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Abstract

Background: Dosimetry is of high importance for optimization of patient-individual
PSMA-targeted radioligand therapy (PSMA-RLT). The aim of our study was to evaluate
and compare the feasibility of different approaches of image-based absorbed dose
estimation in terms of accuracy and effort in clinical routine.

Methods: Whole-body planar images and SPECT/CT images were acquired from 24
patients and 65 cycles at 24h, 48h, and ≥96h after administration of a mean activity
of 6.4 GBq [177Lu]Lu-PSMA-617 (range 3–10.9 GBq). Dosimetry was performed by use
of the following approaches: 2D planar-based dosimetry, 3D SPECT/CT-based
dosimetry, and hybrid dosimetry combining 2D and 3D data. Absorbed doses were
calculated according to IDAC 2.1 for the kidneys, the liver, the salivary glands, and
bone metastases.

Results: Mean absorbed doses estimated by 3D dosimetry (the reference method)
were 0.54 ± 0.28 Gy/GBq for the kidneys, 0.10 ± 0.05 Gy/GBq for the liver, 0.81 ± 0.34
Gy/GBq for the parotid gland, 0.72 ± 0.39 Gy/GBq for the submandibular gland, and
1.68 ± 1.32 Gy/GBq for bone metastases. Absorbed doses of normal organs
estimated by hybrid dosimetry showed small, non-significant differences (median up
to 4.0%) to the results of 3D dosimetry. Using 2D dosimetry, in contrast, significant
differences (median up to 10.9%) were observed. Regarding bone metastases, small,
but significant differences (median up to 7.0%) of absorbed dose were found for
both, 2D dosimetry and hybrid dosimetry. Bland-Altman analysis revealed high
agreement between hybrid dosimetry and 3D dosimetry for normal organs and
bone metastases, but substantial differences between 2D dosimetry and 3D
dosimetry.

Conclusion: Hybrid dosimetry provides high accuracy in estimation of absorbed
dose in comparison to 3D dosimetry for all important organs and is therefore
feasible for use in individualized PSMA-RLT.
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Introduction
Prostate carcinoma is one of the most malignant diseases in men [1]. A significant

number of patients with prostate carcinoma ultimately progresses to the metastatic

castration-resistant stage of prostate carcinoma (mCRPC) [2, 3]. In this stage, radioli-

gand therapy targeting the prostate-specific membrane antigen (PSMA) is a promising

therapy option, especially in patients who progressed after first/second line therapies as

chemotherapy (docetaxel, cabazitaxel) and next-generation androgen receptor signaling

inhibitors (abiraterone, enzalutamide) [4–7]. PSMA-targeted radioligand therapy

(PSMA-RLT) with [177Lu]Lu-PSMA-617 showed encouraging results in several retro-

spective studies [8–11] and in a recent prospective study [12]. However, there is physio-

logical expression of PSMA in normal organs such as the kidneys, the liver, and the

salivary glands [13–15], resulting in undesired irradiation of these organs. This may

cause radiotoxicity in the kidneys and salivary glands, probably leading to renal failure

and xerostomia, respectively, and thus limiting the accumulative therapy doses and the

number of therapy cycles. Both organs are therefore classified as organs at risk (OaR)

for PSMA-RLT. Due to the physical properties of 177Lu (10.4% emission of 208 keV

photons), post-therapy scintigraphy imaging is possible, allowing the estimation of

absorbed doses to normal organs and tumor lesions [16]. Different 2D and 3D ap-

proaches for post-therapy dosimetry are known [17–21]. While 3D-based methods ob-

viously offer the most valid data, performing multiple SPECT/CT scans is a

tremendous task for both, patients and facilities regarding logistics and resources. Dos-

imetry methods based on 2D planar scintigraphy on the other hand seem to be less

time-consuming and therefore mostly applied, but respective results are less accurate

[22]. Recently, hybrid dosimetry combining planar and SPECT/CT imaging was pro-

posed as a valuable approach in dosimetry of peptide receptor radionuclide therapy

(PRRT) of neuroendocrine tumors. This method offers a simplification in terms of

image acquisition but maintaining the required accuracy in calculated absorbed dose

results [23]. However, a detailed evaluation of this hybrid method on data of mCRPC

patients including estimation of absorbed doses to normal organs and tumor lesions is

still missing.

Therefore, the aim of the present study was to compare absorbed dose values deter-

mined with altogether three dosimetry approaches, 2D planar-based dosimetry, 3D

SPECT/CT-based dosimetry, and hybrid dosimetry combining planar scintigraphy and

SPECT/CT, and to evaluate whether the accuracy of the hybrid method is suitable for

use in clinical routine.

Methods
Patients and ethics

In this retrospective study, dosimetry data obtained from N = 24 mCRPC patients were

analyzed. All patients received multiple pretreatments including chemotherapy and

hormonal therapy (androgen deprivation therapy, enzalutamide, abiraterone) before re-

ceiving PSMA-RLT. Patient characteristics are summarized in Table 1. [177Lu]Lu-

PSMA-617 was synthesized and administered according to EANM guidelines [24]. In

order to prevent side effects, each patient received intravenous hydration (0.9% NaCl)

30 min prior to administration of the radioligand until 120 min post-injection and an
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external cooling of the salivary glands using cooling pads. PSMA-RLT was performed

on a compassionate use basis under the German Pharmaceutical Act §13 (2b). Patients

gave written consent after being thoroughly informed about the risks and potential side

effects of this intervention. Additionally, patients consented to publication of any

resulting data in accordance with the Declaration of Helsinki. Retrospective analysis ap-

proval was waived by the local institutional review board.

Image acquisition

Image acquisition was performed on a Philips BrightView XCT (Philips Medical Sys-

tems, Hamburg, Germany) hybrid scanner equipped with medium energy parallel-hole

collimators. Planar whole-body images as well as serial SPECT/CT scans (either of the

head and neck or from the liver down to the pelvis) were acquired on days 1, 2, and 4

post-injection (approx. 24h, 48h, and ≥96 h p.i.). For reasons of practicability and in

order to minimize stress for the patients, either an abdomen SPECT/CT or a head and

Table 1 Patient characteristics

Characteristics n (%)/mean [min–max]

Age 71 [61–88]

Pretherapeutic PSA value [ng/ml] 591 [14–3277]

Pretherapeutic ECOG PSa

0 7 (29.2%)

1 16 (66.7%)

2 1 (4.2%)

Previous treatments

Prostatectomy 11 (45.8%)

Radiation 15 (62.5%)

Androgen deprivation therapy 24 (100%)

Enzalutamide or abiraterone 23 (95.8%)

Enzalutamide 20 (83.3%)

Abiraterone 22 (91.7%)

Enzalutamide and abiraterone 19 (79.2%)

Chemotherapy 19 (79.2%)

Docetaxel 19 (79.2%)

Cabazitaxel 8 (33.3%)

Docetaxel and cabazitaxel 8 (33.3%)
223Ra therapy 8 (33.3%)
153Sm therapy 1 (4.2%)

Sites of metastases

Bone 24 (100%)

Lymph node 18 (75%)

Other 10 (41.7%)

Tumor load according to [25]

High 11 (45.8%)

Medium 13 (54.2%)

Low 0 (0 %)
aEastern Cooperative Oncology Group Performance Status
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neck SPECT/CT was performed. Patients were then assigned in two groups of approxi-

mately equal size. SPECT/CT over the head and neck region was acquired preferen-

tially in patients with suspected bone lesions in this region. In total, 13/24 patients

received whole body scintigraphy and abdomen SPECT/CT for dosimetry of the kid-

neys and liver and 11/24 patients received whole body scintigraphy and head and neck

SPECT/CT for dosimetry of salivary glands. The energy window was set to 208 keV

with a width of 20% as proposed in previous studies [21, 22]. A respective low scatter

window (187 keV, 15%) was defined in order to perform scatter correction on the

whole-body images according to the dual-energy window technique proposed by MIRD

(MIRD Pamphlet No. 16 [17]). For whole body acquisition, the scanning speed was 15

cm/min on day 1 and day 2 and 12 cm/min on day 4. The matrix size was 256 × 1024,

and the pixel size 4.66 × 4.66 mm2. The day before radiopharmaceutical administration,

a whole-body blank scan and a whole-body transmission scan of the patient using a flat

phantom filled with aqueous solution of 177Lu were acquired. The corresponding im-

ages were used to correct the planar whole-body data for attenuation.

SPECT projections were acquired using 60 projections over 360° and a frame-time

duration of 25 s. CT images were acquired in low-dose technique using an X-ray tube

voltage of 120 keV and a tube current of 10 mA. The matrix and the pixel size were

256 × 256 and 2.33 × 2.33 mm2, respectively. CT data was used to calculate an attenu-

ation map at 100 keV, which was converted to the respective emission energy of 208

keV of 177Lu and applied for attenuation and scatter correction of SPECT data. The re-

spective procedure was implemented by the manufacturer and is described in detail in

[26]. Iterative SPECT image reconstruction parameters were chosen to be in accord-

ance with the specifications proposed by the MIRD pamphlets 23 and 26 [18, 19]. An

iterative 3D-ordered subset expectation maximization (OSEM) algorithm was used

employing 3 iterations, 8 subsets, Butterworth filtering (0.5, 10th order), and a slice

thickness of 4.66 mm. In order to prevent edge and oscillation artifacts, methods of

resolution recovery had not been included in the reconstruction. CT images were con-

verted to a matrix and pixel size of 128 × 128 and 4.66 × 4.66 mm2 and fused with the

SPECT slices.

Calibration and recovery correction

Calibration factors for planar scintigraphy and SPECT were determined according to

the specifications and requirements of the dosimetry software package applied. For pla-

nar whole-body scintigraphy, a vial filled with approx. 50 ml of 177Lu solution with

known activity was measured during each whole-body scan of the patient. After co-

registration of the planar whole body scintigrams, the count rate in a region-of-interest

(ROI) surrounding the vial was determined and used to calculate the actual gamma

camera response for 177Lu in counts/MBq. For SPECT acquisition, the camera calibra-

tion factor was determined following one of the approaches proposed by MIRD (MIRD

Pamphlet No. 26 [18]). To convert the measured voxel values in the reconstructed

SPECT images to 177Lu activity, a large water cylinder (6595 ml) containing a well-

calibrated source of 177Lu was scanned applying the same acquisition protocol and re-

construction method as used in the patient studies (including all corrections). From

this measurement, the calibration factor was determined in units of Bq/cps. The
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respective activity values were then corrected applying the 177Lu recovery coefficients

(RC) for the reconstruction setting used depending on the estimated object volume.

The RCs were determined by phantom measurements on both a NEMA/IEC standard

phantom and a cylindrical phantom enclosing fillable glass spheres of different volumes

(3 up to 170 ml) [27]. With the applied reconstruction setting, a RC of 0.85 was

reached for volumes ≥ 20 ml, which decreased to values of 0.79, 0.67, and 0.59 for

sphere volumes of approximately 13 ml, 10 ml, and 6 ml, respectively. For RC correc-

tion, sphere volumes were used matching the organ or tumor volumes determined by

SPECT/CT. Contrast-recovery was not considered in this study as high values of

signal-to-background ratio were observed for all included tissues (≥7 for the liver, >100

for all other organs/metastases).

Dosimetry calculation

In this study, dosimetry calculations were performed for the following tissues: kidneys,

liver, salivary glands (parotid gland and submandibular gland), and bone metastases.

Results of the following three different dosimetry methods were compared:

1. Planar-based dosimetry with three whole-body acquisitions (in the following re-

ferred to as “2D method”),

2. SPECT/CT-based dosimetry with three SPECT/CT acquisitions over the abdomen

or head and neck, respectively (in the following referred to as “3D method”),

3. Hybrid dosimetry based on three planar whole body scintigrams and one SPECT/

CT, which was used to calibrate the respective time-activity curve (in the following

referred to as “hybrid method”).

Absorbed dose calculation was performed using the QDOSE program package

(ABX-CRO, Dresden, Germany). In this package, different workflows for dosimetry

can be composed. The workflow we used for three dosimetry methods is described

in detail in the following section and schematically depicted in Fig. 1. Estimation

of absorbed dose was performed by the implemented IDAC 2.1 software [28–30]

applying the IDAC reference man for the kidneys and the liver and the sphere

model for the salivary glands and bone metastases, respectively. For all dosimetry

methods, patient-specific organ mass adjustment is available in QDOSE. Organ

masses were determined using the volume of each organ delineated from the CT

images (PACS software, SECTRA, Linköping, Sweden) and the respective biological

tissue density [31]. For this purpose, diagnostic CT images had been used which

were acquired as part of the diagnostic workup before therapy.

2D method

For 2D dosimetry, the conjugate-view method (MIRD pamphlet No. 16 [17]) was

used to calculate the organ activities from the anterior-posterior planar images. As

a first step, co-registration of the planar images was performed. Boundary ROI en-

closing the organs as well as background ROI near the respective organs or bone

metastases was drawn in the whole-body images of the three time points. Solely

bone metastases without overlap with tissues of high uptake were chosen for
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analysis. For the liver and kidneys, in cases of overlapping tissues with high up-

take, as, e.g., parts of the gastrointestinal tract, the organ ROI did not encompass

the whole organ but solely its non-overlapping part. The respective area was ap-

proximated based on the CT volume by geometrically comparing the respective

contours over the entire organ and the non-overlapping fraction. The number of

counts of the whole organ was then extrapolated to the entire volume assuming

homogeneous uptake within the organ. In cases where one kidney was substan-

tially overlapped by extra-renal radioactivity uptake, only the contralateral kidney

was used. Attenuation correction was accomplished as proposed by MIRD (MIRD

pamphlet 16 [17]). A respective attenuation map was calculated from a blank and

a patient whole body transmission scan thereby taking into account the respective

thickness of the body and the organs determined by CT. Background correction

was performed by determining the activity per pixel in the respective background

ROI and then scaling to the number of pixels in the organ ROI. A threshold-

based segmentation was applied and approved by an experienced physicist and an

experienced nuclear medicine physician to delineate the organ within a manually

drawn boundary ROI taking into account the anterior as well as the posterior

image. The next step comprised mono-exponential regression of the serial mea-

sured activities using weighted least squares method and estimation of the time-

integrated activities (TIA) and the time-integrated activity coefficient (TIAC) in

the source regions by integration. As an approximation, constant activity between

t = 0 and the first acquisition time point was assumed, and the integration

method for the first-time interval was based on the trapezoidal method. Between

the first and the last time point, a trapezoidal integration was used, whereas after

the last time-point, mono-exponential integration was performed considering only

physical decay.

Fig. 1 Schematic dosimetry workflow for the three different methods exemplarily shown for the data of the
kidney. Absorbed dose estimation was performed by use of the software platform QDOSE
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3D method

For 3D dosimetry, voxel values were automatically converted to activity values applying

the calibration factor entered in units of Bq/cps. Volumetric co-registration of the dif-

ferent time points was performed by taking the first SPECT/CT scan as reference.

Boundary VOI (volume-of-interest) was manually drawn in the first SPECT/CT image,

which solely enclosed the source organs avoiding neighboring structures and were then

copied onto the other SPECT images. Manual adjustment of the boundary VOI for

each time point was possible. Volume and activity estimation were performed on each

SPECT series within the boundary applying a fuzzy locally adaptive Bayesian (FLAB)

segmentation algorithm for automatic volume delineation [32]. The respective results

were then corrected applying the volume-dependent 177Lu recovery coefficients. The

TIA and the TIAC in source regions were calculated as described for the 2D method

above.

Hybrid method

For hybrid dosimetry, the 2D kinetics in the source regions derived by planar scintig-

raphy were combined with the respective activity estimation of the SPECT on day 1 or

day 2. Here, the activity estimation of the respective SPECT was used to rescale the

2D-derived time-activity curve (MIRD pamphlet No. 16 [17] and No. 23 [19]).

For all three methods, the TIA and the TIAC were converted to absorbed dose esti-

mates using the IDAC-Dose 2.1 reference man or the sphere model, respectively.

Data analysis and statistics

All continuous data are expressed as the mean, median, and standard deviation (SD).

The data were analyzed for difference in absorbed dose to all organs and to bone me-

tastases using a Wilcoxon-Mann-Whitney test. In addition, agreement between the

three dosimetry methods in terms of systematic and random differences in estimated

absorbed dose in Gy/GBq [177Lu]Lu-PSMA-617 was investigated using Bland-Altman

analysis [33]. The relative difference in absorbed dose between any two of the three

methods was compared to the mean dose of the two methods. Results of Bland-Altman

were summarized quantitatively in terms of the limits of agreement (LoA) being de-

fined as the mean difference ± 1.96 standard deviations (mean diff ±1.96*SD) [33]. All

analyses were performed using SPSS (version 26, SPSS Inc, Chicago, USA) and Graph-

Pad (version 8, GraphPad Software, San Diego, USA); p values of less than 0.05 were

considered statistically significant.

Results
Therapy details

In this study, a total of n = 65 cycles of [177Lu]Lu-PSMA-617 RLT of N = 24 patients were

evaluated. On average, 3 cycles (range 1–6) per patient were analyzed. The mean adminis-

tered activity of [177Lu]Lu-PSMA-617 was 6.4 GBq per cycle (range 3–10.9 GBq).

Dosimetry results

19/65 dosimetry data sets were acquired for the head and neck region and 46/65 for

the abdominal region. In total, investigation involved n = 38 parotid glands, n = 38
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submandibular glands, n = 46 kidney pairs, n = 43 livers (3 were excluded due to mul-

tiple liver metastases), and n = 83 bone metastases. Dosimetry estimates in parotid and

submandibular glands, the kidneys, the liver, and in bone metastases for the three

methods are summarized in Table 2. Consistent results were observed for all three dos-

imetry methods: the liver received the lowest, whereas the parotid gland received the

highest absorbed doses among the normal tissues. Regarding the bone metastases, the

absorbed dose was on average two-fold higher than that of the parotid gland for all

methods. Comparing the results of individual patients and cycles, large differences in

absorbed dose were observed resulting in standard deviations up to 84%, most pro-

nounced for the bone metastases (Table 2). Table 3 presents median of differences of

the absorbed dose estimated by 2D and hybrid dosimetry compared to results of the

3D reference method. Median differences between the dosimetry methods were most

pronounced for the kidneys followed by the parotid gland. Using the 2D method, the

doses to these organs were significantly underestimated (−10.9% and −9.8%, both p <

0.01), and the differences were higher than those of the hybrid method (−4.0% and

0.3%). The use of hybrid dosimetry resulted in only slight underestimation of the dose

to the kidneys as well as slight overestimation of the dose to the liver and the salivary

glands (Table 3). However, these differences were found to be statistically non-

significant (Table 3). In contrast, significantly different absorbed doses to bone metasta-

ses were observed for both methods compared to the results of 3D dosimetry.

The results of the Bland-Altman analysis of the absorbed dose per administered activ-

ity considering the alternative dosimetry methods versus the reference 3D method are

provided in Fig. 2. The respective LoA for normal tissues and bone metastases between

the considered method and the 3D dosimetry data as reference are shown in Table 4.

The largest systematic difference in the mean absorbed dose was observed for the

kidney using 2D dosimetry (LoA −16.9% ± 59.8%), whereas hybrid dosimetry resulted

in much lower LoA of −4.1% ± 35.1%. For the other organs, 2D dosimetry resulted in

random differences to 3D with LoA up to −8.0% ± 30.2%, whereas using hybrid dosim-

etry the LoA were lower than +2.7 ± 23.8%. For bone metastases, relatively wide LoA

were found (−9.5% ± 53.3%) with 2D dosimetry compared to LoA of −8.9% ± 26.1%

with hybrid dosimetry. In summary, results of hybrid dosimetry were more consistent

with 3D dosimetry data yielding smaller LoA for all normal organs and metastases

(Table 4).

Discussion
In this study, we evaluated and compared three different dosimetry methods (3D

method, 2D method, hybrid method) for [177Lu]Lu-PSMA-617 therapy on data

Table 2 Mean absorbed dose per administered activity [Gy/GBq] in normal tissues and bone
metastases estimated by the three dosimetry methods

Mean dose [Gy/GBq] 2D Hybrid 3D

Parotid gland 0.75 ± 0.34 0.81 ± 0.34 0.81 ± 0.34

Submandibular gland 0.71 ± 0.36 0.73 ± 0.39 0.72 ± 0.39

Kidneys 0.49 ± 0.31 0.52 ± 0.27 0.54 ± 0.28

Liver 0.09 ± 0.04 0.10 ± 0.05 0.10 ± 0.05

Bone metastases 1.42 ± 0.99 1.55 ± 1.28 1.68 ± 1.32
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obtained from 65 cycles of 24 mCRPC patients. Our results demonstrate that hybrid

dosimetry determination provides dose estimates with high accuracy for all organs and

metastases.

Assuming that 3D is the most accurate method, our evaluation showed that the hy-

brid method is superior to the planar-based 2D method. For the kidneys, the salivary

glands, and the liver, hybrid dosimetry yielded results that are nearly equivalent with

the reference 3D method (Table 3). Using 2D dosimetry, however, statistically signifi-

cant underestimation was observed for doses to the kidneys (10.9%) and the parotid

glands (9.8%). Regarding the bone metastases, small, but significant differences of

absorbed dose were observed for both dosimetry methods.

Moreover, the Bland-Altman analyses revealed high agreement between hybrid and

3D dosimetry with LoA being low and narrow for all organs (Table 4). In contrast, high

and wide LoA for all organs were observed (Table 4) when comparing 2D with 3D, in-

dicating substantial differences between the two methods. These findings may result in

non-negligible loss of accuracy using 2D dosimetry. Hence, while the hybrid method

provides results for all organs that are consistent to the 3D results, the 2D method po-

tentially underestimates corresponding doses and may therefore have an adverse clin-

ical impact. Therefore, this method is not advised especially for dosimetry of OaR.

With respect to metastases, accurate dosimetry using 2D or hybrid methods was only

possible to a limited degree as exact delineation of bone metastases in 2D planar im-

ages and respective volume determination from CT is more problematic than for nor-

mal organs. However, this issue is also of high importance as it may allow

individualized lesion-based therapy planning. It should therefore be considered in fur-

ther investigations.

There are several studies addressing dosimetry of RLT with [177Lu]Lu-PSMA-617

[34–38]. Most of them [34–36] reported on whole-body planar scintigraphy for imaging

and OLINDA/EXM to estimate absorbed organ doses. In contrast to our results for 2D

dosimetry, higher doses for all organs were reported in the majority of studies (e.g., kid-

neys 0.49 vs. 0.72–0.99 Gy/GBq [34–36]; salivary glands 0.75 vs. 0.55–1.66 Gy/GBq

[34–36]). These differences may be explained by the high and unpredictable time-

dependent activity uptake in overlapping normal tissues (e.g., intestine) and tumors

leading to dose overestimation. This overestimation has been well described in renal

2D-dosimetry after PRRT using radiolabeled somatostatin analogs [39] and may be

similarly relevant in PSMA-RLT. Furthermore, the drawing of ROIs on multiple se-

quential planar images is known to be subject to inter-observer variation. In the present

study, these limitations of 2D dosimetry have been addressed by using small ROIs over

Table 3 Median differences of estimated absorbed dose in normal tissues and bone metastases
between 2D and 3D method, and between hybrid and 3D method

Median of differences
2D vs. 3D

Median of differences
HYBRID vs. 3D

[Gy/GBq] [%] p-value [Gy/GBq] [%] p-value

Parotid gland −0.080 −9.8 0.003 0.002 0.3 0.685

Submandibular gland −0.003 −0.4 0.950 0.014 1.9 0.440

Kidneys −0.059 −10.9 0.005 −0.021 −4.0 0.060

Liver −0.004 −3.5 0.093 0.003 2.9 0.100

Bone metastases −0.074 −4.4 <0.0001 −0.117 −7.0 <0.0001
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parts of the respective organ with no overlap to other tissues assuming homogeneous

activity distribution within the organ. In addition, individual background correction on

each of the sequential planar images was applied to further reduce the inaccuracy. As

well, the used software application allows individual organ segmentation by activity

Fig. 2 Bland-Altman plots for parotid gland, submandibular gland, kidneys, liver, and bone metastases
presenting pairwise quantification of the limits of agreement (dashed lines) of the relative absorbed dose
difference for 2D dosimetry and hybrid dosimetry, respectively, compared to the results of 3D dosimetry
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thresholding and co-registering of ROIs in the different images and may therefore re-

duce inter-observer variation. Nevertheless, larger uncertainty is still associated with

the 2D-based dosimetry method leading to inaccuracies in estimated absorbed organ

doses.

For 3D dosimetry, most of these limitations do not exist, qualifying it as the reference

method for dose estimation. So far, only a few studies using 3D dosimetry in PSMA-

RLT have been published [37, 38]. Comparing our findings with the literature, liver

doses are in excellent agreement with those reported by the other two groups (all 0.10

Gy/GBq). Furthermore, the mean doses to the kidneys (0.54 Gy/GBq) and to the par-

otid glands (0.81 Gy/GBq) were lower than those reported by Delker et al. [38] (0.61

Gy/GBq (kidneys), 1.41 Gy/GBq (salivary glands)) and only slightly higher than those

observed by Violet et al. [37] (0.39 Gy/GBq (kidneys), 0.58 Gy/GBq (parotid gland)).

These small deviations may result from differences in patient cohorts. Whereas the lat-

ter group evaluated each first therapy cycle of N = 30 patients, the group of Delker

et al. evaluated the first and the second cycle in N = 5 patients. Our study included n =

65 cycles of N = 24 patients, with the majority of patients having received multiple

therapy cycles.

To the best of our knowledge, no systematic investigation of hybrid dosimetry in

PSMA therapy has been reported to date. Belli et al. [40] evaluated hybrid dosimetry of

the kidney in only one mCPRC patient and reported high accuracy (a difference of 1.6

%) compared to the 3D method. This is in line with our results in a larger patient co-

hort (median difference −4.0%, Table 3). However, hybrid dosimetry is an established

method in [177Lu|Lu-DOTA-TATE PRRT and has been used as the reference method

in a phase II trial by Sundlöv et al. [23]. These authors concluded that hybrid dosimetry

is feasible and allows individualized and safe PRRT. Our data presented here indicate

that hybrid dosimetry is also feasible for PSMA-RLT. Several patients received cumu-

lated activity up to 48 GBq in up to 8 cycles of therapy, and we observed kidney doses

of up to 19 Gy and parotid gland doses of up to 23 Gy. Corresponding doses are within

the accepted standard limits of 15–20 Gy used in external-beam radiotherapy of the

kidneys [41] and of 20–25 Gy for the salivary glands [42]. No patient in our cohort suf-

fered from a higher-grade xerostomia (CTCAE ≥ 3), but most patients reported a mild

xerostomia (CTCAE = 1), which even tend to recover over time.

Patients benefit from the dosimetry of organs at risk and tumor lesions, but the bur-

den and the workload for the staff need also to be considered. In our clinical dosimetry

protocol, each planar whole-body scintigraphy requires about 15 min and each SPECT/

Table 4 Results of Bland-Altman analysis in terms of the percent average of the difference and the
respective ±1.96*SD for the normal tissues and the bone metastases

2D vs. 3D Hybrid vs. 3D

Average of the difference
(%)

± 1.96*SD
(%)

Average of the difference
(%)

± 1.96*SD
(%)

Parotid gland −8.0 30.2 +0.7 13.7

Submandibular
gland

+1.9 38.2 +2.1 28.7

Kidneys −16.9 59.8 −4.1 35.1

Liver −6.6 47.8 +2.7 23.8

Bone metastases −9.5 53.3 −8.9 26.1
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CT acquisition of a single region about 25 min. The accuracy of the hybrid method

could be shown to be superior to the planar-based 2D method and nearly equivalent

with 3D dosimetry. The additional time needed for hybrid compared to 2D dosimetry

of about 25 min was short enough for patients to accept. However, as a drawback, a

SPECT/CT of a single region allows only hybrid- or SPECT-based dosimetry for this

particular region. In contrast, whole-body SPECT/CT would allow whole-body dosim-

etry, but at the expense of an extended acquisition time of about 75 min per scan. Fi-

nally, it depends on whether the patient is willing to tolerate the burden of whole-body

SPECT. If not, region-based hybrid dosimetry as performed in this study might still be

the compromise. Otherwise, from a clinical perspective, advanced simplification of dos-

imetry as known from PRRT [43, 44] may be of further interest. Here, a promising ap-

proach was proposed by Hänscheid et al. [44], who used a theoretical approach based

on a single SPECT/CT (at 96 h p.i. for PRRT) and no additional whole-body planar

scans for each cycle. This may motivate to perform an independent evaluation also in

PSMA-targeted therapy.

In our study, we used a commercial software application (QDOSE, ABX-CRO, Dres-

den, Germany) in order to standardize and simplify the dosimetry procedure for use in

clinical routine, while maintaining the required accuracy. This system provides some

advantages. For example, tools are included to reduce the well-known issue of interob-

server variation on 2D data by realizing simultaneous segmentation of the images ac-

quired at different time-points. On SPECT data, organ contouring by automatic

segmentation algorithms and predefined determination of TIA and TIAC is imple-

mented. In addition to the reduced time needed to acquire the data for hybrid dosim-

etry, which is worthwhile for the convenience of the patient and the medical staff, the

QDOSE software saves additional time. It includes all steps of dosimetry starting with

derivation of activity images via a calibration factor and, for 3D and hybrid dosimetry,

providing voxel-based absorbed dose estimation based on IDAC 2.1. No data export is

needed. Nevertheless, export of TIAC to OLINDA/EXM is possible if desired. As

OLINDA/EXM is probably the most established and well-known dosimetry software, a

comparison of the results by IDAC 2.1 compared with OLINDA/EXM would be of

interest. However, this comparison was beyond the scope of the present work.

The empirical data reported herein should be considered in the light of some limita-

tions. The study suffers from its retrospective nature and the limited number of pa-

tients. The relatively low number of patients was a consequence of the time-consuming

and patient-exhausting data acquisition needed for dosimetry. As patients in this study

only underwent 3D dosimetry for one of the two regions (abdominal or head and neck)

and only under the condition of feeling comfortable, an inhomogeneous number of cy-

cles per patient was included in this study. In addition, patient comfort and manage-

ment allowed imaging only at one time point before (on the same day—for acquiring

the transmission scan) and three time points after administration of the [177Lu]Lu-

PSMA-617 during hospitalization, whereas patients would have needed to return to the

hospital for a fourth, later imaging procedure. For the same reason of patient comfort,

the use of an additional earlier time point (e.g., 4h or 0.5h pi) which has been discussed

in literature on PRRT to improve dosimetry results could not be included in the clinical

protocol [45]. In this context, further studies investigating the impact of the different

phases of organ pharmacokinetic on absorbed dose estimates especially for PSMA-RLT
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would be of interest. Moreover, dosimetry of all bone metastases or total tumor burden,

respectively, was not possible. Thus, no conclusions regarding the overall therapeutic

tumor dose can be drawn. Further studies, ideally in a prospective setting, with larger

patient cohorts are therefore recommended to confirm and expand our findings.

Conclusion
Our results demonstrate that absorbed dose estimation by hybrid dosimetry provides

high accuracy for PSMA-RLT in comparison to the reference 3D method. In addition,

it is a less demanding method with respect to clinical resources and distress for pa-

tients. Therefore, hybrid dosimetry is feasible and qualifies for routine application in in-

dividualized PSMA-RLT.
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