2, · · · , σn, where:

– the last state ofσi is same as the first state ofσi+1, and
– eachσi : [0, ti] → S+ × R2 is such that there existRi ∈ regions(H, 0, k + 1)

and times0 ≤ ts ≤ tf ≤ ti such that for allt′ ∈ [0, ts] ∪ [tf , ti], σ2
i (t′) ∈

boundary(Ri) and for allt′ ∈ [ts, tf], σ2
i (t′) ∈ interior(Ri).

It is now easy to see that:
– if Ri is not a right-pinched triangle, then if the start state ofσi, say(si, vi) has

a corresponding node inTreach, that is, a node(si, ei, Ri) such thatvi ∈ ei,
then there is a node(s′i, e′i, Ri+1) corresponding to the last state(s′i, v

′

i) of
σi, wherev′i ∈ e′i. This is because(s′i, v′i) is a state insucc((si, vi), Ri).
It would either be one of the ancestors of the node(si, ei, Ri), or one of its
children.

– if σi, σi+1, · · · , σj is a maximal consecutive subsqeuence ofσ such thatRi =
Ri+1 = · · · = Rj andRi is a right-pinched triangle, then if the start state
(si, vi) of σi has a corresponding node(si, ei, Ri) in Treach, then there is a
node(s′i, e

′

i, Rj+1) corresponding to the last state(s′j , v′j) of σj (note that
Rj+1 6= Ri by maximality of the sequence). Again, this is because(s′i, v

′

i) is
a state insucc∗((si, vi), Ri).

Hence ifσ is an execution from(s∗, v∗) to (s, v), then there is a node(s, e, R), for
somee andR, in the tree.

⊓⊔

4.2 Finite bisimulation

We show that the states ofH corresponding to the regions inregions(H, k, k + 1) have
a finite bisimulation. A binary relation∼ over a set of states is abisimulation if it
is symmetric and for every pair of states(s1, v1) and (s2, v2), if (s1, v1) ∼ (s2, v2)
and (s1, v1) → (s′1, v

′

1), then there exists a state(s′2, v′2) such that(s2, v2) →
(s′2, v

′

2) and(s′1, v
′

1) ∼ (s′2, v
′

2). We will show that there exists a computable equiv-
alence relation∼ of finite index on the set of states inregions(H, k, k + 1) which is a

bisimulation and which respects the partition created by the elements of the regions in
regions(H, k, k+1). By partition created bylk we mean the two parts, one consisting of
the states onlk and the other consisting of the rest of the states inregions(H, k, k + 1).

We define∼ as follows.(s1, v1) ∼ (s2, v2) if s1 = s2 andv1, v2 belong to the
same element of a region. To see that this is a bisimulation consider(s, v1) and(s, v2)
wherev1 andv2 belong to the same element of some region. If(s, v1) takes a discrete
transition to(s′, v1), then so can(s, v2) to (s′, v2) as the guards and invariants respect
the elements of the regions. Suppose(s, v1) takes a continuous transition to(s, v′1),
then there is a straight line from thev1 to v′1 which passes through a finite sequence of
infinite edges and interiors of the regions. There exists a straight line fromv2 parallel
to the above which moves through the same sequence of edges and regions. Hence we
can find a pointv′2 in the required region.

Since the number of regions inregions(H, k, k+1) is finite, the number of elements
of these regions is also finite. Hence we have a finite bisimulation.

4.3 Point-to-point and region-to-region reachability

Theorem 1. Point-to-point and region-to-region reachability problems are decidable
for simple monotone linear hybrid systems.

Proof To check if state(s′, v′) is reachable from(s, v), add two more lines tolines(H)
which pass throughv andv′, and are parallel toy-axis. Then check if(s′, v′) corre-
sponds to any node inTreach((s, v)).

To decide if(s′, R′) is reachable from(s, R), whereR, R′ ∈ regions(H), first com-
pute the set of subedgesinit(R) of R reachable from points inR. For each subedge
(s∗, e∗) ∈ init(R), compute the set of subedges inlk reachable, and then take their
union. If R′ ∈ regions(H, k, k + 1), then construct the finite bisimulation to decide if
R′ is reachable. Otherwise check if any state in(s′, R′) is reachable from the set of
subedges on its boundary reachable from states ininit(R). ⊓⊔

5 Non-existence of a finite bisimulation

a

b

c
c1

c2
c3

b2
b3

b1

abc

abc

abc

s0

f0

s1

f1

abc

Fig. 7.An example without finite bisimulation

Consider the following reachability problem: Is(s1, b) reachable from(s0, eab) in
Figure 7, whereeab denotes the edgeab without the end-points? Heref0 = (1,−2)

andf1 = (1, 2). We can decide the problem by checking if(s1, b) is a state in the
Treach((s0, eab)). However there is no finite bisimulation which respects the partition
given by the initial and final states. To see this, consider the pointsb1, b2, · · · . Frombi,
there is a path of length2i to b, but no path of length less than2i. So each of thebi’s
should be in a different partition of the bisimulation. Since the sequenceb1, b2, · · · is
infinite, this rules out the existence of a finite bisimulation.

6 Some undecidable extensions

If we consider the reachability problem in four dimensions,it is undecidable even when
the set of flows is monotone. This is because the reachabilityproblem is in general
undecidable in three-dimensions, and this can be reduced tothe reachability problem in
four dimensions with monotone flows.

It is shown in [3], that PCD’spiecewise constant derivativesis undecidable in three
dimensions. These are linear hybrid systems in which the invariants and guards are
disjoint. By introducing a fourth dimension and making all the flows monotone along
this new dimension we have a monotone linear hybrid system infour dimensions. Hence
we have undecidability in four dimensions even with monotonicity.

7 Conclusions

In this paper we identified a new class of planar linear hybridautomata that have a de-
cidable reachability problem. The key aspect in defining theclass was requiring flows
to be monotonic. One can prove that the reachability problemis undecidable in 4 di-
mensions. The3 dimensional case is an interesting open problem.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.Theoretical Computer
Science, 138(1):3–34, 1995.

2. Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 1994.

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Reachabilityanalysis of dynamical systems
having piecewise-constant derivatives.Theoretical Computer Science, 138(1):35–65, 1995.

4. Eugene Asarin, Gerardo Schneider, and Sergio Yovine. Algorithmic analysis of polygonal
hybrid systems, part I: Reachability.Theor. Comput. Sci., 379(1-2):231–265, 2007.

5. Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos H. Papadimitriou, and John N.
Tsitsiklis. Deciding stability and mortality of piecewiseaffine dynamical systems.Theoretical
Computer Science, 255(1–2):687–696, 2001.

6. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and PravinVaraiya. What’s decidable
about hybrid automata? InProc. 27th Annual ACM Symp. on Theory of Computing (STOC),
pages 373–382, 1995.

7. R.M. Karp and R.E. Miller. Parallel program schemata.Journal of Computer and System
Sciences, 3(2):147–195, 1969.

8. G. Lafferriere, G. Pappas, and S. Sastry. O-minimal hybrid systems, 1998.

