View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

Identifying Important and Difficult Concepts in Introductory Computing
Courses using a Delphi Process

Ken Goldmanf, Paul Grosst, Cinda Heereni, Geoffrey Hermani,
Lisa Kaczmarczyk+, Michael C. Louif, and Craig Zilles

tkjg,grosspa@cse.wustl.edu, Washington University in St. Louis
fc-heeren,glherman,loui,zilles@uiuc.edu, University of Illinois at Urbana-Champaign
xlisak @ucsd.edu, University of California-San Diego

Abstract

A Delphi process is a structured multi-step process that uses a group of experts to achieve a consensus opinion.
We present the results of three Delphi processes to identify topics that are important and difficult in each of three
introductory computing subjects: discrete math, programming fundamentals, and logic design. The topic rankings
can be used to guide both the coverage of student learning assessments (i.e., concept inventories) and can be used
by instructors to identify what topics merit emphasis.

I. INTRODUCTION

Developing tools for assessing student learning in computing is known to be a difficult task with a potentially
large payoff [9]. Tool development faces the dual challenge of generality and reliability. If we can, however, develop
learning assessment tools that are broadly applicable and enable educators to easily and reliably compare different
instructional approaches, we can develop best practices for teaching computing. Furthermore, such assessment
tools can motivate curricular improvements, as they permit educators to compare the effectiveness of their current
approaches with these best practices.

The potential for good assessment tools is clear from the impact of the Force Concept Inventory (FCI), a
multiple-choice test designed so that students must choose between the Newtonian conception of force and common
misconceptions. In the last two decades, the teaching of introductory college physics has undergone a revolution
that has been both motivated and guided by the FCI [10]. The FCI demonstrated that even students who had
excelled on conventional examinations failed to answer the simple, conceptual questions on the FCI correctly. This
failure exposed fundamental flaws in instruction. The results of administrations of the FCI to thousands of students
led physics instructors to develop and adopt “interactive engagement” pedagogies [7]. Due to the impact of the
FCI, “concept inventory” (CI) tests are being actively developed for a number of science and engineering fields
(e.g., [SD.

Unfortunately, there remains a notable lack of rigorous assessment tools in computing. As a result, there is
currently no way to rigorously compare the impact on student learning of the broad range of creative practices
developed by the computing education community.

We hope to help replicate the physics education revolution in computing education through the development
of CIs for computing courses. We are currently working toward Cls in three introductory subjects: programming
fundamentals (CS1), discrete mathematics, and logic design. We are following the same four-step process used by
other developers of CIs [5].

1. Setting the Scope: A CI is typically administered as both a pre-test at the beginning of a course and a
post-test at the end, to measure the “gain” resulting from instruction, on a select subgroup of representative topics.
It is important to emphasize that a CI is not intended to be a comprehensive test of all significant course topics.

https://core.ac.uk/display/4820654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As a result, the scope of the test must be determined carefully to include an indicative subset of course topics that
are important and that distinguish students who have a strong conceptual understanding from those who do not.

2. Identifying Misconceptions: Students should be interviewed to determine why they fail to understand key
topics correctly. These interviews should identify students’ misconceptions about these topics. Previous work
suggests that only students can provide reliable information about their misconceptions [4].

3. Develop Questions: Using data from Step 2, CI developers construct multiple-choice questions whose incorrect
answers correspond to students’ common misconceptions.

4. Validation: The CI should be validated through trial administrations. In addition, the reliability of the CI
should be analyzed through statistical methods.

In this paper, we report our progress on Step 1 above, for each of the three computing subjects we are focusing
on. Because we seek to develop Cls that are widely applicable, we sought the opinions of a diverse group of experts
using a Delphi process (described in Section II), an approach used to develop some previous Cls [6], [13].

We present our results in Section III. For each of our three subjects, our experts identified between 30 and
50 key topics. They rated the importance and difficulty of each topic for an introductory course on the subject,
with consensus increasing (as demonstrated by decreasing standard deviations for almost all topics) throughout the
multi-step Delphi process. From these results, we were able to identify roughly ten topics per subject that achieved

consensus rankings for high importance and difficulty.

II. THE DELPHI PROCESS

A Delphi process is a structured process for collecting information and reaching consensus in a group of
experts [3]. The process recognizes that expert judgment is necessary to draw conclusions in the absence of
full scientific knowledge. The method avoids relying on the opinion of a single expert or merely averaging the
opinions of multiple experts. Instead, experts share observations (so that each can make an more informed decision)
but in a structured way, to prevent a few panelists from having excessive influence as can occur in round-table
discussions [11]. In addition, experts remain anonymous during the process, so that they are influenced by the logic
of the arguments rather than the reputations of other experts.

For each of the three computing subjects, we used the Delphi process to identify key topics in introductory
courses that are both important and difficult for students to learn. Specifically, we sought a set of key topics such
that if a student fails to demonstrate a conceptual understanding of these topics, then we could be confident that
the student had not mastered the course content. These key topics would define the scope of each CL

Because the quality of the Delphi process depends on the experts, we selected three panels of experts who had
not only taught the material frequently, but who had published textbooks or pedagogical articles on these subjects.
Within each panel, we strove to achieve diversity in race, gender, geography, and type of institution (community
college, four-year college, research university). Clayton [2] recommends a panel size of 15 to 30 experts. Our panel
sizes were 21 for discrete math, 20 for programming fundamentals, and 20 for digital logic. Our Delphi process
had four phases.

Phase 1. Concept Identification: We asked each expert to list 10 to 15 concepts that they considered both important
and difficult in a first course in their subject. For each course, the experts’ responses were coded independently by
two or three of us, and we constructed topic lists to include all concepts identified by more than one expert. The

reconciled lists of topics were used for subsequent phases.

Phase 2. Initial Rating: The experts were asked to rate each topic on a scale from 1 to 10 on each of three metrics:

importance, difficulty, and expected mastery (the degree to which a student would be expected to master the topic

in an introductory course). The third metric was included because some concepts identified in Phase 1 might be
introduced only superficially in a first course on the subject but would be treated in more depth in later courses;
these concepts would probably be inappropriate to include in a concept inventory. We found that expected mastery
was strongly correlated (r > 0.81) with importance for all three subjects. Thus we dropped the expected mastery

metric from Phase 3 and Phase 4.

Phase 3. Negotiation: The averages and inner quartiles ranges (middle 50% of responses) of the Phase 2 ratings
were calculated. We provided this information to the experts, and we asked them to rate each topic on the importance
and difficulty metrics again. In addition, when experts chose a Phase 3 rating outside the Phase 2 inner quartiles

range, they were asked to provide a convincing justification for why the Phase 2 range was not appropriate.

Phase 4. Final Rating: In Phase 4, we again asked the experts to rate the importance and difficulty of each topic,
in light of the average ratings, inner quartiles ranges, and anonymized justifications from Phase 3. We used the

ratings from Phase 4 to produce the final ratings.

ITI. RESULTS

In this section, we report on the mechanics of the Delphi process, which were similar for each of the Delphi
processes. Then, in Sections III-A, III-B, and III-C, we present the results of and our observations about the three
Delphi processes we conducted: programming fundamentals, discrete math, and logic design, respectively. Finally,
we conclude this section with a few concrete suggestions for use in future Delphi processes to identify the most
important and difficult course concepts (Section III-D).

We found it rather straight-forward to reconcile the suggested topics into master lists. As an example, the
topic suggestions “Binary numbers, 2’s complement”, “Two’s complement representation”, “Unsigned vs. Signed
numbers”, “The relationship between representation (pattern) and meaning (value)”, and “Signed 2’s complement

representation” were synthesized into the topic

“Number Representations: Understanding the relationship between representation (pattern) and meaning

(value) (e.g., two’s complement, signed vs. unsigned, etc.),”

which we abbreviate here, for space reasons, as Number Representations. Notably absent from the assembled topic
lists in all three subjects were any topics our experts ranked as both “non-important” and “non-difficult,” as can be
seen graphically for the programming fundamentals topics in Figure 1.

We found that the Delphi process was, in fact, useful for moving toward a consensus. The standard deviations
of the responses decreased for almost all topics during each step of the Delphi process. Specifically, 62 out of 64
(programming fundamentals), 71 out of 74 (discrete math), and 90 out of 92 (logic design) standard deviations for
the ratings decreased from Phase 2 to Phase 4. Typically, this consensus was achieved when the experts adjusted
their rankings modestly. Most (88%) ratings changed by 2 points or less between step 2 and step 4 (no change:
32%, change by 1: 38%, 2: 19%, 3: 7%, 4: 3%, 5+: 2%).

From the importance and difficulty ratings, we computed a single metric with which to rank the topics. We
ended computing an overall ranking using the distance for each topic from the maximum ratings (importance 10,
difficulty 10), the L? norm, but found both the sum and product of the two metrics to provide an almost identical
ranking. In the tables that follow, we highlight (using boldface) the top N topics by this ranking, selecting an N
close to 10 such that there is a separation between the two groups of topics.

Interestingly, we found the ranking computed during Phase 2 of the Delphi process to quite accurately predict
the top ranked topics in later phases. For example, in logic design, 10 of the top 11 ranked topics were the same
for both Phase 2 and Phase 4. While the average importance and difficulty ratings changed significantly in some

10
T
+ B0 4
: : : files
g7 ’ D e
Ss
: e
o
5
o 3
4
4 5 6 8 9 10

7
Phase 4 Mean Importance

Fig. 1. Programming fundamentals topics plotted to show the selection of the highest ranked. Topics were ranked by their distance from
the point (10, 10); the quarter circle shows the separation between the top 11 topics and the rest.

cases — 0.5 to 1.0 point shifts are not uncommon — these shifts occurred predominantly in the topics that made

up the middle of the rankings.

A. Programming Fundamentals (CS1) Results

Finding consensus on the most important and difficult concepts for a CS1 course is inherently challenging
given the diversity of approaches in languages (e.g., Java, Python, Scheme), pedagogical paradigms (e.g., objects-
first, objects-late), and programming environments used. These factors influence the perceptions of topics that are
important and difficult.

In soliciting volunteers, we contacted experts with a variety of backgrounds and experience, placing no explicit
emphasis on a specific language, paradigm, or environment. In Phase 1, experts were asked to identify the languages
they are teaching (and have taught with) and the development environments they use. The majority cited object-
oriented languages, which is reflected in the strong representation of procedural and object-oriented topics in
Figures 2 and 3.

Indicated inside the semicircle of Figure 1 and in grey in Figures 2 and 3 are the top 11 topics using the L?
metric described in Section III. Despite the object-oriented influence, only one of these 11 topics (inheritance) is
exclusively related to object-oriented paradigms or languages. This result implies that a programming fundamentals
inventory based on the other 10 topics could be broadly applicable.

With the exception of inheritance, these topics were in the top 11 topics over the first three phases. From Phase
3 to Phase 4, Syntax vs. Semantics (SVS) fell out of the top to be replaced by Inheritance (INH). The change in
L? distance is very slight, from 2.81 to 3.01, but it is enough to move it outside the boundary. This change may

relate to comments from experts arguing that the topic is not difficult:

“Other than getting used to the terminology ‘syntax’/‘semantics, this simply isn’t that difficult of a

concept, and I definately [sic] feel students master the basic concept that a syntactic statement has some
underlying semantic meaning.” IMP = 10, DIFF = 2

“Students readily understand that there IS a difference between a textual code segment and its overarching
purpose and operation. The true difficulty is for them to reconstruct the purpose.” IMP = 8, DIFF = 5

With the exception of inheritance and memory models, the top topics dominantly relate to the design, imple-
mentation, and testing of procedures. This is not surprising given that universally across language and approaches,
introductory computer science students design, implement, and test algorithms in some respect. Other topics tend to
relate to either syntactic elements and their semantic meanings, and program/class design, which are more specific
to language and approach choice.

Although we have identified the top 11 topics based on average expert ratings, a purpose of the Delphi process
is to reach a consensus opinion among experts. This consensus is quantitatively described by the average rating
and corresponding standard deviation. A smaller standard deviation implies a stronger consensus, while a larger
standard deviation indicates expert disagreement.

The standard deviations from Phase 4, shown in Figures 2 and 3, do not all indicate a strong consensus. We
can characterize topics with a weak consensus (those with standard deviation of 1.5 or greater) for importance
into two types: outlier or controversial. Outlier topics (PA1, IT2, TYP, PVR, REC) are defined as those having a
strong consensus with most experts but include one or two strongly dissenting rankings. For example, 14 of the 15
importance ratings for the fypes (TYP) concept were 8 or higher in Phase 3. The expert explanation given for the

other rating in Phase 3 was:

“There is too much emphasis on types in CS1.” IMP = 4, DIFF = 7

In Phase 4, the same expert provided an importance rating of 4 while all other ratings were 8 or higher. Removing
this rating, the standard deviation for the importance of the types concept in Phase 4 drops from 1.5 to 0.7, a
significant change when considering if a consensus has been achieved. It appears that this response is an outlier
from what is otherwise a strong consensus. Other dissenting explanations for outliers commonly cited language
differences when an explanation was given. We will discuss language difference issues later in this section.

We use the term controversial to refer to topics that have clustering clustering around two ratings rather than
a single rating, such as inheritance (INH) and memory models(MMR). Inheritance, for example, in Phase 4 had

ratings clustered around 6 and 9. This controversy can be seen in the following expert explanations from Phase 3:

“Though the goal of good OO design is something that is quite difficult, in the context of CS1, we focus
more on understanding more basic examples of inheritance.” IMP = 6, DIFF = 6

“Inheritance & polymorphism are the fundamental concepts of OO design that make it different from
procedural programming.” IMP = 10, DIFF = 10

One would expect the explanations from Phase 3 to have some effect on the Phase 4 results. Such an effect was
not apparent in most cases. This is due in part to the types of explanations provided by experts for their ratings
falling outside the range. In total, 98 out of 896 ratings were provided outside the middle range for importance
and difficulty and 68 explanations were given for these ratings (65% explanation rate as 30 explanations were not
given). Explanations could be classified into two groups: detailed and simple.

Detailed statements articulated the reasoning for why a rating was provided and argued for the viewpoint. About

two thirds of the explanations given for importance and difficulty ratings were detailed. For example:

Control Flow (CF): “I think 5-7 underestimates the difficulty of adopting a clear, consistent mental model
across the entire set of control constructs students are exposed to in CS1. Even clearly modelling loops,
conditionals, and function calls is challenging (and twines with concepts of scope, parameter-passing,
etc.) that I would rate above 5-7. If we throw in tracing dynamic dispatch in an object-oriented language
here as well, this is more like a 9.” IMP = 10, DIFF = §

Design and Problem Solving I (DPSI): “1 seem to have flipped to the opposite side of the range on this
one. I find that really good design and decomposition takes a lot of practice and is not one which is
mastered in the first semester (though we certainly try).” IMP = 9, DIFF = 9

Simple statements either stated flat opinions and did not provide reasoning for them or stated no opinion at all
relating to the topic that was rated. This group also includes statements that reflected on the survey itself. For

example:

Polymorphism (POLY): “I think it is very important.” IMP = 9, DIFF = 10
Parameters/Arguments I (PA2): “1 don’t see this as difficult for the students.” IMP = 9, DIFF = 3

Recursion (REC): “1 suppose I should look back and see if I'm claiming anything to be difficult. I seem
to be regularly on low end of range.” IMP = 6, DIFF = 6

There were an additional 8 explanations for ratings out of the expected mastery range and 8 comments given
with ratings that were not outside any middle 50% range. For the latter comments, experts tended to criticize the

grouping of concepts for a topic or criticize the structure of the survey. For example:

Abstraction/Pattern Recognition and Use (APR): “WE [sic] do not like the combination of abstraction
and pattern recognition used with this example. We teach abstraction as the use of functions to solve
problems” IMP = N/A, DIFF = N/A

Across all these classifications, 15 comments related to language or curriculum differences as a factor. Some
specific topics did not apply to all languages and approaches or their importance and difficulty were dependent on
the chosen language (PA1, PA2, SCO, INH, POLY, PVR, AR1, AR3, IAC). In some topic descriptions examples
were provided that referred to elements specific to some languages (SCO, IAC). For instance the primitive vs.

reference variables (PVR) topic was not meaningful for Python, as indicated by the response:

“We use Python. There are no value variables. All types (both primitive and user-defined) are identified
with reference variables.” IMP = N/A, DIFF = N/A

We emphasize that we did not actively choose to include a number of topics which may not be universal, but
these topics and examples are reflection of our experts’ opinions from Phase 1.

All explanations were given by the participants in Phase 3, but it is not the case that all Phase 3 participants
continued to Phase 4 of the programming fundamentals Delphi process. In fact, with 18 experts for Phase 2, 15 for
Phase 3, and 12 for Phase 4, only 10 of these experts participated in these three phases. It is important to note the
same 11 most important and difficult topics emerge even if the data is limited to the responses from 10 participants
who completed the entire process. Additionally the maximum absolute difference in standard deviations for a
particular topic is small (0.35) when comparing the ratings of all participants with ratings of those 10 participants.

We do not have feedback to account for the diminishing participation in the programming fundamentals Delphi
process, but we speculate that Phase 4 starting near the beginning of the fall semester had an impact. We did not
observe the same monotonically decreasing participation rates in either the discrete math or logic design Delphi

processes, both of which completed earlier in the summer.

B. Discrete Math Results

Our Delphi results, shown in Figures 4 and 5, comport with the organization and coverage of core Discrete
Structures concepts in the ACM Computing Curricula 2001 (CC2001) [14]. In general, the topics obtained in Phase
1 partitioned into the areas labeled “core topics DS1-DS6” in CC2001. In addition, our experts nominated topics
related to algorithms. These algorithmic topics are absent from the Discrete Structures portion of CC2001 and from
the subsequent SIGCSE Discrete Mathematics Report [8], but rather, they appeared as “core topics AL1 and ALS5”
in the algorithms portion of CC2001. Note that the Phase 1 responses were suggested important and difficult topics.
The ratings in subsequent phases of the project clarified this part of the picture considerably.

Nine of the ten top ranked topics in Phase 4 (using the L? norm metric described in Section III) are included
in the CC2001 Discrete Structures core. The tenth, “order of growth,” is a CC 2001 core Algorithms topic, but
appears to be frequently covered in discrete math courses — at least those taught for computing students — in
preparation for other introductory computing courses.

The experts agreed on the importance and difficulty of reasoning skills in a discrete math course: they rated all
four topics in the Proof Techniques category among the top ten. In particular, “Proof by induction” was rated as
the most important of the 37 topics in Phases 2, 3, and 4; it was consistently rated among the most difficult topics.
Two closely related topics ‘“Recursive definitions” and “Recursive problem modeling” were also among the top
10 ranked topics. Among topics not selected as both important and difficult are the foundational topics in Logic:
“Conditional statements” and “Boolean algebra.” They are recognized among the very most important, however,
because they are prerequisite to a deep understanding of proofs. The most difficult topics, “Algorithm correctness”
in Phase 3 and “Countable and uncountable infinities” in Phase 4, were not deemed important enough to be included
among the top 10.

Topics in the Algorithms and Discrete Probability categories had the least consensus (largest standard deviation)
in their importance ratings. The inclusion of these topics depends on the context of the discrete math course in the
local computer science curriculum: these topics may be assigned instead to other courses in the curriculum. All
topics in Algorithms received high ratings on difficulty but low ratings on importance for a first course in discrete
math.

From Phase 3 to Phase 4, the importance ratings of six topics decreased significantly: “Algorithm analysis,”
“Inclusion-exclusion,” “Combinatorial proof,” and all three topics in the Discrete Probability category. It appears
that the panelists were persuaded by three kinds of comments provided during Phase 3: appropriateness for a first
course, relevance to computer science, and curricular organization.

According to the panelists, some topics are generally important in discrete math, but a deep treatment may be

inappropriate in a first course. For example, for the “Inclusion-exclusion” topic, one expert wrote,

“A fair bit of computer science can be done without deep understanding of this concept. It is important
enough that the first discrete math course should establish the idea, but much of its development and
application can be left to more advanced courses.”

Other important topics in discrete math may lack relevance to computer science, and they might be omitted from

a course that supports a computer science curriculum. For example, for “Combinatorial proof,” one expert wrote,

“Not of much use in computer science, in my view.”

The topic of “Algorithm analysis” is an interesting case. The following three comments capture the diversity of

perspective among our experts:

“This topic is central to computer science.”

“This is a vitally important topic for computer science students, but it isn’t essential that “the first discrete
math course” teach it. It can also be taught in an analysis of algorithms course that builds on the discrete
math course.”

“I wouldn’t necessarily put algorithms in the first course at all. I would consider proving correctness at
least as important as determining the running time, however.”

The decrease in deemed importance prompted by such comments, together with the fact that the closely related
topic “Order of Growth” is considered to be among the most important and difficult, reflects the view of a first
course in Discrete Math as foundational. Follow-on skills, particularly those related to programming, for example
“Algorithm Analysis,” can be taught in context in future courses.

Finally, local curricular decisions may determine whether a topic in algorithms or probability might be covered

in a discrete math course. For instance, for topics in Discrete Probability, two experts wrote,

“Less appropriate for a first course in discrete mathematics. This is more appropriate for an early
probability course. Better to spend the time on other more appropriate and difficult topics.”

“It’s not that probability is not important, it’s just that how can you cover it as well as all the other
important topics of discrete math? I think it’s better served in a special course.”

Though we are not surprised that these findings support the prescription of the CC2001 report for a course in
Discrete Math, we observe that they also serve to fine tune that prescription. The topics, when ranked strictly by
importance, suggest a course heavy in reasoning on one hand, and supporting specific skills and structures required

in other courses on the other.

C. Logic Design Results

The data collected via the logic design Delphi process can be found in Figures 6, 7, and 8. For the most part,
we found that importance rankings had higher standard deviations — largely attributable to differences in course
coverage — than the difficulty rankings. A notable exception was the high standard deviation for the difficulty
of “Number representations,” where some faculty asserted that their students knew this material coming into the
class, whereas others found their students having some trouble. This result is perhaps attributable to differences in
student populations between institutions. Some expert comments concerning the “Number representations” concept

demonstrate this variation in expectations:

“Most students have already done this in early high school and it is almost completely a review of their
general math class work.”

“Signed 2’s complement is a concept that seems to be very difficult for some students to grasp. They
naturally think signed magnitude. While they may be able to do the conversion relatively easily, their
difficulty in understanding 2’s complement arithmetic and particularly overflow indicates that they really
don’t easily grasp the relationship between the representation and meaning.”

“Students know this material long before they reach this course.”

When a change in the mean occurred between Phases 3 and 4 (as identified below), we could attribute it to

expert comments. Five types of comments seemed to have the most consistent and largest affects upon the means:

No longer important: The importance of some topics decreased as experts asserted that certain topics were no

longer important due to advances in design tools and design techniques. Many of these topics were introduced

when the dominant means of building digital systems was composing small-scale integration (SSI) and medium-
scale integration (MSI) chips. Topics specific to that design style (8, 9, 10, 14, 19, 25, 28) were argued to be no
longer in the context of modern design tools (VLSI or FPGA). The comments experts made about topics 8, 14,

and 28 are representative of these arguments.

“Don’t cares are largely a left-over from SSI days when each gate cost a lot. It’s more important today
to design correct and robust circuits, so it’s better to emphasize always knowing exactly what the circuit
will do, even in the presence of glitches, changed flip-flop values due to noise, etc. Don’t cares should
probably only be mentioned lightly, if at all.” (Topic 8: Incompletely specified functions)

“Nice to know, but rarely used in the tradition way (truth-table d’s) because the HDLs [Hardware
Description Languages] don’t have a convenient means of specifying them, except in case statements.
Now, if this question were tied in with that feature of HDLs, I would increase my ‘importance’ rating to
8-9.” (Topic 8: Incompletely specified functions)

“This topic should be banned from intro courses! It’s a left-over from the days when we had a lab stocked
with SSI/MSI components and needed to use them efficiently. It has no relevance today in the era of
FPGAs and ASICs. Students barely understand the main uses of muxes and decoders; showing them
tricky uses of those components just confuses them, and does not improve their understanding of those
components or of logic design in general. It’s like teaching a beginning drummer how to play drums with
the sticks in his mouth rather than in his hands — cute trick, but rarely relevant.” (Topic 14: Application
of MSI)

“This was nice material to know and use in practice before the advent of PLDs, but it’s not very useful
now.” (Topic 14: Application of MSI)

“A left-over from SSI/MSI days when we tried to minimize costly gates. Counters today are built with
registers and logic. We need to break from past subjects when those subjects are not fundamental to the
subject, but are instead tricks of the trade that are no longer relevant.” (Topic 28: Race conditions)

Other topics (2, 17, 31) were more generically argued to be obsolete or of diminished importance in modern logic

design and therefore also experienced decreases in importance.

“It’s nice to know and easy to test, but students and engineers today use calculators to do this when it’s
really required. It may be a shame, but I think it’s inevitable that they will continue to do so. And the
calculators are more accurate, when it really counts.” (Topic 2: Conversion between number systems)

“Modern design does not require this distinction, nor does understanding how digital circuits form the
basis for computers. It’s a left-over from the 70s/80s. Best to show how gates can form a flip-flop, show
how flip-flops can form a register, and then just use registers. Details like latches versus flip-flops can be
covered in an advanced course if desired, but there are more important items to cover in an introductory
course (e.g., RTL).” (Topic 17: Latches vs. flip-flops)

“ASMs were a great thing in their day, but it is far more important today to teach HDLs and corresponding
design styles that result in well structured and readable code.” (Topic 31: ASM charts)

Not important in a first course: The rated importance for topics 6, 10, 12, 16, 17, 22, 23, 27, 31, 33, 41-43,
45, 46 decreased as (in some cases multiple) experts argued that these topics are not appropriate for a first course,
in spite of their importance. Experts typically mentioned three reasons for why a topic is not important in a first

course on Digital Logic Design:

1. complete understanding of a given topic is not necessary,

“I rank the importance a bit lower, since it is possible to follow the methods without fulling understanding
the concepts, particularly for duals. In an introductory course, the theory for this topic may be less critical.”
(Topic 6: Complementation and duality)

“While concepts of adder design are important, the specifics of CLA implementation are not necessary
in an introductory course.” (Topic 16: Carry lookahead adder)

2. a given topic is not essential in a first course and other topics should be taught instead, and

“Advanced topic, not suitable for an intro course. Better to move on to RTL design so that students leave
an intro course with a clearer understanding of the power and relevance of digital design.” (Topic 27:
Race conditions)

“Advanced topic, handled automatically by tools. Better to focus on design and test in intro course, leave
technology-specific details to more advanced courses.” (Topic 46: Clock distribution)

3. teaching multiple methodologies for a given topic can be confusing.

“An intro course should show one way of doing things first, and not immediately confuse students with
multiple ways.” (Topic 22: Mealy vs. Moore)

“I believe an intro course can be a solid course and not even discuss mealy vs. moore. It’s a nice topic
but should be skipped if the students are not solid with one type (whichever is done first).” (Topic 22:
Mealy vs. Moore)

One comment bridged both the second and third types of comments.

“For an introductory course, it’s sometimes best to show one way of doing things, and move on to the
next subject, so students get the big picture. If a course spends too much time showing 2 or 3 different
ways of doing each thing, the course can’t get to RTL design, which is really more relevant today than
logic-level manipulation. I completely understand the need to have a solid base, so we shouldn’t rush
through the lower-level material. But at some point we have to say enough is enough.” (Topic 10: Minimal
POS)

Important for future learning: Two subjects (11, 32) increased notably in importance when experts argued that

the subjects were important for future learning.

“2-level design is often the real easy part of the course, which can be done pretty much by rote: there are
good programs available. Multilevel synthesis introduces the student to the type of thinking they need to
develop - which I view as critical for a college level course.,” (Topic 11: Multilevel synthesis)

“This topic is very important in order to get to the next level of digital logic design, i.e., to design
microprocessor circuits.” (Topic 32: Converting algorithms to register-transfer statements and datapaths)

Asserted to be hard: Consensus difficulty levels increased for a number of topics (6, 7, 11, 20) when experts

asserted that the topics were subtle or challenging for students.

“I scored [Multilevel synthesis] as difficulty 10 on my original submission - I have brought it down to
9. It is very difficult because most students are not comfortable with multiple levels of application of the
distributive law in any algebra.” (Topic 11: Multilevel synthesis)

“[State transitions is] similar to recursion in programming, current state and next state is difficult to
understand because it is time dependent.” (Topic 20: State transitions)

Solvable by rote: Experts argued that topics 12 and 23-25 were not difficult, as a rote method for solving them
could be taught. The following comment is representative.

“Starting from a sequential circuit, it is a ROTE method to derive the NS table or state diagram. This
requires no understanding.” (Topic 24: Analyzing sequential circuit behavior)

A number of experts argued against the inclusion of many of the topics under the Design Skills and Tools
and Digital Electronics on the grounds that teaching these topics in an introductory course depends on an overall
curriculum decision. Experts argued that most of these topics (35-36,39-43,46) belong in a laboratory focused class
where technology-specific information is important or in a laboratory class where a hardware design language is
taught. These topics are not essential for students to understand in a “theory” based class.

Comments from Design Skills and Tools mostly argued that the importance of some of these topic were strictly
tied to whether HDLs should be taught in a first course.

“I think the importance of this topic depends on the audience for the course. If students will be taking
additional courses and using the tools, then introducing them is important. If the students are taking only
this digital logic course (as an out-of-major elective, for example) then the time spent on CAD tools can
probably be used more productively on other topics.” (Topic 35: Using CAD tools)

“While experience with CAD tools is important, a first course in digital logic is probably better off
emphasizing the first principles. We are also pressed for time to cover all the ‘basics’.” (Topic 35: Using
CAD tools)

“The importance of this depends on whether or not CAD tools are incorporated into the course.” (Topic
39: Debugging, troubleshooting, and designing simulations)

Comments from Digital Electronics were mostly concerned that technologically specific topics were unnecessary

in an introductory course.

“An elementary course could avoid discussion of active hi/low - unless there is a lab component.” (Topic
40: Active high vs. active low)

“Deserves some mention, but this is really technology specific detail more relevant in an advanced course.”
(Topic 41: Fan-in, fan-out)

“Not a critical topic if the course is focused more on design than lab work. We want students to understand
the issues (probably 1-2 homework problems) but not to typically have to worry about those details. Our
course is ‘theory’ and does not have a hardware lab.” (Topic 46: Clock distribution)

Furthermore, many concepts are very important in the larger scope of digital logic design as a discipline, but may
not be as important for students to learn in an introductory course. Expert comments on these concepts reflected
the tension between wanting students to understand these concepts well and questioning the importance of teaching

these topics in a first course. Comments from Topic 19 (Asynchronous flip-flop inputs) demonstrates this tension.

“This topic is essentially a relic of chip-based design styles and not necessarily relevant to all introductory
courses.”

“Should be mentioned, but not stressed, in an intro course, which instead should probably just use
synchronous inputs in all designs. Whether to use asynchronous or synchronous resets/sets is not agreed
upon in the design community — why confuse the poor intro student?”

“As a digital designer, if you don’t understand how these work, and especially the related timing consid-
erations (e.g., recovery time specs) you're dead.”

D. Reflections on the Delphi process

For future applications of the Delphi process, we have the following suggestions:

1) Explicitly require that experts provide responses for their ratings outside the middle 50% range in Phase 3.
Our implementation of the survey put experts on the honor system to provide explanations where appropriate.
Such a system would remind experts who may have forgotten or not noticed that their rating required a
response.

2) Provide a clearer explanation, and possibly examples, of the types of explanations that should be provided
for a rating outside the middle 50% range. We only asked experts to explain their opinion, and in some cases
this did not produce the results we had hoped. Simple explanations are unlikely to be convincing and do not
help us achieve a deeper understanding for how an expert chose a rating.

3) Have a mechanism for both accepting critique of the survey design and topic explanations, as well as
adapting to it. Experts communicated survey suggestions through the comments in Phase 3 and in email
to us. Comments provided in Phase 3 were received too far into the survey to have any effect, and through
email it was difficult to determine how and if changes should be made to the survey design. It may be useful
to let experts comment on the survey itself and make revisions before beginning Phase 2.

4) Provide instructions for how experts are to deal with language and curriculum differences or design the survey
around these differences. For many topics, some experts were asked to rate the importance and difficulty of
a concept that had no role in their experience. It is a difficult task to require of the expert that imagine a
pedagogical setting where the topic would be of interest and then rate its importance and difficulty. This is
done to some degree by allowing experts to choose “not applicable” (N/A) for some topics, but it may be the
case that the important and difficult concepts according to their experience are not represented. This issue is
more challenging, and striving for the maximum diversity of experts can not be stressed enough, but it may

also require the survey to have sections built around specific languages or approaches.

IV. CONCLUSIONS AND IMPLICATIONS

We believe that a revolution in the way that computing is taught will not occur until educators can clearly see
the concrete benefits in student learning that new pedagogies offer. To build learning assessment tools that are
sufficiently general to apply to the broad range of curricula and institutions in which computing is taught, it is
necessary to identify a representative set of topics for each course that are both undeniably important and sufficiently
difficult that the impact of pedagogical improvement can be measured. This paper documents an effort to identify
such a set of topics through a Delphi process, where a consensus is drawn from a collection of experts through
a structured, multi-step process. From this process, we identified roughly ten topics for each of programming
fundamentals (CS1), discrete math, and logic design. These results provide guidance of where we (and others)
should focus efforts for developing learning assessments and can also be used by educators as guidance on where
to focus instructional effort.

While the consensus importance ratings may be taken at face value (i.e., faculty are unlikely to use an assessment
tool that focuses on topics they deem as unimportant), the difficulty ratings should be taken with a grain of salt.
If nothing else can be learned from the force concept inventory, it showed that many teachers have an incomplete
(at best) understanding of student learning. As such, in the next step of our concept inventory development, we
plan to validate the difficulty ratings asserted by our experts through student interviews and, in doing so, wholly
expect that some topics that our experts ranked as easy will, in fact, be rife with student misconceptions. As part
of this work, we hope to contribute to the literature of computing misconceptions where it exists (programming

fundamentals, e.g. [1], [12]) and develop one where there is little prior work (discrete math, logic design).

V. ACKNOWLEDGMENTS

We thank the experts that participated in the Delphi processes including: (Digital Logic) Gaetano Borriello, Donna
Brown, Enoch Hwang, A. Scottedward Hodel, Joseph Hughes, Dean Johnson, Eric Johnson, Charles Kime, Randy
Katz, David Livingston, Afsaneh Minaie, Kevin Nickels, Mohamed Rafiquzzaman, Frank Vahid, Ramachandran
Vaidyanathan, Zvonko Vranesic, John Wakerly, Nancy Warter, and Sally Wood. (Discrete Math) Doug Baldwin,
David Bunde, Mike Clancy, Doug Ensley, Elana Epstein, Andy Felt, Judith Gersting, David Hemmendinger, David
Hunter, Richard Johnsonbaugh, David Luginbuhl, Bill Marion, Shai Simonson, Bob Sloan, Leen-Kiat Soh, Allen
Tucker, and Doug West. (Programming Fundamentals) Chutima Boonthum, Joseph Chase, Michael Clancy, Steve
Cooper, Timothy DeClue, John Demel, Peter DePasquale, Ernie Ferguson, Tony Gaddis, Michael Goldwasser, Cay
Horstmann, Deborah Hwang, John Lusth, Sara Miner More, Kris Powers, Kathryn Sanders, and Steve Wolfman.

This work was supported by the National Science Foundation under grants DUE-0618589, DUE-0618598, DUE-
618266, and CAREER CCR-03047260. The opinions, findings, and conclusions do not necessarily reflect the views
of the National Science Foundation or the authors’ institutions.

REFERENCES

[1] M. Clancy. Computer Science Education Research (S. Fincher and M. Petre, editors), chapter Misconceptions and Attitudes that
Interfere with Learning to Program. Taylor and Francis Group, London, 2004.

[2] M.J. Clayton. Delphi: A Technique to Harness Expert Opinion for Critical Decision-Making Task in Education. Educational Psychology,
17:373-386, 1997.

[3] N. Dalkey and O. Helmer. An experimental application of the delphi method to the use of experts. Management Science, 9:458-467,
1963.

[4] D. Evans. Personal communication, January 2006.

[5] D. Evans et al. Progress on Concept Inventory Assessment Tools. In the Thirty-Third ASEE/IEEE Frontiers in Education, Nov 2003.

[6] G. L. Gray, D. Evans, P. Cornwell, F. Costanzo, and B. Self. Toward a Nationwide Dynamics Concept Inventory Assessment Test. In
American Society of Engineering Education, Annual Conference, June 2003.

[7]1 R. Hake. Interactive-engagement vs traditional methods: A six-thousand-student survey of mechanics test data for introductory physics
courses. Am. J. Physics, 66, 1998.

[8] B. Marion and D. Baldwin. Sigcse commitee report: On the implementation of a discrete mathematics course. Inroads: ACM SIGCSE
Bulletin, 39(2):109-126, 2007.

[9] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz.
A multi-national, multi-institutional study of assessment of programming skills of first-year cs students. In [TiCSE-Working Group
Reports (WGR), pages 125-180, 2001.

[10] J. P. Mestre. Facts and myths about pedagogies of engagement in science learning. Peer Review, 7(2):24-27, Winter 2005.

[11] J. Pill. The delphi method: substance, context, a critique and an annotated bibliography. Socio-Economic Planning Sciences, 5(1):57-71,
1971.

[12] E. Soloway and J. C. Spohrer. Studying the Novice Programmer. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1988.

[13] R. Streveler, B. M. Olds, R. L. Miller, and M. A. Nelson. Using a Delphi study to identify the most difficult concepts for students to
master in thermal and transport science. In American Society of Engineering Education, Annual Conference, June 2003.

[14] The Computer Society of the Institute for Electrical and Electronic Engineers and Association for Computing Machinery. Computing
Curricula 2001, Computer Science Volume. http://www.sigcse.org/cc2001/index.html.

14

0'}-

(o) L2|(sVzL

(g1 z.

00

(e2) g8

(12 g8

(z2) 98

sJajujod/seoualolel
AlowsLu pjoy yoiym sejqeLies pue ejep pjoy Yolym SejqeLiea usemiaq
ooualaylp ay) buipuejsispun :sajqeliep adA] aduaiajay pue aAIHwLd

dAd

€1l

(6012|6022

(zo el

€l-

(e1) 85

(81)¢es

(92 €5

(ssejo
8y} Jo aouejsul ue Aq pessadoe J0 U0 Pa)oAUl JoU 8ie YIIym SSejd e JO SejqeLien
pue spoyjew buisn pue Buipuejsiepun “6'9) :SPOYISN pue sajqelLiep o1els

WNVLS

Gl

(80)6'8|(91)68

(e2) e

9'l-

(1oL

(1269

(0€) €9

(Aunqisusjxa 1oy sadA} jesausab asn o) moy buimouy|
‘saniqedes yojedsip poyjsw buisn pue buipuejsiepun "6-8) :wsiydiowAjod

A10d

0°L-

(60)e6|(2L) 88

(6'1) 1’8

c'l-

(91) 92

(52) 69

(82) 69

(
asn ued pue ubisap s|qisusixs Jo esodind 8y} buipuejsiepun “H8) :adueIIBYU|

HNI

80-

(80)89((s1) 69

91 v9

6°0-

(Lo)ee6

(L0) g6

(51 o6

(uoneinsdeoua
‘spoyjaw pue spjayy jo saiuadoud Apqisia buisn Ajejelidoidde ‘sojqeliea [eao)
pue spjaly usamjaq adoas ul souatayip Bulpuejsiepun “b8) :ubisag adoog

3ados

bL-

(169|819

(r2)e9

bL-

(0°0) 001

(90) L6

(1L e

uonenuejsul

pue uoniulyep usamoq uoneledas ayj buipuejsiapun :s399lqO pue sasse|d
sydaosuo) pajuauQ 1993[lqo

eAer ul Jojelado siy) “ba) sjabue) yoidwi ‘buiysew ‘ebesn 810j8q

(0}0]

JNJ3yIa

¢ds-vas v aseyd ¢ oseyd ¢ aseyd ¢dS-vdAS ¥ oseUd € dseyd ¢ 9seyd

g'L- |(0o)osf(ol)gz|@Les| €1- |80 ¢e6|(sL)68|(02) 28 4n220 jsnw uone.ejoep buimou ‘adA} yoiym esooys o} ueym buimouy pue| 0OS
sajqelieA [eqojb pue [eao] usamiaq aausiayip ayj} buipuejsiepun “b-s) :9doog
(Ayjenba Jo juswiajejs jeaiewusyjew e pue jJuswubisse uaamjoq
. N A . . . L N . oualaylp 8y} Buipuejsiepun “ojetado oy JO opis puey yo| 8y} 0} Jojesado
L= [(go)ev|o) 2y |(@ars| ¥o- |21 v6|(90)86|(91)26 U} o apis puey jybli 8y} wous senjea Buubisse ‘iojessdo uosLedwios ay; SY
se jou Jojesado Juswubisse sy} bunaidisjul “6'8) :sjusawalels Juswaubissy
ol |eoer|0Ver|wry| e gV oz|e) ol 9 (siojesedol
aydiinw buisn suoissaidxs bunenjess pue bunum “b-8) :9o3uapadald JoyeradQ
o o ezle) vzl 1 1- o osleossl@a 2 uopesado pue asodind buiyoieiono sy pue jusuibas
60 goeLileri|8b Ll Sl L0198 |8068|lce) L 9p0I [BNjX8) B UBaM}aq doudIByIp By} Bulpue)siopun :S913UBWAS "SA XejuAsg SAS
.) . . (A}}08.4100 SB84NJONIIS [BUOHIPUOD PBJSBU Ybnoiy)
g0~ [(80)99|(1)e9 (9109 00 (600 €6((9°0)5°6 |(6°0) 26 uonnoaxoa buroed) ‘SUOHIPUOI J0) SUOISSaIAXd 1081100 Bunlm “68) :sjeuoiipuod aNoo
. (suoissaidxa uinjal pue s[euoipuod Jo ubisep ayj ul AjsjeLdoidde way)
V- (ol e9|(keg|(lagal vo- [(oLee|(e)oe|(tL) L8 Buisn ‘suorsseidxo ueejooq Buneniens pue Buonisuos “B-o) :o1Bo uesjoog| 1008
((quiod buneoyy uey) Joyje.d UoISIAIP
- |Gooo|(h) ooz e Lo [(Gezefer)es|@L)Lg 4abojul “6°9) suoissaidxa ul suonealduwil adA) bulpuejsiepun ‘sedA) joalqo| dAL
pue aaniwd Jnoqe buiuoseau ‘ejep 4o sadA) ejeudoidde buisooyo “bHa) :sadA
60- [(90)0L|(0L)e9gl(gL)o9| zo- |(s0)86|(s0) L6[(90) 96 uonnoexe 4o jepowl usAIb e ybno.yy epoa buroel) A|poeio) mol4 [ouod| 40
o lgoisleoes|z)e o o g6l 6l g (sainpasoud bupjonur Auadoud ‘sanjea uinja. pue sisjoweled buisooyd
60 80/16|l6°0)6'8|lL7L)eg| €0 v'0)8619°0),6(L0)56 ‘saunpsaooid buuejosp pue bujubisep “H°8) :SPOYIBIN/SUOI}OUN4/SBINPAI0Id o0dd
ol 2zl 22 s o o |60 16l60zsl01)6 ubisep ainpaso.d ul siejoweled buisn
¢o VD LLIOL) LLIEL) 0L Y 60/ 16|60c6 0168 Ap08.u09 ‘susjswesed jo adoos ay) buipuejsispun il susawnbiy/siajoweled evd
o lunesluyiale o o l@znzreleossle e .Siejpweled [enjoy, pue ,sisjoweied
¢0 LV9og L e|le)o9 80 chilglleoes|lel)es Jewlio, usamjaq aoualayip ay} buipuejsiepun I sjuswnbuay/siajoweled ¢vd
sojuewss ,enje) Aq jje ue ,00U819}9,
80 [@WyL|@vL|eL) Lz Vo |Fa)vL|(esL|(ee)sL ! wONIEA 7 11804 PUS u 4| g

Aq jjen, usomjaq sausiayip oy} buipuejsiepun | sjuswnbiy/siajoweled
sydasuo) Bujwweisboid jeinpasolid

Programming fundamentals (CS1) topics rated for importance and difficulty (part 1).

Fig. 2.

15

(ovos|ses

(1e) s

sadA] joeJjsqe yons punose ubisap o} Ajjiqe ‘swajsAs 8jqisuajxe bujubisap
‘ubisep uy sadAy jessusb bulpuejsiepun “6'9) :sasse|) JoeIISqY pue Sadealu|

(6008|(LL)9L

(z1e2

(uonejuswus|duil Sy Jo ubisep 8y} pue adA} e JO ubisep
8y} usamjaq aousisyip ayj buipuejsiepun “6°s) :uonejusawajdwy] "SA adeualu|

s)jdaouo) ubisag weibolid

ZL- (eoezrv|o) ey L's

(6'1)88|(s1L) 28

(12 v8

sAewe

ol- o) rgik)Lgieg)og] 1o ((#1) 166026 (1) 16 Buneindiuew Apos.ioo pue Aeie ue jo uojeseosp ayy Bupuessiepun i sheny| €8V
. . o o . T A . o) o Aelie ue Jo juswae

vi- (000 26|(r1) 95 |(02)8G| 80~ [(11)58|(01)16|(€2VEB| 4y pue Aeie ue o} sousioel e usemiaq sousiayp oy Bupueisiepun | skewy| 8V
.) o - o) o .) o) A o $8InjonJjs

s1- (g0 es|(e0) 25|02 96| 80- [(80)88|(60) 68[(91) 98 doo] Uy Buisn usym sious ouo-Aq-yo Bupuey pue Bukuusp, | skeuy| +8Y

00/ & jO APOq 8y} Ul iN220 jey) SuoISsaidxd
ul pesn aq ueo sejqeliea dooj jey) buipuejsispun || sdoojjuonelay

cll

ZL- (2099t g9

HN2Ha

(6'1) L9

(50)g6|(60) €6

aouepoduwy

(¥'1) 88

Apoe.109 sdooj pajsau jo uonnosxs ayj buroes :| sdoojjuonelay|

sydaouoy ubisaqg a1wypioby
oido|

bLI

ai

Programming fundamentals (CS1) topics rated for importance and difficulty (part 2).

Fig. 3.

16

. Ve R Vo . i . . Jovuay}
z0- (11)es | (golss | (¢'1)z8 G0 (02)1's | (6'1)6'8 | (SL)0'6 sj00.d pue suopiuyap pue ‘ebawo pue ‘epey) ‘0-apil ‘O-Big Bupnjpul “yIMoib 3o 19PIO g
. s . e . e o - ‘ojuo
1A% (L 're | (6029 (G199 €0 @nsL e (S J0 8U0-0}-8U0 (jou S Jo) sI uojjouny e jey} joosd “enojued uj :suopdafins pue suonoafu] /|
[(g | (oves | (1209 v'0- (6028 | (6'0)5'8 | (¢1)s8 suolje|al pue suolouNy asIdAUL pue uoiisodwo) ‘9|

90~ (L1)99 | (o9 | (2V)z9 60" (2oe | (zogs | (91)z8 'sesse[o vousjeninbe buipuejsiepun pue buifyoeds sessed asudjeAanb3 G|
) . o e) e R . "uopelal
1A% (€09 | (01z9 (L1 Lo @neL (90092 (6'19L aouafeninba ue si uonejas usalb e jey; jooud Uenorued uj suoljejal asuadjeAinby y|
0'L- (60)2s | (e¥9 | (6'1)09 S0~ (L1s2 | (goez | (9182 "yoea Jo sjooid ay) pue Ayrpisuely ‘Apswwihs-nue ‘AjeswwAs ‘Aurixeyey :sonuadoid "¢l
'S]oS WoJ) SwWajl usamjaq sdiysuoinejal palied bulspouw jo Aem

A (zoov | (VY | (6'L)8Y G0- ve | ues | (918 } 4 SuisH 199 SAIYSUOSISI PoL IoPOL 4

e Se 0S[e pue 9onpo.id ueisaned e Jo Jasqns e se uonela. e jo Buipuejsiepun :uouyaq ‘Z\

"ajqejunooun si jos e Buiroid Joy Juswnbie uoyezijeuobelp

€0 (g0)oe | (8088 | (L'L)2'8 6°0- ey | (ZWvy | (L2L's oy “enoued ul pue ‘sjooid BUIpnjou] SAMIUIUL S|GEIUNOOUN PUE 3|EIUN0D | |
€0 (F'L)ss | (ov)es | (21)6's z- (902 | (g0)z2 | (8L 'suoisnjouy jo Jied e buimoys Aq Jenojued uj :Ajjenba jes yo yooud 01

s Jamod
10 (Lpee | oy | 8vy G0 (6028 | (ZVss | (vL98 !

pue ‘sjes jo sjoes ‘Jonpoud ueisepe) ‘uonejou sepnjou suoljesado pue uonesyioads 319G 6

A% (8'0)s'g8 | (s1)8'8 | (z2)1'8 v1- (s'0)z6 | (970)96 | (67L)E6 0o ‘sevJ) ‘sbulys ‘siebapul uo uogonpul buipnjoul :uonanpui Aq yjooud ‘g
60 (60)z'8 | (e'L)e8 | (87128 6°0- (1158 | (e')eg | (02)98 uonoipenuod Aq jooud "L
4% (oL | (91)9L | (2L L0 (o'v)ee | (ri)es | (L7168 jooid y0a11Q "9
6°0- (11)re | (s0)s8 | (0°2)L'8 8'0- (11)s8 | (60098 | (6°L)e8 sjo0.d pijeAul pue pijea aziuboosy g

sanbiuyosa] jooid

‘suaypuenb yjm

¢ds-yds ¥ oseyd

€ aseyd

Z aseyd

¢as-v¥as

v aseyd

€ aseyd

L0 (g0)eL | (0°1)6'9 sVezL L0 (80)e'8 (6062 (V62 Juswajejs e bupebsu pue sisyiuenb pajsau buipnjoul :o160] ajesipald pue siaiiuenpd
‘uonounfuod e saypow

90 (602 | @WLL | (G2 T (1L)oe | (80)s8 | (e2)82L Jaypuenb ejuelsixe ue pue ‘Uojedljdw ue seyIpPow Ajuowwod Jeynuenb [esisAun e jey)
buipuejsispun ‘sjdwexs Jo- :9160] ajesipaid ojul sjuswaje)s ysijbug jo uole|suel] ‘¢

. L - 'sme7 s,uebioyyeg pue Ajnpnquisip jo uonesydde
V- (zozs | (s (1-2)0g 80 (ro)ee (9088 @9 ay) pue sausjeainba jeaiboj ‘yeinaied uj :o160] jleuonisodoud pue eiqabje uesjoog 'z
‘uoneaydwi

10 (Les | (zuzs | (81)gs 9°0- (90)s6 | (s0)96 | (z'L)Z6 ue Bunebou :(Juspaosjue Aldwe yjm) ypniy SNONdEA pue ‘[euoIpUOdIq pue ‘aAlisodeljuod

Z aseyd

‘9SIOAUI ‘9SIOAUOID ‘JUBLIB)R)S UBY)~I By} Bulpue}SIopUf SJUSWA)E)S |RUOIHPUOD |

Jnoia

aduepuoduwy|

oaido)

Discrete math topics rated for importance and difficulty (part 1).

Fig. 4.

17

9'0- (60)99 | (8012 | (g'1)89 z0 (222 | (8)os | (s1)s8 soaau) pue sydeib Aq Buijspo /¢

) . e - . - e e 018
90 ('se | (eove (L'1oe 6°0- (o)Le (6088 (rree ‘pajoalipun/pajoallp ‘@aibap ‘xapan ‘ebpa Buipnjou| :suopiuyap ydeib jeyuswepung 9¢
G'0- (e | (60)6z | (L'2)9e 8'0- (1208 | (zasL | (622 Japujewal pue ‘yudponb ‘iojesado po ‘G¢

(A1oay] ydeug pue Aloay] saqunp) saido] 13Yy30

LL- (60)6'9 | (z'1)g9 | (02)L9 8'0- (F2)os | (82)99 | (ze)g9 anjeA pajoadx3 e
z- (zogz | wure | 6L 8°0- 6Ly | (z2o | (2259 Ajnqeqoud jeuonipuod ¢¢
0L- Fes | (zows | (v2os 00 (g2)6s | (zZ2e9 | (S22 JusA® ue jo Juswaldwod ayj Jo Ajjiqeqoid Zg

Ajjigeqolid aj2.19s1q

10" ()62 | (ows | (0262 8'0- (6L)os | (2o | (22v9 JuswnBie Bulunoo aARosliq pajied os|y :yooud |elojeulquo) “Le
AN (e | (zare | (62)8S 00 (6'1)6s | (02¥S | (61)g2 a|diound ajoyuoabid "0¢
8'0- (7)g9 | (r)g9 | (z2)s9 €0- Fvo | (ovesz | (22 ‘welosy] [elwoulg 8y} buipnioul :sapuapl [elI0jeUIqWO) 6T
. - “ o o\ . Vg e Ny ‘Aousioiynsul
1A% E11e | (9189 (e2)0L 90 (Vo (SHoL @arL pue sased buiddeliano esoubeip o} Ajjiqe ayj buipnjou| uoiISN|9Xa-uoisn|du| ‘gz
8'0- (e | (€69 | (1-2)69 L'0- (0'1)2g | (6001’6 | (LL)L'6 suofjeulquiod pue suoleInwIdd “/Z
‘gjeudoudde si yoes usym jo buipuejsispun

Lo Wve | (SLve | (1L2)p9 ¥'0- (60)1'6 | (60)1'6 | (cL)68 e ' e e

ue pue jonpo.d Jo ejni pue wns Jo ajnJ Buipnjouj :s8nbiuyss) uopelaWNUD diseq ‘97

9°0- (1vos | (Lves | (Z1)es LL- (e2)ee | (6L)ee | (FE)9Y wajqoid BunjeH pue Appiqeproaq "5z
€0- (g2 | woes | WzL 8°0- (z2ss | (ke | (0292 'sdooj pajsau bujuiejuoo ssoyj buipnou; :sishjeue wyuobly vz
G0- (o't)os | (60)68 | (5'1)58 G0- (92)sy | (92)sv | (L'ewr9 | ‘uononpur Aq sseupos.ioo jo jooud pue spueueaul doof bulpnjou| :$S8u3ddII00 WYIOBIY ‘€2

¢as-vas

v aseyd

€ aseyd

Hnoag

¢as-vas

v oseyd

€ aseyd

aoueuoauwy|

vl (Lo | (gavL | (922 0] (029 | (gL | (61¥2L sa@auaLndal Bulajog ‘g

.. cy - . e . . Ve - ‘waejqoud Jo wyjlioble ue
ok Ao Sh L Am cvm 8 Ao NVN 8 1o A.v 59 8 A—. _‘VN 8 Am S.v 8 wiodj uoijelel edus.linds.i Qm.:QOgQQm ue mt\\@\owa cm\:o\th uj suolnje|al 3dualinddy "2
[(g0)g | (ri)es | (671)6°2L €0- (L2)e9 | (82)g9 | (0e)8L "0J0 ‘JOUBH JO SI9MO] ‘HOS 8bBIoyy ‘HOS Yo swypioble dAISINddY 0
80 (ttdoe | (LL)ee | (67L)82L 9'0- (e1)ze | (1i)ge | (67L)L8 'suofouny pue ‘seal ‘sbuljs ‘sjes Jo ‘sjdwexs Jo4 SUORIULSP SAISINDOBY ‘6

uolsinoay
oido]

Discrete math topics rated for importance and difficulty (part 2).

Fig. 5.

18

"8]B]S]XaU 8y} 0] S}ISUE) 8]ejs JUalind 8y} MOy pue ‘8)ejs Jxau oy}

Lo (g0)9z |(golvs | (ri)eL 1’0 (o)ge | (5°0)'6 | (s0)L'6 pue 8)ejs Jua.ind ay) Usamiaq aausiaylp 8y} buipuelsiepu) :suoljisuel) 3jels ‘0z
V- | (gov9 [(oWzo|(o2)as| €0 |(gues | (2veL | (8192 ueafo/es joalig sindui doy-dijy snouosysuhsy ‘61
. A\ . W . . e N "S8LIsLos BUP{o0j0 JUBIBLIp Usamjaq
90- (0199 (9029 |(F)ze| o0 [(8Le9 [(21eL | (L. ooueseyp oy Bupueisiopun -sdoy-diy pesebBiy-esind pue paieBBuy-a6p3 gl

‘sdojj-dljj p8X20[0 pue Saydje| paxod0joun usamjaq Ajjeuonoun,
ro- |oee |cowe| e | so |(ones | (@nes | raes 4Gl POYOOI9 PUE SBY938] PIO) 1oq Aljeuchouny

ul eousJoyip ayj Buipuejsispun :sdoj-dijy pue saysje| usamiaq asuatayid ‘Ll
91607 jeyuanbag

90- |(90)gL |(sovL| (1192 00 (g'1)2s | (guyo | (271)g9 Jappe peayeyoo| Aueg ‘9|
¢0- |(670)99 |(20)99]|(z1)g9| 90- [(90)s6 | (20)¥e6 | (216 uBisap [eolyatesdly "G
‘Sjusuodwod Sy J9jjews

Z0- |(es |(Bo)8s| (o] vo- |[(22)99 |(€2)6L | (822 L | woly spusuodwod [Syy 1ebiel Bulpling sepnjox3 suoiouny uesjooq Bunuawajdwi
ul sjusuodwiod |SIA 19Y30 pue S19p0o3ap ‘siaxajdiyinw jo uonesijddy |

. "Sjusuodwod [Sy\ 48jjews woly spusuodwod [Syy 48bie| buipjing sepnjox3
¥0- [(6°0)6's |(8'0)2G|(ZL)2s| 90 |(#0)96 [(s50)26 | ('L)06 5)usUOdLIO0D |SIN JOUIO PUE SIBPOoSp ‘S1axaldiNw 40 Ajeuonound o)
1’0 (2o (2| ez| so- |oVzy | (27196 | (22)9s 'spJezey ojweuAp pue ojje}S S}NDIID [eUOJRUIqWIOD Ul SpiezeH 'Z|
Lr. = A.v. A.v. A.v. Ly = A.v. A.V. A.v. m\m\—w\
S0 8'0)6'L ((L0)°L | (e'H0'8 8’0 eeL €Ho’L Vele'L OM] UeY)} 8i0W YJIM S}IN2JID [euoneuIquod buiubiseg :S1S9YJUAS [9ASIININI 'L L
Lo- [(ovo9 |(zovo|(teo| 90 |(02zs |(g2)s9 | (92)29 sdew ybneu.iey] Buisn suoissaldxs swns-jo-}onpoad [ewnuiw Buipuiq 0l
g0~ |(sog |(9oes|(bLos| vo- |[wWzL | 9L | (6192 sdew ybBneu.te)] Buisn suoissaidxa Jonpoud-jo-wins jewiuiw Buipuid ‘6
20~ (8096 |(80)9G | (9L)gS Lo- [(euvz | (e | (s1)z8 (saJed 3,uop) suopouny payroads A@3eidwoou) 'g
e0- [(ovsz |z |(zr)ge| 60 [(s0)s6 | (50096 | (5L)L'6 suoissaldxs uesjooq 0} suonesy1dads [eqiaA Buuaauo) “/
. N N N . N N N ‘lenp pue sjuswis|dwod buipndwod 4oj spoyjaw jsnl jou pue sjenp pue
80 (099 [(Lhe9 | Ly 0L (€n99 | (GL | (relLe Sjusws|dwiod jo spdeouoa ayj buipuejsiopun :Ay)jenp pue uoljejuswajdwod 9
"Joo.d uesjooq wopad 4o suoioun,

80- |(6ogs |bWzz|@UL2z] oL [z | @z | (299 4 fo0g tiop Rouny

uBdj00q 8ziwiuiw 0} eiqabje uesjooq jo asn :uone|ndiuew eiqabje uesjooqg G
21607 |euoieuIqWO)

c¢as-vas

p aseyd ¢ aseyd

Ajnoa

¢ 9seyd ¢das-vas v oseud

€ aseyd

aoueloduw|

Z 9seyd

el- Ly |(8)ss|(€29os| 90 |(FLeL |(€L)Le | (61)62L MOJJIBAQ ¥
0. @ Vry [eney | EUes | 2o [| E0zs |z | e B] et
oL |eone [ense|nee| e [@Vss |@aeL | (s 1o Areuiq woy Bupenuos “6 swiasks soquin kmwﬁwﬂw%%%m%%%m
90- |y |Gy |(02er | 60 |08 | (B8 | (671)98 'S/ paubls ‘Jusweldwiod s,om; “6e) (anjen) buluesw pue «E%m&.mwwﬁwwmwgwﬁ

usamjaq diysuonejal sy buipuejsiapun :suonejudsaidas JaquinN ‘|

suonejuasaiday JaquinN

Logic design topics rated for importance and difficulty (part 1).

Fig. 6.

19

'SJIN2.19 104 Suoyenwis/sinduy }s8) snoJobl BuiubISep U0 SNI0J & YlIM S|iIXS

L0 (088 |(s0)98 | (ct)e8 G'0- (02)s8 | (67L)8'8 | (22)08 Buibbnqap [essuss) suoneinwis Buiubisep pue Buooyssjqnody ‘BuiBBngaq ‘6S
60- |0z [0z |(Gre| so- [(ges | (01z6 | (1Ds ‘SjueuodLLo
Jgjjews jo uoneidwod e se synaJo bunse) pue buipjing :ubisap Je|npoy 8¢

. R Ve . n Ve Cvo. A 'SYDdH pue Sy1d Se yons
60 (6029 | (809 | (L1)59 60 (gL | (LV)ze | (G262 o160y sjqewiwieiboud jo asnsainjondjs ayj buipuejsiapun :o160] ajqewwelbold "/ €
o~ (1°1)0" @169 | @16 . (1'2)9 (1'2)e (92)p ‘'sebenbue| buiwwelbold piepuels pue sabenbug| UoljdLoSap aiempley usemjaq
L0 VoL (el)e9 | (8169 V0 b'e)9'L Lee's | 8L soouaiaylp ayj buipuejsiapun :sabenbue| Bujwwesbouad ‘sA JgQHA/BOJIBA "OE
90- (6002 |(LVzz|(9oz| 60 |(WL)re |(971)68 | (b2l sjoo} @vo Buisn ‘g

s|00] pue s|is ubisag

‘(*038 ‘sewayds buipoosp)

g0- |(60)9 [(6OL9|(go9| 2o |62 [(L¥L | (€189 swejsAs Alowew oy o} (9o Wy Buiziuebio uoneziuebio AIows bg
80- |(80)2Zz |(20)s2|(5L)92L 00 (g'1)s8 | (670)9°8 | (8°L)L°8 syjedejep Joy [o53u0d Bujubisaqg '¢¢
80- ((90)62 [(zo)2Zz| (WL | €1 |(0Lys | (018 | (e2)82 syjedejep pue sjuswajels Jajsue.l-193sibal 03 swyjoble buivAuo) Zg
. . R e N VA . A 'speyd WSy ur yjed
o'l (g0)v9 [(80)L9|(8L)99 | g0 (21)6s | (6L)¥9 | (872)59 [01U00 puE Yiederep o uoneiedos SHeYDS (INSY) SUIYOEW 53)S JIWyLIoBIY L&
vo- [(6009 [(60oz9|@Les| L1- |(60622 |08 | (1292 s19)s16a1 pYiys Buisn/Burubisaq "o¢
N L. R v N v v N "sdoy-dijy Areqyiqie buisn seausnbas Junod Aiedjiqie yim
L0 (09 [(60)99 | (C'1)E9 7’0 (Ong9 | (ML | (2289 s48)unoad bujubisa@g :s19j3UN0d snouoiysuAse/snouotysuis Buisn/bujubisaq 6z
. L. . N . L v . ‘1IN2JI0 [elusnbas e buiubisep usym SUoljIpUOd 82ei PIOAE 0} MOY pue SUOIJIPUOI
v'0- | (908 [(go)sg|(0L)se | 80 |(gLs [(619 | (82)09 0081 AUep! 0] Moy Bumouy| :SHNaLID [eRUSNbAS Ul SUOKIPUOS 898Y g7
1'0- |(g0)z'g |(eL)g|(0L)zg| g0 |(90)s6 | (s0)s6 | (ZL)68 S}NOUID ‘saulyoew dje)s o) sweibeip Buiwy Bunelsy /¢
‘(uonejusws|dwy Jo

v'1- | (90)99 [(0'L)69|(12)g9 | s'b- |(0L)68 [(0'1)z6 | (F2)y'g | sseipiebas) weibeip sjejs e pue jindijo [eusanbas e Jo sousieainbs ay) buiziuboosy
:weabelp ajejs e 0} spuodsaliod 3Inaald jeiyuanbas e moy Buipueysiapun ‘9z

6o [(ere [sal|@zo| 90 |[(2Lre |BLYS | (2222 S9|qe} UoIe}IOXd WOy SHNUID [enuanbas Buizisayjuhs "Gz
€0~ (s |(Fuzof(gge| 90 |(@Lve | (L2)zg | (L2)es Joiaeyaq 3nauio jeuanbas BuizAjeuy 1z
CA Av Av Av cAL Av Av Av ‘Jusjeainbs aJe
80 019 VULL| (87169 ¢0 oS 918G | (0e)8'S sojejs aiow 4o om) usym buiziubooau Aliendied uoljeziwiuiw auiyosew aje}s ‘¢z
o 6009 sl e o |eues | w9z | @0 "Buiwiy pue IoiAByaq ‘Sojsliejoeeyo
L0 6°0)09 ((90¥9 | (L1)E9 L0 9169 vLoL [(8LYL U SeouUBIBYIJ Sdulydew AIOO pue Ajeajy usamiaq asualdayig ‘'zz
20~ [(90)e'8 |(80)e8|(FL)zg| zo- |(b0)86 | (9°0)9°6 | (9°0)'6 so|qey/swelbelp aje)s 0} suonesyidads |eqaAn Buiaauo) |z

¢ 9seyd zas-vas v °seuyd

€ aseyd

aouejoaw|

Z aseyd

"Juo9d ‘01607 |euanbag

Logic design topics rated for importance and difficulty (part 2).

Fig. 7.

20

60- (@9 |(€r9o|(0299| s0 |[(61)99 | (2122 | (S22 Ma)s ¥20]2 ‘uonNnquisIp ¥2019 "9of
el |(8059 |(21)99| (299 | 80 [(9LgL | (S8 | (922 Auiqeysejaw ‘awn pjoy pue dnjag ‘G
- |(oves |(goo|(aes| 60 [(Lbgz | (2L | (2L awn |jey/asu ‘Aejap uonebedoid vv
90- |(20)29 |(80)99|(F1)89 | #0- [(8L)8g | (219 | (9296 suibiew asjou ‘Buipeo] Qv pue 9@ ‘€
el- |(2oss |(0oo| (2o | 60 [(91)89 | (8162 | (2212 ajod-wajo} ‘10393]|02-uado ‘ajejs-11} :syndino asuepadwi-ybiH zv
zL- |06y |(€ov|(€aLy | oL- [(@LLr9 | (81zL | (92219 Jno-uey ‘ul-ueq ‘i
- | (@0ors |(zzg|(@aes | so [(91)69 | (9192 | (FavL Mo| aA1jR "SA yBly aAndY Of

¢ds-vas v oseyd € oseyd ¢ 9seyd ¢dS-vdS v 9seyd ¢ aseyd

Z 9seyd

so1uo.333 [epbiq

Logic design topics rated for importance and difficulty (part 3).

Fig. 8.

