View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

A Decidable Class of Planar Linear Hybrid Systems

Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Visilzan, and Geir E.
Dullerud

University of lllinois at Urbana-Champaign.

Abstract. The paper shows the decidability of the reachability probfer pla-
nar, monotonic, linear hybrid automata without resets s€tmitomata are a spe-
cial class of linear hybrid automata with only two variablefose flows in all
states is monotonic along some direction in the plane, amchioh the continu-
ous variables are not reset on a discrete transition.

1 Introduction

The use of embedded devices in safety critical systems, faspted extensive re-
search in the formal modeling and analysis of hybrid systétybrid automatd1] are

a widely used formalism for modeling such systems. Thesenaichines with finitely
many control states and finitely many real-valued variabies evolve continuously
with time. The transitions depend on the values of the cootiis variables and they
change both the discrete control state as well as the vafuitbs wariables. The safety

of systems modelled by such automata can often be reduckd tpuestion of whether

a certain state aegion of the state space can be reached during an execution. This is
called thereachability problem

Due to its importance, the reachability problem for hybunidcemata has been care-
fully investigated in the past couple of decades. The prolik@s been shown to be
decidable for special kinds of hybrid automata includiimged automatd2], certain
special classes oéctangular hybrid automatg], ando-minimal hybrid automat§s].
These decidability results often rely on demonstratingekistence of a finite, com-
putable partition of the state space thabtisimilar to the original system.

However, such decidability results are the exception rathan the norm. The
reachability problem remains stubbornly undecidable deemery simple and special
classes of hybrid automata, not just in the general cases@tespecial class is that of
linear hybrid automataln these automata each variable is constrained to evaing a
constant slope (with time), and despite such simple dynsirhave been unamenable to
algorithmic analysis even in low dimension (i.e., with véew continuous variables).
Timed automata, where each variable evolves synchronasiitya global clock, but
where the machine is allowed to compare clock values at the tif discrete transi-
tions?, is undecidable even for systems with 6 clocks [2]. The cdsgeneral linear
hybrid automata in which variables are constrained to bepewed only to constants,
remains undecidable even for just 3 variables [1]. Unddsxiityaresults for dynamical

! The decidability result for timed automata holds when ctoake only compared with con-
stants.

https://core.ac.uk/display/4820657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems with piecewise constant derivative in 3 dimensiand piecewise affine maps
in 2 dimensions [5] provide further evidence.

In this paper, we prove the decidability for a special clddmear hybrid automata
that areplanar, monotoni@anddon’t have resetsPlanar refers to the fact that the au-
tomata has only two variables. Monotonic refers to the faatwe require the existence
of a vectorp such that the derivatives of the variables (viewed as a véttbe plane) in
all states have a positive projection algnaote, this does not mean that both variables
have positive derivatives in each state. Finally, the aatomdoes not reset/change the
values of the variables when taking a discrete transition.

The automaton model that we consider here is more generahie sispects, and
at the same time more restrictive in some aspects, when gechpath other hybrid
automata models for which decidability results are knowrstfvariables are not re-
stricted to clocks, like timed automata. Second, variahtesnot required to have the
same slope in all states, or for them to be reset when the flalvdaged, as in some
rectangular hybrid automata. Next, transitions don't ketveng resets that decouple the
continuous dynamics from the discrete, as in o-minimalesyst Finally, the guards and
invariants are not required to be disjoint, as in dynamigateams with piecewise con-
stant derivatives [3] or polygonal hybrid systems [4]. Oa tiher hand, our automata
only have 2 variables, no resets, and monotonic flows.

Despite the restrictive dynamics and planarity, the desiita proof is very chal-
lenging. Like many decidability proofs in this area, we fipstrtition the plane into
regions which in our case are convex polygons formed by considéirieg associated
with the constraints appearing in the automaton descriptind lines perpendicular to
the direction along which the flow is monotonic. Such regibage a very special geo-
metric structure in that they are bounded by 2 to 4 line seg¢snanleast one of which
is a line segment perpendicular to the monotonic direcfidre first key idea in the
proof is to observe the existence of a lihgerpendicular to the monotonic direction,
such that the behavior of the automaton beyénsl bisimilar to a finite state system.
Then reachability computation is broken up into two pha#iesfirst phase computes
all points beforée that are reachable, and the second phase constructs thefsiihu-
lation for the points beyondand does the search in the bisimilar transition system.

The computation of the reachable regions befatself relies on observing that any
execution of the automaton can be seen as a concatenatisedga ofalmost-inside
executionsAn almost-inside execution is an execution that starthatbioundary of
a regionR, entersR, and then leaves to another boundary®fall the while staying
inside R, while taking both discrete and time steps. The first lemmawmee is that
the effect of such almost-inside executions is computatrialf regions. However, in
order for the decidability proof to go through we need a gjarnresult for certain
special regions that we calight pinched triangleswe need to show that the effect
of concatenating finitely many almost-inside executions lsa computed. We do this
through a tree construction reminiscent of the Karp-Mittee [7] for vector addition
systems. Finally, we solve the reachability result for oegi before? by another tree
construction. A carefully counting argument coupled witle tnonotonicity of flows
ensures that this tree will be finite and hence effectivelystictable.

2 Anexample

We will first illustrate our algorithm for deciding reachétyi on an example. Con-
sider the hybrid systerfl given in Figure 1. It has five locations, - - - , s5, with flows
fi, -, fs, respectively, associated with them. The locations arelledh by their in-
variants. For example, the invariant associated with lonat; isy < 1, and this says
that the control of the system can besinonly if the value of the variablg is less than
1. When in a certain location the values of the variables chaugording to their flow.
If the system starts withh = 0 andy = 0 at locations;, and spends a unit time, then
the values of the variables would be= 1 andy = 2. However in this case the system
is forced by the invariant to leave the location before halftunit. We note thatl is a
monotone lineahybrid system, where by linear we mean that the flows assatiaith
the locations are constants, and by monotone that the flovesd@ositive projection
along some direction, in this case the@xis as shown in Figure 2.

f1

" f2

" fa

Fig. 1. Linear hybrid systeni{ Fig. 2. Flows of the hybrid systerl

We will consider the following reachability problem: Is theation s; reachable
starting froms; with = 0 andy = 0? As shown in Figure 3, this translates to
checking if starting ins; at pointO, we can reach the shaded region in locatign

We first divide the plane into regions depending on the cairgs in H. Corre-
sponding to each constraint Bf, there is a straight line, as shown by the solid lines in
Figure 3. We also add lines parallel to theaxis passing through the points of inter-
sections of these lines, if one does not already exist. Aasgyeseen, the interior of a
region is invariant with respect to the locations in thateitit is contained in the invari-
ant of a location or is disjoint from it. Hence with each elernef a region which is its
interior, its edge without the end-points or its vertex, e associate a set of locations
whose invariants contain the element. For example, thefdaetations corresponding
to the interior of region is {s1, s2, s3}.

The idea of the algorithm is to compute successors for thiemegGiven a part of
an edge, called a subedge, and a location, the successoesgtict to a region is the set
of all points on the boundary of the region reachable by mgwinly in its interior, and
leaving and entering the boundary at most once. For exarstplging from point4 in
locationss, we can reacly by following flow f5 of s3 and moving only in the interior

Fig. 3. Regions of the hybrid systefti

of region3. Hence(ss, J) is in the successor dks, A). As a slightly more interesting
example, consider the problem of finding the successorsiaf pbin region1. These
are exactly the points betweehand B in locationss, andss, the points betwee
and C in locationss; andss and the pointB in locationss. We will represent this
succinctly agsy, B'C"), (s2, A’B’), (s3, BC") and(s3, A’ B), whereA’ indicates that
point A itself is excluded. The above subedges are computed in logvfog way. The
locations corresponding to regidnare s, s andss. Let us consider the underlying
graph ofH restricted to locations and guards which contain regidrhe same is shown
in Figure 4. We observe that any path fréhin locations; spends time alternately in

Fig. 4. Underlying graph of restricted to region

andss, and then possibly makes a transitiostavhere it spends additional time before
reaching the boundary. We will show that the set of all poiatchable by alternating
betweens; ands; is exactly the set of point in the cone generated’bynd f> which
are also in the interior of regioh namely, the points inside the parallelogré BC

in the figure. This is true only becausgands, belong to the same strongly connected
component of the underlying graph corresponding to regiowe then show how to
compute the set of points reachable starting from theseuwitth respect to the next

maximal strongly connected component, in this casén this example it turns out that
the points reachable by moving aloifg from points in the parallelograf® ABC' is
OABC itself.

Now coming back to our original problem of finding if there is execution oftl
starting at poinO in locations; to some point in the shaded region in locatignwe
will build a rooted tree, called theeachability tree Its nodes are labelled with pairs
of locations and subedges and the root is labglled0). The children of any node are
labelled with the elements of the successors of the lab&leoftirrent node with respect
to every region it is adjacent to. The above computation isexh out with respect to
every region to the left of the line = 2. This gives us the set of all pairs of locations
and points reachable on this line. Figure 5 shows some périoiree.

(s1,0)

(s3,BC’) (s1,B'C') (sg,A’B’) (s3,A’B)

KEBE)(‘LDE) /]M\

(53, 1B) (s4,1BE) (s4, LE")(s4, FH)(s4, HE)(3 BE')(s3, KE)(4BE)(4KE)

(s4, HG)

Fig. 5. Reachability tree

Our next goal is to show that this tree is finite. As a first steqahieve this, we prune
some branches of the tree. The nddg LE’) is removed from the tree as its parent
(s4, BE') contains all the required information. The finiteness ofttke follows from
two observations, namely, the number of children of any risdmite and every path
in the tree is bounded. We can then apply Konig’s Lemma to lcoiecthat the tree is
finite. To show that a path is finite, we have from the monotionaf the flows that the
leftmost point of any child of a node is to the right of the teétst point of the node. For
example, thec-coordinate of the left-most point @@ which isO itself is less than that
of A which is the leftmost point o\’ B, which is in its successor. However, there is a
priori no minimumdistance by which this shift to the right occurs. Such a boaists
if the successor is with respect to a region which is a trapezlike regionl. It is not
clear for a “left-pinched triangle” like regiof. However for this case we argue that
though a global minimum does not exist, given any path of the such a minimum
exists. In case of a “right-pinched triangle” like regidneven such a local minimum
does not exist. Hence, instead, in this case we compute rhesitive closure” of the
successor with respect to the region, which is the set ofalitp reachable on the
boundary by moving withinR and touching the boundary any number of times. We
show that this is computable when the constraints correfipgrio the boundary are

strict. We then use the assumption that there are no adjegaivpinched triangles, to
argue that the paths of the tree are finite.

We cannot continue with the construction of the tree beybadiher = 2, because
all regions to the right of this line are unbounded. This migtentially lead to infinite
paths in the tree. So we stop building the tree at the limdich passes through the
leftmost vertex, and show that there is a finite bisimulatibthe states corresponding
to the regions to the right of this line. This bisimulatiomdae computed. Hence we
can decide the reachability.

3 Preliminaries

3.1 Linear Hybrid Systems
A linear hybrid systentLHS) H is a tuple(S, Sy, E, X, flow, inv, guard) where

— Sis afinite set of locations,

— So C S'is the set of initial locations,

— FE C S x Sisthe set of edges,

— X =A{y1,---,yn} is afinite set of variables,

— flow : S — Q™ associates a flow with every state,

— inv : S — Guardsis a function associating an invariant with each state, and
— guard : E — Guardsis a function associating a guard with each edge,

whereGuards= 2€ andC is a finite subset of >0 aiyi ~ bi|a;, b € Q,~e {<,>
}}. We call the elements df which occur in the codomain @hw and guard, the set
of constraintsassociated witfil. The size ofX is called thedimensiorof H.

We note that the definition of the hybrid system above desifitam the standard
definition in that we danot allow resetsand the constraints are restricted toshect

We define the semantics of difiS in terms of atransition systemThe transition
system offl is a triple(X, Xy, —), whereX = SxR" is the set of states &f, Xy C X
called the set of initial states consists of st@tev) such thats € Sy andv € inv(s),
and thetransition relation— is a binary relation on the set efatesX. The transition
relation— is defined as the union dfiscretetransitions—, andcontinuougransitions
—, which are defined as:

= (s,v) —q (¢,v') if v = v/ and there existe = (s,s’) € E such thatv €
inv(s) Ninv(s’) N guard(e).

— (s,v) —¢ (¢,v')if s = ¢ and there exists € R such thatt > 0 andv’ =
v+ flow(s)t, and for allt’ € [0,¢], v + flow(s)t’ € inv(s).

An executiorof H from a stat€gsq, v1) is a sequence of statés, v1) - - - (s, vn) such
that foralll <i < n, (s;,v;) — (Si+1,vi+1). We then say thats,,, v,,) is reachable
from (s1,v1), and denote it by(si,v1) —* (s,,v,). We can represent an execution
(s1,v1)(s2,v2) - - (8p,v,) @s a functions : [0,¢] — ST x R"™. We defines as a
pair of functions(c?, 02), wheres! : [0,#] — ST gives the sequence of locations
at any time point and? : [0,t] — R™ gives the values of the variables. With each
(siyv;) — (Si+1,vi+1) We associate delayd;, whered; = 0 if v; = v;41, and

d; = (Vi1 — vi)/flow(s;) otherwise. Let; = 22:1 d;. We sett = t,,_;. We define
ol(t') = s; if t' € (ti—1,t;), otherwises! (¢') = s;--- s;, wheret’ = t; andt;_1 #
ti = tiz1 = -+ = t; # tj41. We defines?(t') for t’ € [t;_1,t;] inductively. We set
o? (O) =1 ando? (t/) = 0'2(151',1) —|—ﬂ0w(si)(t’ — tifl) fort’ e [tifl, tl] A runof H
is an execution starting from an initial state.

3.2 Elements of the two dimensional plane

We define some elements of the two dimensional plane formestrbjght lines. A
convex closed polygonal sétis the intersection of finitely many closed half-planes.
We simply call P a convex polygon. Théterior of P, denotedinterior(P), is the
intersection of finitely many open half-planes correspogdo the closed half-planes
of P. Theboundaryof P, denotedboundaryP), is P — interior(P). An edgeof P

is @ maximal convex subset bbundaryP). We denote the set of all edges Bfby
edges$P). A vertexof P is a point of intersection of two distinct edges®f The set of
all vertices ofP will be denoted byvertices(P).

We call a convex subset of an edgesubedgeThe end-points of a subedgeare
pointsa andb such thate consists of all points on the line segment joinim@ndb,
except possibly, andb themselves. We denote this bypd-pointée) = {a} U {b}. The
subset ok without the end-points will be denoteger{e¢), which ise — end-pointée).
The elements of the subedgare then its end-points which are contained and the
operie). This is denoted bglementé&) = {oper{e)} U{a|a € end-pointge), a € e}.
From now on, by a convex set, we mean a polygon, interior oflggom, or a subedge
of a polygon.

3.3 Restricted hybrid systems

We call anL HS H monotonéef there exists ary € R™ such that for all locations of
H, flow(s).f > 0, where. is the standard dot product. We call suchfaadirection of
H.

We will call a linear hybrid systemplanar, if its dimension is two. A planar lin-
ear hybrid system is said to #mpleif no three distinct lines corresponding to its
constraints intersect at a common point, where the lineesponding to a constraint
S, aiy; ~ b; is the set of points satisfyiny .-, a;,y; = b;.

3.4 Notations for planar hybrid systems

Let us fix a simple monotone planar linear hybrid systére (S, Sy, F, X, flow, inv,
guard) for the rest of the paper. Le&X = {z,y} and fy be a direction ofH. Let
us fix our coordinate system such that thexis is parallel tofy and they-axis is
perpendicular to it. Given a subedgeve defineleft(e) to be the infimum of the:-
coordinates of the points imandright(e) to be the supremum of the-coordinates of
the points ire.

Let V be the set consisting of the points of intersections of theslicorresponding
to the constraints ifil. Let us associate withl a set of lineswhich are parallel to the

y-axis and contain some pointIn. We denote this biines(H). We can order the lines
of Hasly,ls, -, 1, such that forany < i < j <k, if v; andv; are the points i/
which are contained ify andl; respectively, theteft(v;) < left(v,).

Let L be a set of lines which contaitisesH) and the lines corresponding to the
constraints irHl. We associate a set mdgionswith H which consists of polygons whose
interiors are non-empty and which are formed by choosingtéxane closed half-plane
corresponding to each line i. We denote this byegiongH). We useregiongH, ¢, j)
to denote the regions @ which are contained in the set of points between lipesd
1; of lines(H). Also regiongH, 0, j) andregionsgH, i, k + 1) denote the set of regions
contained in the set of points which occur to the lef{ pnd the set of points which
occur to the right of;, respectively. Note that two distinct regionsregionsH) have
non-intersecting interiors, and the union of all the regigives us the whole plari?.

Following are a few observations about the regionBlpf

1. The regions imegiongH, 0, 1) are unbounded and have two or three edges.

2. The regions imegionsH, 1, k) are either triangles, or trapeziums, or unbounded
regions with three edges. For the triangles, one of the eldgamntained in some
[; and its vertex not on that edge is contained in either or I;,_; . If the vertex is
contained in;.1, then we call the triangle aght-pinched triangleotherwise we
call it aleft-pinched triangleFor the trapeziums in this region, we will call its edge
aparallel edge if it lies on one of thg’s.

3. The regions imegionsgH, k, k + 1) are unbounded with two or three edges.

From now on by a subedge we mean a subedge of the edge of soioe g
regiongH). We abuse notation and call a p&it e) wheres € S is a location an@ a
subedge, also a subedge. However it will be clear from théezomwhich one we mean.
The subedgés, e) is said to contain the stafe, v) wherev € e. Two subedgess, e)
and(s’,¢’) are said to be disjoint if the do not contain any common sByea state
(s,v) or a subedgés, e) being on a subedgé or a linel we mearw or e is contained
in ¢’ orl. Similarly we use regions also for pairs of states and region

We will focus on the following problems in the rest of the paphe point-to-
point reachability and the region-to-region reachabilitiie point-to-point reachabil-
ity problemis to decide given two statés;, v;) and(sq, ve), if (s1,v1) —* (s2,v2).
The region-to-regionreachability problem is to decide given two location-regpairs
(s1, R1) and(sq, R2), if there exist point®; € R; andvy € R, such thaf(sy,v;) —*
(827 UQ).

4 Decidability of the reachability problem

In this section we show that the point-to-point and regiomeigion reachability prob-
lems for simple monotone planar linear hybrid systems isdadxe. We will continue
to use the notations introduced in the previous section. Wegdiesent a sketch of the
proof of decidability.

1. We first show that thedge-to-edge reachabilitgroblem is decidable: given a
subedge(s, e) of a regionR € regiongH, 0, k), we can compute the set of all
states ori; which are reachable from the states on the subedge.

2. We then show that there exists a computable finite bisitiomlaf the transition
system ofH restricted to the states on and aftgrwhich respects the partition
created by the elements of the regionsagionsH, &, k + 1).

3. We then use the above results to decide the point-to-amidtregion-to-region
reachability.

4.1 Edge-to-edge reachability

In this section we solve the problem of finding the set of a@lted on the liné; reach-
able from a subedggs, e) of some regionR € regiongH, 0, k). Any execution from
a state in(s, e) to a state ori,, can be broken up into a sequence of executions each
of which is such that they move within a single region and éeawventer its boundary
at most once. Our approach is to build a tree whose nodessexgreubedges, and the
states corresponding to the nodes of the children of a nodethe set of all points
reachable from the states in the parent node by executioichwiove within a region.
Then any path in the tree would correspond to executiontrgjdirom states in the
root. We call this theeachabilitytree. We show that the tree is computable and finite.
Then the set of all states in the tree which correspond tot#ttessor;, will give us the
required.

We first compute the set of all states reachable from a subleggeoving only
within a region. We define amlmost-inside executionith respect to a region to be an
execution which leaves the boundary of the region at most and enters the boundary
of the region at most once, and at all times during the exesus in the region. An
almost-inside executiom\-execution) from a statés, v) to a statds’, v’) with respect
to a regionR is an executionr : [0,t] such thato!(0) containss ando2(0) = v,
ol(t) containss’ ando?(t) = o', and there existy, t2 € [0,t] such that for alt’ €
(0,t1]U[ts, t), 0?(') € boundaryR), and forallt’ € (t1,t2), 02(t') € interior(R). We
say thata subedde’, ¢’) is reachable from a subed(e e) by almost-inside executions
with respect to a regioR, if for everyv’ € ¢/, there exists @ € e and anAl-execution
from (s,v) to (s’,). The successor of a subedgee) with respect to a regioR is a
subedge ofk reachable fron{s, e) by Al-executions with respect tB. We denote by
sucd(s, e), R) the maximal successors 0, ¢) with respect toR, where a successor
(s',€’) is maximal if for every successo@s’, e”), e” C e'.

Our first step is to show thatucd(s, e), R) is computable. We use an auxiliary
functionpostin its computation, which is shown computable below.

Computing post Now we show that post of a set of points with respect to a sebwff
and a region is computable. We first make some necessarytibefii

Given pointsa andb in R?, a piecewise linear trajectoryrom a to b following
the flowsF = {f1, fa,-- -, fn} is @ sequencef;,, t1)(fi,, t2) - - - (fi,., tm) Such that
ij € {1,---,n}, t; € Rwitht; > 0forl < j < mandb = a+ 37" fi,t;.
From now on by a trajectory we mean a piecewise linear trajgctVle can represent
the above trajectory from to b as a functionr : [0,¢] — R? wheret = Z}”:O tj, and

forallt’ € [0,¢] 7(t') = a + 237::01 ity + fiy (t— ;:01 t;) wherej’ is the largest

J

number such that < 5/ < m andt > Z‘;:/:_Ol t;.

We can now defin@os(P, F, R) whereP is a convex set contained in a regiin
andF is a set of at most two flowpos{ P, F, R) is the set of all points € R, such that
there is a trajectory : [0,¢] — R? following flows in F such that-(0) € P, 7(t) = v
andr(t') € interior(R) for all ¢ € (0, t).

Lemma 1. Given a regionR € regiongH, 0, k), flows F' such that|F'| < 2, and a
convex sef’ C R,

1. postP, F, R) is computable.
2. postP, F, R) can be expressed as a finite union of convex subséts of

We first prove a few geometric properties, which we will uséha proof of the
above lemma.

A set of flowsF = {f1, f2,- -, fn} IS monotonef there exists a flow such that
f-fi>0foralll <i < n.We callf a direction of . We call a flowf; in F' the
lower flow of F' with respect to the directioffi if f; makes the smallest angle with
among the flows inF" and similarly a flowf, in F'is called theupperflow when f,,
corresponds to the largest angle.

The next proposition says that following a set of monoton&dlé’ is equivalent to
following just the upper and lower flows df.

Proposition 1. Let F' be a set of monotone flows with directipnand letf; and f,, be
the lower and upper flows. For any two pointgndb in R?, if there exists a piecewise
linear trajectory froma to b which followsF, then there is one which followsf;} U

{fu}-

Proof It follows from the fact that anyf’ € F' can be expressed as a positive linear
combination off; and f,, f' = af; + 3f. wherea, 3 > 0. O

Next we show that the set of points reachable inside a regidrafectories which
start in the region is same as the set of points reachablejgctories restricted such
that they always move within the region.

Lemma 2. Let P be a convex polygon and and b two points inP. Let f; and f,

be two non-collinear flows ifR? such thatf, points intoP at a, that is, there exists

t' € R-q such thata + ¢’ f1 is in interior(P). If there exists a trajectory : [0,¢] — R?
which follows{ f1, f2} from a to b and follows each of them for some non-zero time,
then

1. if b is not a vertex ofP, then there exists a trajectory : [0,t] — R? froma
to b which moves withinP except possibly for the end-points, that is(t") €
interior(P) forall 0 < ¢’ < ¢, and

2. if b is a vertex ofP, such ar’ exists if and only if there exi$t € interior(P) and
t' € Rypsuchthat =0 +t'frorb =0+t fs.

Proof Proof of part 1If there exists a trajectory which follows { f1, f2}, then there
exists one which follows; for time ¢; and thenfs, for time t,. Let us call thisr;.
Similarly there is a trajectory, which first follows f5 for time ¢, and thenf; for time
t1. We know that there is & > 0 such thatr is inside P in the interval(0,¢). If b

To see this, letry be the edge on which
b is a point. The lind alongzy partitions
the plane into two half planes, andlies
on one of thema cannot lie onl since oth-
erwise f; and f> will be alongi. Suppose
that m; and > approachb from the other
1 half-plane, which does not contain points

L Vs from P. Thenf; and f> point into the half-
a2 / plane containing: at pointb. Hence ata
o f2 also they point into the half plane not con-

v taining b corresponding to the ling paral-

' lel to [passing through. This implies that

v 1 starting ata and following flows{f1, f2}
the only points reachable are those in the
half-plane corresponding t8 which does
not containb. This contradicts the fact that
71 andr, are trajectories from to b.

is a point in the interior of?, then there exists; such that in the intervelt; + ¢t —
tr,t1 + t2], m andr, are ininterior(P). If b is a point on the boundary @® which is
not a vertex, theny exists for at least one of, and..

So one ofr; andr, reached from within P. First consider the case in whieh
reache$ from within P which is depicted below.

There exist pointg andp’ on ac andq andq’ on ¢b such thatp, p’, ¢ andq’ lie
within P andpq is parallel top’¢’. By convexity the trapeziump’q’q is contained inP.
Note thatpq is a direction forf; and f,, and f; points into the trapezium at points on
pq and f, points into the trapezium at points pfy’. We can now construct a trajectory
7p from a to b which moves withinP. moves froma to p’ and then followsfs till it
reaches some point g when it switches to followingf; . It alternately followf; and
f2 and switches the flow from one to the other when it reaghgsandpq, respectively.
Before switching the flow the trajectory moves in the directiq for at least distance
d. Hence there is a bound on the number of switches it taketiéatrajectory to reach
some poin” ongqq’. From the point”, 7p follows ¢”b to reachb.

In the case whemn, reaches from within P, the proof is similar except that we
need to explicitly make sure that the poiptsp’, ¢ andq’ we choose are such thét

points into the trapezium at points @n and f, points into the trapezium at points on
p'q’. However this can be ensured by choosing’ close toa andgq, ¢’ close tob.

Proof of part 2If 7/ exists, therd’ exists asr’ reached’ along flow f; or fo. If a v’
exists such thai = V' + t'f;, then by convexity ofP, all pointst” = b’ + "' f; are in
interior(P) where0 < t” < t. Hence one of5_; reache$ from within P. Rest of the
proof is similar to the above case. a0

Proof of Lemma 1 Using Lemma 2, we can compute the set of alitpan R
reachable from a poini by moving in the interior ofR except possibly for the end-
points. This is the set of points in the cone generated by dwesfin ' at pointp, with
the vertices ofR being in this set only if the satisfy the condition in Lemma 2.

Given any convex subsdt, we compute the set of points reachable from each of
the vertices ofP and take their convex hull. It is easy to see that this givesstt of
all points reachable from points iR. In the case wher® itself does not contain the
vertices, we remove the boundary of the convex hull computed

Computing succ In the next lemma, we show thaticq(s, e), R) is computable. A
notion that we use is that of the underlying graph of the hlssistem restricted to
those locations and edges whose invariants and guardstiespeare satisfied by the
elements of a region. Given a set of poiihtswe define the underlying graph Bfwith
respect toV” to begraph(H, V') = (Vig, Em,) such thatVyy = {s € S|V C inv(s)}
andEy = {e € E|V C guard(e)}.

Lemma 3. Given a regionR € regiongH) and a subedgés, ¢) of R, suc¢(s,e), R)
is computable.

Proof Given a graphG, let us call the graph with the maximal strongly connected
components as vertices, the component grap&y,aind denote it aSCGG). There

is an edge between two verticesSCQG) if there is one between two states of the
components in the original graph. Note that maximality @ ¢bmponents gives us that
SCQQG) is a directed acyclic graph.

We consider the maximal strongly connected componentseofitiderlying graph
graph(H, interior(R)). An Al-execution from a state ifs, ¢) with respect taR would
correspond to some path 8CQgraph(H, interior(R))).

For each such path = C,C; - - - C,, whereC;’s are the strongly connected compo-
nents, we compute the states on the bounda§ odachable byAl-executions which
follow this path. We do the computation iteratively. We fiiial the states reachable by
moving only in the componerdt; .

We do this in three steps. First we find the set of all stateshiazle from(s, ¢) on
the boundary of? without moving into the interior oR. Let us call thisA;. Next we
compute the set of all states reachable framby moving only in the interior ofR
except possibly for the end-points. Let us call this4gtFinally we compute the set of
states on the boundary reachable from the boundary poiats by moving only along
the boundary. This gives us the set of all state® ireachable byAl-executions which
move only inside component; .

For the first and last step, we need to compute given a subgdgfean edge:, of
the regionR, the set of all states on the edgereachable by moving along, from

states in(s, e;). We can then iteratively compute the set of all states on tumbary
reachable, since such an execution will correspond to aeseguof executions which
move along an edge, hit a vertex and then move along anotgeraw! so on. The set
of all states ore, reachable fronfs, e;) are all states it x e3 wherees are the set of
all points one; which are to the right of points o#y, andsS is the set of all locations
in graph(H, e¢) which are reachable fromby a path which goes through a state with a
flow along the edge.

The second step is computed uspast Given a subedgg, e1) in Ay, Sx (postey,

F, R)Ninterior(R)) whereF is the maximum and minimum of the set of all flows in the
statesS in C1, give the set of all states in the interior Bfreachable. The set of states on
the boundary reachable in st2re the states if; x (pos{ei, F, R) NboundaryR))
whereS] is the set of states in bograph(H, interior(R)) andgraphH, boundary R)).

Suppose that we have found the set of all states in the intenid boundary reach-
able by the prefix of the pathtill C;. The set of all states in the interior &reachable
can be expressed as a set of pairsP) whereP is a convex subset R ands is a
location. The set of states reachable by a prefix 6fl C; is then computed similar to
the above case except that instead of an edge we have a cabsst and instead of
the states i1, we have the states @f;.

Once we have found the set of states reachable atomge can take the union of
all the states over all the's to get the set of all states on the boundary reachableeSinc
at each point in the procedure above we get a representdttbe eet of states on the
boundary reachable as a finite union of subedges, and thearwhpathsr is finite,
we can computsucd(s, e), R). O

Now that we have shown thaticq(s,), R) is computable, we can construct the
reachability tree. However we also want to show that theigéaite, and we will show
this by ensuring that the paths in the tree are finite. We valthis by showing that
along any path the successors move to the right by at least stimmum distance.
In the case of a right-pinched triangle such a minimum doé¢®xist. Hence we will
compute the transitive closure sificg calledsucc¢ where we consider points reachable
by a sequence dkl-executions such that the last state of an execution is sarttea
first state of the next execution. The intuition behind tkishat if we computesucc
instead ofsuccfor a subedge with respect to a region then we will not needtsicler
thesuccof the elements isucc with respect to the region, as those states are already
included insucc. We will see that the simplicity of the system can then be used
argue that the paths in the reachability tree are finite. N@xima says thatucc is
computable.

Lemma 4. Given a right-pinched triangle in regiongH, 1, k) and a subedgés, e)
of R, succ((s, e), R) is computable.

Proof Let the right-pinched triangl& beabc with the edgeib on somd,; andconl; 14

as shown in Figure 6. Lét, ¢) be a subedge aic. We first compute the set of all states
onac reachable by a sequence of one or mdieexecutions. For this, we build a tree
T*(s, e) rooted at nodés, ¢). We will need the following new notion of successor. Let
us denote bysucg ((s1,e1), R) the set of states reachable @enby executions which
touchbc at most once in the following sensgicqg ((s1, e1), R) = {(s2,€2) | (s2,e2) €

Li Lita

Fig. 6. Right-pinched triangl@bc

sucq(si,e1), R),ea C act U {(s3,e3)|(s3,€3) € suCEsa,ez),e3 C ac, (s2,€2) €
sucq(s1,e1), R),ea C be}.

We now define how the tree is constructed. We will simultasgomark nodes in
the partial tree constructed. The children of a n¢deec;) are the elements,, e5) in
sucq ((s1, e1), R) such that there is no nodse,, —) along the path from the root to the
node(sy, e1). For every elemertiss, e2) in sucg ((s1, e1), R) such that there is a node
(s2,€'2) along the path from the root to the noflg, e1), we mark the nodéss, e'5).
Note that a node could get marked twice. The constructioneefwill terminate since
it is finite, which is due to the fact that the number of childog any node is finite and
the height of the tree is bounded by the number of locations.

We now describe how to compugeacc ((s, e)) from the tree constructed above. We
form a setd which contains all the nodes @f (s, ¢), and for each nodgs, e;) which
belongs to a subtree of some marked node, it confaingull(e;)), wherefull(ey) is
the subedge, of ac such thatleft(es) = left(e;) andright(es) = right(c) and ez
contains the point&ft(e;) andc if and only if e; contains them.

A consists of all points omc’ reachable fron(s,e) by moving only within the
triangle and touching the boundary any number of timesdtlizirany point in A is
reachable. This is because if from a statev,) we can reach a statg, v2) by an
executions, whereuws is strictly to the right ofv;, then we can reach any point to the
right of v; by taking a sequence of one or more executions whose t@amsiiquence is
same as that aof but with possibly less time spentin each location. Simyi#r(s, e;)
can reach(ss, e2), then(sy, full(e1)) can reach sz, full(ez)). This justifies taking the
full of all nodes in the subtree of a marked node. Secondly, seppaist(s’, v') on
ac’ is reachable from a poirts, v) in (s, e) by an executiorw. Consider the sequence
of points onac’ reached by followingr. If (s’, ") is the first state onc’ corresponding
to s’ then(s’,v") would belong to some node in the tree, otherwise it would fglto
the full of a node belonging to a subtree of a marked node.

To compute the set of states bl reachable, we observe that such a state is reach-
able only from anAI-execution starting from some state @di. Hence the reachable
states orbc’ B can be computed by taking ttseiccof the maximal subedges of.
Finally, if ¢ is reachable then it is reachable by Aaf-execution starting from a state on
ac’ or bc’, hence will be included in theucc of the subedges id or that of B. Hence
all points insucc ((s,), R) can be computed. O

We show below that the set of all states reachable on theljine computable.
As already said before, we construct a tree usingsthecand suc¢ to compute the
children of the nodes. The nodes of the tree will correspoattty to the states on
edges of regions iregiongH, 0, k) reachable from some subedge of some region in it
for which the tree is built.

Lemma 5. Given a subedgés*, e*) of a region in regionéH, 0, k), the set of all states
onl; reachable from some state on the subedge is computable.

Proof Construction of the reachability tree Teach ((s*, €*)). We construct the reach-
ability tree, in which the nodes correspond to subedgestrandhildren of a node cap-
ture the set of all states reachable from the states of ther.mode byAl-executions. A
particular child of a node correspondsAb-executions with respect to a single region.

We first definetsuccof a subedge with respect to a region which consists of states
reachable byAl-executions in this region. We break up the subedges in&letaents,
because when computingucc we require that all points of a subedge belong to the
same set of regions. Note that otherwise, the end-point abadge which is a vertex
could belong to a different set of regions than the subedteowt the end-points.

For a subedgés, e) of a regionR, tsucq(s, e, R)) is given by:

— If R is not a right-pinched triangldsucq(s,e, R)) = {(s',el, R")|(s',¢') €
sucd(s,e), R), el € element&’),el C R', R' € regiongH, 0, k)}.

— If R is a right-pinched triangldsucd(s, e, R)) = {(s',el, R')|(s',¢') € succ
((s,e), R),el € element&’), el C R', R’ € regiongH, 0, k), R # R'}.

The root ofTreacr((s*, €*)) is *. The children of are the element of the sgts*, e*, R) |
e* € R, R € regiongH, 0, k) }. The children of any nodés, e, R) are the elements of
tsucq(s, e, R)) which contain at least one state which has not occurred icuhent
node or any of its ancestors, that is, an elerm@nte;, R1) is present in thesuccof
the current nodés, e, R) if for all nodes(sy, ea, R1) which is the current node or its
ancestor, there existsiasuch thaty € e; — es.

Below we show that the treBeacn((s*, €*)) is finite. First we make a few observa-
tions which are crucial in arguing the finiteness.

1. Let(s,e) and(s’,¢’) be elements of subedges of a regiBnThen if (s',¢’) €
tsucd(s, e), R), thenleft(e) < left(e’) andright(e) < right(e’). This follows from
the monotonicity of the flows iftl.

2. Given any regioiR € regiongH, 1, k), and(s, e) and(s’, ¢’) elements of subedges
of R which are not on th&’s such tha(s’, ¢’) € tsucq(s, e), R), we have:

(a) If Ris atrapezium or an unbounded region, then eittgt(e’) is on somd;

or there exists dr > 0 such thatight(e’) > right(e) + dg.
(b) If Risaleft-pinched triangle, then eitheght(e’) is on somé; or there exists a

d which increases monotonically witlght(e) such thatight(e’) > right(e) +

d.
Proof Let R be a trapezium and; be the infimum of the set of distances between
points on different non-parallel edges Bf Let # be the maximum of the absolute
values of angles the flows il make with the directiorfyy of H. Then ifright(e’)

is not onl;, thenright(e’) > right(e) + dr, wheredr = dy cos(d). If R is an
unbounded region, thefght(e’) is onl;.

If Ris a left-pinched triangle, then takk to be the distance between the points
on the triangle where the linepassing through the right-end efintersects the
triangle. Then we have thatifght(e’) is not on somé;, thenright(e’) > right(e)+

d, whered = d; cos(6). Note thatd, increases monotonically withight(e), and
henced. O

Finiteness ofTreacn ((s*, €*))

Consider any pathr = mym; --- Of Treach, Wheren; = (s;,¢e;, R;). From the

construction offreach, €; C R;. Here are a few observations about the elements of

T

(a) If R; is a region inregionsH, 0, 1) (recall R; is then unbounded) ang} is
not a subedge of;, then it is one of the infinite edges &; (and not any
other subedge of it). Let be the number of infinite subedges of regions in
regiongH, 0, 1). Then the number of elementsitin which such infinite edges
occur is bounded byS| x n x |regiongH, 0, 1)].

(b) The number ofr;’s in 7 such thak; belongs to somg is bounded by: x |S].
This is due to the monotonicity of flows.

(c) There cannot be infinitely many elementsin 7 such thatR; is a trapezium
ande; is a subedge of one of its non-parallel edges. Otherwise theuld be
an infinite subsequeneé = ;, 7;, - - - of = corresponding to such subedges.
From observatiorl above, we havéeft(e; ,) > left(e;;) andright(e; ,) >
right(e;;) for all ;% > j. This implies that for eactR < regiongH, 1, k)
ands € S, there is at most ong such thate;, € R andright(e;;) is on
somel;. Hence we can assume thdtis infinite and does not contain edges
whose right end-points are on soteLet d = min{dg | R is a trapezium in
regionglH, 1, k) }. Further from observatioR(a), we have thatight(e; ,) >
right(e;;) + d for all j* > j. Sinced > 0 andright(e;;) is bounded by the
right(p) for some poinp onl, the number of elements irf is finite.

(d) The number of elements insuch thatR; is an unbounded region iegions
(H, 1, k) ande; is a not on somé; is also bounded, becaugght(e;,1) lies
onl; 1. Hence the number of such nodes is bounded by twice the nuofiber
locations for each unbounded region.

(e) Now we consider the elementsmofn which R; is a left-pinched triangle. Let
us fix a left-pinched triangl®. Let e be an edge of &, which is not parallel
to somel;. Let us denote byD. the set ofright(e;) such that; is not oni;,

e; C eandR; = R. Letd, bemin(D.). Observe thatl. > 0 and is equal
to theright(e;) for the smallesy satisfying the above condition. Létbe the
minimum of all d.’s for all left-pinched triangles. By an argument similar to
the above case, we can conclude that the numbgsauch thatR; is a left-
pinched triangle is bounded.

() The only kind of element$s;, e;, R;) of 7 which need to be considered are
those whereR; is a right-pinched triangle and is not on anyl;’s. Note that
from the construction ofe5chand the simplicity oft, that is, no three distinct
lines corresponding to constraints are collinear, two gletments do not occur

consecutively inr. But since the number of all other kinds of elementriis
finite and there has to be at least one element of another ldatwielen two
successive elements of this kind, the number of elementsi®kind in 7 is
also finite.
Hencer is finite. Further since the number of children of any nodehia tree
is finite, we can appeal to Konig's lemma, to conclude thattee itself is finite.
Computability ofTreach((s*, e*)) follows from the computability ofuccandsucc,
and its finiteness.

Correctness of the construction ofT,ecn It is easy to see that if a stafe, v)
belongs to a nodés, e, R), then there is an execution frofe*, v*) to (s, v) for
eachv € e. The execution would follow the path from the root(tg e, R) in the
tree.

Turning to the other direction of the proof, any executiorfrom a state on a
subedge to a state on another subedge can be broken up injoense of exe-
cutionsoy, 09, - -+ , o, Where:

— the last state of; is same as the first state ®f, ;, and

— eacho; : [0,t;] — ST x R?is such that there exigt; € regiongH, 0,k + 1)
and times) < ¢ty < ty < t; such that for alt’ € [0,¢,] U [tr,], o2(t') €
boundaryR;) and for allt’ € [ts,ts], oZ(t') € interior(R;).

It is now easy to see that:

— if R; is not aright-pinched triangle, then if the start state gfsay(s;, v;) has
a corresponding node ifieacn, that is, a nodés;, e;, R;) such thatv; € e;,
then there is a nod@’;, ¢’;, R;+1) corresponding to the last state;, v’;) of
o;, Wherev'; € €';. This is becausés’;,v';) is a state insuc(s;,v;), R;).
It would either be one of the ancestors of the ndslge;, R;), or one of its

children.
— if 04,0411, -+, 05 is @ maximal consecutive subsgeuence stich thatR; =
Riy1 = -+ = R; andR; is a right-pinched triangle, then if the start state

(si,v;) Of o; has a corresponding node;, e;, R;) in Treacn, then there is a
node(s’;,e’;, Rj+1) corresponding to the last stat€;, v';) of o; (note that
R;11 # R; by maximality of the sequence). Again, this is becausgv’;) is
a state irsucc ((s;, v;), R;).
Hence ifo is an execution fronis*, v*) to (s, v), then there is a nodg, e, R), for
somee andR, in the tree.
O

4.2 Finite bisimulation

We show that the states Hf corresponding to the regionsiiegionsH, k, k + 1) have

a finite bisimulation. A binary relation- over a set of states is laisimulationif it

is symmetric and for every pair of statés,, v1) and (sa,v2), if (s1,v1) ~ (s2,v2)
and (s1,v1) — (s'1,v'1), then there exists a state’s, v’s) such that(sz,ve) —
(s'2,v'2) and(s’1,v'1) ~ (s’2,v’2). We will show that there exists a computable equiv-
alence relation- of finite index on the set of states iegiongH, &, k + 1) which is a

bisimulation and which respects the partition created kyeflements of the regions in
regionsH, k, k+1). By partition created by, we mean the two parts, one consisting of
the states ofy, and the other consisting of the rest of the states@ionsH, &, k + 1).

We define~ as follows.(s1,v1) ~ (s2,v2) if s1 = so andwvy, vy belong to the
same element of a region. To see that this is a bisimulatiosider(s, v;) and(s, vs)
wherev; andvs belong to the same element of some regioris)) takes a discrete
transition to(s’, v1), then so carfs, v3) to (s’, v2) as the guards and invariants respect
the elements of the regions. Suppd@sev;) takes a continuous transition {e, v'1),
then there is a straight line from the to v’; which passes through a finite sequence of
infinite edges and interiors of the regions. There existsaggtt line fromv, parallel
to the above which moves through the same sequence of eddjesgons. Hence we
can find a point’s in the required region.

Since the number of regionsiiegiongH, k, k+ 1) is finite, the number of elements
of these regions is also finite. Hence we have a finite bisititula

4.3 Point-to-point and region-to-region reachability

Theorem 1. Point-to-point and region-to-region reachability prolnhs are decidable
for simple monotone linear hybrid systems.

Proof To check if statés’, v) is reachable fronfs, v), add two more lines tbnes(H)
which pass through and«’, and are parallel tg-axis. Then check ifs’, v") corre-
sponds to any node ifieacn((s, v)).

To decide if(s’, R’) is reachable fronfs, R), whereR, R’ € regiongH), first com-
pute the set of subedgést(R) of R reachable from points iR. For each subedge
(s*,e*) € init(R), compute the set of subedgesiinreachable, and then take their
union. If R’ € regiongH, k, k + 1), then construct the finite bisimulation to decide if
R’ is reachable. Otherwise check if any statg sh R’) is reachable from the set of
subedges on its boundary reachable from statestifR?). O

5 Non-existence of a finite bisimulation

Fig. 7. An example without finite bisimulation

Consider the following reachability problem: (s;, b) reachable fron{sg, eq) in
Figure 7, wherez,, denotes the edge without the end-points? Herg = (1,-2)

and f1 = (1,2). We can decide the problem by checking 4, b) is a state in the
Treach((S0, €ap)). However there is no finite bisimulation which respects thetition
given by the initial and final states. To see this, considemthintsh,, b, - - - . Fromb;,
there is a path of lengt® to b, but no path of length less th&i. So each of the,’s
should be in a different partition of the bisimulation. Sinte sequenclk , b, - - - is
infinite, this rules out the existence of a finite bisimulatio

6 Some undecidable extensions

If we consider the reachability problem in four dimensidhis, undecidable even when
the set of flows is monotone. This is because the reachapildplem is in general
undecidable in three-dimensions, and this can be redudbé te@achability problem in
four dimensions with monotone flows.

Itis shown in [3], that PCD'piecewise constant derivativissundecidable in three
dimensions. These are linear hybrid systems in which thariaats and guards are
disjoint. By introducing a fourth dimension and making &k tflows monotone along
this new dimension we have a monotone linear hybrid systdouinrdimensions. Hence
we have undecidability in four dimensions even with monatioy

7 Conclusions

In this paper we identified a new class of planar linear hyadtbmata that have a de-
cidable reachability problem. The key aspect in definingdlass was requiring flows
to be monotonic. One can prove that the reachability probeondecidable in 4 di-
mensions. Th8 dimensional case is an interesting open problem.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinget#HPHo, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hgilsystemsTheoretical Computer
Science138(1):3-34, 1995.

2. Rajeev Alur and David L. Dill. A theory of timed automatéheoretical Computer Science
126(2):183-235, 1994.

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Reachakdlitglysis of dynamical systems
having piecewise-constant derivativ$heoretical Computer Scienct38(1):35-65, 1995.

4. Eugene Asarin, Gerardo Schneider, and Sergio Yovine.orlgnic analysis of polygonal
hybrid systems, part |: Reachabilitfheor. Comput. Sgi379(1-2):231-265, 2007.

5. Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Glos H. Papadimitriou, and John N.
Tsitsiklis. Deciding stability and mortality of piecewia#fine dynamical system$heoretical
Computer Science®55(1-2):687-696, 2001.

6. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pradmiya. What's decidable
about hybrid automata? Broc. 27th Annual ACM Symp. on Theory of Computing (STOC)
pages 373-382, 1995.

7. R.M. Karp and R.E. Miller. Parallel program schemaf®urnal of Computer and System
Sciences3(2):147-195, 1969.

8. G. Lafferriere, G. Pappas, and S. Sastry. O-minimal laykystems, 1998.

