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Abstract

Existing research has uncovered many security vulnerabilities in Android applications
(apps) caused by inexperienced, and unmotivated developers. Especially, the lack of tool
support makes it hard for developers to avoid common security and privacy problems in
Android apps. As a result, this leads to apps with security vulnerability that exposes
end users to a multitude of attacks.

This thesis presents a line of work that studies and supports Android developers
in writing more secure code. We first studied to which extent tool support can help
developers in creating more secure applications. To this end, we developed and evaluated
an Android Studio extension that identifies common security problems of Android apps,
and provides developers suggestions to more secure alternatives. Subsequently, we
focused on the issue of outdated third-party libraries in apps which also is the root cause
for a variety of security vulnerabilities. Therefore, we analyzed all popular 3rd party
libraries in the Android ecosystem, and provided developers feedback and guidance in
the form of tool support in their development environment to fix such security problems.
In the second part of this thesis, we empirically studied and measured the impact of
user reviews on app security and privacy evolution. Thus, we built a review classifier
to identify security and privacy related reviews and performed regression analysis to
measure their impact on the evolution of security and privacy in Android apps. Based
on our results we proposed several suggestions to improve the security and privacy of
Android apps by leveraging user feedbacks to create incentives for developers to improve
their apps toward better versions.
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Zusammenfassung

Die bisherige Forschung zeigt eine Vielzahl von Sicherheitslücken in Android-Applikationen
auf, welche sich auf unerfahrene und unmotivierte Entwickler zurückführen lassen. Ins-
besondere ein Mangel an Unterstützung durch Tools erschwert es den Entwicklern, häufig
auftretende Sicherheits- und Datenschutzprobleme in Android Apps zu vermeiden. Als
Folge führt dies zu Apps mit Sicherheitsschwachstellen, die Benutzer einer Vielzahl von
Angriffen aussetzen.

Diese Dissertation präsentiert eine Reihe von Forschungsarbeiten, die Android-Entwickler
bei der Entwicklung von sichereren Apps untersucht und unterstützt. In einem ersten
Schritt untersuchten wir, inwieweit die Tool-Unterstützung Entwicklern beim Schreiben
von sicherem Code helfen kann. Zu diesem Zweck entwickelten und evaluierten wir eine
Android Studio-Erweiterung, die gängige Sicherheitsprobleme von Android-Apps identi-
fiziert und Entwicklern Vorschläge für sicherere Alternativen bietet. Daran anknüpfend,
konzentrierten wir uns auf das Problem veralteter Bibliotheken von Drittanbietern
in Apps, die ebenfalls häufig die Ursache von Sicherheitslücken sein können. Hierzu
analysierten wir alle gängigen 3rd-Party-Bibliotheken im Android-Ökosystem und gaben
den Entwicklern Feedback und Anleitung in Form von Tool-Unterstützung in ihrer
Entwicklungsumgebung, um solche Sicherheitsprobleme zu beheben. Im zweiten Teil
dieser Dissertation untersuchten wir empirisch die Auswirkungen von Benutzer-Reviews
im Android Appstore auf die Entwicklung der Sicherheit und des Datenschutzes von
Apps. Zu diesem Zweck entwickelten wir einen Review-Klassifikator, welcher in der
Lage ist sicherheits- und datenschutzbezogene Reviews zu identifizieren. Nachfolgend
untersuchten wir den Einfluss solcher Reviews auf die Entwicklung der Sicherheit und
des Datenschutzes in Android-Apps mithilfe einer Regressionsanalyse. Basierend auf
unseren Ergebnissen präsentieren wir verschiedene Vorschläge zur Verbesserung der
Sicherheit und des Datenschutzes von Android-Apps, welche die Reviews der Benutzer
zur Schaffung von Anreizen für Entwickler nutzen.

v





Background of this Dissertation
This dissertation is based on the papers mentioned in the following. I contributed to all
papers as the main author.

The initial work - FixDroid [P1] was based on the author’s master thesis proposed, and
advised by Sascha Fahl. In the master thesis, a set of common security pitfalls in Android
was extracted from existing research and from the Android official documentation. A
prototype version of FixDroid was then developed to help developers avoid such
security problems. FixDroid was then tested in a pilot study to get first hands-on
feedback on its feasibility and on how Android developers would used it. During his
PhD, the author had redesigned and reimplemented major parts of FixDroid since
a significant part of the internal API of Android Studio that FixDroid depended on
had changed. This work then was evaluated with participants (N=39) in a new study
to evaluate FixDroid’s effects on the code delivered by developers. The author was
responsible for major parts of the design, implementation, developer study, and paper
writing with the feedback from Sascha Fahl, Yasemin Acar, and Michael Backes. Sascha
Fahl, Charles Weir were involved in the general writing. All authors performed reviews
of the paper.

The initial idea of Up2Dep [P2] was proposed by Erik Derr and Sven Bugiel. The author
joint the discussion of Up2Dep with Erik and Sven on the topic, which eventually
shaped the idea of Up2Dep toward tool support. The author further extended the
initial idea to bring in more security focus by integrating cryptographic analysis into
Up2Dep. The author was then responsible for the major parts of the design including
the developer study, implementation, evaluation, and paper writing with the feedback
of Sven Bugiel, Erik Derr. Sven Bugiel and Erik were involved in the general writing of
the paper. All authors performed reviews of the paper.

The author had the initial idea and motivation for measuring the impact of user reviews
on app security & privacy evolution [P3]. The author was further responsible for major
parts of the design, implementation, evaluation, and paper writing with the feedback
from Erik Derr, Sven Bugiel, and Michael Backes. Sven Bugiel contributed with the idea
of using regression analysis to evaluate the impact of security & privacy related reviews
on app security & privacy evolution, the author was then responsible for realizing this
idea. Erik Derr provided his support in using his static analysis tools (LibScout and
Axplorer) to analyze Android apps. Sven Bugiel and Erik Derr were involved in the
general writing of the paper. Michael Backes provided feedback on the general direction
of the project. In general, all authors performed reviews of the paper.
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Smart phones have become an essential part of our daily life. They make our life
easier and more convenient. Thereby, smart phones make use of sensors (camera, GPS,
microphone, etc.), and other information of the users to personalize user experience.
One of the primary factors that contribute to the success of smart phones is third-party
applications (apps). Particularly, third-party apps have diversified the potential of
smart phones which ultimately serves many aspects of user’s needs. To distribute apps
to end users, market store was introduced that allows users to browse and download for
apps that suit their need. Google’s Play Store - the most popular market store for the
Android ecosystem currently has 2.96 million apps as of June 2020 [116]. The ubiquity
of smart phones and their ability to access user personal information attract an ever
increasing number of malicious third-party entities.

Existing research has shown a variety of attacks that abuse end user’s personal infor-
mation [67, 159, 124, 104]. While many works have been proposed to mitigate and
deal with malicious third-party applications, they often target post-development phase
where apps might have been released and already available to end users [40, 159, 162,
67]. The number of benign apps that have security & privacy problems unintentionally
created by benign developers still increases. Existing work highlighted two main reasons
for this problem namely developers’ inability to write secure code [6, 37] and the lack of
motivation to adhere to security & privacy best practices [3].

Particularly, developers can be inexperienced, and might not possess enough security
knowledge to write secure code [59, 60, 41, 51, 56]. Besides, existing code is often reused
by developers in the form of third-party libraries and when a library contains bugs or
security & privacy issues, those flaws could be amplified when the affected versions of
such a library are integrated in different applications [19]. Even when security fixes
are available in newer versions of the affected libraries, their adoption by developers
progresses very slowly as this does not seem to be an easy task mainly due to the lack
of tool support [49].

Furthermore, developers might not even be motivated enough to think about the security
& privacy of the end users as security is only their secondary concern [3, 115]. While
both research community and the industry can create advanced techniques to mitigate
security vulnerabilities, and to help developers avoid such vulnerabilities, such solutions
would not be effective if developers do not pay attention to app security & privacy i.e.,
security is a secondary concern. As a result, this leads to apps that are vulnerable to
multitude levels of attacks affecting millions of end users.

This thesis aimed to examine this topic as comprehensively as possible, we thereby
explored both major types of potentially influential factors to app developers, their
ability to write secure & privacy preserving code as well as their motivation to do so in
the first place. In particular, we set to investigate on how we can help and motivate
developers to write more secure and privacy preserving code. In the first part, our
goal was to empirically study to which extent tool support helps developers write more
secure code. To this end, we targeted the development phase of apps, and built an
Android Studio extension that identifies common security problems of Android projects,
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and provides developers suggestions to more secure alternatives. In the second part, we
looked at the lack of tool support that contributes to the security & privacy problems
of Android apps caused by outdated (insecure) third-party libraries. Specifically, we
aimed to further extend our tool support to help developers tackle such problems. To
this end, we built a second Android Studio extension to analyze Android third-party
libraries and provide developers information regarding the updatability and security of
third-party libraries included in developer’s projects. In the third part of this thesis,
we then turned to other aspect that influences the security & privacy of apps namely
developer’s motivation. Particularly, we focused on end user reviews and set to examine
whether end users pay attention to app security & privacy related issues, whether they
communicate with app developers on such matters, and finally what is the corresponding
effect on app’s security & privacy. Thus, we set to measure the impact of user reviews
on app security & privacy evolution. We applied machine learning techniques to build a
review classifier to identify security & privacy related reviews and performed several
regression analysis to measure their impact on app security & privacy evolution. Based
on our results, we could then identify insights to improve the security & privacy of
Android apps by leveraging user feedbacks to create motivation for developers to increase
the security & privacy of their apps.

Summary of contributions

In the following, we summarize the major contributions of this dissertation:

FIXDROID FixDroid is the first Android Studio extension that identifies common
security problems in Android projects and proposes more secure alternative (Chapter 3).
When developers writes code, FixDroid performs static code analysis on developer’s
project to find common security problems and provides developers suggestions to more
secure alternatives. In our study with professional and hobby app developers, we showed
that code delivered with the support of FixDroid contain significantly less security
problems.

UP2DEP Up2Dep is a first implemented solution that supports app developers in their
task to avoid outdated, insecure libraries (Chapter 4). Up2Dep analyzes third-party
libraries to provide developers with information about the changes that they may need
to perform when updating a library, based on the public API changes between the
library versions. Using the collected information about library APIs and their usages on
a given project, Up2Dep provides developers feedback on the updatability of outdated
library versions. Up2Dep also maintains a database of publicly disclosed vulnerabilities
and cryptographic API misuse of libraries, and alerts developers if a vulnerable library
version was included in their apps. To evaluate how Up2Dep could support developers
in fixing insecure code dependencies, we publicly released Up2Dep and tested invited
developers in their daily task. Up2Dep has delivered quick-fixes that could mitigate
dependencies with security problems in real projects. Up2Dep was further perceived by
those developers as being helpful.
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The impact of user reviews on app security & privacy This work presents the
first study on the relationship between end-user reviews and security- & privacy-related
changes in apps (Chapter 5). Using supervised learning techniques, we built a classifier
to detect security and privacy related reviews (SPR). Using static code analysis, we
then could identify the changes between those user reviewed app versions and their
immediate successor versions as security & privacy relevant when later app versions
behave more privacy friendly. Finally, we built a statistical regression model that takes
different factors into account that could affect the update of an app to measure the
impact of user reviews on app security & privacy evolution. Our results showed that
user reviews in fact lead to privacy improvements of apps.

Outline The remaining of this dissertation is structured as follows. In Chapter 2 we
provide common technical background information on the Android platform and its
main components. We then present FixDroid in Chapter 3 and Up2Dep in Chapter 4.
The impact of user reviews on app security & privacy is presented in Chapter 5. We
then conclude this dissertation in Chapter 6.
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2.1. ANDROID SOFTWARE STACK

This chapter introduces background information on the Android platform and its
fundamental components.

2.1 Android Software Stack

Android is a software system based on a modified version of the Linnux kernel, and
is designed for smart devices (e.g., smart phones, tablets, wearable devices). Android
was initially developed by Android Inc., which was then bought by Google in 2005 and
later made it debut in 2008 with Android 1.0. Since then Android has had multiple
versions ranging from 1.0 to 10.1. Each version is specified with an API level to manage
compatibility among these versions. Android is a software stack consisting of four
software layer (see Figure 2.1).

Applications

App App System Apps

App Framework

…

Wifi 
Service

Location 
Service

Telephony
Service

Runtime

SSL SQLite Open GL/ES

Native Libraries

DVM/ART

Linux KernelWifi 
Driver

Display 
Driver

Power 
Management

Third-party Apps

M
id

dl
ew

ar
e

Figure 2.1: The Android software stack. Figure adopted by [27].

Linux Kernel Linux Kernel is responsible for basic operating system services and
enables accesses of the operating system to low-level hardware. Linux Kernel in Android
has been modified to accommodate the resource-constraint of mobile devices.

Android Middleware Android Middleware consists of native libraries, Android run-
time featuring Dalvik Virtual Machine (DVM), and the application framework. DVM
is a register-based virtual machine executing Android applications. Unlike traditional
computers, everything in mobile is limited, DVM had been therefore optimized for
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resource constrained mobile devices. DVM was later replaced by Android Runtime
(ART) starting from Android version 5.0. ART performs code compilation a head-of-time
to optimize for performance. Additionally, in Android 7.0 just-in-time complier was
introduced to improve compilation performance.

Applicaton Framework Applicaton Framework provides a variety of API for Android
applications to access system resources such as location service, wifi service, settings.
These APIs are used to develop Android apps including both pre-installed and third-party
apps.

2.2 Android Apps

Android apps are usually written in Java, and since 2017 in Kotlin programming
languages [72], then are compiled to dex bytecode for execution inside DVM or ART.
Besides, developers can also develop apps in C and C++ languages using the Native
Development Kit. Similar to other platforms, many third-party libraries are developed
such that developers can re-use existing code in the form of (third-party) libraries which
eases the development task. Libraries are included in the form of bundled Java bytecode
(.jar file) or as Android Archive Library (.aar file). With Android Archive Library,
library developers can include resource files besides the code files. During the building
process, app code and library code files are merged together.

App Structure Every Android app must have an AndroidManifest.xml file that de-
clares all essential components of the app. An AndroidManifest.xml file also contains
information about permissions, minimum API level, third-party libraries, and hardware
features that the app requires to run.The following components are crucial:

• Activity: An activity is a foreground task that implements user interface and
serves as they entry point for a user into an app.

• Service: In contrast to Activity, a service runs in the background and performs
long-running tasks. It does not have user interface.

• BroadcastReceiver : A broadcast receiver is used to register for system and appli-
cation events.

• ContentProvider : A content provider is used to manage access to data of the app
itself, or stored by other apps. It also allows data sharing among apps.

App Permission Android introduces Permission system to govern accesses to sensitive
resources (e.g., Location, Storage, SMS ...) and to separate privileges among apps.
Install-time permission was introduced where users have to either grant all permissions
and install the app or deny all permissions and stop the installation process. Since
Android 6.0, run-time permission was introduced to and the users can grant or deny
permissions during app’s run-time.
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2.3 App Development Tool

At the early stage, Google provided the Android Developer Tools (ATD) in the form of a
third-party plugin for Eclipse integrated development environment (IDE) so that it could
be used to develop Android applications. In December 2014, Google released Android
Studio as a standalone and the official supported tool for Android app development [14].
Android Studio is built based on JetBrain’s IntelliJ IDEA software and designed for
Android development. Plugins play an important role in extending Android Studio’s
feature. The following are some of the essential features that are built in the form of
plugins for Android Studio:

• Manage project’s dependencies and building process: Gradle

• Catching performance and usability issues, syntax highlighting, code inspection:
Lint

• Managing code version control: GitIntegration

• Unit testing: Junit

Android Studio Plugin Development Android Studio is based on Jetbrain’s IntelliJ
IDEA. Therefore, to develop an Android Studio plugin one needs to create an IntelliJ
IDEA plugin that targets Android Studio. The IntelliJ platform provides tools designed
for static code analysis, i.e., inspections that allow developers to check for potential
problems in the source code. Examples of such inspections are finding probable bugs,
dead code, performance issues; improving code structure and quality; and examining
coding practices and guidelines. Code inspection in Android Studio leverages the
program structure interface (PSI) to analyze source code files of a project. PSI is
responsible for parsing files and creating syntactic as well as semantic code models. This
allows the IDE to efficiently perform static code analysis on a project’s source code such
as identifying code inconsistency, probable bugs, and specification violations. There are
two main program structure interfaces in IntelliJ IDEA namely PsiFile and PsiElement.
PsiFile represents the content of a code file as a hierarchy of elements (so-called PsiTree).
Each specific programming language can extend the PsiFile base class to have its
own representation, such as PsiJavaFile for Java language, GroovyFileBase for Groovy
language, or KtFile for Kotlin language. PsiElements are used to explore the internal
structure of a project’s source code by the IntelliJ platform. Specifically, PsiElements
are used to perform code inspection and quick-fixes on IntelliJ IDEA/Android Studio
projects. When a quick-fix is applied, PsiElements are updated, removed from, or
additionally added to an existing PsiFile. To analyze developer’s code, one can extend
the InpsectionProfileEntry class to build a PsiElementVisitor that traverses through
all PsiElements belonging to a PsiFile. Each PsiElement corresponds to a keyword, a
variable, or an operation in a particular language. To apply a quick-fix, e.g., replacing
an insecure code snippet with a more secure one. In such a case, a new PsiElement
representing a more secure code snippet is created and replaces the existing PsiElement
that represents the insecure code snippet.
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2.4 Market Store

Third-party applications can be distributed from centralized software distribution
channels namely market stores or from external sources such as SDCard. To distribute
apps via market stores such as Google Play, third-party developers need to submit
their apps to Google Play. The apps must adhere to Google’s policy, and will go
through automated vetting systems such as Google Play Protect [69] for quality control,
censorship, and security protection. These systems scan apps for malicious intention.
They execute apps in a simulated environment to detect hidden malicious behavior.
Once an app has been vetted, it will be available on the store and end users can then
search, download, and install it.

User reviews App users can share their experience — in the form of review, with a
rating score — with other users on application stores such that the other users can
decide whether or not to install an app. Application store further allows end users to
provide direct feedback to developers on the apps that they are using. Developers in
turn can use this channel to respond (reply) to user reviews. A reply can have maximum
350 characters limit.
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3.1. MOTIVATION

3.1 Motivation

Despite security advice in the official documentation and an extensive body of security
research about vulnerabilities and exploits, many developers still fail to write secure
Android applications. Frequently, Android developers fail to adhere to security best
practices, leaving applications vulnerable to a multitude of attacks. This work points
out the advantage of a low-time-cost tool both to teach better secure coding and to
improve app security. Using the FixDroid™ IDE plug-in, we show that professional and
hobby app developers can work with and learn from an in-environment tool without
it impacting their normal work; and by performing studies with both students and
professional developers, we identify key UI requirements and demonstrate that code
delivered with such a tool by developers previously inexperienced in security contains
significantly less security problems. Perfecting and adding such tools to the Android
development environment is an essential step in getting both security and privacy for
the next generation of apps.

3.2 Problem Description

The introduction of Android to the mobile operating system market led to the devel-
opment of new paradigms and open standards on mobile systems. Today, Google’s
operating system is among the most used mobile operating systems with the largest
installed base of any operating system. A major contributor to this success is the
Google Play market with its free and paid apps for any and all circumstances, from
ordering food to playing card games. The market currently allows Android users to
install over 2.9 million apps from third-party developers and, when installed, run the
apps on their mobile system. The benefits of a large Android app environment thus
come with a number of security and privacy related risks for a user, especially due to
errors by app developers. Therefore, it is especially important to secure third-party
apps, by encouraging and enabling third-party developers to write secure code.

Many available mobile apps have poorly implemented privacy and security mechanisms,
possibly resulting from developers who are inexperienced, distracted, or overwhelmed [6].
Risk-factors leading to insecure code include general inexperience of developers, a sole
focus on code functionality while ignoring security implications, and careless adopting of
code parts from unverified online information sources [6]. Even worse, some developers
just copy and paste code they find when searching for a solution to their security related
issues [94]. Even in the absence of these security-neglecting actions by developers,
benign failure to write privacy preserving or secure code can lead to applications that
leave user data vulnerable to leaks and attacks. Developers have been found to risk
users’ privacy and security by requesting more permissions than actually needed [125,
128], by not using TLS [59, 60], by failing to use cryptographic APIs correctly [52], by
using dangerous options for Inter-Component Communication [40], and by failing to
store sensitive information in private areas [57].

15



CHAPTER 3. SUPPORTING ANDROID DEVELOPERS IN WRITING SECURE CODE

Although the Android environment provides users with a number of tools and policies
to counter security problems and manage privacy risks, the issues above prove that
these are not sufficient to prevent insecure Android apps. We propose that supporting
App developers in a developer-friendly and compelling manner in making choices will
result in improved security and privacy for the app users. Teaching a developer about
secure coding practices will not only help the developer, but will also result in increased
security and privacy for every user that runs apps by that developer.

3.3 Contributions

To support Android developers in writing secure code, we developed the FixDroid
tool. As plugin for the officially supported Integrated Development Environment (IDE)
of Android, Android Studio, FixDroid highlights security and privacy related code
problems, provides an explanation to developers, and suggests ‘quick fix’ options. Similar
to a spell-checker in a modern word-processor, FixDroid highlights code snippets that
impact the security or privacy of the app. FixDroid builds upon the concept of Android
Lint, a tool included in the official Android Software Development Kit (SDK), but
avoids certain limitations and improves the support for developers.

To evaluate the usability and acceptance of a FixDroid prototype, we performed a pilot
study with 9 developers. With knowledge from this pilot study, we improved FixDroid
and developed study platform integrated inside FixDroid that allows conducting
Android developers study remotely and fully automatic. On this platform, we then
conducted a remote developer study with Android developers and students (N=39) to
evaluate the security benefits of FixDroid.

The study proved the effectiveness of this approach by reducing the number of security
errors in resulting code. It also validated the approach of using remote IDE telemetry
as a means for evaluating developer behavior and showed the importance of having very
clear visible indicators for security errors.

The main contributions of this work are:

• Proving the effectiveness of an interactive IDE-based security review tool in im-
proving the security and privacy aspects of code written by third party developers,

• Identifying new UI requirements for such a tool based on feedback from developers,

• Delivering evaluations of the effectiveness of such a tool with both experienced
professional developers and less experienced student developers, and

• Validating the use of telemetry in an IDE to determine programmer behavior.
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3.4 Technical Description and Approach

3.4.1 Android Application Development

The mobile operating system Android includes the Google Play market with access to
over 2.9 million user-developed apps. In the early days of Android app development,
developers either relied on the Eclipse IDE with the Android Development Tools (ADT)
plugin or the NetBeans IDE with plugin for writing apps. In December 2014 Google
released the Android Studio IDE based on JetBrains’ IntelliJ IDEA, which functions
together with the SDK as officially supported Android IDE. Features of Android Studio
include a Gradle-based build system, and an Android Device emulator for testing apps.

App Source Files

lint.xml config

lint tool Usability

Correctness

Security

Performance

Accessibility

i18n

Output

Figure 3.1: Code scanning work flow with Lint tool. Figure adopted by [70].

3.4.1.1 Android Lint Tool

In addition to functional checks, the Android SDK includes the Android Lint code
scanning tool to detect problems with the structural quality of code. The lint tool takes
a configuration file and the source files of an app, performs static code analysis, and
highlights over 200 problems1 in the categories of correctness, security, performance,
usability, accessibility, and internationalization, (cf. Figure 3.1). Examples of the
problems lint highlights include missing permissions for requested APIs, using a mock
location provider in production, and initializing a random number generator with a
fixed seed.

3.4.1.2 Lint Shortcomings

Though Lint is a very useful tool that helps developers to improve code quality in
general and some aspects of software security in particular, its current implementation
does not support the app developer optimally. The following sections identify a couple
of drawbacks that limit its effectiveness, and suggest actionable changes for each to
make Lint security more effective.

1https://sites.google.com/a/android.com/tools/tips/lint-checks
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Figure 3.2: A vague highlighted code.

Limited User Interface Lint security uses ‘vague highlighting’ for detected security
issues (e.g. ECB mode for cryptography) - cf. Figure 3.2. This way of highlighting
insecure code snippets has two drawbacks:

• Lint uses the same highlighting for all kinds of warnings, i.e. non-security related
bad code smells are highlighted in the same way as security related bad code
smells.

• Using the same highlighting for all sorts of coding problems may lead to habituation
and even to overlooking the highlighting entirely.

Proposed Action:
To attract the developer’s attention, the user interface should consider insights
from previous usable security and privacy research [136, 138, 54].

Figure 3.3: Lint does not provide help in term of quick-fixes for security bad practices .

No Way Out While Lint highlights security problems and even provides textual infor-
mation in the form of tool tips (cf. Figure 3.3), it does not guide developers through
the process of turning insecure code into secure code. Although this is not possible in
all cases (in particular in cases that spread insecurities across many different methods,
classes and packages), in many cases developers could be instructed to apply secure
coding practices. Examples might be not using an empty TrustManager implementation,
or replacing an insecure mode of operation such as ECB for symmetric cryptography.

Proposed Action:
Provide easy-to-use code snippets to turn insecure code into secure code in as
many cases as possible [64].
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Limited Data Flow Analysis Lint has a lightweight data flow analysis to detect
programming issues [146, 91]. It is able to detect obvious security issues such as using
ECB for symmetric encryption or a HostNameVerifier that returns true (cf. Figure 3.4).

Figure 3.4: Android Lint is able to detect an insecure HostNameVerifier that returns true.

However, due to the lack of comprehensive data flow analysis, Lint does not detect more
complex instances of the above problem (cf. Figure 3.5).

Figure 3.5: Android Lint fails to detect a simple insecure HostNameVerifier.

While we are aware that comprehensive data flow analysis is an ongoing branch of
research in the field of static code analysis [122, 84], we feel that covering some more
complex cases is crucial to provide a good user experience, since it confuses users to
detect one instance of a problem but not another, more complex one.

Proposed Action:
Improve data flow analysis to cover more complex cases

3.4.2 Approach

Given these limitations in Android Lint, we believe the tool has only limited impact in
helping developers to improve app security. We hypothesized that an enhanced version
might achieve better security results. To test this hypothesis, we implemented a further
plug-in for Android Studio, tailored towards teaching developers about app security.
We call this tool ‘FixDroid’.

FixDroid addresses the Lint tool’s limitations, and adds functionality to learn about
developer behavior, while supporting developers in making security related decisions.
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FixDroid aims to give its users unobtrusive feedback about the privacy and security
impact of the code, as they write it. FixDroid scans a developers’ code for ‘pitfalls’:
constructs with less-than-ideal privacy and security. Additionally, FixDroid detects
whenever a developer pastes a code snippet and attempts to match it against an online
database of known insecure code snippets (from StackOverflow). FixDroid is available
as an Intellij IDEA plugin for Android Studio. It had had more than 500 downloads by
August 20172.

3.4.3 Addressed Pitfalls

FixDroid currently covers 13 security pitfalls taken from the Android Official docu-
mentation and from the existing research described in Section 3.10. It indicates these
problems on the appropriate lines of code, using a ‘security indicator’ to catch developers’
attention. For some of those pitfalls, FixDroid offers quick-fixes; when a quick-fix is not
available, FixDroid provide a warning message that describes the pitfall. The list of
addressed security pitfalls is in Table 3.1.

Pitfall Security Tooltip Quick-fix
Insecure Cipher.get-
Instance

You appear to be using Cipher.getInstance
with the insecure default ECB Mode. To
improve security, a different encryption mode
with padding e.g. AES and CBC should be
used.

AES/CBC/-
PKCS5Padding

Non-random Initial
Vector for Cipher.in-
it

You appear to use a constant Initial Vector.
To secure the encrypted data against hacking
attacks, the IV should be randomly generated
and passed or stored along with the encrypted
data.

Constant key for en-
cryption

You are using a constant key for encryption.
To avoid an extraction the hard-coded key of
the hard-coded key by reverse-engineering, a
dynamically generated should be used, prefer-
ably from a server.

Less than 1000 itera-
tions for PBE

You are using less than 1000 iterations for
PBE. It is recommended to use at least 1000
iterations to increase the difficulty of reversing
the hash.

Use 1000 it-
erations

ECB mode for en-
cryption

You appear to be using the insecure ECB
mode for encryption. It is recommended to
use a more secure mode like AES/CBC/P-
KCS5Padding.

AES/CBC/-
PKCS5Padding

2https://plugins.jetbrains.com/plugin/9497-fixdroid
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ImproperHostName-
Verifier

You appear to be using an improper Host-
NameVerifier. This allows an attacker to im-
personate the host. It is recommended to use
default HostNameVerifier or, better still, SSL
pinning.

SecureRandom with
static seed

You are using a static seed, which allows an
attacker to predict the random numbers gen-
erated. It is recommended to use the default
constructor of SecureRandom.

Remove
static seed

HTTP over HTTPS You are using an insecure HTTP connection.
An attacker may intercept and view all the
traffic, or replace the server completely. It is
recommended to use HTTPS.

HTTPS up-
grade

WebView HTTP over
HTTPS

You are using an insecure HTTP connection.
An attacker may intercept and view all the
traffic, or replace the server completely. It is
recommended to use HTTPS.

HTTPS up-
grade

WebView Loading
local HTML file

You are loading HTML content directly from
the file system. A virus or rogue app running
on the device might replace this with other
code. It is recommended to load JavaScript
only from secure areas.

Custom certificate This is a connection to a server with a self-
signed/untrusted certificate. If you believe
this server should be trusted, it is recom-
mended to use SSL pinning.

SSL pinning

Loading code from
public places

You are loading code from the publicly acces-
sible location. This code can be infected from
contact with a virus or rogue app running on
the device. It is recommended to load code
only from secure sources.

SQL Injection You are using a query that is vulnerable to
SQL injection. An attacker can enter text that
is interpreted as SQL commands, allowing ac-
cess to the whole database. It is recommended
to use a parameterized query.

Place-
holder
string

Table 3.1: Security tooltips and corresponding quick-fixes displayed by FixDroid.
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3.4.4 How FIXDROID Works

FixDroid leverages the inspecting mechanism in IntelliJ IDEA3. By default, FixDroid
analyzes all open files of Java and Xml source code. It highlights all security bad
practices as the developer writes code, using both Intellij’s default highlighting and
more visible ‘security indicators’ on the insecure code’s line numbers. Furthermore,
Intellij also supports developers running FixDroid inspection in bulk mode where all
source files will be inspected: thus the developer can choose to inspect an entire project,
or any scope within it.

When the developer moves the mouse over the highlighted code or over the security
indicator, the corresponding warning message will be displayed. The developer can
enable the available quick-fix by using the default short-cut of Android Studio or by
simply clicking on the security indicator (cf. Figure 3.6).

3.4.5 Example of Use

Figures 3.6 through 3.8 show an Insecure Network Connection example. Here FixDroid
observes that developers are writing code to connect to a given URL with the HTTP
protocol – which is insecure. FixDroid finds a quick-fix using the same URL but
replacing HTTP by HTTPS. Given this option is available, developers are informed by
highlighting the insecure code and marking the corresponding code lines as insecure
with a security warning icon. When developers move their mouse over the highlighted
code or the warning icon, a corresponding message is shown, telling them what the
problem is and how to resolve it. Developers can fix the insecure code by clicking on
the warning icon or by using the built-in shortcut of Android Studio (cf. Figure 3.7).
When a quick-fix is applied (cf. Figure 3.8), the previous warning message and security
indicator disappear.

Figure 3.6: FIXDROID detects an insecure code snippet.

Figure 3.7: FIXDROID suggests a quick fix.

3https://www.jetbrains.com/help/idea/running-inspections.html
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Figure 3.8: HTTPS Upgrade quick-fix has been applied.

Android
Source Files

Config file

Inspectors

Code Editor Line Marker

Security Resolver

Telemetry
Manager Web Service

Database

Figure 3.9: FixDroid’s Architecture

3.4.6 FIXDROID Implementation

The different components of FixDroid are illustrated in Figure 3.9. Inspectors are
the center components that watch developer’s code. Whenever the developer finishes
writing a line of code, a method or a class implementation, the appropriate Inspector
invokes Security Resolver to check if that given code snippet is secure or not. If the
code snippet is insecure, the Inspector forwards the information to Telemetry Manager.
At the same time the Inspector also informs developers via Code Editor by highlighting
the insecure code snippet as well as marking the insecure code with a security indicator.

When the developer invokes a quick-fix, this invokes Line Marker to make the code
change.

Web Service supports FixDroid’s communication with our back-end database. Config
File contains the mapping of which Inspector is responsible for which security pitfall.

3.4.7 Static code analysis

FixDroid leverages the IntelliJ IDEA static analysis techniques to performs static code
analysis at method, class and project levels. Hence, FixDroid can statistically resolve
variables that are computed from different code locations. This eliminates mistakes
similar to the example of HostNameVerifier (c.f Section 3.4.1.2).
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3.5 Pilot Study

In the developer review sections and the pilot study, we have the same 3 programming
tasks: network connection, SQL query, and data encryption. They will be described in
details in section 3.6.2

3.5.1 Initial User Interface Evaluation

First, we conducted three developer review sessions to gain a first insight into how
developers might use FixDroid in real world situations. The reviews were conducted
with three Android developers within the lead author’s organization, CISPA. These
three developers were asked to solve three programming tasks with FixDroid installed
on their Android Studio. To closely observe the developers’ interaction with FixDroid,
a researcher sat beside them while they were solving the tasks. Developers expressed
their feelings and expectations during the study.

From the reviews, we observed:

• All the observations of programmer behavior could be automated by the tool, so
we did not need to invite future participants into our lab to watch them solve
programming tasks. This could help avoid the biases that lab studies often face [75,
81].

• Highlighting insecure code is not enough. None of the three developers noticed
the highlighted code.

Therefore as a next step we redesigned the field study to be conducted automatically and
remotely. We invited later participants to join in our study online, by installing FixDroid
over the web. We added functionality to gather and observe developers’ interaction
and send anonymous details to FixDroid’s server. We also added an additional security
indicator (cf. Figure 3.6 and 3.7) to inform developers of insecure practices.

3.5.2 Remote Pilot Study

We conducted a second pilot study with 9 participants, recruited from our industry
contacts. All were experienced professional developers; Table 3.2 shows the participant
demographics. A researcher stayed online (e.g., using Skype) to provide participants
instruction and help when needed.

Age
Mean = 26.11 Median = 26 Standard Deviation = 1.36

Professional Android Experience
Yes = 5 No = 4

Table 3.2: Pilot study participant demographics.

All participants reported that they noticed the security indicator from FixDroid while
only 3 participants noticed the highlighted code. This indicates the effectiveness of the
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security indicator in informing developers about their insecure code snippet.

In this study, 6 out of 9 participants used quick-fixes provided by FixDroid. At this time
FixDroid only provided participants with quick-fixes for the SQLite and Connection
tasks; only one participant managed a secure solution for the Encryption task. That 8
out of 9 participants produced insecure code for the Encryption task although all of
them had read FixDroid’s warning messages, suggests that the cryptographic APIs in
Android are particularly difficult for developers to use, even when they are aware of the
security implications of their code. With that in mind, we decided to include a quick-fix
for the Encryption task in our final study.

3.5.3 Online Developer Study Platform

After the online pilot study, we learned that, having a suitable infrastructure would allow
us to conduct online developer study to evaluate the effect of FixDroid completely
automatically. All study instructions and interaction between participant and executive
researchers can be automated. This would eliminate the bias of in-lab study and
enable us to conduct study with as many participants simultaneously as we would like.
Therefore, to realize such infrastructure, we developed the following generic setup which
can be easily integrated with any Android Studio plugin:

• A web service component that allows researchers to set up developer studies.
Particularly, researchers can provide app skeletons for the programming tasks,
instructions for participants, and a corresponding survey for the study.

• A client based (Android studio) component that retrieves from the web service
information about the study, app skeleton, and setup the study, display instruction
accordingly. More importantly, this component can have opt-in features that
allows collect telemetric data in-the-wild on developer behavior, and send to the
web service for later analysis.

In the context of this work, we leveraged such an infrastructure to evaluate the impact
of FixDroid on the security of code provided by developers. In the following we
describe how we apply the aforementioned infrastructure to conduct a remote study
with developers in an automated fashion e.g., no executive researchers needed to
moderate the study.

Study Guidelines We used the web service to ship a sample ‘study project’ and
instructions to help developers learn how to use it. The sample project challenges
developers to avoid many of the possible pitfalls, specifically those related to secure
network connections, SQL injection, and encryption.

Telemetry We aimed to gain a better understanding of how developers interact with
FixDroid. Therefore, we extended the client based component of our infrastructure to
collect the following information:

• Source code: when participants completed a programming task in the study
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project, we sent their completed implementation to our server4.

• Security bad practice events, including the time, the type of bad practice (pitfall),
and whether the code in question was copied/pasted. When FixDroid detects
a pasted insecure code snippet, it asks the programmer for the source of that
snippet, preferably as a URL

• Security good practice events, code that avoids a pitfall, to help measure if
participants’ security programming skills improve from using FixDroid.

• Security tooltip events record whether a particular warning message has been read
by developers, how long developers spend to read it.

• Quick-fix events, indicating whether an offered quick-fix was used by developers,
when it was used, and whether the developer used the default shortcut of Android
Studio or clicked on security indicator. When the programmer applies a suggested
quick-fix, FixDroid asks how useful they found the quick-fix, on a five point
Likert scale.

3.6 User Study

3.6.1 Study Design

For our main study, we wanted to evaluate the effectiveness of the FixDroid approach
with professional Android developers. We therefore recruited Android developers who
submitted apps to the Google Play store.

Our hypothesis H1 was that developers using FixDroid would deliver more secure
Android code; the corresponding null hypothesis H0 that they would not. We therefore
divided participants into two groups: developers in one group had all the functionality
of FixDroid (FixDroid enabled); developers in the other did not have FixDroid fully
enabled (no warning messages or quick-fixes). Both groups had the Lint tool enabled.
To balance the group sizes the FixDroid server assigned participants based on the
number of valid participants so far received in each group.

Each participant carried out the ‘study project’. Our analysis only considers participants
who completed writing code for at least 1 code snippet and filled out our exit survey.

3.6.2 Study Tasks

In the ‘study project’, participants were provided a skeleton Android application and
asked to solve three different security related programming tasks. Each participant
received the same three programming tasks, although the task ordering was randomized.
For each task, a corresponding unit test was provided that participants could run to
check if their solution is functional. Note that the test cases do not check if the solution
is secure.

4We only sent the source code that belongs to our study. If participants used FixDroid in other
projects, the corresponding source code was not collected.
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The following sections describe the three tasks. While these do not encompass the entire
space of security relevant problems encountered by Android developers, previous studies
[4, 6] have found that even simple problems similar or identical to those used in the
study lead to problems in production code.

Network Connection This provides a code snippet to be completed to establish a
connection to a server. Participants were given the domain and query path of the URL,
then requested to add a protocol to make this URL valid and establish the connection
and get a return code status (i.e 200, 400 or 500). The goal of this task was to check if
participants used a secure connection (HTTPS) to connect to the given host. The host
supported both HTTP and HTTPS protocols.

A corresponding test case was provided, which passes when the method connect returns
the value of 200.

Data Encryption In this task, participants were asked to encrypt a given plain-text.
Participants were expected to encrypt a string and return an array of bytes. The goal
of this task is to see how knowledgeable developers are about cryptographic APIs.

A corresponding test case was provided, which passes when the returned array of
encryption method is not null and has a length greater than 16.

SQLite Query In this task, participants were asked to build a SQL query to retrieve
the age of a given user name. In the skeleton app, we have already created a SQLite
database with a predefined table named "users". Table "users" has 4 columns: id, name,
age, password. The goal of this task is to see if participants are aware of SQL injection
attacks.

A corresponding test case was provided, which passes when this test case returns the
correct age of a predefined user which has been inserted into the attached SQLite
database.

3.6.3 Participant Journey

After each participant finished installing FixDroid and its dependencies5, the installer
requested a restart of their Android Studio to commission the newly installed plugin
(FixDroid). FixDroid then offered the participant to join our Android Research
Study with a reminder that all of the listed dependencies must be installed in advance.

If the participant decided to join our study, FixDroid then provided instructions on
how to navigate between tasks, test cases and how to reset a solution back to the original
version of the code; then invited them to click start to get the first task. Every time
the participant built the Android application, the solution was sent to FixDroid’s web
service for later analysis.

5SDK Platform Android 7, Android SDK build-tools
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Since the second group did not have FixDroid enabled for the study, when a participant
in this group had filled in our exit survey, FixDroid then enabled its full functionality.
It also opened a file containing example insecure code, allowing the participant to see
how the full-functionality FixDroid worked by examining the warning message or
applying the provided quick-fix. Thus each participant in the second group received the
benefit of the FixDroid tool for later use without a biasing effect on our study results.

3.6.4 Exit Survey

While a participant was still completing the tasks, FixDroid showed an "Open Survey"
button, encouraging participation in our the survey. When a participant had written code
that passed all of the three test cases, FixDroid prompted explicitly for participation
in the survey. FixDroid also asked for survey participation when a participant closed
or quitted Android Studio without completing all the tasks.

For the group with FixDroid enabled the survey included questions about the par-
ticipant’s interaction with FixDroid together with demographic questions. For the
group without FixDroid, the survey asked only demographic questions. Appendix
Section A.1 has details of the questions.

3.6.5 Evaluating Participant Solutions

We invoked each sample of code submitted by our participants, built into a suitable
framework. For each task, we also manually evaluated their security and functional
correctness, creating a score to reflect each outcome based on the properties of each
task. Two researchers were assigned to score the participants’ solutions, with a third
coder providing a casting vote in cases of disagreement. The scores were assigned as
follows:

Functionality For each programming task, a participant received score 1 for their
functionality if the code passed the test, otherwise 0 is given.

Security Only functional solutions received a security score. Depending on the task,
we evaluated different security considerations, coding each as secure (1) or not (0) as
follows.

3.6.6 Security Evaluation

For the Connection task, if a participant used https protocol for their connection, their
solution was considered secure; http was considered insecure.

1 St r ing query = " s e l e c t age from use r s where name = ? " ;
2 Cursor cu r so r = database . rawQuery ( query , new
3 // or
4 Cursor cur so r2 = database . query ( " u s e r s " ,new ↷

St r ing [ ] { " age " } , "name=?" ,new St r ing [ ] { userName } , nul l , ↷
nul l , n u l l ) ;

Listing 3.1: Parameterized query string
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For the SQLite task, if a participant used question mark ? as string placeholder and
put userName as parameter of their rawQuery method call; or if they used the query
method specifying the column’s name, table’s name, and arguments as parameters, the
solutions was considered secure (see Listing 3.1 for example). However, if a participant
concatenated the variable userName to their query string, the solutions was coded as
insecure.

For the Encryption task, we captured how different parameters affect a solution’s security
as described in Table 3.3; that table only lists options that were found in one or more
participants’ solutions.

Parameter Secure Insecure

Cipher/Mode
AES/CBC [152] DES, AES/ECB [52]
AES/GCM [137] Blowfish [151]
AES/CFB [137]

Initialization Vector provider generated static [52]
bad derivation[52]

Key provider generated static [52]
bad derivation [52]

Password Based Encryption
⩾ 1000 iterations [93] < 1000 iterations [93]
⩾ 64-bit salt [93] < 64-bit salt[93]
non-static salt [93] static salt [52]

Table 3.3: Encryption security parameters

3.6.7 Recruitment

To maintain the validity of our study, we wanted only to recruit experienced Android
developers. Therefore, we extracted developers’ emails from the Google Play Store,
since any such developer will have completed at least one working app. We sent emails
in batches, asking Google Play developers to participate in a study on how to support
Android developers in writing code. We did not mention security in the recruitment
email. However, this approach did not scale well since participants wanted to know
what FixDroid does before installing it as an Android Studio plugin. We received a
number of emails asking for this information. We also provided participants the option
to stop receiving invitation emails from us.

To encourage more participants, we added more details to our later emails, specifying
that FixDroid helps developers write more secure code with possible quick-fixes. After
this change we had a higher response rate. In all, we sent invitation emails to 210,854
developers and got 16 participants who volunteered to participate in our study and
finished both writing code and filling in our exit survey.

We also recruited students to join in our study. As compensation they received 25 Euros
either in cash or as an Amazon voucher. We sent invitation emails to five universities
in Germany.
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Our email linked to the FixDroid plugin in the Android Studio plugins repository,
allowing participants to download FixDroid directly from their Android Studio.

To verify students’ Android programming experience we gave them a set of 5 Android
programming related questions to answer. We only invited students who answered at
least 3 questions correctly. 65 students participated in our pre-study quiz; 59 were
invited. We stopped recruiting when we had 24 students, due to budget constraints.

3.6.8 Ethical Concerns

All the telemetry data was gathered pseudonymously, with personally identifiable
information removed before sending it to the server. All data was sent securely to
FixDroid’s web service using HTTPS. Our study was approved by our institution’s
ethics review board.

We have concerns about researchers sending emails to large numbers of developers, and
are working with StackOverflow to deliver an opt-in list for developers interested in
working with academic researchers.

3.7 Study Results

3.7.1 Participants

In total, 409 participants downloaded FixDroid. Table 3.4 shows how many from each
group completed the exit survey. This includes some participants who did not write
any code.

Mode Started Completed
Full functionality 45 22
Only telemetry 70 35

Table 3.4: Number of participants who started and completed surveys

Table 3.5 shows how many completed 1, 2, or 3 tasks, and how many dropped out
before completing any tasks. This includes all participants, including those who didn’t
complete a task or the survey.

Mode 0 Task 1 Task 2 Tasks 3 Tasks
Full functionality 33 9 3 19
Only telemetry 55 5 3 19

Table 3.5: Number of participants who completed tasks
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Full functionality Only Telemetry
Age
Mean 25.32 27.45
Median 25.00 25.00
Standard Deviation 4.60 5.88
Information Security Background
Yes 7 12
No 6 14
Apps Submitted
Mean 4.89 6.95
Median 3.00 3.00
Standard Deviation 4.42 7.05

Table 3.6: Participant Background

Our participants in the developers group were aged between 21 and 47 (see Table 3.6)
while participants in students groups were aged between 19 and 30.

Country Count Country Count
Moldova 1 Poland 1
UK 1 Colombia 1
Germany 3 India 3
Vietnam 2 Turkey 1
Czech Republic 1 Greece 1
Kenya 1

Table 3.7: Country of origin of developers

All the students come from Germany; the developers included participants from nearly
all over the world (Table 3.7).

Almost all participants have been programming in Android for at least 6 months (see
Figure 3.10). The exception was two students who had only taken Android programming
related courses.

3.7.2 Findings from Participants’ Experience

This section explores our findings from the exit survey, telemetry features and experience
sampling. This analysis considers only participants who completed both at least one
task and the exit survey.

Sources of Information Figure 3.11 shows participants’ descriptions of where they
looked for coding support. The results are consistent with Acar et al.’s earlier research [6],
suggesting that these developers are typical in their use of development resources.
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Figure 3.10: Android programming experience
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Figure 3.11: Where do you usually look for security related coding questions?
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Figure 3.12: FixDroid features reported by participants

Perceived use of FIXDROID features Moving on to consider survey information from
the participants using FixDroid, Figure 3.12 shows which features of FixDroid users
believed they used. Consistently the students used more features; and the warning
icon and quick-fix were used most. This is consistent with the telemetry recorded by
FixDroid (see Section 3.7.2)
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Strongly disagree Disagree Neutral Agree Strongly agree

Figure 3.13: Reported value of each quickfix applied

Perceived value of quick fixes Every time participants used a quick-fix offered by
FixDroid, they were immediately presented with a question asking for the usefulness
of the provided quick-fix, using a 5-point Likert scale ranging from “Strongly Disagree”
to “Strongly Agree”. Figure 3.13 summarises the responses; a majority of quick-fix users
agreed or strongly agreed that their provided quick-fixes were useful.

On the exit survey, nearly two third of the participants (63.15%) in the FixDroid
group reported that they used at least one provided quick-fix; they all reported that
the provided quick-fix was useful (n=19). Interestingly only half of participants in
this group reported having used IDE-provided quick-fixes prior to our study, although
quick-fixes are generally available for non-security related issues.

33



CHAPTER 3. SUPPORTING ANDROID DEVELOPERS IN WRITING SECURE CODE

0 5 10 15 20 25 30 35

SQLite

Connection

Encryption

Tooltip QuickFix

Figure 3.14: Actual use of FixDroid features

Actual Use of FIXDROID Features Figure 3.14 shows the actual use of FixDroid’s
features during each of the tasks, as measured by FixDroid’s telemetry functional-
ity. The Encryption task generated significantly more activities than the other two,
suggesting that that this is particularly difficult for developers.
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Only	telemetry Full	functionality

Figure 3.15: Number of copied and pasted insecure code events

Use of copy/paste Figure 3.15 shows the developer use of copy/paste during each
of the tasks. Again, the Encryption task generated significantly than the other two,
suggesting that it required much more online research on the part of developers.

Whenever participants copied and pasted an insecure code snippet to their solution,
FixDroid asked them to provide us the URL of the website from which they copied
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the code. The most common source was StackOverflow; this supports the reported
information sources in our exit survey. We manually examined the links, and found
that, for encryption related questions, every link contained at least one insecure code
snippet.

Other participants reported that they copied code from other projects or from their
notepad.

Factor Description Baseline
Required factors
Mode FixDroid or Default Default (only

telemetry feature)
Task One of the three tasks described in

Section 3.6.2
Connection

Optional factors
Group Developer or student Developer
Experienced True if participant has submitted

more than 5 apps or has more than
3 years of experience otherwise False.
Self-reported.

False

Security background True or False, self reported False

Table 3.8: Factors used in regression analysis

3.7.3 Regression Model

The following sections show the results of applying a regression model to analyze the
results in detail.

Table 3.8 shows the factors analyzed. Since we are only interested in binary outcomes
(e.g., secure vs. insecure), we used logistic regression. When we considered results on a
per-task rather than a per-participant basis, we used a mixed model that adds a random
intercept to account for multiple tasks from the same participant.

For the regression analysis, we considered a set of candidate models and selected the
model with the lowest Akaike Information Criterion (AIC) [30]. The included factors are
described in Table 3.8. We considered candidate models consisting of the required factors
mode and task , the participant random intercept, plus every possible combination of
the optional variables.

We report the outcome of our regressions in Table 3.9. Each row measures the change in
the analyzed outcome related to changing from the baseline value for a given factor to a
different value for that factor (such as changing from not having access to FixDroid
functionality to having FixDroid activated). Logistic regressions produce an odds ratio
(O.R.) that measures the change in likelihood of the targeted outcome; baseline factors
by construction have O.R.=1. In each row, we also give a 95% confidence interval (C.I.)
and a p-value indicating statistical significance.
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Factor O.R. C.I. p.value
FixDroid 19.55 [2.42, 157.84] 0.005*
Encryption 0.37 [0.13, 1.06] 0.065
SQLite 0.99 [0.34, 2.88] 0.993

Table 3.9: Mixed logistic regression on factors contributing to task security

For the regression, we set using normal Android Studio (only with FixDroid telemetry
features) as the baseline. In addition, we used the connection task as the baseline, as
this seems like a likely task for developers to encounter in real life and has been done
before by Acar et al. [6]. All baseline values are given in Table 3.8.

3.7.4 Functional Correctness Results

We observed no statistically significant difference in the number of functional solutions
between each task, and between groups (cf. Figure 3.16). Developers and students with
FixDroid’s support do not perform significantly better compared to participants with
only the telemetry features, in terms of functional correctness.

0,00% 20,00% 40,00% 60,00% 80,00% 100,00%

SQLite

Connection

Encryption

Only	telemetry Full	functionality

Figure 3.16: Funtionality results for each task

3.7.5 Security Correctness Results

Figure 3.17 shows the proportion of developers and students achieving a secure solution
in each of the tasks. We were pleased to see a dramatic difference in security success,
with more than twice the proportion achieving a secure solution in the Encryption and
Connection tasks. Interestingly there was little difference in security success for the
SQLite task.
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Figure 3.17: Security results for each task

Table 3.9 shows the analysis for these figures, considering factors contributing to task
security, performed on functionally correct tasks. Statistically significant values are
indicated with *.

Since we used the group of participants with no security quick-fixes or warning messages
available as our baseline, our hypothesis H1 (that FixDroid has an impact on security)
is represented by the factor ‘FixDroid’ in the analysis. We can therefore reject the
null hypothesis, H0, that FixDroid has no impact, with the p value of 0.005.

3.8 Limitations

We can identify the following limitations to our sampling process. First, since the
participants are in effect self-selecting, we have an opt-in bias. There is the possibility
that these results won’t extend to the full set of programmers. We also have a relatively
small sample set, though we have addressed that using appropriate statistical methods.

As we wanted to have more participants, we had to compensate students to join our
study while professional developers were not paid. However, we observed only one
significant difference: professional developers were more likely to drop out.

There is an issue with acquiescence bias or the Hawthorne effect, especially in the
reported value of quick-fixes in section 3.7.2: participants are more likely to report
liking a new system.

As we describe in Section 3.6.7, we had to briefly mention what FixDroid does in order
to recruit more professional developers. This could possibly introduce bias into our
study. It is not an easy task to convince developers to install a third party plugin
without telling them what it does.

Though we believe it is important, we did not focus on improving data flow analysis
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except for leveraging the existing features of IntelliJ IDEA previously ignored by Lint
(see Section 3.4.7).

3.9 Future Work

We have identified several areas for further work:

• FixDroid provides a good platform for the analysis of programmer coding behaviour
with regards to security. Clearly there is scope for exercises covering further kinds
of defect and using FixDroid to analyse how developers address them.

• Improved data flow analysis will help developers detect more kinds of defect; work
on this will improve the usefulness of FixDroid app still more.

• FixDroid continuously measures security good practices and security bad practices.
This has the potential to support a future longitudinal study to see if people
actually use FixDroid and get better at writing secure code over time.

• Further, and more ambitiously, FixDroid telemetry feedback has the potential
to support machine learning to start to identify software security ‘smells’ and
provide more sophisticated analysis of developer code.

3.10 Related Work

We found related work in two key areas: investigations of security issues in Android
development, and studies of tools that support developers in writing code.

3.10.1 Security Issues in Android Development

Several research teams have used analysis tools to investigate Android app security.
With CryptoLint, a lightweight static analysis tool, Egele et al. [52] showed that 88% of
Android applications using cryptographic APIs include at least one mistake. Balebako
et al. [21] found that developers can make these mistakes due to lack of security
knowledge;Georgiev et al. [66] also identified bad API implementations as a cause. Fahl
et al. [59] implemented MalloDroid, a static code analysis tool that detects potential
vulnerabilities against SSL Man-In-The-Middle (MITM) attacks in Android and iOS
applications, and found that many developers accept insecure practices (such as SSL
certificate validation that accepts all certificates) to achieve functional code.

Poeplau et al. [123] investigated dynamic code loading in Android applications, using a
static code analysis tool. Their results revealed that many applications load additional
code in insecure ways.

The integration of web content into mobile apps also exposes Android applications to
multiple types of attacks [114, 108]. Wang et al. [154] studied the cross origin risks
inherent in mobile applications and found that lack of origin-based protection enables
many types of cross-origin attacks. Luo et al. [106] also demonstrated different attacks
on benign Android and iOS applications that misuse webview customization.
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Felt et al. [125] investigated app permissions, and identified several reasons why develop-
ers tend to request more permissions than their apps actually need, including insufficient
API documentation, confusing permission names, copy and paste code snippets, and
testing artifacts. In another investigation concerning ‘permission re-delegation’, Felt
et al. [128] concluded that not all developers are security experts and they are not
motivated enough to prevent permission re-delegation because the consequences do not
affect their applications directly.

Acar et al. [6] examined the impact of the information sources used by Android developers
on their security related decisions, and found that developers often use informal sources
such as StackOverflow, resulting in functional code but often also vulnerabilities in their
apps.

3.10.2 Tools that Support Developers

Kim et al. [94] ethnographically studied copy and paste (C&P) programming practices in
object oriented programming languages by observing programmers using an instrumented
Eclipse IDE, and proposed a set of tools to reduce software maintenance problems
incurred by C&P and support the intents of common C&P situations.

Several research teams have developed tools that support secure coding, typically
focusing on finding application vulnerabilities after the program has been written. This
results in these tools finding vulnerabilities at the end of the development cycle [142, 105].
Furthermore, though valuable, these tools all have one thing in common: developers
need to have certain levels of security expertise to use them. Chin et al. [39] proposed
platform-level, API-level, and design-level solutions to help developers and platform
designers build secure applications and systems. They also developed ComDroid [42]
to detect and warn developers of exploitable inter-application communication errors.
However, ComDroid works only on compiled code and can thus not help developers
while they are writing source code. Jovanovic at el. developed Pixy to help developers
avoid cross-site scripting vulnerabilities in PHP scripts [92]. Pixy uses flow-sensitive,
inter-procedural and context-sensitive data flow analysis to discover vulnerable points
in a web application, but provides no IDE-based feedback to developers. Recently,
Tabassum at el. conducted a study comparing the effect of secure programming tool
support (ESIDE) versus teaching assistants [107]. The results showed that ESIDE
provided more insights to students about the security flaws. Tyler et al. [147] examined
how developers understand the support of an interactive static analysis tool using a
plugin for Eclipse that helps web developers detect and mitigate security vulnerabilities
as they write code.

None of this work, however, has investigated providing feedback on code security to
Android developers as they write their code. This work aims to fill this gap.

3.11 Conclusion

This work explored the possibility of supporting Android developers to write secure code.
Section 3.4.1 showed the limitations of the existing Android Lint tool, and suggests
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improvements. These improvements motivated the creation of a new IDE plug-in,
FixDroid, as described in Section 3.4.

A series of studies evaluated this approach, as described in Section 3.6, and analyzed in
Section 3.7. Early studies discovered the importance of a more visible signal of security
issues than the existing Lint indicators. The later studies also validated the approach of
using telematics in an IDE to determine programmer behavior.

Finally, the studies conclusively proved the effectiveness of such a tool in improving the
security of code produced.

These findings suggest that it will significantly improve the security of developed apps
if future Android IDEs contain functionality similar to the FixDroid tool, with a clear
indication of security errors and offers of security ‘quick-fixes’.

We conclude that, to improve app security, it’s vital that future versions of the Android
development environments incorporate similar features.
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4.1. MOTIVATION

4.1 Motivation

Third-party libraries, especially outdated versions, can introduce and multiply security
& privacy related issues to Android applications. While prior work has shown the need
for tool support for developers to avoid libraries with security problems, no such a
solution has yet been brought forward to Android. It is unclear how such a solution
would work and which challenges need to be solved in realizing it.

In this work, we want to make a step forward in this direction. We propose Up2Dep,
an Android Studio extension that supports Android developers in keeping project
dependencies up-to-date and in avoiding insecure libraries. To evaluate the technical
feasibility of Up2Dep, we publicly released Up2Dep and tested it with Android
developers (N=56) in their daily tasks. Up2Dep has delivered quick-fixes that mitigate
108 outdated dependencies and 8 outdated dependencies with security problems in 34
real projects. It was perceived by those developers as being helpful. Our results also
highlight technical challenges in realizing such support, for which we provide solutions
and new insights.

Our results emphasize the urgent need for designated tool support to detect and update
insecure outdated third-party libraries in Android apps. We believe that Up2Dep has
provided a valuable step forward to improving the security of the Android ecosystem
and encouraging results for tool support with a tangible impact as app developers have
an easy means to fix their outdated and insecure dependencies.

4.2 Problem Description

Software developers commonly re-use existing code, in particular in the form of third-
party libraries. Third-party libraries are software components that are bundled in a
form that can be distributed to developers through different channels, such as central
repositories. However, those libraries come at a cost: if they contain bugs or security and
privacy issues, those flaws could be amplified by being integrated in different applications
that use the affected library versions. Prior works [26, 56, 49, 113] showed that such
libraries could expose user sensitive information to third-party applications, or be a
contributing factor for cryptographic API misuse in applications. More concerning, even
when privacy & security related fixes were available in newer versions of affected libraries,
their adoption by developers progressed very slowly [19]. Existing work has proposed
different solutions to overcome the problem of outdated third-party libraries. Ogawa
et al. [117] proposed using an external service to split app code and third-party library
code from Android application package (APK) files, and then replace the (vulnerable)
outdated libraries with their fixed versions. This might improve the situation but
requires user actions to re-install the updated APK. Market stores may play the central
role to roll out updates for libraries to end users but third-party libraries are tightly
integrated into their host app which makes it virtually impossible to precisely separate
app code and library code [19], and to pinpoint the exact version of a library that an app
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is using. App developers (not market stores, not end users) are in the perfect position
to fix this problem in today’s ecosystem as app code and library code are separated in
their development environment. They are aware of the exact library version they are
using and can upgrade their dependencies. However, developers do not update their
app’s dependencies [49] because the outdated libraries are still working; developers fear
incompatibilities between library versions, specifically semantic versioning has been
found unreliable and has failed developers; developers are unaware of the updates; and
updates take too much effort. This raises an important issue: providing security updates
does not solve the problems at all if developers do not migrate their app’s dependencies
to the security fixes.

Unfortunately, existing solutions to support developers in keeping their project’s de-
pendencies up-to-date are ineffective. Android Studio itself includes Lint tool [102]
to inform developers about updates of third-party dependencies in Android projects.
However, Lint only provides developers information on whether there are newer versions
of the included libraries, but it does not alert developers about security vulnerabilities
of the libraries and it is limited to a list of only two libraries that are classified as
privacy risks and without further information about the risks. The lack of information
on whether the current version is secure and on whether the newer version is compatible
with the existing code of the app makes developers afraid of migrating their project
dependencies to newer versions, and, more importantly, it accustoms developers to stay
with the current (although outdated and more likely vulnerable) versions as long as the
app is still working.

With established tools being unreliable and not universally adopted (semantic version-
ing) [49] or providing insufficient support (Lint), this leaves a gap between developers’
expressed wishes for support and the status quo. At the same time, there are still open
questions on the technical feasibility of tool support for developers to keep project’s
dependencies up-to-date, which challenges come along the way, especially how developers
would receive (i.e., apply) such a tool support, and most importantly its (security)
impact on real projects. As long as these questions are not yet answered, we will still see
security & privacy problems in apps that are attributed to outdated, insecure third-party
libraries.

4.3 Contribution

To make advances in filling the aforementioned gap with appropriate tool support for
app developers, we focus in this work on the following research questions:

• "Would it be technically feasible to support developers in keeping their project’s
dependencies up-to-date?"

• and, more importantly, "Could such a tool support have a tangible impact on the
security and privacy of Android apps?".

To try to answer these questions, we developed an Android Studio extension called
Up2Dep to help Android app developers in upgrading their library dependencies and in
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avoiding vulnerable library versions. Up2Dep analyzes third-party libraries to provide
developers with information about the changes that they may need to perform when
updating a library, based on the public API changes between the library versions.

Using the collected information about library APIs and their usages on a given project,
Up2Dep provides developers feedback on the updatability of outdated library versions
(i.e., we base our updatability information only on the code itself and not on unreliable
external sources like semantic version of libraries).

Up2Dep also maintains a database of publicly disclosed vulnerabilities and cryptographic
API misuse of libraries, and alerts developers if a vulnerable library version is included
in their apps.

Our solution is the first implemented solution to support app developers in their task
to avoid outdated, critical dependencies, and an important step to gather first-hand
feedback from developers about solutions that so far have only been recommended in
the literature.

We tested Up2Dep with developers to see how Up2Dep can support them in their daily
programming tasks. To measure the impact of Up2Dep, we implemented telemetric
features inside Up2Dep that gather anonymized information on how developers interact
with Up2Dep and that allow developers to provide feedback in-situ on whether the
suggested quick-fixes worked as they expected and what they think about such support
from Up2Dep. Our telemetric data shows that among 56 developers, 30 have applied
quick-fixes suggested by Up2Dep on 34 real projects, totaling 116 quick-fixes (8 insecure
library versions, 108 outdated library versions). The results from the 60 in-situ feedbacks
we received from 22 developers confirm that 80.0% of the proposed fixes worked and
Up2Dep’s support was useful, while only four cases of the proposed fixes did not work.
Upon further investigating the feedback, we discovered that 13.51% libraries in our
dataset have hidden security related problems as the problems reside in the transitive
dependencies of those libraries, and are not shown to the developers. We believe, this is
a new and important finding because if this problem is not solved, many app developers
would continue using insecure libraries without being aware of it. This is detrimental
for the security of the Android ecosystem as end users of such apps will eventually be
exposed to a variety of attacks. Therefore, we subsequently developed a solution to
tackle this problem by analyzing and alerting developers of libraries that have (hidden)
transitive dependencies with security problems. Further, our study results show that
having tool support on the compatibility of the updates really helps developers more
willing to keep their project’s dependencies up-to-date. Lastly, we further evaluated
developers’ Up2Dep experience in an online survey where 23 developers shared with us
their opinion. Up2Dep received a SUS score [28] of 76.20, which indicates that Up2Dep
was considered good by developers in terms of usability.

In summary, we make the following tangible contributions:

• We significantly extended LibScout’s original library dataset (by the factor of
7.5x, totaling 1,878 libraries with their complete version history) and analyze
those libraries (37,402 library versions) to discover cryptographic API misuse.
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To support future research, we make both Up2Dep and this dataset publicly
available 1.

• We built an Android Studio extension called Up2Dep to warn developers about
vulnerable library versions including both publicly disclosed vulnerabilities and
cryptographic API misuse. Up2Dep helps developers upgrade their project’s
dependencies, taking into account the library API compatibility.

• We evaluated the technical feasibility of Up2Dep with Android developers (N=56)
in-the-wild and gather anonymized usage information with our telemetric features.
Our results show that Up2Dep has helped developers in fixing their project
dependencies (n=108) and in avoiding dependencies with security problems (n=8).
The majority (80.0%) of suggested fixes (from developer’s feedback) worked and
developers found them useful, while only four instances of the proposed fixes did
not work as developers expected.

• We discovered that 13.51% of the libraries (233 out of 1,725) have hidden security
problems by including (insecure) dependencies which is normally not visible to
developers. We have subsequently developed a solution to tackle this problem.

• Our results show that developers indeed are in favor of such support and are
willing to use it in their projects. Thus, this work makes a call for action to
include such an IDE-provided support for app developers to avoid insecure code
dependencies already during app development and for the research community
to further investigate how library updatability can be further improved (e.g.,
detecting non-code, breaking changes between library versions).

4.4 Technical Description and Approach

4.4.1 Gradle Build Tool in Android Studio

Android Studio uses Gradle Build Tool [80] as an Android Studio plugin to automate
and to manage the app build process. The Gradle build system eases the task of
including internal and/or external libraries to app builds as dependencies. In our work,
we do not take into account local binary dependencies, e.g., jar files that developers
manually download and import into their projects because the majority of third-party
libraries are included in Android projects via central repositories. Besides, for local
module dependencies and local binary dependencies, the exact version information is
not available, one can only profile the binary files and provide approximate matches
which would add up another factor of uncertainty.

Listing 4.1 shows examples of how developers can declare their project’s external
dependencies in Android Studio. On line 3, components of a dependency’s information
are colon-separated, group_id:artifact_id:version, while on line 5, they are declared
as key-values. From this information, when developers choose to sync their project’s
dependencies, Gradle will sync such dependencies from the default repository (e.g.,

1https://github.com/ngcuongst/up2dep
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1 ext . supportVers ion = 25 . 3 . 1
2 dependenc ies {
3 implementation ’com . example : magic : 1 . 2 . 1 ’
4 // or
5 implementation group : ’com . example ’ , name : ’ magic ’ , v e r s i on : ’ 1 . 2 . 2 ’
6 // dependenc ies use va r i ab l e as ve r s i on s t r i n g
7 implementation ’com . android . support : support −v4 : $supportVers ion ’
8 implementation ’com . android . support : appcompbat−v7 : $supportVers ion ’
9 }

Listing 4.1: Declaring external dependencies in Android projects.

JCenter or Maven) or the ones declared in the gradle.settings file of the app project.
Besides, developers can also declare version strings as a variable (line 1) and use this
variable for the external dependency’s version (lines 7,8). This helps developers avoiding
repeatedly specifying (and updating) version strings for multiple libraries from the same
group (e.g., com.android.support) that use the same version string.

4.4.2 Up2Dep Design

In this work, we propose Up2Dep, an Android Studio extension that facilitates the
task of keeping Android project dependencies up-to-date, and help developers avoid
insecure library versions. We focus on the Android Studio IDE as this is the tool
officially supported by Google and a previous survey [49] has shown that most Android
developers use it to develop apps. We abstain from performing automatic (updates)
patching in the background because this is too much control over developer’s source
code. Further, it is not possible (with absolute reliability) to guarantee that the patching
is free of unintended side effects. Additionally, developers should be informed and in
control of the changes on their projects.

LibScout

Cognicrypt

Remote Dependency
Inspector

Dependency
Resolver

Usages
Analyzer

build.gradle

Code Editor

App Source Code

Figure 4.1: UP2DEP’s architecture. Gray boxes are external components

Up2Dep analyzes the developer’s code and provides developers information about the
compatibility of the dependency’s update. In case an update to the latest version is
incompatible, developers are provided with two options: either they can update to the
latest compatible version without having to adjust their app’s code; or they can update to
the latest version and Up2Dep provides them with information about which library APIs
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have changed and recommends changes to their existing app code. Additionally, Up2Dep
leverages information about publicly disclosed vulnerabilities of libraries and detected
cryptographic misuse in Android third-party libraries to warn developers against using
insecure versions of dependencies. Figure 4.1 illustrates how the different components
of Up2Dep interact with each other. Using LibScout [101] and Cognicrypt [96], we feed
Up2Dep the pre-analysis results consisting of API dependency analysis (from LibScout)
and cryptographic API misuse analysis (from Cognicrypt). These pre-analyses results
are bundled into offline databases. This allows Up2Dep to provide developers real time
feedback as it does not need to repeatedly analyze all version history of the third-party
libraries that developers include into their applications, which might incur unnecessary
performance overhead. More importantly, Up2Dep does not need to send developer’s
code or all library information to its server as this would potentially threaten the privacy
of developers and their code. After developers open a project in their Android Studio,
Usages Analyzer will read the Android Source Code to analyze it for usages of the
included third-party libraries. Whenever developers open a gradle build file (i.e., where
dependencies are specified, see Section 4.4.1), Remote Dependency Inspector will run its
inspection to check for outdated library versions. Finally, Dependency Resolver takes
the results of Dependency Inspector and Usages Analyzer to compare them against the
pre-analysis results to gather the following information:

• Are there newer versions of the included library?
• To which extent can the included library be upgraded, e.g, is there any incompati-

bility, where is the incompatibility, how can the app code be adjusted?
• Does the included library contain any security vulnerabilities, and does the

developer’s code happen to use this potentially insecure code?

We will now describe each component of Up2Dep in details.

4.4.2.1 Analysis Tools

As mentioned above, Up2Dep collects information about third-party libraries using
existing analysis tools.

LibScout We provide developers information about the API of third-party libraries
that they include in their apps. In particular, we notify developers if they can upgrade
a library to the latest version or if the newer version would be API-incompatible with
the existing app code. Hence, we need to analyze the library history to find out if any
of the used library APIs have changed in newer versions of the library. When such
changes occur, we provide developers with further information on how they can adapt
their existing code so that it will be compatible to the newer version of the library. To
this end, we leverage the open-source tool LibScout to produce API information for
each library version in our dataset.

Library API database: The last version (2.3.2) of LibScout contains a dataset of around
250 libraries. In this work, we build on and extend the library database of LibScout. In
particular, a library on a third-party repository would usually come with a descriptive
file, e.g., pom.xml, and we analyze those files to discover transitive dependencies of the
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libraries in the LibScout database. A transitive dependency is another library on which
the library included by the app developer depends. For instance, the Facebook Login
Android Sdk library version 4.40.0 declares three transitive dependencies in its pom.xml
file: Android AppCompat Library V7, Facebook Core Android SDK, Facebook Common
Android SDK. To obtain a list of popular third-party libraries that developers commonly
include in their projects, we crawl the F-Droid repository [58] to extract libraries
included in open source apps. In the end, we have a dataset of 1,878 libraries with their
version history. We also extend LibScout’s list of publicly disclosed vulnerabilities of
third-party libraries. As of July 2019, our list contains 10 libraries with a total of 97
vulnerable library versions.

Determining API Compatibility: To determine the API compatibility between any
consecutive library versions, we use the API diff algorithm of LibScout that operates
on two sets of public APIs apiold and apinew, where apiold is the API set of the
immediate predecessor version of apinew. An API is presented by its signature that
consists of package and class name as well as the list of argument and return type,
e.g. example.com.ClassB.foobar()java.lang.String. If apiold = apinew two versions are
consider compatible. If apiold ⊈ apinew , the newer version has added new APIs but
did not remove or change any existing ones. This is also considered as compatible
(backwards). Whenever apiold includes APIs that are not included in apinew, a type
analysis is conducted to check for compatible counterparts in apinew. Compatible
changes also include generalization of argument types, e.g., an argument with type
String is replaced by its super type Object. Generalization on return types is normally
not compatible and depends on the actual app code that uses the return value. If any
of the apiold is not found in the set of apinew, we consider 2 versions incompatible.

CogniCrypt We employ the static analysis component of Cognicrypt, namely Cog-
niCrypt_sast, to discover insecure uses of cryptographic APIs within the libraries in
our dataset. CogniCrypt_sast takes rules written in the CRYSL language, which define
best-practice for secure use of cryptographic APIs, and analyzes Java applications to
find any potential violations of the predefined rules. We choose Cognicrypt instead of
other tools, such as [53, 34, 139], because Cognicrypt and CRYSL are publicly available
and provide the flexibility in defining cryptographic rules while other tools mostly
provide hard-coded rules, which are not easy to extend. Besides, Cognicrypt provides
more comprehensive rules that result in three times more identified cryptographic
violations in comparison to previous work [53], and the analysis finishes on average in
under three minutes per application. More importantly, Cognicrypt leverages serveral
extensions [98, 18] of the program analysis framework Soot [150], which performs intra-
and inter-procedural static analysis that gives Cognicrypt and CRYSL a high precision
(88.95%) and recall (93.1%).

Cognicrypt’s rule set [97] includes 23 rules covering Java classes involving cryptographic
key handling as well as digital signing. All rules are available on Github [45]. Beside
the these rules, we have also written an additional rule for http (to check whether a
library uses http instead of https to communicate with a server)

Cryptographic API misuse dataset: We apply Cognicrypt to our dataset consisting of
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Figure 4.2: Top 10 cryptographic API misuses by Java classes in our library dataset.

1,878 libraries. We are able to analyze 1,725 (91.9%) libraries. It took Cognicrypt
more than 3 hours to analyze the remaining 153 libraries and we terminated Cognicrypt
when processing a library exceeded 3 hours2. Among the 1,725 libraries, 238 (13.80%)
contain at least one cryptographic API misuse, and 70 of those affected libraries
(29.41%) have fixed/removed the cryptographic misuse in their later versions. This
means that, developers could easily avoid such (vulnerable) cryptographic API misuse
by upgrading their project’s dependencies to the latest version. Figure 4.2 lists the
distribution of the cryptographic API misuse of the libraries in our dataset. The list
is headed by MessageDigest (35.0% of the top 10 misuses). One of the reasons why
MessageDigest has a significantly higher number of misuse is that to use it securely,
developers (suggested by the Java Cryptography Architecture Standard) must apply
a sequence of method calls, e.g, MessageDigest.getInstance(algorithmName) followed
by MessageDigest.update(input), followed by MessageDigest.digest(), etc., combined
with minimum required length for the offset of the update method. This does not seem
trivial to follow. In general, for Java classes such as MessageDigest, SSLContext, and
Cipher, developers need to specify an algorithm or a protocol to work with and library
developers often use an algorithm or mode of encryption that is considered insecure,
such as ECB mode for encryption, or MD5 or SHA-1 for hashing. This puts these
classes of misuse among the most common cryptographic API misuses in third-party
libraries. Further, we have found 20 cases where the libraries (spanning across 93 library
versions) use http to communicate with remote servers.

2Such libraries are overly complex and mainly serve traditional Java applications, not intended for
Android apps. Analyzing one library version already takes hours.

50



4.4. TECHNICAL DESCRIPTION AND APPROACH

4.4.2.2 Remote Dependency Inspector

Android Studio is built on Jetbrain’s IntelliJ IDEA software. However, the major
challenge is the implementation of an Android Studio extension for Up2Dep as it is
not well supported and very few documentation is available. To learn how the internal
system of Android Studio works, we have to manually read Android Studio source code
and examine its APIs (e.g., dynamically run and test them) as well as use reflection
to access its internal (private) API to enable the crucial functionality of Up2Dep. To
effectively inspect an Android project’s dependency, we need to implement a custom
code inspection. With the gradle build system, Android developers need to declare
their project’s or module’s dependencies (libraries) in a gradle build file (see Listing
4.1). This file is written in the Groovy language. This means we need to write an
inspection that is able to analyze Groovy code. IntelliJ IDEA provides an abstract
class called GroovyElementVisitor that offers plugin authors the options to analyze
varieties of Groovy code fragments. For every GroovyCodeBlock, Up2Dep looks for
a dependencies tag and iterates over all declared dependencies to extract group_id,
artifact_id, and version string of each dependency (see Section 4.4.1). Up2Dep then
checks if the current dependency is available in our dataset (i.e., it checks if we have
pre-analyzed this dependency and if the information about its APIs is available in our
database). In case the dependency is available in our dataset, Up2Dep gathers all
information about the current version up to the latest version, including information
on whether a version has security vulnerabilities. The reason we do this is to not only
detect the latest version, but also the latest compatible version in case an incompatibility
with the app code occurs while helping developers avoid versions with known security
vulnerabilities. At this point, Up2Dep knows if a dependency is outdated and which
version is the latest one.

Database maintenance: To allow continuous maintenance of Up2Dep’s database we
set a crawler up to run periodically to get new versions of the libraries in our database
and subsequently apply Cognicrypt to analyze them for cryptographic API misuse, and
LibScout to identify API compatibility between library versions. The updated database
is retrieved automatically inside Android Studio to timingly provide developers with
updatability and security information about their included third-party libraries. For
publicly disclosed vulnerabilities, we update our database manually.

4.4.2.3 Usages Analyzer

As we want to provide developers with information regarding a dependency’s compati-
bility and the use of libraries with potentially insecure usages of cryptographic APIs,
we need to analyze the developers’ code. We built a code dependency analyzer that
traverses through all Java and Kotlin files. When developers open a project in Android
Studio, and the indexing process of Android Studio has completed, Up2Dep starts to
analyze the project’s dependencies. We decided to wait for the indexing process to be
done before analyzing code dependencies, because it significantly speeds up the analysis
process as code files (including resources) have been transformed into a preferable
representation, namely PsiTree, that allows faster processing. Each file corresponds to
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a PsiTree, and PsiTrees can depend on each other and can contain sub-PsiTrees. For
every file (PsiTree), Up2Dep extracts its dependent PsiTree, and resolves the PsiTree
to find out if it is associated with an external (foreign) code file. In case of a foreign
PsiTree, Up2Dep checks with the ProjectFileIndex class (provided by IntelliJ/Android
Studio) to examine if the corresponding code file is in library classes or library source.
As the ProjectFileIndex class contains information about all included libraries, Up2Dep
can resolve a library class or a library source to find its library information (e.g., library
name and version). Once the resolving process is completed, Up2Dep records any
usages of the library, e.g., method call (including constructor), and saves them for later
references. At the end of the process, Up2Dep has a complete dependency tree of source
code files (Java and Kotlin) and their corresponding used libraries with details on which
library methods the app is using. More specifically, the result of Usages Analyzer is a
mapping of multiple pairs: code file (Java or Kotlin) and corresponding used library
including API usages.

4.4.2.4 Dependency Resolver

The results from Remote Dependency Inspector and Usages Analyzer are fed to Depen-
dency Resolver. For each included library, Dependency Resolver checks the library’s
usages in the app code as reported by Usages Analyzer. At this point, Dependency
Resolver has information on which APIs of the currently included libraries are used
in the developer’s code. If Dependency Resolver finds that any of the used APIs of
an outdated library is no longer available in the library’ latest version, it picks the
library version that is newer than the current version but contains all the used APIs
(newer compatible version). Using the information of publicly disclosed vulnerabilities
of third-party libraries, Dependency Resolver checks if the currently included library
version has a known security vulnerability. Additionally, Dependency Resolver looks up
each used library API to detect if the API leads to cryptographic API misuse in the
library, and the details of the misuse. From all those information, Dependency Resolver
gives developers the following warnings and potential fixes in their build.gradle files.
The dependency

• is outdated and can be updated to the latest version.
• is outdated and cannot be updated to the latest version.
• is outdated and has a known security vulnerability.
• potentially uses a cryptographic API insecurely.

We notify developers about the security and outdatedness of their project dependencies
in the build.gradle file as this is the location where developers would manage their project
dependencies. Besides, we also leverage the IDE functionality to allow developers to
use Up2Dep in batch mode to analyze the whole project and see the analysis results
in a separate window. In the following, we describe how Up2Dep notifies developers
about the above declared problems.

Outdated version can be updated to the latest version: In this case, all the used APIs
of the outdated library are also available in its latest version. Dependency Resolver
suggests developers to update to the latest version as it will be compatible to the
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Figure 4.3: UP2DEP warns against an outdated library.

Figure 4.4: UP2DEP provides different options to update an outdated library version.

developer’s code (see Figure 4.3). Developers can apply the suggested fix by using the
default short-cut of Android Studio (e.g., + on Mac computers) or clicking on
the default bulb icon to apply the recommended fix. When this quick-fix is applied, the
outdated version string of the library declared in the build.gradle will be replaced by
the latest version. Outdated version cannot be updated to the latest version: When not

Figure 4.5: UP2DEP shows how developers can migrate their project dependencies to
the latest version when incompatibility between library versions occurs, i.e., the return
type of method load has changed from RequestBuilder to RequestCreator.

all used APIs of an outdated library are available in the latest version (e.g., because
the library developer removed or changed methods), Dependency Resolver suggests
developers to update to a newer but compatible version. This means the newer version
would not require changes to the app code to adapt to the library’s API changes. Similar
to the previous fix, developers can apply it by using the default short-cut or clicking on
the default bulb icon. When no compatible version is available and developers still want
to update the outdated library to the latest but incompatible version, they are provided
the option Show Dependencies (see Figure 4.4). The purpose of the Show Dependencies
fix is to give developers feedback on how and where they can migrate their project’s
dependencies to the latest versions (see Figure 4.5).

Outdated library version with known security vulnerability: When the included library
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contains a known security vulnerability, Dependency Resolver alerts developers with an
error (in red color) with details on the vulnerability. Developers can further check the
vulnerability in the attached link to our Up2Dep project website (see Figure 4.6). Since
a known security vulnerability can be a serious problem for the host app or end-user,
we use a red warning instead of a normal warning (in yellow color) to notify developers.
In this case, developers can upgrade to the latest version that contains the security
patches. When the latest library version is also vulnerable, developers are recommended
to consider not using this library.

Figure 4.6: UP2DEP warns against using an insecure library version (with publicly disclosed
vulnerability).

Use of insecure cryptographic APIs: Similar to known security vulnerabilities, if any used
library method happens to insecurely use a cryptographic API, Dependency Resolver
warns developers in form of errors against using this API (see Figure 4.7). In this case,
Up2Dep suggests to developers to update to the latest version if the used APIs in the
latest version do not contain cryptographic API misuse. If the latest version still has
that problem, developers can use the Show dependencies option to examine the location
and necessity of the used library method and decide whether or not they can remove
the used method call, or switch to another library.

Figure 4.7: UP2DEP warns against re-using a cryptographic API misuse in a library.

4.5 Evaluation Design

Our goal is to find out if it is technically feasible for Up2Dep to support developers
in keeping their project dependencies up-to-date and in avoiding library versions with
security problems, e.g., how many outdated (including insecure) libraries Up2Dep has
helped developers migrate to the latest versions and which security vulnerabilities it has
fixed for developers. We further examine developers’ Up2Dep experience in an online
survey (see Figure 4.8). Different aspects of Up2Dep in interacting with developers —
studying developers behavior upon learning about the security of an included library,
how security warning messages can be customized, how can we keep the balance between
developers being annoyed and being informed, how developer’s mental model evolves —
are not in the scope of this work, and left for future work. In the following, we first
describe how we enable developers to evaluate Up2Dep in-the-wild. We then report
how we advertised Up2Dep and delivered it to Android developers for evaluation.
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Figure 4.8: Invitation to our online survey inside Android Studio.

To enable developers to evaluate Up2Dep while they are using it we leveraged the
remote study platform of FixDroid to setup and conduct our evaluation. In particular,
we included telemetric features that record whether a suggested quick-fix has been
applied. We provided developers the Feedback in context (see Figure 4.9) option3 where
they could send us feedback on whether the suggested fix works as expected, if they
needed more information on any particular warning, or on other issues they encountered.
In Up2Dep’s instruction, we strongly encouraged developers to provide us feedback so
that we can make Up2Dep better in the future, this was where they can help us to help
them, i.e., making a free-to-use tool better for them. Developers were also provided
the option to opt-out of our telemetric data collection in Up2Dep’s settings. Before
developers downloaded Up2Dep we clearly informed developers on which information
we gather about their usage (on our project’s website and in Android Studio plugin
repository description). Our goal in this step was to make sure they are well informed
before they decide to install our plugin.

Figure 4.9: In context feedback dialog.

4.5.1 Recruitment

After we advertised Up2Dep’s prototype at an Android developer conference, we used
Twitter and email as communication channels to keep in contact with developers and
to recruit further developers. After we released Up2Dep with complete features, we
advertised our tool on different Android developer forums, Android developers groups
on Facebook, and in a related lecture at our institution to invite experienced students,

3This feature was adopted from Lint tool.
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who are working on real (non-study-related) Android projects4, into using Up2Dep.
Finally, we sent an invitation email to an Android development team, with which we
already had contact before, to ask the team to try out Up2Dep.

We abstained from sending emails to the contact information harvested from Google
Play apps, as done in prior studies [5, 49, 77], since those studies had an extremely
low response rate and such mass emails may be considered as harmful/spamming
behavior that would create a negative view from developers toward studies conducted
by researchers.

4.5.2 Ethical Concerns

This study has been approved by our institution’s ethics review board. All telemetric
information is gathered anonymously—we do not know who the developer is—and we do
not collect the developer’s code. Furthermore, we clearly explain on our website which
information we gather and provide developers the option to opt-out of our telemetry data
collection at any time. Finally, all data is sent to our server over a secured connection.

4.6 Results

In this section, we present our evaluation results, which provide the answers to our
research questions (RQ) stated in Section 4.3. This covers both telemetric data of
developers who filled out our exit survey as well as of developers who are using Up2Dep
but did not answer our survey. Our evaluation has lasted for 81 days, the results we
report in the following are from within this duration. All data related to Up2Dep
tutorial was excluded from our results5. Finally, we briefly compare Up2Dep with
LibScout and Cognicrypt.

4.6.1 RQ1: Would it be technically feasible to support developers in
keeping their project’s dependencies up-to-date?

From the telemetric data and answers to our online survey, we can see that developers
have made use of Up2Dep to keep their project dependencies up-to-date. In particular,
Up2Dep helped developers upgrade their project’s dependencies (N=116) to the latest
version in 34 real projects. We describe the data as well as the feedback developers have
provided in details in the following.

4Projects that are not related to their university studies/courses
5When Up2Dep recorded telemetry data, it computed a hash value of the project’s name. If

developers used Up2Dep in a project that has the same hash value with one of our exemplary projects,
such data was excluded from our results.
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Figure 4.10: Number of applied quickfixes per type.

Telemetric Results As we included telemetric features in Up2Dep, we are also able
to gather telemetric data from developers who did not participate in our survey. Of
56 developers who are using Up2Dep, 30 (53.57%) have applied quickfixes (N=116)
provided by Up2Dep to update their project’s dependencies—i.e., updated an outdated
third party library to the latest/newer compatible version or examined a library’s API
dependencies (34 projects).

Figure 4.10 shows the number of applied quickfixes per type. We can see that the
majority of applied quickfixes are Update to the latest version. Besides, 27.59% of
quick-fixes belong to Show dependencies meaning that developers have checked the API
usages of the corresponding dependency. However, since we do not collect developer’s
code, we do not know whether manual code change were performed to update the
corresponding dependency.

0 10 20 30 40 50
Number of feedback provided by developers

Useful - this check is correct, 
 and you find it useful

Other

False positive  - this check is incorrect

I don't get it - the message 
 does not convey enough info

80.00%

8.33%

6.67%

5.00%

Figure 4.11: Feedback given by developers in context. Developers can give feedback
to multiple quickfixes.

Among all 30 developers who have applied suggested quick-fixes in their projects, 22
of them (73.33%) have provided us feedback through the feedback dialog (Figure 4.9).
On average developers have spent 19 minutes working with Up2Dep before giving
us the first feedback. The results from the 60 in-situ feedbacks we received from 22
developers confirm that 80.0% of the proposed fixes worked, and developers found the
warning/quickfix useful while only 4 proposed fixes did not work as expected. Figure 4.11
lists all feedback provided by developers. We also observe that 5.0% of the feedback
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indicates that the developer did not understand the warning message (I don’t get it). We
manually examined the corresponding third-party libraries and found that their warnings
were about cryptographic API misuse. This suggests that we need to make the warning
message more developer-friendly, e.g., make it easier to understand (similar to other
domains such as browser security warnings [8, 61]). As each feedback came together
with the dependency for which developers had given feedback, we manually investigated
the feedback that belongs to False positive and Other. We noticed that transitive
dependencies might be the reason for such feedback. When a third-party library A
depends itself on library B in version v1 and developers use library B version v2 in their
app code, this means this project has now two versions (v1 ≠ v2) of the library B. This
might break the app due to unresolved dependencies. We found transitive dependencies’
problems in: org.jsoup:jsoup:0.22 and com.jakewharton:butterknife:7.0.1 (found in the
False positive feedbacks). Both of these dependencies have transitive dependencies that
app code itself makes use of. Up2Dep suggests developers to update them to the latest
versions. Although the latest versions provide all APIs that the apps are currently
using, but they no longer contain the exact transitive dependencies (version) that the
apps are using, this in the end breaks the functionality of apps. Since we do not collect
developer’s code, we cannot evaluate which API of a library developers are using in their
project. We decided to further study this problem on open source Android projects.
We collected libraries (org.jsoup:jsoup:0.22 and com.jakewharton:butterknife:7.0.1 ) that
are found in the False positive feedbacks, and found projects on F-Droid repository that
have such dependencies. We further investigate the problems of transitive dependencies
and report our finding in Section 4.6.2.2.

4.6.1.1 Online Survey Results

Demographic data: Of 56 developers, 23 have shared their Up2Dep experience with us in
our online survey. Developers have spent on average 48 minutes working with Up2Dep
before joining our survey (see Table 4.1 for details). Around half of the developers have
less than one year of Android programming experience, while the other half has at least
two years of experience. In particular, 11 developers developed more than 2 Android
apps, while only 3 participants have not yet published any apps. About two-thirds of
the developers have a security background, most of them are male, and their age ranges
from 18 to 30 years. Among 23 developers, 9 of them are students (2 with at least 2
years of programming experience, 7 with less than 1 year of programming experience)
who got to know Up2Dep after we advertised it in a related lecture at our institution6.

6We did not distinguish academic training from programming experience.
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Table 4.1: Participant demographics of online survey.

Age 18-30 22
No answer 1

Gender Male 21
No answer 2

Based Europe 13
Asia 9
Other 1

Programming Experience (years) <1 10
2 5
3 4

>3 4
Apps Developed >2 12

2 6
1 2
0 3

IT-Security Background Yes 17
No 6

Usability score: To assess the usability of Up2Dep in our survey, we used the SUS
(System Usability Scale) [28]. A system with a SUS score of above 68 would be rated
as above average. Up2Dep achieves a SUS score of 76.20, which is considered good in
terms of usability [22] (see Figure A.1 in Appendix).

Useful features: Of Up2Dep’s features, the Compatible version check was named most
often (see Figure 4.12). This supports the results of a previous study [49] that showed
that developers abstain from updating their project’s dependencies due to (fear of)
incompatible updates.

0 4 8 12 16 20
Number of developers

Compatible version check

Insecure version check

Crypto Misuse API check

Show dependency

90.91%

72.73%

72.73%

72.73%

Figure 4.12: Features of UP2DEP that developers find useful. Developers can choose
multiple features.
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4.6.2 RQ2: Could such a tool support have a tangible impact on the
security and privacy of Android apps?

4.6.2.1 Fixed Security Problems

We observe that there are 4 instances of the okhttp3 v3.0.0 library in developers’ projects,
which contains a known security vulnerability. okhttp v3.0.0 allows man-in-the-middle
attackers to bypass certificate pinning by sending a certificate chain with a certificate
from a non-pinned trusted CA and the pinned certificate. Zhang et al. showed that
nearly 10% of the most popular apps on Google Play store still used such an insecure
version for more than 1 year after the fixed version had been released [160]. In our
study, those library versions were updated by developers with the support of Up2Dep
to the latest, fixed version. Furthermore, there are 3 instances of an outdated version
of the Glide library where developers used hash API without calling the complete
sequence of function (see Section 4.4.2.1). Finally, one instance of okhttp3 v3.11.0 that
misused a cryptographic API, and the developer in our study happened to re-use the
correspond API of the library. This issue has been fixed in their latest, misuse-free
version of the library. All in all, 6.89% of the outdated dependencies that Up2Dep
has helped developers to migrate to their latest versions (8 out of 116) had security
problems. Since we do not collect information of the developers’ projects (i.e., this may
make developers skeptical to try Up2Dep), we therefore do not have information on the
projects patched by Up2Dep. However, regardless of the project details, we consider
this number non-negligible given the easy means that developers can employ to fix them.
Therefore, by fixing projects containing these insecure library versions, Up2Dep directly
benefits the security and privacy of Android apps.

4.6.2.2 Security Problems of Transitive Dependencies

From the feedback related to the False positive category, we learned that for a small
number (2) of cases, the problem of transitive dependency would prevent developers from
keeping their project’s dependencies up-to-date because of incompatibility. However,
the current dependency management system of Gradle makes it hard for developers
to be informed about what are the transitive dependencies of the manually declared
dependencies as it automatically downloads sub-dependencies of a given dependency
without developers easily noticing it. Developers can check the log console to see what
sub-dependencies are downloaded together with the current dependency, yet this is
only available in the log console with hundreds of log events. The problem becomes
more serious if a transitive dependency has (well known) security problems. Those
are totally hidden from developers because they are usually automatically downloaded
following the main dependency unless developers specifically exclude them [79]. Thus,
even if developers would vet a dependency manually, insecure sub-dependencies that are
automatically, non-obviously pulled in when installing the dependency can undermine
the app’s security again. This highlights the need for tooling support, as such Up2Dep.

Transitive dependency analysis: Given the crucial information regarding security prob-
lems of transitive dependencies, we developed an additional feature that thoroughly
checks all transitive dependencies of all declared dependencies to: (1) analyze com-
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patibility when suggesting developers to update the declared dependencies, and more
importantly, (2) to check and notify developers if any transitive dependencies contain
security problems. When Up2Dep detects a declared dependency in a build.gradle
file of a project, it checks all transitive dependencies (all sub levels) of the current
dependency and queries security related information of these transitive dependencies. If
any transitive dependency contains security problems, developers are notified similar to
how security problems of the main dependency are communicated (see Section 4.4.2.4).

Analysis Results: Our results reveal that there are 1,209 library versions (belonging
to 112 unique dependencies) that have security problems. These dependencies are
currently (transitively) used by 9,787 library versions (233 unique libraries) in our
data-set. Especially, among 1,209 transitive dependency versions with security problems,
16 contain a publicly disclosed vulnerability. This means even if developers are aware of
such libraries with security problems they have no way to find out if their projects are
including such insecure dependencies as they are not visible to developers. The latest
version of Up2Dep now informs developers about such security problems of both the
main dependency and transitive dependencies so that developers can also avoid insecure
transitively included library (versions).

4.6.3 Comparison with Existing Work

In our work, we significantly increased the database of LibScout by a factor of 7.5x.
Furthermore, our database covers the top 100 most popular libraries on Maven reposi-
tory [149] which was not considered by LibScout. Most importantly, we provided an
effortless synchronization (end-to-end) process that automatically scans for new libraries
(versions), analyzes for cryptographic API misuse, then the information on security
and updatability of new libraries (versions) are delivered to developers right in their
development environment without them having to use extra tools.

Besides, as we extended the rule set of Cognicrypt to include the check for use of http
protocol, we have found 20 libraries (8.4% of all identified insecure libraries), spanning
across 93 versions using such insecure protocol. With the original rule-set of Cognicrypt
we would have missed the insecure network connection in these libraries.

4.7 Discussion

4.7.1 Threats to Validity and Future Work

Our work leverages LibScout and Cognicrypt and inherits their limitations. For LibScout
the ability to provide suggestions for API changes relies solely on API heuristics, such
as name, parameter types, or return types, which do not necessarily guarantee that
the suggested API will work as expected. If the semantics or side-effects of a library
method change between versions, this could break the functionality of the developer’s
app although the app code was compatible at the method signature level with the
new library version. Further detecting semantic changes is an open problem that
requires effort from different domains, especially software engineering, and is not in
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the scope of our work. Yet in this work, we show that relying on API changes to
derive compatibility among library versions does help developers to keep their project’s
dependencies up-to-date, yet it needs further improvement to cover more cases.

While Cognicrypt provides the flexibility to create new rules to detect cryptographic
misuse, it is not free of false positives. We found cases where calls to cryptographic APIs
are wrapped in custom Java utility classes by the library developer. Cognicrypt can not
completely link the control flow graph of those custom classes to detect if a cryptographic
misuse occurs in those cases. This results in Cognicrypt over-approximating the misuse
and reporting false positives. In particular, misuse of MessageDigest depends on call
sequences and this shortcoming of Cognicrypt in classifying misuse of that class when
being wrapped in custom classes might be a contributing factor to the high number of
misuses detected for MessageDigest (see Figure 4.2). However, it is not easily possible
to verify such misuse using static analysis and exclude false positives from our results.
Once Cognicrypt addresses this limitation, also Up2Dep will provide more accurate
warnings to app developers.

Additionally, we currently manually look for publicly disclosed vulnerabilities, which is a
tedious task. In future, this could be generally done with a central library repository, e.g.,
when a vulnerability of a library is disclosed, central library repositories can incorporate
and mark the vulnerable versions in their database so that tools like Up2Dep or Lint
can automatically retrieve and provide developers feedback in their IDE. However, for
the cryptographic API misuse, Up2Dep’s pre-analyzer component automatically crawls
newer versions of third-party libraries and runs Cognicrypt to obtain up-to-date results.

Further, the population size of the developers in our evaluation might be perceived as
small since we only have 56 developers, of which 23 shared with us their experience in
our online survey, and 22 developers provided us feedback in their Android Studio. Our
demographic data shows that our evaluation indeed has a population of experienced
developers (e.g., 18 of them have developed at least 2 Android apps). However, developer
studies [5, 77] had in the past notoriously a low number of participants as it is not
easy to recruit real developers. Besides, most of them were conducted with students as
proxies using handcrafted, toy projects which do not necessarily represent the day-to-day
real situation that developers often face. In our work, on the other hand, we tried to
avoid students as proxies and toy projects as much as possible and gain insights from
developing real app projects (external validity).

We think the fact that we could recruit this number of developers and keep them
using Up2Dep is in part due to the interest and need for such a tool by the developer
community. Furthermore, with our feedback in-context option, we obtain valuable
feedback from developers on whether Up2Dep works. Given the only small percentage
of false positives reported (6.7%) and 80% of the suggested quick-fixes working as
expected, we believe that we have delivered a novel and expedient tool, and can show
the impact of such tooling support on real world situations.

Lastly, we abstained from collecting telemetric information on whether developers
ignored the quick-fix, since this might be considered too intrusive. Unfortunately, this
also precludes us from modeling whether a known security vulnerability or cryptographic
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misuse warning is a significant predictor for applying quick-fixes and library updates in
our evaluation.

4.7.2 Transitive Dependencies and App Security

While during our evaluation, we did not consider transitive dependencies, we also have
seen that the problems of transitive dependency with regards to library updatability is
a corner case, e.g., only 2 instances of the false positives. Also existing research [87]
on the updatability of third-party libraries shows that only 1.7% of the library API
could be affected by this problem (referred to as entangled dependencies). Still we see a
potential threat to the security of Android apps due to transitive dependencies. We
found that (known) security problems of a library could be hidden from developers
when the library is included as a transitive dependency of another dependency and this
transitive dependency is not communicated as obvious to app developers as needed.
While the community is trying its best to find security related problems of third-party
libraries, it is also important to keep developers informed on all potential risks associated
with a (declared) dependency. We are to the best of our knowledge the first to study
the security problems of transitive dependencies and subsequently developed a solution
to tackle this problem by alerting developers when they include libraries that have
transitive dependencies with security problems.

4.7.3 Impact of Fixing Insecure Dependencies

Among the 116 applied fixes, 6.89% had security vulnerabilities (4 known security
vulnerabilities, 4 cryptographic API misuse). We consider these numbers non-negligible
and this has tangible impact on the security and privacy of the Android apps that
developers are working on. Previous work has identified the security & privacy impact
of outdated third-party libraries in general and of outdated insecure third-party libraries
in particular (see Section 4.8). By updating the insecure code dependencies to secure
versions, we are removing the factors that could amplify security & privacy problems
in apps and expose end users to multiple types of attacks. While market stores such
as Google Play have been scanning apps for security & privacy problems, they are
dealing with monolithic byteblobs where there is no separation between app code and
library code. Hence, such solutions need exact, reliable library detection mechanisms
which is a challenging task and no satisfactory solution exists yet. This becomes even
more challenging when the apps’ byte-code is obfuscated, something that Google itself
is promoting to app developers [12]. Our results show that by integrating support
to suggest secure code dependencies within developers’ IDEs, we can eliminate many
security problems that arise from including insecure third-party libraries without having
to deal with monolithic apks where app code and library code have been merged together.
Especially, developers do not need to learn new tools or adjust their daily work-flow
to be able to use Up2Dep. Our results call for action from IDE developers to merge
tools like Up2Dep into IDEs, like Android Studio, so that developers immediately and
by default benefit from such support. Based on our results, the experiences in other
software ecosystems [140, 68] or for native Android libs [11, 71], and the movement
toward integrating security into software development life cycle namely SevDevOps [111,
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112], we argue that this would have a tangible impact on the security & privacy of the
Android ecosystem especially.

4.7.4 Fear of Incompatibility vs. Will to Update

In our evaluation, we learned that, the majority of the outdated libraries can be updated
all the way to the latest version (see Figure 4.10) without having to change the app
code (i.e., 68.97% quick-fixes are update to the latest version). Developers are afraid of
updating because they fear that the new version of the libraries would break the app’s
existing functionality [49]. Without the information on the compatibility of the new
update, developers either have to manually verify the release notes (if available) of the
libraries to make sure that the functions their apps are using are still available in the
update, or simply keep using the outdated versions. One developer explicitly shared
such experience via email with us after trying out Up2Dep:

"Thank you for sharing your project with me. It’s really exciting, we’re
normally manually reviewing the change logs to see if we should update our
dependencies right away or what we should test."

Compatible check was rated the most useful feature (see Figure 4.12) by developers in
our study. Had Up2Dep not provided the compatibility information on the outdated
dependencies, we would not think that developers would be willing to perform the
updates on these 68.98% outdated dependencies (80 of 116 outdated dependencies).

4.8 Related work

We discuss related works on studying the security of third-party libraries and on tool
support for developers in creating more secure apps.

Security of third-party libraries: Sonatype reported that almost 2 billion software
components were downloaded per year that contain at least one security vulnerability,
and that outdated software components had a three times higher rate of security
issues [1]. In the Web world, Lauinger et al. [99] showed that 37% of 133k analyzed
websites include at least one library with a known vulnerability, and that it takes years
for web developers to upgrade the included dependencies to the latest version. On the
other hand, regarding Android applications, Stevens et al. [145] investigated the user
privacy in Android advertisement libraries and found that among 13 investigated ad
libraries, several of them are over-privileged. Looking further into Android apps, Backes
et al. [19] proposed the LibScout tool to detect third-party library code in Android
apps, and found that 70.4% of the included libraries in their dataset are outdated. They
also found that it took developers on average almost one year to migrate the app to
the latest library version. Muslukhov et al. [113] proposed BinSight, a static program
analyzer that was capable of identifying source attribution in Android applications. The
authors revealed that for 90% of the apps that contain cryptographic API misuses, at
least one violation originated from third party inclusions. Watanabe et al. [155] also
found that 70% and 50% of vulnerabilities of free and paid apps, respectively, stemmed
from software libraries, particularly from third-party libraries.
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Tool support for software developers: Prior work has proposed different approaches and
tools to support developers in building more secure Android apps. Among them, many
developed tools to find vulnerabilities in applications after they have been released [55,
104, 124]. This means that developers were only aware of such security mistakes at
the end of or after their development cycle. Other tools [96] provided developers
support while they were writing code. Krüger et al. [96] developed Cognicrypt to
support developers in securely using crypto APIs. Rahaman et al. [132] proposed a
set of analysis algorithms and a static analysis tool namely CryptoGuard for detecting
cryptographic and SSL/TLS API misuses to help developers analyze large Java projects.
Focusing on supporting Android developers in writing more privacy-friendly apps, Li
et al. [100] proposed Coconut, an Android Studio plugin that engages developers to think
about privacy during app development and to provide real-time feedback on potential
privacy issues. Further, Android Studio, Google’s official IDE to develop Android apps,
includes Lint tool [102] to check for outdated third-party libraries. Lint, however, only
informs developers about whether or not a newer version of the library is available.

None of the above solutions supports developers in keeping their project dependencies up-
to-date while taking into account the effort to update the dependencies, the compatibility
of the update, or the potential security vulnerabilities of the different dependencies’
versions. While being the Google-provided tool for Android developers, also Android
Studio has not considered all these aspects to help developers in keeping their project
dependencies up-to-date, and especially to avoid insecure library versions.

4.9 Conclusion

Since security patches of libraries are often rolled out as updates, app developers (not
market stores, not the end users) need to keep their project’s third-party libraries
up-to-date to avoid security problems of outdated libraries. In this work, we present
Up2Dep, an Android Studio extension that facilitates the task of keeping an Android
app project third-party libraries up-to-date while taking into account the security
and the compatibility of the newer versions of such dependencies. Up2Dep suggests
alternative library APIs to developers in case a newer library version is incompatible.
It further helps developers in avoiding insecure libraries by alerting them to publicly
disclosed vulnerabilities and cryptographic API misuse in third-party libraries. We
tested Up2Dep with 56 Android developers. Up2Dep has helped developers in fixing
116 outdated third-party libraries, of which 6.89% had security vulnerabilities (4 known
security vulnerabilities, 4 cryptographic API misuse). The majority (80.0%) of the
suggested quick-fixes worked as expected with only 4 cases of failed quick-fixes. In further
investigation, we discovered the hidden security problems of transitive dependencies of
13.51% of the libraries in our dataset. We are the first to discover the hidden problem of
insecure transitive dependencies and subsequently developed the corresponding solution
to tackle this problem. Our results call for action to (1) merge tool support, like Up2Dep,
into developers’ integrated development environments, as this would create a tangible
impact on the security and privacy of the Android ecosystem when developers benefit
from tool support for upgrading used third-party libraries, and (2) study developer’s
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behavior to best provide them the right tool support.
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5.1. MOTIVATION

5.1 Motivation

Application markets streamline the end-users’ task of finding and installing applications.
They also form an immediate communication channel between app developers and their
end-users in form of app reviews, which allow users to provide developers feedback
on their apps. However, it is unclear to which extent users employ this channel to
point out their security and privacy concerns about apps, about which aspects of apps
users express concerns, and how developers react to such security- and privacy-related
reviews.

In this work, we present the first study of the relationship between end-user reviews
and security- & privacy-related changes in apps. Using natural language processing on
4.5M user reviews for the top 2,583 apps in Google Play, we identified 5,527 security
and privacy relevant reviews (SPR). For each app version mentioned in the SPR, we use
static code analysis to extract permission-protected features mentioned in the reviews.
We successfully mapped SPRs to privacy-related changes in app updates in 60.77% of
all cases. Using exploratory data analysis and regression analysis we are able to show
that preceding SPR are a significant factor for predicting privacy-related app updates,
indicating that user reviews in fact lead to privacy improvements of apps. Our results
further show that apps that adopt runtime permissions receive a significantly higher
number of SPR, showing that runtime permissions put privacy-jeopardizing actions
better into users’ minds. Further, we can attribute about half of all privacy-relevant app
changes exclusively to third-party library code. This hints at larger problems for app
developers to adhere to users’ privacy expectations and markets’ privacy regulations.

Our results make a call for action to make app behavior more transparent to users in
order to leverage their reviews in creating incentives for developers to adhere to security
and privacy best practices, while our results call at the same time for better tools to
support app developers in this endeavor.

5.2 Problem Description

Application markets such as Google’s Play or Apple’s App Store are core components
in mobile software ecosystems. They constitute centralized markets for developers to
distribute their apps and for end-users to search, download, and purchase applications.
Similar to online retail markets, end-user reviews are a key element to the success of app
markets. Users that have used an app can write reviews—short text messages typically
including a star-rating—to express their opinion about an app and help other users to
choose between similar apps. At the same time, reviews can also be used as a direct
feedback channel to app developers, e.g., to express feature requests or to report bugs
and security issues. The app developers, in turn, can react to this feedback and reply
to their users.

Although user reviews form a direct communication channel betwen users and developers,
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past research on security and privacy protection has—to the best of our knowledge—
not given this channel any attention. Prior research focused instead, for instance, on
providing users with support in choosing less risky apps [131, 76] or on helping users
making informed decisions whether or not to grant permissions to an application [118,
157, 135]. Although such support is undeniably valuable for helping users, we believe
that those also form short-term solutions that do not immediately tackle the root cause
of developers releasing apps that disregard privacy best practices. For apps to improve
their security- and privacy-related behavior in the long-run, feedback should not only be
directed to end-users but also to developers, ideally in a way that the developers have
incentives and motivation to update their apps according to the security and privacy
concerns of their users. User reviews would seemingly form such an immediate feedback
and rating channel for security- and privacy-related user concerns. Unfortunately, the
extent to which reviews can provide this kind of feedback and how developers react to
such feedback have not yet been investigated.

5.3 Contributions

In this work, we study the connection between security- and privacy-related reviews (SPR)
and security- and privacy-related app updates (SPU ). Concretely, this includes questions
like “To which extent do SPR trigger SPU in apps?”, “How often do app developers
react to SPR (e.g., due to the fear of follow-up reviews with low ratings and a potential
financial loss)?”, and “What kind of SPU do app developers do in consequence of SPR?”
To answer those questions, we first build a crawler to collect the complete version histo-
ries of the top 2,583 apps (62,838 app versions) on Google Play and their corresponding
4.5M user reviews. We then use supervised learning techniques to identify 5,527 security
and privacy relevant reviews. By retargeting the release dates for both the app versions
and the reviews, we connect those SPR with the corresponding app version that was
mentioned in the SPR. Using static code analysis, we classify the changes between those
user-reviewed app versions and their immediate successor versions as SP-relevant when
later app versions behave more privacy-friendly. Using recent advances in statically
detecting third-party libraries [19], we are able to attribute those SPU to either app
or library code changes. Using this data set, we then set out to thoroughly examine
the impact of user reviews on the SPU of android applications. We build a statistical
regression model that takes different factors into account that could affect the update
of an app, including users’ variables (e.g., ratio of SPR received, and review star rating)
and app variables (e.g., permission mechanism, the ratio of replies to reviews, and app
category). By applying our regression model to our entire data set of reviews and app
histories, we are able to show that SPR are significant predictors of SPU in Android
applications. This means the more SPR an app version receives, the more likely the
subsequent version of the app will be an SPU. Additionally, our results show that of
all SPU, only 17.06% could be uniquely attributed to app code while 48.81% could be
uniquely attributed to (closed-source) third-party code, meaning that in most cases
SPR complained about app behavior that was added to the app through inclusion
of third-party code. Furthermore, through statistical testing, we confirm that app
versions that use Android’s run-time permission dialogs raise more suspicion from users,
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expressed through a significantly higher rate of SPR for those app versions (1.46 times
more than for install-time permissions).

Based on those results, we conclude that SPR indeed have a positive influence on the
privacy-related development of apps and that there is a clear call for action to not only
support users in making better choices but also making app behavior explicitly more
transparent to users to foster higher rates of SPR that express users’ privacy attitudes
and create incentives for developers to adhere to privacy best practices. Developers, on
the other hand, clearly need support in this task, in particular in estimating the impact
of included third-party code onto their apps’ privacy-critical behavior.

In summary, we make the following contributions:

• We investigate security- and privacy-relevant features in apps that can be perceived
by end-users (e.g., permission requests and data accesses) and map them to
permission-based functionality that can be extracted from apps.

• We build a longitudinal repository of 2,583 applications and their 4.5M user
reviews. We build a classifier to identify SPR with a very good accuracy (mean
AUC value of 0.93). By retargeting app release dates, we can map SPR back to
their affected app versions in 88.62% of all cases.

• We statically extract permission-based features from apps mentioned in SPR and
identified SPU of apps in 60.77% of all SPR. Further, 48.81% of those SPU can
be attributed exclusively to (closed-source) libraries.

• We build a statistical regression model to evaluate the impact of different factors
on apps’ SPU, including users’ variables and app variables.

• Our approach reveals that SPRs are a significant predictor of SPU of Android
apps and that apps supporting runtime permissions dialogs receive 1.46 times
more SPRs than apps with install time permissions.

Outline: This work is organized as follows. We give an overview of related work in
5.8 and describe our methodology in 5.4. We empirically analyze our data in 5.5 and
explain our regression model to predict SPU in 5.6. We discuss our findings and draw
actionable items in 5.7 and conclude in 5.9.

5.4 Technical Description and Approach

In this work, we automatically identify security- and privacy-related reviews (SPR)
and map SPR to security- and privacy-related updates (SPU) of the corresponding
applications. Figure 5.1 gives an overview of our methodology. We collect the dataset
for our analysis with a custom built crawler, which mines Android applications and their
version history as well as the apps’ reviews from Google Play. After having collected
the apps and their reviews, a classifier identifies SPR. Once we have the set of SPR,
we establish correlations between SPR of apps and the security and privacy relevant
changes within the corresponding apps’ release history (S&P Mapping). In the following
sections, we will describe the different steps of our methodology in details.
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Figure 5.1: Overview of our methodology

5.4.1 App and Review Crawler

Mining user reviews The collection of the user reviews from Google Play consists of
two steps: collecting the reviews’ text as well as their scores, and then pre-processing
the text for later classification.

We built a crawler to collect Android application reviews from Google Play. As previous
studies [153, 161] have shown that only a small fraction of free applications on Play
accounts for the bulk of the application downloads—a so called superstar market—we
focus our collection of applications on those apps that are most popular among the
users of Google Play. Therefore, our crawler collects all Android applications that have
at least 50,000,000 downloads, which results in 2,583 distinct applications as of July
2017 when we collected our dataset. It might seem that 2,583 apps is a very small
number of applications in comparison to other market studies on Android, but it has
to be considered that we also crawl each app’s version history and their corresponding
reviews. Thus, we trade a large-scale cross-sectional study, as favored in most other
studies on Play, for a longitudinal study of apps that allows us to analyze the evolution
and influence of SPR on app security and privacy. Since downloading each app’s version
history easily amplifies the required time for data collection and analysis [19], we chose
to limit our data collection, both app version histories and reviews, to apps that have at
least 50,000,000 downloads. We explain the technical realization of our app collection
further down.

We only crawl reviews that were written in English by selecting the Play web interface
language code accordingly. Besides the review text with its rating score, we also gather
developer responses (if available). Our dataset as of September 2017 contains 4,547,493
reviews. We will elaborate on how we compiled this list of reviews later on when
explaining our training dataset for our review classifier (see Section 5.4.2)

Crawling app history Studying security and privacy relevant changes of applica-
tions (SPU) and their connections with user reviews requires building an app repository
with historical information about apps, i.e., including all versions of a particular app,
which allows analysis of an app’s evolution. To this end, we adopt the approach of
Backes et al. [19] that used an undocumented market API to query Google Play for
older versions of an app. In the following, we will explain how we obtained the complete
history of the top 2,583 apps in Play from September 2017, resulting in a repository of
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62,838 distinct app versions (i.e., on average 24.33 versions per app in our collection).
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Figure 5.2: Relative CFD of maximum version codes of apps in our data set

History collection: The Play API allows us to query for app versions using the app’s
packagename and version code. However, there is no option to list the available versions
for a given app. Thus, building the history of an app requires probing for existing version
codes. The version code is an integer number that must be monotonically increased with
every app update, but there is no official numbering scheme enforced. Although the
majority of app developers simply increases the version code by one, related work [19]
has shown that some developers use special date patterns, such as YYYYMMDDVV
where VV is the revision-per-day. Since exhaustively probing for the existing version
codes of each app is very time consuming, we set the threshold for version codes that
we test to a maximum of 40k. This gives a coverage of 82.3% for the apps in our data
set, i.e., for 2,126 out of 2,583 apps this threshold is higher than their highest version
code on Play. Figure 5.2 illustrates the relative cumulative frequency distribution of the
maximum version codes in our data set.

Release dates: A second major drawback of the Play API is that it is not possible to
query for release/upload dates of old app versions. In order to be able to map reviews
to app versions by date, we follow the approach of related work to collect missing
release dates from market analysis companies, such as appannie.com, apk4fun.com, and
appbrain.com. In total, we were able to recover the upload dates of 81.52% of all app
versions in our data set (51,225 of 62,838). For a set of 957 apps we were able to retrieve
the complete version history. For the remaining 1,169 apps we have an incomplete set
of upload dates, for whose majority (790 of 1,169) we miss the long tail of upload dates,
i.e, we could not recover dates for early versions that were published before any of the
market analysis services started to collect data. Figure 5.3 shows the distribution of
790 apps for which we miss the long tail of upload dates. For about 70% of these apps,
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less than 30% of the whole app history is missing.
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Figure 5.3: Distribution of apps missing upload dates

5.4.2 Review Classifier

A naïve way to identify SPR would be using keywords. However, this is not an easy
task, since we cannot study millions of reviews to pick a representative keyword list.
Besides, a review written by users can have multiple sentences. If we only use keywords
to identify SPR, we may miss other information that comes from the nearby sentences
that may contain interesting information but not the predefined keywords. Hence, by
using machine learning techniques to learn not only the sentence with keywords but
also the nearby ones we can expand our classifier’s knowledge. For instance, consider
the following review: "Why do you need access to my location? Why on gods good green
earth does your app need access to my location info? One star for the privacy steal." If
we would use keywords, we can only determine the first two sentences as security- or
privacy-relevant. However, the last sentence is also an indicator that this app is perhaps
doing something fishy. This is an important feature that we can put into a classifier
without having to learn the phrase privacy steal. Later on, if our classifier encounters
similar reviews, even without the presence of privacy-related keywords (here: location),
it is still able to classify them as SPR (e.g., "This app steals your info").

Training set Given the large amount of reviews and the anticipated low portion of SPR,
it is not feasible to manually label a representative set of reviews while simultaneously
balancing the number of SPR and non-SPR. Therefore, we first look at reviews that
mention Android permissions or resources that are by default protected by an Android
permission. We then manually examine some SPR to pick further keywords mentioned
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in such SPR and visit the Android documentation regarding the mentioned permissions
to further complement our keyword list with the information from the documentation.
We strongly focus on permission-protected resources, because this is the only interaction
that end-users can usually observe when they interact with the apps, e.g., install-time
permission dialogs (prior to Android 6) or intercepting dialogs for runtime permission
requests (Android 6 or later). It is rather uncommon to see layman users that are not
security experts using extra analysis tools (e.g., Xposed modules [158]) to track data
flows within applications for privacy violations or to detect insecure network connections
of apps.

Table 5.1: Security- and privacy-relevant keywords

Permissions Key words
Account account access, account
Bluetooth bluetooth, bluetooth devices
Calendar read calendar, calendar, write calendar
Contact read contacts data, write contact, contact
Location location, track, gps
Mail mail, voicemails
Media picture, photo, media, files, take picture, taking picture,

camera
Messages sms, receive mms, send mms, messages, read messages,

sms, read sms, send sms, mms, receive sms
Network network, network state, wifi information, wifi, internet

access, internet, network connectivity
Notification notification, system alert window, system alert
Phone phone call, phone number, outgoing call, manage call,

phone state, call, call log, call’s log, log, sip
Sensor sensor data, sensor, fingerprint, nfc, vibrate
System package size, install shortcut, delete package, battery

info, reorder tasks, boot, boot completed, wap push,
run in background, root

Storage write storage, storage, read storage, sd card, SD card,
file

General key-
words

permission, access, intrusive, identity, personal info,
malware, virus, malicious

Table 5.1 shows the list of compiled keywords we use in our analysis. This list results in
approx. 1.85M reviews that are potentially security and privacy related. We randomly
picked 4,000 reviews to manually label them. We consider a review as SPR if the
user mentions the app’s requested permissions, keywords related to accessed resources,
or other general SPR keywords (see Table 5.1); otherwise we consider the review as
non-SPR. After removing some malformed reviews (e.g., we were unable to determine
what the reviews meant), our training set contained 3,891 reviews (SPR: 586, non-SPR:
3,305). To account for imbalanced data (SPR vs. non-SPR), we apply SMOTE [36] to
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over-sample the SPR class.

Features extraction Characters of n-grams are commonly used features in text
classification [33, 29, 85]. Character n-gram features for a review are all n consecutive
letters in that review. For instance, the 5-grams for the review "Why does this app
need access to my location" are why d, hy do, y doe, does, oes t, es th, [...] , locat,
ocati, cation. We use n-grams of characters instead of words, because reviews written
by users often contain typos, and by using n-grams of characters, we can reduce the
influence of typos onto the classification. Prior work of McNamee et al. [109] showed
that n = 4 (characters) is a good choice for European language text retrieval, while
Dave et al. [47] reported that unigrams (n = 1) of words outperform bigrams when
conducting text classification of movie reviews. Inspired by their findings, we choose
n = 3, 4, 5 as our n-gram models, which also yielded the best results during experiments
with our training data. Before extracting n-grams of the reviews, we apply different
text pre-processing techniques to obtain a better quality data set since user reviews are
often written on smart phones, hence they tend to be very short and usually contain
grammatical mistakes or typos [82, 46, 44]:

• Remove stopwords: remove articles from the user reviews (e.g "a", "an", "the")
• Stemming: reduce inflectional forms to a common base form of a word (e.g. am,

are is→ be)
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Figure 5.4: ROC curves of the 10-Fold cross-valication for our SPR classifier
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Machine learning model Classifying reviews belongs to the task of natural language
processing (NLP) and the most common NLP approach for using machine learning
to classify text documents is using Bag of Words [143]. With bag of words, each text
document is represented as the bag of its words regardless of its grammar forms and its
orders. Occurrences of each word is used as feature for training classifiers. We use a
Support Vector Machine (SVM) Linear kernel for our classifier as it has been shown
to be effective for text classification [90, 148], especially for short documents [23]. We
form bag of words by splitting the reviews at spaces and punctuation marks, and use
n-gram model to extract features for our classification task.

Validation To validate our approach, we use k-Fold cross validation with k = 10, as
prior work of Kohavi [95] has shown that this is the best method for cross validation.
Besides, we choose AUC (area under the ROC curve [83]) as our classifier evaluation
metric because it is not sensitive to imbalanced class distribution (SPR vs. non-SPR)
and was widely used in prior work as the metric for imbalanced data classification [35,
129]. Figure 5.4 shows the AUC values for our 10-Fold cross validation. Our classifier
has an AOC’s mean value of 0.93 as its accuracy in classifying SPR (a classifier with
perfect accuracy would have an AUC of 1.0).

5.4.3 Static App Analysis

So far we have built the data model that allows us to map SPR to the enclosing set of
app versions by using both app version release dates and the date of the review. In order
to measure the effect of an SPR on app security and privacy, we conduct static analysis
on the version immediately preceding the SPR and the updated versions after the SPR
to find potential SPU. For the majority of end-users the install-time permission list and
runtime permission requests are the only information to assess whether the advertised
functionality (e.g., via the app description, app category, etc.) seems legitimate. To
determine the change of permissions and usage of APIs that require permissions across
versions, we leverage the permission lists of the axplorer project [20]. Its authors provide
mappings of Android SDK APIs to required permissions up to Android version 7.1. In
a first step, we extract the list of declared permissions from the apps’ manifest files. We
further extract the target SDK versions to determine whether or not the app supports
runtime permissions (target API higher or equal to 23). We subsequently scan the apps’
bytecode for APIs that require dangerous permissions.

Attribution is another important aspect of the analysis, i.e., are permissions and their
respective APIs used within the app developer code or within some third-party library
code. In such cases, we would like to know the exact library (version). To this end, we
leverage the open-source tool LibScout [19] that is capable of providing this information
for a set of 205 commonly used libraries. To cover cases of unknown third-party code,
we extend the implementation to classify any code not identified by LibScout into app or
library code based on the app package name as a heuristic. We finally add functionality
to attribute identified permission API calls to either app code or library code (either
detected by LibScout or via our heuristic).
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This collected information allows us in the following to identify security and privacy
relevant changes as a potentially immediate result of an SPR.

App
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Figure 5.5: Mapping SPR to security-/privacy-relevant app updates (SPU)

5.4.4 Mapping SPR to SPU

The final step in our work-flow (see Figure 5.1) is to correlate the SPR for an app
with the security and privacy related changes of an app. First, we identify potential
candidate app versions that might contain relevant app changes in connection with an
SPR, afterwards we analyze the candidate versions for security and privacy relevant
updates (e.g., in the app manifest or code).

Identifying candidate app versions Figure 5.5 illustrates how we map SPR to
candidate application updates. For every SPR, we first assign the SPR to the immediate
preceding app version, SPR app version, released before the SPR. We then look for
security and privacy related updates in later versions of the app after the SPR app
version. In case we do not have the release date of an app version, we skip that version.
When an SPU is found, this connection between the SPR and newly found SPU is
considered a match (i.e, the SPR potentially influences the SPU).

SPR to SPU version distance While in ideal scenarios, we would expect SPU right
after SPR, there are other factors which may contribute to the reasons why the next
update may not be an SPU. For instance, developers are working on a particular feature
of the app or they may only read user reviews irregularly (e.g., reviews come in large
number [119]). We therefore take the distance between an SPR and an SPU release into
account. In particular, if there is an SPR for version1 but an SPU is found at version4,
then the distance is 3. The longer the distance is, the less likely the SPU is triggered by
the SPR.
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Table 5.2: Security- & privacy-related reviews per app category

Category (#apps) Total
#SPR

Mean
#SPR/app

Tools (221) 1,343 7.5
Health And Fitness (30) 190 7.04
Shopping (35) 163 6.52
Sports (13) 54 6.0
Business (23) 113 5.95
Productivity (73) 364 5.69
Communication (66) 322 5.55
Media And Video (62) 192 5.33
Social (56) 215 5.12
Transportation (14) 42 4.67
Lifestyle (48) 136 4.53
News And Magazines (13) 47 4.27
Travel And Local (27) 89 4.05
Entertainment (98) 251 3.92
Personalization (112) 310 3.69
Finance (10) 25 3.57
Weather (19) 51 3.4
Photography (141) 228 3.3
Books And Reference (36) 73 3.04
Music And Audio (73) 144 2.94
Games (889) 1,149 2.78
Education (14) 22 2.44

5.5 Empirical Analysis

We present the results and findings of our analysis of security- and privacy-relevant
reviews on Google Play and the corresponding relevant changes in app updates. We
refer to Section 5.7 for a discussion of our findings.

5.5.1 Security and Privacy Related Reviews (SPR)

In order to analyze whether SPR trigger security and privacy relevant changes in
app updates, it is first necessary to map SPR to features that can be checked with
code analysis techniques. To this end, we first map SPR to permissions (groups) and
subsequently check for permission-based features in app versions released after the SPR
was posted.

Mentioned permissions Our review classifier identified 5,527 SPR (0.12% of a total
of 4,547,493 reviews) belonging to 1,269 distinct apps. Each of these apps has an average
of 4.36 SPR (median = 2), where certain app categories received more SPR (e.g., Tools)
while others received less (e.g., Games). Table 5.2 lists the number of SPR per category.
For 2,898/5,527 SPR, we are able to identify 4,180 permission-related statements that
can be assigned to 15 distinct permission groups. This implies that some SPR refer to
multiple permissions. The remaining 2,629 security and privacy related reviews cannot
unambiguously be mapped to permissions without extra knowledge, e.g., “Worked fine,

79



CHAPTER 5. MEASURING THE IMPACT OF USER REVIEWS ON ANDROID APP
SECURITY & PRIVACY

but removing due to permission change without saying why...and if it is just for ads
say that” and “A Nice game, but ridiculous permissions the game is very good, but the
permissions in the last update is ridiculous.”
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Figure 5.6: Ten most mentioned permissions in SPR

Figure 5.6 presents the permissions mentioned most in SPR. The list is headed by the
permissions to access external storage, contacts and location. We created a separate
category “personal information” for SPR when users complain about such data without
mentioning specific permissions.

Runtime permissions vs. install-time permissions In October 2015, Google officially
released Android 6.0 (API level 23) and shifted from an install-time permission model to a
runtime permission delegation in which apps request dangerous permissions dynamically
at runtime. For the 2,126 applications for which we built the version history, 1,073
(50.5%) have adopted runtime permissions in their latest version as of September 2017.
Among the 1,269 apps that have at least one SPR, a similar fraction (49.7%) has adopted
runtime permissions. To empirically investigate the effect of runtime permission requests
on users’ perception, we calculate the percentage of SPR over the total number of app
reviews before and after an app adopted runtime permissions. To this end, we check
whether the targetSDK argument from the apps’ manifests is set to API level 23 or
higher. We then conducted a t-test to compare the ratio of SPR per total reviews of
app versions with runtime permission and with install-time permission. We found that
there is significant difference between the SPR ratio of apps with install-time permission
(mean = 0.001) and SPR ratio of apps with run-time permission (mean = 0.0025) with a
p-value of 0.02. This suggests that apps with runtime permissions receive a significantly
higher number of SPR.
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Developer responses Some SPR are written by users that do not understand context-
specific permission requests or do not have sufficient knowledge to assess the necessity of
a request [62]. Incomplete or missing app descriptions that provide an intuition about
the apps’ permission usage is one contributing factor. To allow interaction with users,
Google offers a Reply to Reviews API [134]. To analyze to which extent app developers
make use of this feature, we crawl any developer replies that have been made to the set
of 5,527 SPR. In total, we found 673 replies. With respect to the 5,527 SPR, developers
also implicitly reacted in 3,359 cases with SPU in the subsequent app version. In 256
cases, the developer replied (without making SPU) and in 417 cases we could observe
both replies and SPU. We manually examined these replies and grouped them into the
following categories:

• Explain (397): Developers explain the necessity of the mentioned permissions
• Contact (130): Developers asked the user to contact them and to provide more

information
• Fix (96): Developers confirmed the SPR and reported that a fix is already

published or in progress.
• Pre-defined generic (50): Developers replied with pre-defined generic answer

templates

In about 56% of the cases, the developer explained the necessity of permissions. Besides
missing app descriptions, install-time permissions are one of the factors that make it
difficult for the user to make the connection between permission and functionality. In our
data set, the developers replied with explanations for 234 app versions that were using
install-time permissions, in contrast to only 163 explanations for apps with runtime
permissions. Oftentimes, the developers ask users to provide more information via mail.
The reason for this is the 350 character limit imposed by Google for both reviews and
replies. This severely impedes providing comprehensive and detailed information about
a specific issue. In 96 cases the developer confirmed the user observation and reported
that the issue has already been fixed or the fix is in progress. For 78/96 cases, we could
identify SPU in the subsequent version of the respective app. For these cases, we can
be very certain that the SPU has been an immediate effect of an SPR. In 50 cases, the
developer simply replied with a pre-defined template without responding to details of
the review.

Figure 5.7 gives three examples for typical scenarios where developers reply to SPR. In
the first example, the developer acknowledges the issues and announces a fix without
providing more details. In the second example, the developer explains the necessity of
the location permission. In this case, no SPU are to be expected in subsequent versions.
In the final example, the developer announces a switch to runtime permissions in a
future version to provide more context for requests.
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Acknowledge → Fix
user: New permissions Why would this app need access to my location?
developer: Fixed in version 2.6.2. Update will be available in some hours.
Explanation → No Update
user: Why do you need access to my location? Why on gods good green earth does your app

need access to my location info? One star for the privacy steal.
developer: Location used for showing and maintenance ads only. App doesn’t use/save/share

your location.
Explanation → Update
user: Why does it wait until you install it to tell you it’s a trial Why does it need access to my

photos and videos
developer: Hello. We need an access to SD card only for the specific situations like saving

configuration files etc. We are working on new version with runtime permissions support,
so with upcoming version we will request the permissions only when it will be necessary.
Team (removed).

Figure 5.7: Examples of user reviews and developers’ responses
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Figure 5.8: Top 10 permissions removed from application manifests.

5.5.2 Security and Privacy Relevant App Updates (SPU)

We consider changes in the permission usage of an app as SPU, since these changes
would reflect what the user might perceive in terms of security and privacy. Our static
analysis found the following SPU between all consecutive app releases in our data set:

• Requested permissions removed from app: 1,608
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• Permission-protected API calls removed: 1,085
• Lib calls removed that trigger protected APIs: 940

In the following, we analyze those changes further.

Permission changes Figure 5.8 shows the top 10 permissions removed from the apps’
manifests with app updates after an SPR was posted on Play. Reading the device’s
phone state, access to user accounts, and access to the external storage are the most
frequently removed permissions, with external storage also being the top mentioned
permission in SPR (see Section 5.5.1). The majority of removed permissions allow access
to sensitive data, thus indicating a raised privacy awareness of users.

Figure 5.9 shows the top 10 permissions from permission-protected API calls that
were removed from the apps. However, removing permission-protected calls does not
necessarily mean that the app does no longer require that permission.

Change attribution We identify the root causes for the different results that we
observe for removed permissions and permission APIs. An important aspect is statically
included third-party code. Figure 5.10 lists the top 10 removed permissions required
by permission-protected API calls triggered by calls to third-party libraries. Many of
these permissions allow to retrieve data suitable for user tracking, which has been found
in a variety of tracking and advertisement libraries [25]. An interesting case is the
WAKE_LOCK permission. A study about wake lock misuse [103] showed that improper
usage of this permission often manifests in battery drain, crashes, and app instabilities.
Besides permission requests, these are events that can be observed by the user as well.
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Figure 5.9: Top 10 permission-protected API calls removed from applications
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Figure 5.11: Top 10 libraries removed from apps (w/o Play and Support libs)

We also found that in 98.4% (925) of the cases the complete library was removed as part
of the app update. In only 14 cases merely the library functionality that required the
permission was removed. Figure 5.11 shows the frequently removed libraries without the
extremely common Play Service and Android support libraries. Half of these libraries
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constitute advertising libraries that require at least the INTERNET permission, typical
uses often include ACCESS_NETWORK_STATE and location permissions as well. For
apps that target install-time permissions, the INTERNET permission was frequently
mentioned in SPR (228 instances), in particular when the app’s core functionality, e.g.,
calculator or flashlight, obviously did not require network access. With Android 6,
Google downgraded this permission to a normal protection level. As a consequence, it
is granted automatically and no longer shown to the user by default. SPR complaining
about the INTERNET permission for app versions targeting Android 6 or higher
dropped to just 38 instances.

We further used the results of the analysis to attribute SPU to app developer and library
code. To this end, we checked for each permission mentioned in the review whether the
permission-protected API usage in the subsequent version is exclusively located in app
code, library code, or used in both app and library. We found that in only 17% (72) of
cases the permission-protected APIs were exclusively used by app code, while in 48.8%
(206) of cases the APIs were exclusively used by library code. In the remaining 144
cases the permissions were used by both the application and the included libraries.

5.5.3 SPR to SPU Mapping

In this section, we report the results of mapping SPR to SPU and discuss factors that
may influence the results.

Mapped SPR to SPU We are able to unambiguously map 4,898/5,527 SPR to the
affected app versions. Only 629 SPR (11.38%) could not be mapped back to the affected
versions, because the review was posted before 2012 for which we could not recover app
upload dates. For 3,359/4,898 SPR (68.6%) we could map the SPR to SPU identified in
one of the subsequent app versions. For the remaining 1,539 SPR, we could not detect
security and privacy relevant changes in app updates. Figure 5.12 shows the distribution
of the app version distance from SPR to detected SPU for the set of 3,359 SPR. In 76.8%
of the cases we can observe SPU in the app version immediately following the SPR. If
we consider the interval from one to five versions, this value increases to 94.4%. The
likelihood that SPU in an app versionx were triggered by the SPR gradually decreases
with the number of new app versions released between SPR and versionx and other
external factors may have triggered the SPU instead.

SPU without SPR To evaluate to which extent our classifier misses SPR, we generate a
backward mapping from SPU to reviews. For the 5,994 SPU our static code analysis
found, 2,666 changes were observed without the presence of any review and 1,488
changes could be mapped to SPR. This leaves 1,840 SPU without SPR. Other reasons
include external factors, such as updated libraries, internal code reviews, and developer
notifications via different channels such as email.

SPR without SPU To further validate our approach, we also seek to find answers for
the cases in which we identify SPR but no SPU in the subsequent app versions. When
excluding the SPR that could successfully be mapped to SPU (3,359) and the SPR that
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Figure 5.12: Distribution of distance to SPU for 3,359 SPR. Count in log-scale.

were posted prior to 2012 (629), this leaves 1,539 SPR for which we could not detect
SPU. Reasons for this include: 1. Replies to reviews in which the developers explains the
necessity of permissions or acknowledges the report without modifying the application.
In these cases, no SPU are to be expected. 2. Limitations of our static analysis, e.g.,
LibScout can detect about 205 popular libraries, but there might exist more libraries
that could have an effect on the security and privacy of an application. In addition, our
analyzer checks for permission-protected APIs only. This misses permission-protected
content providers such as Contacts for which an additional API argument analysis would
be necessary. 3. The app is no longer maintained. To investigate why developers did not
respond—neither with SPU nor replies—we check whether developers still update their
apps after an SPR was posted. To this end we consider an app no longer maintained
if its last version is older than one year starting from the day our crawler checked the
latest version of the app). This threshold is reasonable since prior work [32, 49] has
shown that most apps—in particular top apps—release updates biweekly or monthly.
We found 728/1,539 (47.3%) SPR belonging to 244 unmaintained apps. Since these
apps are still available on Play, they receive new reviews but new updates should not
be expected.

5.5.4 Summary of Findings

We briefly summarize our findings from the empirical analysis. We first crawled 4.5M
reviews for 2,583 distinct apps and identified 5,527 SP related reviews (SPR), out of
which 2,898 SPR could be mapped to permissions. With our static code analysis we
could identify 5,994 SPU in app versions following an SPR. In 60.8% of cases, we could
successfully map SPR to SPU. If we consider corresponding SPU (changes to 3,359

86



5.6. MODELING SECURITY AND PRIVACY UPDATES

SPR) and replies (273) as responses from developers and exclude SPR of unmaintained
apps (728), we can calculate the developer response rate (RR) to SPR as follows:

RR = #SPR with SPU + #SPR with replies
#SPR −#SPR of unmaintained apps

= 75.68%

Despite a small overall number of SPR compared to the total number of reviews and
the limited number of allowed text (350 characters), we can observe that these short
texts are an effective means to trigger fast responses from developers. In almost 76% of
cases, the app developer responded to a SPR.

5.6 Modeling Security and Privacy Updates

To examine the impact of different factors on Android application updates (SPU and
non-SPU), we conducted multiple regression models that predict whether an app update
will be security-/privacy-related or not. Our models include the effects of user reviews,
user rating, app’s permission mechanism (install-time or runtime), developer reply
ratio, and app category. To account for possible effects of multiple updates of the
same application, we use mixed models in which the updates are attributed to their
application (i.e., nested data) and include random effects by allowing the intercepts
to vary at application level but aggregating them over all applications. We compared
a model with random effects against a model without random effects, and our results
show that the model with random effects is significantly superior in its predictions.

Data set From the collected app history, static analysis results, and the identified
SPR we built a data set of app updates (including both SPU and non-SPU). In this
data set, we consider every change between two app version codes for which at least
one review is available as a data point for our regression model, which yields 15,835
data points in total (12,540 non-SPU and 3,295 SPU) when excluding the "Comics" and
"Libraries and Demo" categories since they only have one and three apps, respectively.
We consider the following variables for every data point (i.e., app update) as predictors
in our regression models:

• SPR ratio: ratio of SPR over the total number of reviews
• Average score: average rating score that the corresponding app version received

since the last app update
• Permission mechanism: permission mechanism (runtime or install-time) used by

the app version
• App category: as defined in Google Play
• Reply ratio: the ratio of developer replies over the total number of reviews since

the previous app version

We consider SPR ratio and average score to be user variables, while permission mecha-
nism, app category, and reply ratio are app variables. To account for SPR and average
score that can potentially have an impact on later versions of the app but not the
immediate version (see Section 5.5.3), we included the impact of SPR and average score
of the previous versions within the version distance into the final SPR ratio and final
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average score, respectively. The version distance between a version (versioni) that has
the SPR ratio and average score, and the version that is being considered (versionj)
is calculated by the number of versions between versioni and versionj for the analysis.
Versioni is here a preceding version of versionj . The final SPR ratio and final average
score of the currently being considered version are the cumulation of all of the previous
SPR ratios divided by their corresponding version distance, and the cumulation of all
previous average scores divided by their corresponding version distance, respectively.

5.6.1 Correlation Analysis

Since the coefficient estimates of mixed models can be unstable and difficult to interpret
if the model has multicollinear variables, we first performed a correlation analysis of the
independent variables, such as ratio of SPR over total reviews, reply ratio, and average
score. The analysis showed that there is no significant multicollinearity between any
variables of SPR ratio, reply ratio, average score in our data set. We did not include a
variable that accounts for the SPU location, i.e, whether security and privacy issues
mentioned in an SPR were located in application code or library code, since this variable
is derived from SPRs, which would violate the requirement for regression analysis that
predicting variables must be measured independently. In our data set, the location of
those issues are completely dependent on SPRs, which is already represented by the
SPR ratio variable. We therefore excluded such a location variable from our model.

5.6.2 Building the Models

To have a quality model, we need to only include variables that are necessary and can
account for as much of the variance in the empirical data as possible. We start with a
base model without any independent variables and then subsequently extend it with
more predictors. Table 5.3 presents the goodness of fit for the relevant steps in building
the corresponding models. Since the dependent variable of our analysis is binary—either
an app update is SPU or non-SPU—we use logistic regression. Moreover, to verify that
a mixed model suits our data better than a simple base model, we tested the base model
without any independent variables against the mixed models. The result is that mixed
models fit our data significantly better. In particular, we extend the base model as
follows:

• Start with base model with a random effect to account for effects from updates of
the same app

• Include variables at user level: SPR ratio, average score
• Include variables at app level: permission mechanism, app category, developer’s

reply ratio
• Include interaction between SPR ratio and average score

In each step, we calculated the model fit and used log likelihood model fit comparison
to check whether the later model fits our data significantly better than the previous
one. For the final model, we chose the one with the best fit that was significantly better
in explaining our data than the previous. This is a well established approach for model
selection [24, 43, 63, 86].
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Table 5.3: Goodness of fit for the models predicting SPU. AIC = Akaike information
criterion; Df = Degree of freedom; logLik = Log likelihood; Pr(>Chisq) quantifies statistical
significance. Statistically significant variables are shaded.

AIC logLik Df Pr(>Chisq)
simple regression 16198.23 -8098.12
mixed base regression 15654.05 -7825.03 1 <0.001
+ user variables 15570.16 -7781.08 2 <0.001
+ app variables 14830.06 -7388.03 23 <0.001
+ interaction 14831.54 -7387.77 1 0.471

We compared all models according to their corresponding Akaike information crite-
rion (AIC), see Table 5.3, which estimates the relative quality of statistical models for
a given set of data. Smaller AIC scores indicate a better fit. Moreover, we also used
likelihood-ratio tests, which are evaluated using Chi-squared distribution, to compare
the models.

From Table 5.3, we can see that the model with user and app variables and without
interaction has the lowest AIC score (14830.06) and explains the data statistically
significantly better than other models. For permission mechanisms and category, we
choose install-time and News And Magazines category respectively as base lines for
categorical variables: permission mechanism is a binary variable (either runtime or
install time) and we want to see to which extent changing from install-time to runtime
permission affects the interaction between user and Android application; and News
And Magazines category’s average number of reviews per app coincides with the global
average number of reviews per app among all categories (see Table 5.2).

5.6.3 Results and Interpretation

Table 5.4 presents our regression model that examines the effect of different predictors
for SPU. We can see that, in comparison to install-time permission mechanism, runtime
permission dialogs have significantly positive impact on SPU (odds ratio of 3.9). This
means that updates of applications (including app versions) whose permission mechanism
is runtime are significantly more likely to be relevant to security and privacy. This
further supports our earlier results that runtime permissions raise users’ suspicions.
Moreover, in comparison to apps of News And Magazines category, apps belonging to
other categories do not differ significantly with regards to SPU. This indicates that
SPU of an app seemingly do not depend on the app’s category. Most importantly, we
can see that SPR ratio is a significantly positive and strong predictor of SPU (odds
ratio: 13.04). This indicates that the more SPR the app developers receive, the more
likely they will release SPU. In contrast to SPR ratio, reply ratio has negative impact
on SPU (odds ratio: 0.66), indicating that if developers reply to a review, the less likely
the following app updates are security- and privacy-related. When we consider SPR,
we see that most of the developers’ replies are Explanation (see Section 5.5.1) why
such permissions are needed. This is further supported by our regression model. We
argue that if permission requests of Android apps are more transparent (e.g., better
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Table 5.4: Logistic regression mixed model predicting SP changes. Statistically significant
variables are highlighted. pm = Permission mechanism; cat = App category

Estimate Std. Error z value Pr(>∣ z ∣)
(Intercept) -1.092 0.315 -3.465 <0.001
SPR ratio 2.568 0.796 3.225 0.001
avg_score -0.094 0.006 -15.093 <0.001
reply_ratio -0.420 0.157 -2.678 0.007
pm:run-time 1.360 0.054 25.276 <0.001
cat:Books_Reference 0.096 0.367 0.261 0.794
cat:Business -0.039 0.374 -0.103 0.918
cat:Communication 0.098 0.347 0.281 0.779
cat:Education -0.403 0.418 -0.965 0.335
cat:Entertainment 0.526 0.334 1.573 0.116
cat:Finance 0.012 0.462 0.026 0.980
cat:Games 0.601 0.316 1.903 0.057
cat:Health_Fitness 0.428 0.362 1.184 0.237
cat:Lifestyle -0.105 0.346 -0.303 0.762
cat:Media_Video -0.035 0.346 -0.102 0.919
cat:Music_Audio 0.324 0.339 0.956 0.339
cat:Personalization 0.047 0.331 0.141 0.888
cat:Photography 0.374 0.326 1.146 0.252
cat:Productivity 0.131 0.342 0.384 0.701
cat:Shopping 0.205 0.362 0.567 0.571
cat:Social -0.043 0.341 -0.127 0.899
cat:Sports -0.195 0.391 -0.498 0.618
cat:Tools 0.168 0.323 0.520 0.603
cat:Transportation 0.065 0.420 0.155 0.876
cat:Travel_Local 0.115 0.400 0.288 0.773
cat:Weather 0.216 0.392 0.551 0.581

explanation, request in context), users would understand why such requests are indeed
reasonable, hence developers would not need to explain themselves in their replies.
Finally, the average score has a negative impact on SPU. More precisely, if an app is
receiving high scores (on average), then the next updates are less likely to be related to
security/privacy (odds ratio 0.91)

5.7 Discussion

We discuss shortcomings of our approach and interpret our findings. Then, we highlight
future work and a call for action.

5.7.1 Threats to Validity and Future Work

Our approach relies on the ability to map SPR back to app versions in order to measure
possible app changes as reaction to user reviews. Similar to related work [19], we could
not retarget the upload dates for all versions of our dataset. In particular, for app
versions released before 2012 there exists no reliable third-party source that can be
queried for upload dates. As a consequence, we failed to map 629/5,527 SPR (11.38%)
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back to app versions and therefore cannot assess the impact of these SPR on the app’s
security and privacy.

Further, we use static code analysis to identify security and privacy related changes
in app versions (immediately) following an SPR. This empirical evidence is a strong
indicator that these changes have been made as a (direct) consequence of the SPR.
Reasons for SPU range from following the principle of least privilege to protecting
users’ privacy to monetary reasons due to bad ratings and a decline in the number
of app installations. For the small number of SPRs to which the developer replied
and confirmed the issues, we can directly verify our findings. However, in general,
collecting the ground truth would require conducting a developer survey to ask directly
for the incentive of these changes. Prior studies [2, 49] have shown that recruiting a
reasonable number of developers in Google Play for a survey is challenging without
direct infrastructure support of the market (i.e., response rates <1%). We abstained
from conducting a survey, as we only have a limited set of 2,583 top apps, with an even
smaller number of distinct app developers and, hence, given prior experiences [2, 49], a
too small expected number of responses.

Another improvement would include adding a sentiment analysis to our binary review
classifier (SPR/non-SPR). This could help in understanding ambiguous SPR where
users complain about requested permissions but still like the application or when users
complain but are explicitly fine with a good explanation of the permission usage.

Lastly, we focused in our study on the top apps in Google Play, for which a higher level
of maintenance and developer responsiveness to reviews would be expected. Our results
might not apply to the long tail of apps on Play. However, since the top apps account
for the bulk of the app downloads on Play [153, 161], our results apply to the apps with
the highest impact on Android’s user base.

5.7.2 The Effect of SPR

Previous work has not given much attention to the influence of end-users on security
and privacy of apps via app reviews (see Section 5.8). Our results show that end-user
complaints based on observable evidence (permissions, crashes, or anomalies like unusual
battery drain) often lead to app changes that improve security and privacy aspects. In
cases where the issues can be attributed to closed-source components (see Section 5.5.2),
the developers might not even have been aware of these problems without an involved
code analysis, e.g., when the library documentations miss important details.

User reviews can also force app developers to react quickly to issues due to the snowball
effect. In many cases it is not a single SPR that triggers app changes but a series of
SPR by different users (SPR ratio in regression model) or SPR followed by a series of
follow-up reviews with low star ratings agreeing with the initial SPR (avg_score between
app versions). Developers are then forced to react due to a fear of losing reputation
(star rating) and user base that typically manifests in significant impact on revenue.
As a result, developers either try to quickly resolve the problem by providing a better
explanation to end-users or by addressing the issue with an SPU.
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Although our results emphasize the positive effect of SPR in general, reviews could
be much more informative and effective without the current size limitation of 350
characters for both reviews and replies imposed by Google. Such limits force users
to omit important details in reviews and make them use alternative, unrestricted
communication channels, such as email (see developer responses in Section 5.5.1). This
also prevents comprehensive app reviews as we know it from consumer reviews for
shops, such as Amazon. Although Google is aware of this problem for years [73], no
improvements have been made to remedy the situation.

5.7.3 The Effect of Runtime Permissions

Permissions are one of the most important security and privacy indicators of apps that
can be perceived even by less tech-savvy users. However, the way how permission
requests are presented to the user greatly affects their effectiveness (e.g., habituation
effects, user understanding, etc., see Section 5.8). The most drastic recent change in
Android’s permission system is the switch from install-time to runtime permissions, from
which we can also observe a ripple effect onto users’ reviews. Before Android 6, install-
time permissions provided a one-time decision possibility without context. Without an
explicit connection from permissions to functionality, users have to resort to (frequently
missing or incomplete) app descriptions for permission decisions. With the introduction
of runtime permissions, permission requests are (typically) shown in context and end-
users may decide differently when the same request is displayed on different occasions.
Further, developers have the possibility to augment permission requests with information
to explain the necessity of a permission in a given situation. With the introduction of
runtime permissions in Android 6, Google did also change the protection levels of a
significant number of permissions. Before Android 6 (API level < 23) there have been 38
dangerous permissions that were prominently shown at install-time [20]. Starting with
API level 23, Google refactored the permission system and specified only 20 dangerous
permissions. The remaining 18 permissions have either been downgraded to normal
permissions (that are granted automatically and are not shown to the user by default)
or have been deprecated. Among the most prominent examples are the INTERNET
permission, used by the vast majority of apps, and READ|WRITE_PROFILE. In
addition, one single permission READ_EXTERNAL_STORAGE was upgraded to
dangerous. This is also the top-mentioned permission in SPR (16%, see Figure 5.6).

Our regression model (see Section 5.6.3) suggests that applications adopting runtime
permissions are significantly more likely to perform SPU compared to apps that stick to
install-time permissions. But at the same time, the results indicate that for apps with
runtime permissions there is still a high number of developer replies of type Explanation
(163) in comparison to apps with install-time permissions (234). This suggests that
many app developers do not follow runtime permission best practices [16], i.e., adding
explanations for permission requests and requesting permissions in context rather than
requesting permissions on app launch. In terms of transparency for the users, requiring
the developers to add explanations in permission dialogs should be opt-out instead of
opt-in by default. We think that our results support further investigation of how app
developers use the runtime permissions.
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Google recently announced that in the second half of 2018, Play will require new apps
and app updates to adopt runtime permissions, i.e., to target an API level ≥ 23 [88].
This will likely allow end-user privacy assessments for a larger number of apps, i.e., in
our dataset about 45% of the top apps have not adopted runtime permissions in their
latest version. According to our results this will generate more SPR and, as a result,
more SPU in apps.

5.7.4 User’s Perception of Risks and Privacy Incidents

Compared to related work, our results from studying users’ security- and privacy-related
app reviews also suggest a change in the user’s concerns over the last years. A large
scale survey on the perceived risks of smartphone users by Felt et al. [127] indicated
that sending premium messages, dialing premium numbers, and deleting contacts were
among the top risks in 2012. Contacts are still in the Top 2 mentioned permissions
(see Figure 5.6), but reading external storage and location—now the top perceived
risks—have previously been among the lowest-ranked risks. This is partly because of
additional security features that impede using monetary services without the user’s
explicit consent and due to raised privacy awareness of end-users. Past incidents have
shown that simple flashlight [13, 156] or wallpaper apps [50] misused access rights to
spy on the user or to exfiltrate personal data. As a result, Google specified both privacy
policy for apps [130] and a general Unwanted Software Policy [74]. Developers were
notified that, by end of March 2017, "Google Play requires developers to provide a valid
privacy policy when the app requests or handles sensitive user or device information."
In future work, we consider evaluating to which extent users’ SPR can be used to create
trend analyses of users’ attitudes, in particular in response to regulatory (e.g., policies)
and system changes (e.g., refactoring of permissions). For instance, in our data set, the
downgrade of the INTERNET permission lead to a sharp decline in the number of SPR
for that permission.

Moreover, a recent large-scale investigation of hidden tracking behavior in Android
apps revealed that misuse of sensitive data by third-party advertisement and tracking
libraries is even larger than ever [15]. In consequence, Google extended its Unwanted
Software Policy and additionally requires that “if an app collects and transmits personal
data unrelated to the functionality of the app then, prior to collection and transmission,
the app must prominently highlight how the user data will be used and have the user
provide affirmative consent for such use.” [7] This implies that adhering to the new
policy requires transparency for all included third-party components. Related work [25,
78, 144, 133] indicated that particularly advertising and tracking libraries are the main
source of privacy violations and also our results (see Section 5.5.2) show that the majority
of SPRs complain about behavior that apps inherited from included libraries. However,
most of these third-party components are distributed as closed-source binaries and many
are not explicit about their usage of permissions and end-user data. An open question
will be how app developers can handle these problems, as this kind of libraries is often
used as the main monetization factor. A related study [49] showed that app developers
need more support in handling third-party libraries, both with better development tools
and a dedicated package manager for libraries. Similar assistance will be necessary for
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developers to make educated decisions on the choice of libraries to adhere to the new
policy and pro-actively avoid negative SPR on markets.

5.7.5 Call for Action

The strict enforcement of the 350 character limit, prevents comprehensive and high
quality reviews and forces users to omit additional information. Increasing the limit
will give users the opportunity to write meaningful reviews and report issues without
having to resort to alternative, non-public communication channels such as email. Both
end-users and developers could also benefit from dedicated reviewer programs, such
as Amazon Vine [10], which promote trusted reviewers that provide high-quality app
assessments for incentives, such as paid apps for free. Particularly developers of top
apps receive a high number of reviews every day, but only few of them include a call
for action. Approaches such as ours—as standalone-tool or directly integrated into
the developer console—can effectively reduce the number of reviews that have to be
considered, hence making the time-consuming, manual triage process more effective.
Additionally, the process of writing a review needs to be simplified to engage a higher
number of users to participate. Currently, writing a review with a device constitutes a
multi-step process via the Google Play app. This could be optimized by extending app
launchers to provide such an option as an app shortcut [17] as a default for all apps
hosted on Play. Moving to runtime permissions is a valuable step towards increasing the
risk awareness. The latest beta version of Android P continues this path by disallowing
idle apps to access the microphone and camera [89]. Any attempt is shown to the user
as symbol in a notification. It has to be shown whether this is already effective or
whether such accesses should be highlighted in the status bar more prominently.

5.8 Related Work

Android security, and in particular application security and the role of developers in
the mobile ecosystem, have been studied from different angles in the past. To put our
study on user reviews and their connection with the security and privacy evolution of
apps into a larger context, we present and discuss in this section briefly related works
on using natural language written texts for app classification, app reviews in general
and their automatic processing, as well as closest related developments in app security.

Using natural language processing Past research has successfully mined software
artifacts and connected them with the app descriptions regarding security and privacy
aspects. For instance, Gorla et al. used the applications’ descriptions to examine whether
or not the description matches the applications’ behavior [76]. The authors proposed
Chabada, a solution to cluster apps by their topics based on their description, and
to identify outliers, i.e., apps whose behavior deviates from the usage of permission
protected APIs within each cluster. Further, Pandita et al. [121] proposed Whyper
and Qu et al. [131] proposed AutoCog, two systems that also mine Android application
descriptions and then use natural language processing (NLP) to automatically bridge
the semantic gap between what applications do and what users expect them to do
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from their description. All of them, Chabada, Whyper, and AutoCog, work on app
descriptions written by developers. On the other hand, our study focuses on reviews
written by users, which are usually authored on smart phones, and hence often contain
typos and do not necessarily follow grammatical structures [82, 46, 44].

Processing app reviews App reviews play an important role for the success of an
app. They are the primary channel through which developers receive feedback about
their applications, such as how users perceive their apps, which features users are
requesting, or which aspect of the apps users favor. By default, this channel is public
and available to current and potential future users. However, inspecting such reviews is
a challenging task for developers as apps receive a high number of reviews every day.
Prior work by Pagano and Maalej [119] found that iOS apps receive on average about 22
reviews per day and popular apps, such as Facebook, receive magnitudes more reviews.
Moreover, reviews are not easy to automatically analyze given their unstructured forms.
Existing work by Chen et al. [38] has shown that only about one third of the user
reviews are actually informative to developers. Different prior works have focused
on automatically identifying useful user reviews for developers. Palomba et al. [120]
proposed ChangeAdvisor to support app developers in classifying feedback useful for app
maintenance. ChangeAdvisor combines NLP, text analysis, and sentiment analysis to
automatically classify app reviews written by end users. Fu et al. [65] proposed WisCom,
a tool that analyzes user comments and ratings in mobile app markets. WisCom uses
regression models and latent dirichlet allocation models to analyze the comments’ topics.
It is able to discover inconsistencies in reviews and determine why users dislike a given
app. However, none of these works focuses on the connection between app reviews and
the application’s security and privacy evolution.

App security evolution Calciati et al. [31] studied how the permissions requested by
apps evolve across different app versions. Their results show that apps tend to request
an increasing number of permissions in their evolution and many newly requested
permissions are initially an over-privilege of the app (i.e., a direct violation of the least
privilege principle). Violation of least-privilege by app developers is unfortunately a
long-standing problem, first identified by Porter Felt et al. [125]. Given the central role of
permissions for data protection on Android, past research has also investigated how users
should be confronted with permission requests, most noticeably early studies by Porter
Felt et al. [126, 127] that investigated users’ concerns connected to permission protected
resources and that gave different recommendations, respectively, which are partially
reflected in a recent paradigm shift of Android’s design from install-time to runtime
permission delegation. More disruptive proposals try to eliminate the explicit role of
the user for permission granting, e.g., through user-driven access control as proposed
by Roesner et al. [135] or the use of machine learning as proposed by Wijesekera et
al. [157] and Olejnik et al. [118]. Most recently, different works pointed out the risks of
third party libraries, in particular of advertisement libraries [78, 144, 48, 141] and of
vulnerable libraries [123, 19]. However, to the best of our knowledge, we are the first
to study the connection between user reviews and Android application security and
privacy evolution.
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5.9 Conclusion

In this work, we empirically studied the impact of user reviews on Android application
security and privacy features. We automatically classified reviews into SPR and non-
SPR. We mapped SPR to mentioned app versions and conduct a static code analysis to
extract security- and privacy-related code changes for these versions (SPU). We find
that in 60.77% of all cases the SPR triggered an SPU. The majority of these changes can
be attributed to (closed-source) third-party code like advertising or tracking libraries.
Furthermore, we built a regression model to evaluate the impact of different factors
on SPU. With our regression model, we showed that SPR are significant predictors for
SPU. In the majority of cases, app developers directly change the respective app code
or publicly reply to users and explain why certain permissions are required. We have
further seen that the adoption of runtime permissions has a significant positive effect
on users’ privacy perception. With the announced enforcement of runtime permission
adoption, the absolute number of SPR is likely to increase in the near future, which in
turn will help to improve app security and privacy in general.

Our results make a call for action to further increase the transparency of apps to foster
more SPR as way to increase privacy-friendly app behavior; but also call for better
tools to support developers in adhering to privacy regulations and their users’ privacy
preferences. Lastly, our approach might inspire future research to employ user reviews
as a way to measure the effects of changes in regulations or Android’s design.
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While existing works have identified many malicious apps that abuse end user’s
personal information [67, 159, 124, 104], there is an increasing number of benign apps
that have security & problems created inadvertently by software developers [59, 60, 41,
51, 56]. Particularly, developers can be inexperienced, and might not possess enough
security knowledge to write secure code. Especially, the lack of tool support during
development phase makes it hard for them to adhere to security best practices [49].
More importantly, security is oftentimes a secondary concern to developers [3, 115].
In this dissertation, we presented a line of work that aims to improve the security &
privacy of Android apps with the focus on software developers.

Our work focuses on two aspects of improving Android app’s security & privacy namely
(1) the feasibility of tool support toward securing apps, and (2) the incentives and
motivation for developers to write more secure and privacy preserving code. In the first
part, we investigated to which extent can tool support help developers write more secure
code. To this end, we first developed FixDroid (see Chapter 3) as an Android Studio
plugin to identify common security pitfalls in Android projects, and provides developers
more secure alternatives during development phase. We tested FixDroid with 39
participants, our results showed that code delivered with the support of FixDroid
contains significantly less security & privacy issues. In a subsequent step, we targeted
Android apps with outdated and insecure third-party libraries. We were motivated
by existing work which shows developers’ wish for tool support to keep their project
dependencies up-to-date to avoid security & privacy problems introduced by third-party
libraries [49]. We then developed Up2Dep (see Chapter 4), a static analysis tool that
analyzes third-party libraries to find updatability and security information. The results
are delivered to developers inside their development tool to inform about and guide
them on the security and updatability of the libraries included in their projects. In
our in-the-wild evaluation with developers (N=56), Up2Dep showed its impact by
fixing not only outdated dependencies (n=108) but also insecure dependencies (n=8).
With both FixDroid and Up2Dep we have shown that tool support indeed can help
developers write more secure code. More importantly, there are plenty of room for
future work to tackle security & privacy problems in Android apps from tool support
perspective i.e., preventative approaches that help avoid security & privacy problems
during development phase. In the final part of this thesis, we aimed to investigate
factors that would create incentives and motivation for developers to develop more secure
Android applications (see Chapter 5). We then set to measure the impact of user reviews
on app security & privacy evolution by combining static analysis, natural language
processing, and regression analysis techniques. Our results showed that security &
privacy related reviews do have a positive impact on the security & privacy evolution of
Android apps i.e., developers do consider user complains regarding their app’s security
& privacy problems, and update accordingly. From our results, we identified a clear
call for action to not only support end users in making better choice with regarding
to app security & privacy, but also in make app behavior more transparent to create
incentives and motivation for developers to adhere to privacy best practices. At the
same time, developers also need tool support to make their app behavior more user
friendly, especially in estimating the security & privacy impact of third-party code onto
their app’s behavior.
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This dissertation provides the first insights on the feasibility of tool support for developers
during development phase to write more secure & privacy preserving code. Further, it
shows that developers can indeed be motivated to adhere to security & privacy best
practices using reviews of users to their apps. To increase the security & privacy of apps,
it is necessary to (1) further investigate different aspects of developer’s tool support and
(2) identify factors that creates incentives for developers to follow security & privacy
best practices.

Future Research Directions Integrating similar features like FixDroid’s into devel-
oper’s IDE is a necessary step to move forward in order to improve app’s security and
privacy. Specifically, IDE vendors like Google, JetBrains (i.e., with Android Studio)
could consider providing developers effective security warning with more secure alter-
natives inside development environment to reduce the security & privacy problems,
especially those that could be easily detected and avoided during development phase.
Further, the author of this dissertation envisions a broader range of tool support for
developers on programming tasks that are related to security & privacy. Future work
could not only help developers write more secure code, but also further identifies situ-
ations where security is needed. Besides, learning code’s (in)security from large code
base (e.g., StackOverflow) could be a potential direction to provide developers help by
means of tool support during development phase. It is also worth studying the long
term impact of such tool support with developers e.g., how developer’s behavior, and
habit change overtime. Besides, future work could further study the design, work-flow,
and the interaction with developers of security tool support to best help developers in
their daily-programming tasks.

With Up2Dep, this dissertation shows that analyzing cryptographic related problems
and providing developers corresponding warnings would not be effective if such warnings
are not comprehensible which can result in no action from developers. In the developer
study with Up2Dep, not all developers could understand the warning messages about
cryptographic API misuse. This suggests that future work needs to make cryptographic
related warning messages more developer-friendly, e.g., make it easier to understand
(similar to other domains such as browser security warnings [8, 61]). Besides, to
motivate developers to take actions, technical warning messages that describe such
security & privacy related problems are not enough. Future work could investigate on
how to effectively notify developers about security & privacy problems e.g., by providing
developers context-aware warning messages that comes with the consequence (in the
corresponding scenarios of the app) of the security problems. Further, since many
developers are not aware of the security & privacy implication of the libraries that
they include in their apps. Analyzing third-party libraries and providing developers
with security & privacy related information on the library’s API that developers are
using would avoid unwanted security & privacy implications. Up2Dep has focused
on cryptographic API misuse and publicly disclosed vulnerability. Yet, one of the
interesting area for future work to look at is how third-party libraries use permission
protected API which has been shown to be a significant source of security & privacy
issues in Android apps. Besides, the publicly disclosed vulnerabilities were currently
manually added to the database of Up2Dep, an envisioned approach is to automatically
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connect central repository of vulnerabilities and notify developers when the included
third-party libraries are vulnerable.

Future work could also investigate ways to improve the recruitment methodology to
involve actual developers with studies. Currently, the process of recruiting professional
developers to studies takes a lot of time, and is not efficient. Existing work used to crawl
contact information from market stores and send emails to developers [5, 49, 77]. This
resulted in a very limited response rate. With Up2Dep, developers were contacted and
recruited directly at conferences and via different social media platforms. However, the
results showed that it is not possible to scale up to a larger population of developers. A
promising direction for future work to look at is to investigate a platform for recruiting
developers for studies. This would significantly facilitate the tasks recruiting suitable
developers for behavioral studies, as well as for testing new tools to see how developers
would receive such tools. Such a version of the platform can work in a similar way to
Amazon Mechanical Turk [9], yet for professional developers.

Finally, this dissertation shows, end users do care about the security & privacy of their
apps, and they express their concerns in form of app reviews about app security &
privacy related behavior. Most importantly, developers actually listen to end users and
take actions accordingly. This shows user reviews can motivate developers to adhere
to security & privacy best practices. Hence, further exploring app behaviors beyond
permission usage, and showing the end users what such apps do with their security &
privacy would be beneficial to the security & privacy of the Android ecosystem. App
stores on one hand side could provide developers automated systems to manage security
& privacy related reviews which would ease the task of handling such reviews and hence
would increase app’s security & privacy. On the other hand, app stores could learn from
behavior of apps that have a non-negligible amount of SPR to examine future apps
with similar behaviors during their vetting process before making these apps available
to end users. Further, user reviews on market stores are currently written in form
of plain text with a rating score. One promising direction could be extending such
reviewing mechanism to foster security & privacy related reviews e.g., providing in-app
review option that adds context in which a security & privacy related behavior deems
questionable.
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A
Appendix

A.1 FixDroid’s Survey

A.1.1 FixDroid specific questions

• During the study, did you notice any interaction from FixDroid while performing
the tasks? If yes:
– What interaction did you see from FixDroid? Warning messages, Highlighted

code, warning icon, quick-fixes, other
• Did the plugin provide you any additional information?
• Did you use any provided quick-fix in our lab study? If yes:

– Did the inserted code FixDroid work?
– Do you feel it was helpful?

A.1.2 General questions

• What is your age?
• What is your gender?
• Where are you from?
• For how many years have been programming in Android?
• What is your highest degree of education?
• Is programming your primary job? If yes: Is writing Android code part of your

primary job?. If no: Was programming part of your job in the last 5 years?
• Do you have information security background?
• How many Android applications you have developed?
• Where do you usually look for security related coding questions? (website)
• Are you familiar with Android Studio (or IntelliJ IDE in general)?
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A.1.3 Experience Sampling Survey

• How do you think this quick-fix is useful? (Strongly agree; agree; neutral; disagree;
strongly disagree)

• It seems like you are copying code from somewhere, could you please tell us the
website (the link) you have copied this code from?

A.2 Up2Dep Survey Questions

A.2.1 App Development

Q1: How do you prefer getting update notifications? [multiple choice]

• Yellow highlighting on the dependency version
• Pop up when new versions are available, with “Ignore” option
• When I build/compile my project?
• Other [free text]

Q2: Based on which criteria do you usually pick a library for your projects? [multiple
choice]

• Popularity
• Easy to use
• Functionality
• Security
• Other

Q3: Have you developed any third-party libraries?[Yes/No]

• Yes: Which library is that? [freetext]
• No

Q4: How would you rate the security (whether a given version has security vulnerability)
of libraries you decide to include it into your projects [single choice]
1-5

Q5: Did you notice any highlights regarding outdated library versions in your app’s
Gradle files? [single choice]

• Yes
• No
• I don’t know

Q6: Where do you reach out for help while solving programming tasks that relate to
third-party libraries? [multiple choice]

• StackOverflow
• Search engines
• Third party library’s website
• Other [free text]
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A.2.2 Up2Dep Usage

Q7: How did you get to know Up2Dep? [multiple choice]

• Friends, colleagues
• IntelliJ IDEA/Android Studio repository
• Twiter
• Android Developer Conference
• Other

Q8: Which features of Up2Dep do you find useful? (screenshots are included for each
feature)

• Compatibility check (compatible version vs. latest version)
• Insecure version check
• Crypto API misuse check
• Show dependencies and alternative API suggestions
• Other [free text]

Q9: Since you started using Up2Dep, how many outdated libraries have you updated?

• 0
• 1
• More than 2
• Other [free text]

A.2.3 Up2Dep Usability - SUS Questions

Q10: For each of the following statements, how strongly do you agree or disagree
(Strongly disagree, disagree, neutral, agree, strongly agree)

• I think that I would like to use Up2Dep frequently.
• I found Up2Dep unnecessarily complex.
• I thought Up2Dep was easy to use.
• I think that I would need the support of a technical person to be able to use

Up2Dep.
• I found the various functions of Up2Dep were well integrated.
• I thought there was too much inconsistency in Up2Dep.
• I would imagine that most people would learn to use Up2Dep very quickly.
• I found Up2Dep very cumbersome to use.
• I felt very confident using Up2Dep.
• I needed to learn a lot of things before I could get going with Up2Dep.

A.2.4 Demographic

Q11: How many years have you been programming in Android?

• less than 1 year
• around 2 years
• around 3 years
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• more than 3 years

Q12: How old are you?

• 18–30
• 31-40
• 41-50
• >50
• No answer

Q13: What is your gender?

• Male
• Female
• No answer

Q14: How many apps have you developed so far?

• 1
• 2
• more than 2
• 0

Q15: Do you have IT-Security background?

• Yes
• No

Q16: Where are you from? [free text]

Figure A.1: SUS score and its meaning [110]. NPS stands for Net Promoter Score -
measuring how likely users recommend a system/product to a friend
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