
A Rewriting Decision Procedure for
Dijkstra-Scholten’s Syllogistic Logic with

Complements

Camilo Rocha
José Meseguer

December, 2007

Technical Report
UIUCDCS-R-2007-2921

Formal Methods and Declarative Languages Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N Goodwin Ave
Urbana, IL 61801

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The formalist, however, prefers to manipulate his formulae,
temporarily ignoring all interpretations they might admit, the rules

for the permissible symbol manipulations being formulated
in terms of those symbols: the formalist calculates

with uninterpreted formulae.

E.W. Dijkstra, “The notational conventions I adopted, and why”
EWD 1300.

II

Table of Contents

Abstract . IV
1 Introduction . 1
2 Preliminaries . 3
3 Equational Axioms of DS Propositional Logic 5
4 Specification in Maude . 10
5 A Decision procedure for Syllogistic Logic with Complements . . 13

5.1 Syllogistic Logic with Complement and
Boolean Connectives . 15

5.2 The equational theory TCSYLL . 17
5.3 Examples . 23

6 Conclusions . 25

List of Figures

1 Confluence of
∗→E/A . 5

Abstract

We present an equational decision procedure à la Dijkstra & Scholten
for the ‘Syllogistic Logic with Complements’. First, we give an equational
axiomatization of Dijkstra & Scholten’s propositional logic and show how
it gives a decision procedure for propositional logic by equational term
rewriting. We also show how one can efficiently obtain certain proposi-
tional models (i.e., truth assignments over propositional variables) from
the canonical forms given by the system. We then present the Syllogistic
Logic with Complements and show how the decision procedure for propo-
sitional logic can be easily extended to obtain a decision procedure for
this subset of First-Order Logic. Moreover, an executable specification of
both decision procedures is presented in the Maude system, and examples
illustrating the use of both canonical equational systems are given.

IV

1 Introduction

This paper illustrates some simple, yet nontrivial, uses of equational
logic as a logical framework. Specifically, we show how axiomatizations
of both the propositional calculus of E.W. Dijkstra and C.S. Scholten
and the Syllogistic Logic with Complements with Boolean connectives
of L.S. Moss [23] can be represented in the equational logic framework
yielding decision procedures for both logics.

In 1990 E.W. Dijkstra and C.S. Scholten [9] presented a calculus for
predicate transformers suited for verifying and deriving programs, to-
gether with the ‘calculational style’: an homogenous and compact proof
format in which formal syntax was used to develop proofs while annotat-
ing logical deductions with text explanations. The calculus for predicate
transformers is based upon an axiomatization of Boolean expressions that
facilitates and guides proofs. Within the five years following that work,
D. Gries and F. Schneider presented a teaching methodology in discrete
mathematics using this calculational style [13] and gave a detailed proof of
soundness of the system for propositional logic [14]. In the late 1990’s V.
Lifschitz gave a detailed logical basis to the proof format used in the sys-
tem [20]. Besides the mechanization by rewriting presented in Section 3,
we are not aware of any other mechanizations of the Dijkstra-Scholten
logic. Therefore, this work, together with the technical report [25], that
further develops the propositional aspects, may also be of interest for
applications, such as program verification, in which the Dijkstra-Scholten
logic plays a crucial role. Likewise, we are not aware of any mechanization
of Moss’ Syllogistic Logic with Complements and Boolean connectives.
Therefore, the decision procedure presented in this work and implemented
in Maude seems to be the first mechanization that has been developed.

A syllogism consists of three syllogistic propositions, two premises (or
hypotheses) and one conclusion (or thesis). A syllogistic proposition is a
sentence affirming or denying a fact of the form APQ (All P are Q), EPQ
(No P is Q), IPQ (Some P is Q) and OPQ (Some P are not Q). A syl-
logism is considered valid if its thesis follows from the two hypotheses by
applying the Aristotelian deduction rules which, from the logical point
of view, are particular instances of those of First-Order Logic1 (FOL).
For example, ‘All men are mortal and all Colombians are men, then all
Colombians are mortal’ is a valid syllogism. It was G. Frege in the late XIX
century who pointed out the need for a more general logical system in or-

1 Currently, this is widely accepted from the mathematical point of view, but somewhat
disputed from a philosophic point of view. We refer the reader to [11] for further details.

1

der to express the foundations of all deductive reasoning. Since then, FOL
has been the main subject of study for logicians interested in this area. In
the past few years, the interest in Syllogistic Logic has experienced a spe-
cial awakening as ‘specialists in communication and information theory
employ ideas which can be traced back to Aristotle’s work’ [11]. A novel
approach has been proposed by L.S. Moss in his axiomatization of the
Syllogistic Logic with Complements (CSYLL) where Boolean connectives
and the complement relation are allowed in syllogisms, thus achieving
a more general logic than the traditional syllogistic one [23]. Our main
goal in this paper is to provide an equational-based decision procedure
for CSYLL which we obtain by extending our Dijkstra-Scholten decision
procedure for propositional logic.

The general idea of our approach is as follows. We view equational
logic as a computational logic, that is, as a logic which can be used as
a programming language and in which computation and deduction coin-
cide. For this to work in practice, the equational theories used as programs
should satisfy appropriate executability requirements, so that their equa-
tions can be used as simplification rules from left to right. Typical such
requirements are that the rules should be terminating (i.e., that there
are no infinite simplification sequences) and confluent, which under the
termination assumption is equivalent to the fact that each expression can
be fully simplified to a unique equivalent expression, called its canonical
form, that cannot be further simplified. For example, in a suitable equa-
tional axiomatization of arithmetic 2 + 2 is simplified to the canonical
form 4. Similarly, as we shall see later, in a suitable equational axiomati-
zation of the propositional calculus the proposition p ∨ ¬p has canonical
form T.

Not only is equational logic itself a computational logic. It is also what
is called a logical framework, that is, a meta-logic in which we can rep-
resent and axiomatize other logics. Furthermore, since equational logic is
reflective, that is, since it can correctly encode its own meta-level [7], it
is also a meta-logical framework [2], that is a logic in which we can both
represent other logics and reason formally about the meta-logical prop-
erties of the logics thus represented. In this paper we will not pursue the
meta-logical framework aspects of equational logic: we will just focus on
its logical framework uses for the Dijkstra-Scholten logic and for CSYLL.
However, the meta-logical framework aspect is also relevant, since we
could use inductive theorem proving in equational logic and reflection to
investigate meta-logical properties of both the Dijkstra-Scholten logic and
of CSYLL.

2

Any computational logic worth its salt should be supported by effi-
cient implementations. In this paper we use Maude [5, 6], which is one of
the most efficient and general implementations of equational logic, and
of a superlogic of equational logic called rewriting logic [22]. It turns
out that Maude is particularly well-suited for the mechanization of the
Dijkstra-Scholten logic and CSYLL because it efficiently supports not just
equational simplification, but also equational simplification modulo a set
of axioms, such as associativity and commutativity, that can be ‘built
in’ for simplification purposes. We can illustrare this idea with a simple
example. As it is well-known, the logical disjunction operator ∨ is asso-
ciative and commutative. Suppose that we want to simplify propositional
expressions using equations such as p∨¬p = T, and p∨T = T. Syntacti-
cally speaking, we cannot apply any of these equations to the proposition
(p∨q)∨¬p. However, if we use associativity and commutativity in a built-
in way to rearrange our expression into its equivalent form (p∨¬p)∨q, we
can simplify it with the first equation to T ∨ q and, using commutativity
in a built-in way, we can then further simplify it to T with the second
equation.

The paper is organized as follows. Notational conventions and basic
definitions are given in Section 2. In Section 3 we exhibit our axioma-
tization of the propositional logic of Dijkstra & Scholten and show that
its equational representation gives a decision procedure for propositional
logic by equational term rewriting. Section 4 presents the correspond-
ing executable specification in Maude of such decision procedure. An
equational theory for CSYLL, shown to provide a decision procedure for
CSYLL based on rewriting, is presented in Section 5, together with its ex-
ecutable specification in Maude and some examples. Finally, in Section 6
we present some conclusions.

2 Preliminaries

Throughout this paper we use t, u, v, t′ , t′′ and ti to denote terms, pi to
denote propositional variables. Sometimes lower case letters are also used
as quantified variables in FOL formulas.

Generally, upper case letters such as E and A denote sets, while the
upper case letter T is reserved for theory names. The greek letter Σ, per-
haps decorated with subscripts, is used to denote a signature of function
symbols. Upper case letters, such as P , Q and R, denote variables.

Theories in equational logic are called equational theories. An equa-
tional theory is a pair (Σ,E), where Σ, called the signature, describes the

3

syntax of the theory, that is, what sorts (types of data) and what function
symbols (operation symbols) are involved, and E is a set of equations over
terms (or expressions) in the syntax of Σ. Equational logic is a special
case of a more general logic called membership equational [24, 4] in which,
in addition to equations of the form t = t′, membership predicates of the
form t : s, stating that term t has sort s, are also atomic sentences.

The models of an equational theory T = (Σ,E) are algebras. Among
these models a special role is played by the initial algebra of T , which
is denoted by TΣ/E, whose elements are equivalence classes of ground Σ-
terms (terms without variables) modulo provable equality. An equality
t = t′ is provable from T , written T ` t = t′, iff it can be deduced from
the equations E by the rules of equational deduction.

Let T = (Σ,E ∪ A) be an equational theory. We assume that the
set of equations of T is decomposed into a disjoint union E] A, where
A is a set of equations such as associativity, commutativity and identity
of some function symbols in Σ, which are used as ‘structural axioms’,
and E is a set of equations used as ‘simplification rules’ or ‘rewrite rules’
modulo the structural axioms A. Intuitively, we want to raise the level
of abstraction by reasoning equationally with the equations E not just
on terms t, but on equivalence classes [t]A modulo the structural axioms
A. We say that the equations t = t′ ∈ E are admissible as equational
simplification rules modulo A if any variable mentioned in t′ is mentioned
in t. If the equations in T are admissible as simplification rules, we can use
them from left to right to (hopefully) bring terms to a simpler form which
can be interpreted as their evaluation. This simplification process is called
equational simplification or rewriting and gives rise to binary relations
→E/A and

∗→E/A over A-equivalence classes in TΣ/A. The relation
∗→E/A

is the reflexive and transitive closure of →E/A. Specifically, the relation
→E/A is defined as follows: [t]A →E/A [t′]A iff there is a representative
u ∈ [t]A such that u can be decomposed as u = C[v], with C a context and
v a subterm of u, and there is an equation t = t′ ∈ E and a substitution
σ such that (i) v = σ(t), and (ii) C[σ(t′)] ∈ [t′]A.

We say that →E/A is terminating if there is no infinite sequence

[t0]A →E/A [t1]A →E/A · · · [tk]A →E/A [tk+1]A →E/A · · · .

We say that →E/A is confluent if whenever we have [t]A
∗→E/A [t′]A and

[t]A
∗→E/A [t′′]A, there is a [u]A such that [t′]A

∗→E/A [u]A and [t′′]A
∗→E/A

[u]A. Pictorially, this is represented in Figure 1.
An equivalence class [t]A is called an E/A-canonical form if there is no

[t′]A such that [t]A →E/A [t′]A. If the theory T = (Σ,E] A) is such that

4

Fig. 1. Confluence of
∗→E/A

the equations E are terminating and confluent modulo A, then each equiv-
alence class [t]A can be rewritten to a unique canonical form canE/A[t].
This gives us an efficient decision procedure for equational reasoning in
T , namely,

T ` t = t′ iff canE/A[t] = canE/A[t′] .

3 Equational Axioms of DS Propositional Logic

The first axiomatization of DS propositional logic was presented by Di-
jkstra & Scholten [9], together with a calculus of predicates specialized
for verifying and deriving programs from specifications. Gries & Schnei-
der [13, 14] gave a complete formalization of the calculus. We present
below our structured equational axiomatization of the DS propositional
calculus in which we make an explicit separation between axioms ADS to
be used as ‘structural axioms’, and axioms EDS that should be used as
‘simplification rules’ modulo ADS.

Definition 1. The equational theory TDS = (ΣDS, EDS] ADS) of DS
propositional logic is given by:

ΣDS = {F(0),T(0),¬(1),≡(2), 6≡(2),∨(2),∧(2),⇒(2),⇐(2)} ,

ADS = {P ≡ (Q ≡ R) = (P ≡ Q) ≡ R , P ≡ Q = Q ≡ P ,
P 6≡ (Q 6≡ R) = (P 6≡ Q) 6≡ R , P 6≡ Q = Q 6≡ P ,
P ∨ (Q ∨R) = (P ∨Q) ∨R , P ∨Q = Q ∨ P ,
P ∧ (Q ∧R) = (P ∧Q) ∧R , P ∧Q = Q ∧R} ,

5

EDS = {P ≡ P = T , P ≡ T = P , ¬P = P ≡ F ,
P 6≡ Q = P ≡ Q ≡ F , P ∨ F = P , P ∨ T = T , P ∨ P = P ,
P ∨ (Q ≡ R) = (P ∨Q) ≡ (P ∨R) , P ∧Q = P ≡ Q ≡ (P ∨Q) ,
P ⇒ Q = Q ≡ P ∨Q , P ⇐ Q = P ≡ P ∨Q},

where P , Q and R are ΣDS-variables.

The constants F and T denote the obvious false and true constant
symbols. The rest of function symbols in ΣDS have the following intended
meaning and are listed by decreasing binding power: ¬ denotes negation,
∨ and ∧ denote disjunction and conjunction respectively,⇒ and⇐ denote
implication and consequence respectively, ≡ and 6≡ denote equivalence
and discrepancy respectively.

The axioms in ADS express the associativity and commutativity prop-
erties (AC) of some binary operators. The set of axioms EDS, to be used
as simplification rules modulo ADS, indicate that equivalence is reflexive
and has identity T, that discrepancy and negation can be defined in terms
of equivalence and the constant F, that disjunction is idempotent and dis-
tributes over equivalence while having identity F and annihilator T, that
conjunction can be expressed in terms of equivalence and negation using
the golden rule [13], that implication has the traditional meaning and,
finally, that consequence can be treated as an implication by swapping
its operands.

As already mentioned, we view the axioms ADS as ‘structural rules’
and the equations EDS as ‘simplification rules’. Note that the axioms in
ADS allow us to write expressions in a simplified manner by dropping
unnecessary parentheses in expressions and by making immaterial the
order of the arguments. For example, the terms p9 ≡ ((p9 ∨ p2) ≡ p6) can
equivalently be written as p6 ≡ p9 ≡ (p2 ∨ p9). Furthermore, adopting
our binding convention, the latter expression can be written as p6 ≡ p9 ≡
p2 ∨ p9.

We want to use TDS as an admissible simplification system modulo
ADS. In that case, TDS can be employed as rewrite system →EDS/ADS

on
the equivalence classes of TDS/ADS, or more generally, on TΣ(X)DS/ADS

,
where X denotes a set of propositional variables added as extra constants
to ΣDS.

Theorem 1. The equations EDS in TDS are confluent and terminating
modulo ADS.

Proof. Termination and confluence modulo A can be established me-
chanically by using formal tools that: (i) find a well-founded ordering

6

� on A-equivalence classes of terms such that [t]A →E/A [t′]A implies
[t]A � [t′]A, and (ii) check confluence of E modulo A by computing all
so-called ‘critical-pairs’ modulo A and showing they are all confluent.
We have used the CiME tool [19] to mechanically check termination and
confluence of EDS modulo ADS.

Lemma 1. The canonical form of any Boolean proposition is either T,
F or t0 ≡ . . . ≡ tn, for some n ≥ 0, where all ti are distinct disjunctions
(modulo AC) of propositional variables.

Proof. We have given a mechanical proof of this fact using Maude’s Suf-
ficient Completeness Checker [15]. This can be found in [25]. Intuitively,
if the canonical form does not follow such pattern it is easy to check
that at least one more equation in EDS could be used to simplify it, thus
contradicting the fact that it is canonical.

Since the TDS is both confluent and terminating, and since, as shown
in [25], TDS is an equational theory isomorphic to the standard Boolean
theory, we can use TDS as a decision procedure for propositional logic.
Moreover, since both T and F are canonical forms, this system has very
convenient properties. That is, we have the following equivalences for any
propositional expressions t and t′:

TDS ` t = t′ ⇔ TDS ` t ≡ t′ = T ⇔ canEDS/ADS
[t] = canEDS/ADS

[t′] .

In particular, since T and F are both in EDS/ADS-canonical form (or
simply, DS-canonical form), we have:

TDS ` t ≡ t′ = T ⇔ canEDS/ADS
[t ≡ t′] = [T]

and

TDS ` t ≡ t′ = F ⇔ canEDS/ADS
[t ≡ t′] = [F] .

We call a proposition t a tautology iff canEDS/ADS
[t] = [T] and a falsity

iff canEDS/ADS
[t] = [F]. We call t satisfiable iff canEDS/ADS

[t] 6= [F]. There-
fore, our decision procedure gives also a decision procedure for checking
satisfiability of any proposition t.

At this point, we note an interesting and useful fact about sequences of
equivalences. An interpretation of a Boolean proposition t is determined
by an assignment or function σ : {p0, . . . , pn} → {t, f} from the set of
propositional variables Vars(t) = {p0, p1, . . . , pn} occurring in t to the set
{t, f} in the following way.

7

Definition 2. Given an assignment σ : Vars(t) → {t, f}, the interpre-
tation σ〈t〉 of a Boolean proposition t under the assignment σ is defined
inductively by:

– σ〈T〉 = t ,
– σ〈F〉 = f ,
– σ〈pi〉 = σ(pi) , for propositional variable pi, where σ(pi) denotes the

value of pi under σ,
– σ〈¬t〉 = ¬σ〈t〉 , and

– σ〈t1 ◦ t2〉 = σ〈t1〉 ◦ σ〈t2〉 , for any other operation ◦ ∈ Σ(2)
DS,

where all operations in ΣDS are interpreted in {t, f} in the usual way.

Lemma 2. Let t = t0 ≡ t1 ≡ · · · ≡ tn, for n ≥ 0 and let σ be any
interpretation. σ〈t〉 = t iff σ〈ti〉 = f for an even number of ti, 0 ≤ i ≤ n.

Proof. By induction on n.

Recall that the DS-canonical form of any Boolean proposition t is
either T, F or t0 ≡ · · · ≡ tn, for some n ≥ 0, where all ti are distinct dis-
junctions (modulo AC) of propositional variables. We now show how one
can easily ‘extract/build’ two particular assignments from DS-canonical
forms. We say that a DS-canonical form is sorted if it is sorted in ascending
order by a lexicographic order on the number of propositional variables
occurring in each disjunction and by the corresponding multi-set ordering
over the indexes of the propositional variables occurring in each disjunc-
tion, if the number of variables coincides. Since all the disjuncts ti are
different, this partial order is indeed a total order.

Problem 1. Build an assignment σ from the sorted DS-canonical form
t0 ≡ · · · ≡ tn such that σ〈t0 ≡ · · · ≡ tn〉 = t.

Solution We give a simple solution by cases that maximizes the
number of true assignments in σ :

– n = 0 and t0 = T. This is the case of a tautology. Therefore, any
assignment will satisfy the expression. Then, our σ is such that σ(pi) =
t for all i.

– n = 0 and t0 = F. This is the case of a falsity, and therefore, there is
no assignment σ satisfying the expression.

– n = 0 and t0 6= T and t0 6= F. Similar to the case n = 0 and t0 = T.

8

– n ≥ 1 and t0 6= F. This is the case where there are at least two
disjunctions in the sequence of equivalences and F does not occur.
Therefore, by Lemma 2, σ assigning all propositional variables to t
entails that σ satisfies the sequence of equivalences. Therefore, σ is
the assignment where σ(pi) = t for all i.

– n ≥ 1 and t0 = F. This is the case where there are at least two disjunc-
tions in the sequence of equivalences and the first of them corresponds
to the empty one, that is, to F. Since in any canonical form all disjunc-
tions are different, there is only one occurrence of F in the sequence
of equivalences. By Lemma 2, and forcing σ〈t1〉 = f and σ〈tj〉 = t
(2 ≤ j ≤ n), we alter the parity of f in the sequence of equivalences,
and minimize the assignments to f, while requiring σ to satisfy the se-
quence of equivalences. Then, σ is the assignment satisfying σ(pi) = t
if pi 6∈ Vars(t1) and σ(pi) = f if pi ∈ Vars(t1). ut

Problem 2. Build an assignment σ from the DS-canonical form t0 ≡ · · · ≡
tn such that σ〈t0 ≡ · · · ≡ tn〉 = f.

Solution. First observe that, since σ is a homomorphic function,
σ〈t〉 = f iff ¬σ〈t〉 = t iff σ〈¬t〉 = t, for any propositional expression t.
But ¬(t0 ≡ · · · ≡ tn) is not in DS-canonical form. Since ¬t = t ≡ F,
¬(t0 ≡ · · · ≡ tn) is logically equivalent to t0 ≡ · · · ≡ tn ≡ F, which may
still not be in DS-canonical form. We then have the following cases in
order to have a sorted DS-canonical form t′ semantically equivalent to
this last sequence of equivalences:

– n = 0 and t0 = T. Clearly t′ = F.
– n = 0 and t0 = F. Clearly t′ = T.
– n ≥ 1 and t0 = F. Then t′ = t1 ≡ · · · ≡ tn.
– n ≥ 1 and t0 6= F. Then t′ = F ≡ t0 ≡ · · · ≡ tn.

In either case it is easy to check that t and ¬t′ are logically equivalent.
Thus, in order to obtain σ, apply to t′ the solution to Problem 1. The
resulting assignment σ will satisfy σ〈t〉 = f. ut

Assuming that the canonical form t = t0 ≡ · · · ≡ tn is a sorted
sequence of equivalences in which there occur at most m propositional
variables, we have that both problems are solvable in O(m); for all the
cases, except when n ≥ 1 and t0 = F, the problems are solvable in O(1).
Furthermore, both solutions provide an assignment that maximizes the
number of t valuations on the propositional variables.

9

Decision procedures for propositional logic have been a matter of in-
terest in the rewriting community for a long time. The first decision proce-
dure for propositional logic based on rewriting was developed by J. Hsiang
in the early 1980s [16]. His result follows from a previously known con-
nection between Boolean algebras and Boolean rings due to M.H. Stone:
every Boolean algebra, if properly viewed, is a special type of ring called a
Boolean ring [17, 26]. As a matter of fact, TDS is dual to Hsiang’s canonical
system [25]. The close connections between the work of Dijkstra-Scholten
and that of Hsiang seem to have passed unnoticed until now.

Various first-order and modal propositional theorem proving systems
have used canonical systems for propositional logic. A refutation rewrite-
based method, the N-strategy, was designed by Hsiang for the word prob-
lem in first-order predicate logic in 1985 [18]. The N-strategy used the
canonical system for Boolean algebras to reduce a set of clauses to canon-
ical form and then converting the clauses into a set of simplifying equa-
tions. Following a similar approach, L. Bachmair and N. Dershowitz devel-
oped a complete inference system for first-order theorem proving based on
Hsiang’s rewrite system for Boolean algebras [1]. D. Kapur and P. Naren-
dran in 1985, following a different approach, developed another refuta-
tion method for first-order theorem proving. In 1992 A. Foret extended
Hsiang’s system to give a complete term rewriting system for the modal
propositional logics known as K, Q, T and S5 [10]. In the same spirit, we
will extend the DS-decision procedure to a decision procedure for Syllo-
gistic Logic with Complements and Boolean connectives in Section 5.

4 Specification in Maude

In this section we present the specification in Maude of the equational
theory TDS. Maude is a high-performance reflective language and system
supporting both equational and rewriting logic specification and program-
ming for a wide range of applications. Maude functional modules are equa-
tional theories. We define the module BOOL-DS to represent the theory TDS

in the following way:

fmod BOOL-DS is

...

endfm

where the contents expressed in . . . is explained in detail in what follows.
The first thing a specification needs to declare are the types (that in the
algebraic specification community are usually called sorts) of the data

10

being defined and the corresponding operations. A sort is declared using
the sort keyword followed by an identifier (the sort name), followed by
white space and a period. In our Maude specification of TDS we use the
sort BoolDS as the main sort of the specification. In this way, any term
we compute with in our specification has sort BoolDS. We specify this in
Maude as follows:

sort BoolDS .

In a Maude module, an operator is declared with the keyword op

(alternatively ops if more than one operation is defined simultaneously)
followed by its name (or names separated with white space), followed by a
colon, followed by the list of sorts for its arguments (called the operator’s
arity or domain sorts), followed by ->, followed by the sort of its result
(called the operator’s coarity or range sort), optionally followed by an
attribute declaration, followed by white space and a period. We show
various operator declarations in the following paragraphs.

First, we model the constants F and T as FALSE and TRUE, respectively.

ops FALSE TRUE : -> BoolDS .

We use Maude’s built-in sort Nat to generate propositional variables.
This is accomplished by importing the module NAT (the one defining the
sort Nat) and declaring an operation p:

protecting NAT .

op p : Nat -> BoolDS .

The specification of the unary and binary function symbols in ΣDS,
with their binding power for parsing purposes, is specified in Maude as
follows:

op not_ : BoolDS -> BoolDS [prec 10] .

op _equ_ : BoolDS BoolDS -> BoolDS [assoc comm prec 80] .

op _neq_ : BoolDS BoolDS -> BoolDS [assoc comm prec 80] .

op _or_ : BoolDS BoolDS -> BoolDS [assoc comm prec 50] .

op _and_ : BoolDS BoolDS -> BoolDS [assoc comm prec 50] .

op _imp_ : BoolDS BoolDS -> BoolDS [prec 70] .

op _cos_ : BoolDS BoolDS -> BoolDS [prec 70] .

We have used not for ¬, equ for ≡, neq for 6≡, or for ∨, and for ∧,
imp for ⇒ and cos for ⇐. In Maude, the user can specify each operator
with its own syntax, which can be prefix, postfix, infix, or any ‘mixfix’
combination. This is done by indicating with underscores the places where
the arguments appear in the mixfix syntax. For example, not is a prefix

11

unary operator while and is an infix binary operator. In practice, this
improves readability (and therefore understandability) of programs and
data. The attributes of an operation are specified within square brackets.
In our case, we use assoc (associativity) and comm (commutativity) for
equational attributes that can be used to reason modulo such axioms, and
prec (precedence–the higher the value, the lower the binding power) for
the parsing precedence attribute. Note that, in this case, the equational
attributes of the operators correspond to the equations in ADS and the
prec attribute specifies the syntax’s binding policy we defined previously.

Equations are declared using the keyword eq, followed by a term (its
lefthand side), the equality sign =, then a term (its righthand side), fol-
lowed by white space and a period. The set EDS of equations is specified
as follows:

vars P Q R : BoolDS .

eq P equ TRUE = P .

eq P equ P = TRUE .

eq not P = P equ FALSE .

eq P neq Q = P equ Q equ FALSE .

eq P or P = P .

eq P or (Q equ R) = P or Q equ P or R .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P and Q = P equ Q equ P or Q .

eq P imp Q = P or Q equ Q .

eq P cos Q = Q imp P .

where P, Q and R are variables of sort BoolDS. In this way, the theory TDS

has been specified in Maude as an executable specification, and we can
then use it to simplify terms. That is, since Maude efficiently implements
the equational simplification relation →E/A, and the equations EDS are
confluent and terminating modulo ADS, the Maude specification of TDS is
automatically a decision procedure for propositional logic.

As an example, we use this specification to solve the following instance
of the word problem, involving two expressions commonly appearing in
the specification of software postconditions. Are the propositions (p0 ∧
p1) ∨ (¬p0 ∧ p2) and (p0 ⇒ p1) ∧ (¬p0 ⇒ p2) equal?

One way of answering the question is by reducing both expressions
to their canonical form. If the canonical forms coincide, then the terms
are semantically equal. Indeed, it is the case that both canonical forms
coincide, since both are:

p1 ≡ p0 ∨ p1 ≡ p0 ∨ p2 .

12

In Maude, we use the red (reduce) command to simplify the corre-
sponding expressions to canonical forms. The result is shown below:

Maude> red (p(0) and p(1)) or (not p(0) and p(2)) .

reduce in BOOL-DS : (p(0) and p(1)) or p(2) and

not p(0) .

rewrites: 28 in 0ms cpu (0ms real) (~ rewrites/second)

result BoolDS: p(1) equ p(0) or p(1) equ p(0) or p(2)

Maude> red (p(0) imp p(1)) and (not p(0) imp p(2)) .

reduce in BOOL-DS : (p(0) imp p(1)) and

(not p(0) imp p(2)) .

rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)

result BoolDS: p(1) equ p(0) or p(1) equ p(0) or p(2)

An equivalent way of solving the word problem, is by using the ≡
symbol as the Boolean equality. By computing the canonical form of the
expression:

(p0 ∧ p1) ∨ (¬p0 ∧ p2) ≡ (p0 ⇒ p1) ∧ (¬p0 ⇒ p2) ,

one can corroborate that T is the canonical form of the previous, tauto-
logical expression.

The corresponding simplification in Maude is the following:

Maude> red (p(0) and p(1)) or (not p(0) and p(2)) equ

(p(0) imp p(1)) and (not p(0) imp p(2)) .

reduce in BOOL-DS : (p(0) and p(1)) or p(2) and not p(0)

equ (p(0) imp p(1)) and (not p(0) imp p(2)) .

rewrites: 40 in 0ms cpu (0ms real) (~ rewrites/second)

result BoolDS: TRUE

Either way we have found that (p0 ∧ p1) ∨ (¬p0 ∧ p2) and (p0 ⇒
p1) ∧ (¬p0 ⇒ p2) are semantically equivalent propositions.

In terms of performance, a very exhaustive comparison of this exe-
cutable specification in Maude with another three decision procedures for
propositional logic can be found in [25]. On average, TDS behaves among
the best ones.

5 A Decision procedure for Syllogistic Logic with
Complements

We have been investigating the use of equational theories in various do-
mains as tools of automated deduction. Our motivation is to find simpler
methods in which replacement of equals by equals is powerful enough to
solve the corresponding decision problem.

13

Syllogistic Logic, the logic of Aristotle, was widely considered to be
the universal foundation for all deductive reasoning for many centuries.
According to Aristotle, ‘a syllogism is a discourse in which, certain things
having been supposed, something different from the things supposed re-
sults of necessity because these things are so.’ A syllogism consists of three
syllogistic propositions, two premises (or hypotheses) and one conclusion
(or thesis). More precisely, a syllogistic proposition is a sentence asserting
or denying a fact of the form APQ (All P are Q), EPQ (No P is Q),
IPQ (Some P is Q) and OPQ (Some P are not Q), where P and Q are
monadic predicates representing subsets of some non-empty universe of
objects. A syllogism is considered valid if its thesis follows from its two
hypotheses by applying the Aristotelian deduction rules which, from the
logical point of view, are particular cases of those of First-Order Logic.
For example, ‘All men are mortal and all Colombians are men, then all
Colombians are mortal’ is a valid syllogism. It was G. Frege who pointed
out the need for a more general logical system in order to express the
foundations of all deductive reasoning. Since Frege, FOL has been the
main subject of study for logicians interested in this area. In the past few
years, the interest in Syllogistic Logic has experienced an special awak-
ening since ‘specialists in communication and information theory employ
ideas which can be traced back to Aristotle’s work’ [11].

Traditionally, Syllogistic Logic has been studied by philosophers and
logicians pursuing different interests. While philosophers strictly adhere
to the initial ideas of Aristotle and are users of the logical system, modern
logicians have been interested in studying the symbolic properties of the
system itself2. In the recent history of symbolic logic, it was P. Bernays, in
Hilbert’s Göttingen school, who first introduced the use of propositional
Boolean connectives and FOL quantifiers to capture all the logical rela-
tionships dealt with in Aristotelian syllogistic logic. It was J. Lukasiewicz
who proposed a sound and complete axiomatization of Syllogistic Logic
within the logical framework of First-Order Logic [21]. Moreover, he
showed that Syllogistic Logic treated from the logicians point of view
is a proper fragment of Monadic-First Order Logic (MFOL). MFOL is
the fragment of First Order Logic in which predicates are monadic, i.e.,
have exactly one argument. Since MFOL is decidable [3], Syllogistic Logic
is too.

The standard representation of syllogistic logic in FOL is straightfor-
ward, and it is summarized in Table 1. In a sense, Moss’ representation

2 We refer the reader to [8, 11, 21] for detailed discussions of these two different sets of ideas.

14

of syllogisms in CSYLL is simpler, since it does not require an explicit
treatment of quantifiers as in the standard FOL representation.

Table 1. Standard representation of syllogistic propositions in FOL.

Syllogistic prop. FOL formula

APQ (∀x)(P (x) ⇒ Q(x))
EPQ (∀x)(P (x) ⇒ ¬Q(x))
IPQ (∃x)(P (x) ∧Q(x))
OPQ (∃x)(P (x) ∧ ¬Q(x))

First, we present the language L and deductive systemKL of L.S. Moss
using the Boolean algebra connectives of Section 3. Secondly, we pro-
pose an equational theory TCSYLL for the general case of CSYLL, using
the aforementioned Boolean connectives, and we prove that it provides a
sound and complete (with respect to KL) decision procedure for the Syl-
logistic Logic with Complements and Boolean Connectives. Finally, we
present three examples in which an executable specification of TCSYLL in
Maude is used with sample syllogisms.

5.1 Syllogistic Logic with Complement and
Boolean Connectives

L.S. Moss has recently proposed an axiomatization of the Syllogistic Logic
with Complements (CSYLL) in which some Boolean connectives and the
complement relation are allowed in syllogisms, thus obtaining a more gen-
eral, yet complete and sound, logic than the traditional syllogistic one [23].
We will, furthermore, allow all the Boolean connectives of TDS in CSYLL.
Our main goal, then, will be to have a rewriting-based decision procedure
for CSYLL by extending the decision procedure for propositional logic
presented in Sections 3 and 4. Then, we will not be only interested in
‘classic syllogisms’ but in their ‘modern versions’ in which the Boolean
connectives can be freely used. In this subsection, we define the original
system proposed by Moss and mention as main result its soundness and
completeness.

We use the set Π of monadic predicates (predicates for short) P,Q, . . .,
which in turn represent plural common nouns, to parameterize the lan-
guage of Syllogistic Logic with Complement and Boolean Connectives.

15

Definition 3. A Π-model M = (M, M) is a non-empty set M and
an interpretation function M : Π → P(M) interpreting each monadic
predicate P as a subset PM ⊆M (allowing PM to be empty).

We take the syntax and semantics of this language, as defined in [23],
which we will call L(Π). We consider sentences ‘All P are Q’ and ‘Some P
are Q’, for P,Q ∈ Π, which are commonly denoted with the letter S. We
assume that there is a complementation operation C over the predicates
such that (PC)C = P , for any P ∈ Π. Furthermore, sentences can be
operated on with the classical propositional operators as in ‘¬(Some P
are QC) ∧ (All Q are R)’. Let us use the following EBNF to precisely
define the language L(Π):

Definition 4. We define L(Π), for any P ∈ Π and Atoms A and B, as
follows:

Atom ::= P |PC

Sentence ::= All A are B | Some A are B | ¬(Sentence) | (Sentence) ◦ (Sentence) ,

where ◦ stands for any binary operator in ΣDS.

Definition 5. We say that a Π-model M satisfies a L(Π)-sentence S,
written M |= S, according to the following equivalences:

M |= (All A are B) iff AM ⊆ BM ,
M |= (Some A are B) iff AM ∩BM 6= ∅ ,

where we define (AC)M = M −AM and we treat the Boolean connectives
classically.

For a Π model M, if Γ is a set of L(Π)-sentences, then we write
M |= Γ to denote M |= S for every S ∈ Γ , and Γ |= S to denote that
every model satisfying every sentence in Γ also satisfies S.

Definition 6. Let A, B and C be L(Π)-atoms and S a L(Π)-sentence.
The system KL is a Hilbert-style one, having modus ponens as the only
inference rule, and with the following axioms:

1. All substitution instances of propositional tautologies
2. All A are A
3. (All A are C) ∧ (All C are B) ⇒ (All A are B)
4. (All B are C) ∧ (Some A are B) ⇒ (Some C are A)

16

5. (Some A are B) ⇒ (Some A are A)
6. ¬(Some A are A) ⇒ (All A are B)
7. (Some A are BC) ≡ ¬(All A are B) .

We call S a theorem of KL, written `L S, iff there is a proof of S in
KL, that is, a sequence of L(Π)-sentences ψ0, ψ1, . . . , ψn such that ψn = S
and for each ψi, 0 ≤ i ≤ n, either ψi is an axiom of KL or ψi follows from
two previous members of the sequence, say ψj and ψk (0 ≤ j < k < i), as
a direct consequence of using modus ponens.

Given a set Γ of L(Π)-sentences and an L(Π)-sentence S, we define
the relation Γ `L S by the equivalence:

Γ `L S iff `L (S0 ∧ · · · ∧ Sn)⇒ S ,

for some S0, . . . , Sn ∈ Γ .
We now present the soundness and completeness theorem for KL

proven in [23].

Theorem 2. Given a set Γ of L-sentences and an L-sentence S,

Γ |= S iff Γ `L S ,
i.e., KL is sound and complete.

Notice that, since KL is an axiomatization at least as ‘strong’ as that
of Lukasiewicz, any decision procedure for KL is a decision procedure
for the axiomatization of Lukasiewicz, and therefore for the traditional
syllogistic system.

5.2 The equational theory TCSYLL

We present the theory TCSYLL = (ΣCSYLL, ECSYLL] ACSYLL) as a many-
sorted equational theory with sorts Term and Sentence.

Definition 7. The theory TCSYLL = (ΣCSYLL, ECSYLL]ACSYLL) is defined
as follows. ΣCSYLL has two sorts, Term and Sentence, with the following
function symbols:

T,F :→ Term
¬ : Term→ Term
≡, 6≡,∨,∧,⇒,⇐ : Term Term→ Term
T,F :→ Sentence
¬ : Sentence→ Sentence
≡, 6≡,∨,∧,⇒,⇐ : Sentence Sentence→ Sentence
[], { } : Term→ Sentence .

17

The equations ACSYLL correspond to the equations in ADS for both sorts
Term and Sentence. That is, if we use ATerm

DS and ASentence
DS to denote the

set ADS over the sort Term and Sentence, respectively, we have:

ACSYLL = ATerm
DS ∪ ASentence

DS .

Accordingly, if we denote with ETerm
DS and ESentence

DS the two extensions
of EDS over the sort Term and Sentence, respectively, we have for P,Q :
Term:

ECSYLL = ETerm
DS ∪ ESentence

DS ∪ { [P] = ¬{¬P},
{T} = T, {F} = F, {P} ∨ {Q} = {P ∨Q} }.

Definition 8. A model of TCSYLL is a ΣCSYLL-algebra that satisfies the
equations ECSYLL ∪ ACSYLL. Let M be a non-empty set. We can define
a ΣCSYLL-algebra P(M) interpreted in the sort Term by the power set
P(M) and with its operations interpreted as the usual operations in the
algebra of sets; the sort Sentence is interpreted by the 2-element set {t, f},
with the Boolean operators interpreted in the standard way as well. Given
X ⊆M we define:

[X] = if X = M then t else f ,
{X} = if X 6= ∅ then t else f .

Proposition 1. For a non-empty set M , P(M) satisfies the equations
in ECSYLL ∪ ACSYLL.

Proof. Since TDS is isomorphic to the traditional Boolean theory [25], the
equations in ATerm

DS , ASentence
DS , ETerm

DS and ESentence
DS are satisfied by P(M).

We prove that P(M) satisfies the equation [P] = ¬{¬P}. Let X ⊆M . If
[X] = t, then X = M and therefore ¬X = ∅. It follows that {¬X} = f
implying ¬{¬X} = t. Conversely, if [X] = f, we have two cases: if X = ∅,
then ¬X = M and therefore ¬{¬X} = f; if X 6= ∅, and since X 6=
M , then {¬X} = t and ¬{¬X} = f. The satisfaction of P(M) for the
remaining equations is proved similarly.

Notice that a Π-modelM determines a unique TCSYLL-homomorphis-
m M : TΣCSYLL

(Π)→ P(M) such that the following diagram commutes:

18

where TΣCSYLL
(Π) is the free ΣCSYLL-algebra on the monadic predicates

Π, that is, the algebra of all ΣCSYLL-terms formed on the variables Π.
In other words, the ΣCSYLL-homomorphism allows us to interpret in the
expected way the satisfaction of all ΣCSYLL-sentences as either true or
false in M.

Note that L can also be viewed as a two-sorted signature with sorts
Atom and Sentence, and operations3:

C : Atom→ Atom
(All are) : Atom Atom→ Sentence
(Some are) : Atom Atom→ Sentence
T,F :→ Sentence
¬ : Sentence→ Sentence
≡, 6≡,∨,∧,⇒,⇐ : Sentence Sentence→ Sentence .

Definition 9. We define the obvious signature morphism H : L → ΣCSYLL,
mapping the sorts Atom to Term and Sentence to Sentence, ()C to
¬ : Term → Term, (All A are B) to [A ⇒ B] and (Some A are B)
to {A ∧ B}. H maps identically the Boolean connectives over the sen-
tences.

H defines a forgetful functor |H : AlgΣCSYLL
→ AlgL. In particular,

given any set Π of monadic predicates, this induces a homomorphic trans-
lation H : TL(Π) → TΣCSYLL

(Π), namely, the unique L-homomorphism
commuting the following diagram:

Furthermore, P(M)|H is an L-algebra, so that we can reinterpret the
L(Π)-semantics in a Π-model M as the unique L-homomorphism M
commuting the diagram:

3 The motivation for extending L with the sentences T and F will become clear in the
following paragraphs.

19

which provides an algebraic semantics for L(Π). We can then, alter-
natively, view the pairs (P(M)|H , M) and (P(M), M) as, respectively,
L(Π)-algebras and ΣCSYLL(Π)-algebras, when the monadic predicates Π
are added as extra constants. Moreover, we have the signature homomor-
phism HΠ : L(Π) → ΣCSYLL(Π) extending H and being the identity on
Π, inducing a functor |HΠ : AlgΣCSYLL(Π) → AlgL(Π) such that:

(P(M), M)|HΠ = (P(M)|H , M).

We say that the ΣCSYLL-sentence S is a theorem of TCSYLL, written
`CSYLL S = T, iff TCSYLL ` S = T. Given a set of ΣCSYLL-sentences Γ
and a ΣCSYLL-sentence S, we define the relation Γ `CSYLL S = T by the
equivalence:

Γ `CSYLL S = T iff `CSYLL (S0 ∧ · · · ∧ Sn)⇒ S = T ,

for some S0, . . . , Sn ∈ Γ .

Theorem 3. (Soundness) Let S be an L(Π)-sentence. If TCSYLL ` H(S) =
T then `L S.

Proof. Let M be any Π-model and suppose TCSYLL ` H(S) = T. Then,
because equational logic is sound, we know that (P(M), M) |= H(S) = T.
By the satisfaction condition for the many-sorted equational logic in-
stitution [12], we have the equivalence (P(M), M) |= H(S) = T iff
(P(M)|H , M) |= S = T. Moreover, since (P(M)|H , M) |= S = T iff
M |= S, we get that M |= S is true. Because KL is sound and complete
(Theorem 2) we can conclude `L S. Therefore, TCSYLL is sound.

Theorem 4. (Completeness) TCSYLL is complete with respect to KL, i.e.,
for Γ a set of L(Π)-sentences, and S an L(Π)-sentence,

if Γ `L S then H(Γ) `CSYLL H(S) = T ,

where H(Γ) = {H(S ′) | S ′ ∈ Γ}.

Proof. By induction on the length of the proof of S in KL. Without loss
of generality, let ψ1, . . . , ψm, where ψm=S, be a minimal length proof for
S in KL.

20

– Case m = 0. Necessarily S is either an axiom of KL or an L(Π)-
sentence in Γ . In both cases, it is easy to check that H(S) = T,
and therefore, H(Γ) `CSYLL S(H) = T. Observe that axiom 1. of KL
follows trivially because TCSYLL extends TDS which is isomorphic to the
traditional Boolean theory and therefore complete for propositional
logic; theorems 2.-7. have been mechanically proved (see Example 2
at the end of this Section). For the other case, observe that p0∧p1 ⇒ p0

is a tautology.
– Case m > 0. If S is either an axiom of KL or a sentence in Γ , the

proof is similar to that of case m = 0. Otherwise, S is obtained by
modus ponens from ψi and ψj = ψi ⇒ S, for 0 ≤ i 6= j < m. Then by
the induction hypothesis (IH) we have that H(Γ) `CSYLL H(ψi) = T
and H(Γ) `CSYLL H(ψi)⇒ H(S) = T. Therefore,

H(Γ) `CSYLL H(ψi) ⇒ H(S) = T
⇔ 〈 Definition of Γ `CSYLL S = T 〉
`CSYLL H(S0) ∧ . . . ∧H(Sn) ⇒ (H(ψi) ⇒ H(S)) = T
⇔ 〈 Tautology 〉
`CSYLL T ∧ (H(S0) ∧ . . . ∧H(Sn) ⇒ (H(ψi) ⇒ H(S))) = T
⇔ 〈 IH: H(Γ) `CSYLL H(ψ) = T 〉
`CSYLL (H(S0)∧. . .∧H(Sn) ⇒ H(ψi))∧(H(S0)∧. . .∧H(Sn) ⇒ (H(ψi) ⇒ H(S))) = T
⇔ 〈 Tautology 〉
`CSYLL H(S0) ∧ . . . ∧H(Sn) ⇒ (H(ψi) ∧ (H(ψi) ⇒ H(S))) = T
⇔ 〈 Tautology 〉
`CSYLL H(S0) ∧ . . . ∧H(Sn) ⇒ H(ψi) ∧H(S) = T
⇔ 〈 IH: H(Γ) `CSYLL H(ψ) = T 〉
`CSYLL H(S0) ∧ . . . ∧H(Sn) ⇒ T ∧H(S) = T
⇔ 〈 Tautology 〉
`CSYLL H(S0) ∧ . . . ∧H(Sn) ⇒ H(S) = T
⇔ 〈 Definition of Γ `CSYLL S = T 〉
H(Γ) `CSYLL H(S) = T.

Hence, TCSYLL is complete with respect to KL.

Now, we show that TCSYLL gives a decision procedure for CSYLL.

Theorem 5. TCSYLL is a (complete) decision procedure for CSYLL.

Proof. We have proved using the CiME system that the equations ECSYLL

are confluent and terminating modulo ACSYLL. We use fa() and ex()

for [] and { }, respectively, in the CiME specification of CSYLL.

let S_CSYLL =

signature

" TRUE,FALSE : constant ;

not,fa,ex : unary ;

equ,neq,or,and : AC ;

imp,cos : infix binary ; ";

let V = vars "A B C";

21

let R_CSYLL = TRS S_CSYLL V

" A equ TRUE -> A ;

A equ A -> TRUE ;

not(A) -> A equ FALSE ;

A neq B -> not (A equ B) ;

A or A -> A ;

A or FALSE -> A ;

A or TRUE -> TRUE ;

A or (B equ C) -> (A or B) equ (A or C) ;

A and B -> (A or B) equ A equ B ;

A imp B -> (A or B) equ B ;

A cos B -> B imp A ;

fa(A) -> not(ex(not(A))) ;

ex(TRUE) -> TRUE ;

ex(FALSE) -> FALSE ;

ex(A) or ex(B) -> ex(A or B) ;";

For confluence we have:

CiME> confluence R_CSYLL ;

Computing self critical pairs

...

System is confluent (160 critical pair(s) tested).

- : bool = true

For termination we use the dependency pair method with marks:

CiME> termination R_CSYLL ;

Entering the termination expert. Verbose level = 0

The dependency graph is

...

(16 termination constraints)

Search parameters: simple polynomials, coefficient bound is 10.

Solution found for these constraints:

[TRUE] = 0;

[FALSE] = 0;

[not](X0) = X0 + 1;

[fa](X0) = 1;

[ex](X0) = 0;

[equ](X0,X1) = X1 + X0 + 1;

[neq](X0,X1) = X1 + X0 + 2;

[or](X0,X1) = X1*X0 + X1 + X0;

[and](X0,X1) = X1*X0 + 2*X1 + 2*X0 + 2;

[imp](X0,X1) = X1*X0 + 2*X1 + X0 + 1;

[cos](X0,X1) = X1*X0 + X1 + 2*X0 + 1;

Termination proof found.

- : unit = ()

Since TCSYLL is complete with respect to KL, it follows that TCSYLL is
a complete decision procedure for CSYLL.

22

Lemma 3. The CSYLL-canonical form of any CSYLL sentence S is ei-
ther T, F or S0 ≡ · · · ≡ Sn, where all Si are distinct and of the form {ti},
where ti is a DS-canonical form.

Proof. The proof has again been obtained using Maude’s Sufficient Com-
pleteness Checker [15] and the intuition behind it is similar to that of
DS-canonical forms.

As a consequence, we can use TCSYLL as a decision procedure for
CSYLL without losing the good feature of having T and F as canoni-
cal forms. That is, we have the following equivalences for any CSYLL
expressions S and S ′:

TCSYLL ` S ≡ S ′ = T ⇔ canECSYLL/ACSYLL
[S ≡ S ′] = [T]

and

TCSYLL ` S ≡ S ′ = F ⇔ canECSYLL/ACSYLL
[S ≡ S ′] = [F] .

By the similarity between CSYLL-canonical forms and DS-canonical
forms the problems of extracting models can be addressed similarly.

5.3 Examples

We now present some examples of use of the executable axiomatization
of TCSYLL in the Maude System.

Example 1 Recall the ‘syllogism’ mentioned in the introduction of this
paper: ‘All men are mortal and all Colombians are men, therefore all
Colombians are mortal’. Using the ΣCSYLL-like notation, this is symbol-
ized as follows:

[Men⇒ Mortal] ∧ [Colombian⇒ Men] ⇒ [Colombian⇒ Mortal] .

In Maude, we have:

Maude> red [Men imp Mortal] and [Colombian imp Men]

imp [Colombian imp Mortal] .

reduce in CSYLL : [Men imp Mortal] and [Colombian imp Men]

imp [Colombian imp Mortal] .

rewrites: 90 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

This should be expected since [Q ⇒ R] ∧ [P ⇒ Q] ⇒ [P ⇒ Q] is a
substitution instance of axiom 3. of KL.

23

Example 2 This second example presents an execution script in which
reductions of axioms 2.-7. are all shown to be equal to T in all the cases.

reduce in CSYLL : [A imp A] .

rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

==

reduce in CSYLL : [B imp C] and [A imp B] imp [A imp C] .

rewrites: 90 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

==

reduce in CSYLL : [B imp C] and {B and A} imp {B and C} .

rewrites: 97 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

==

reduce in CSYLL : {B and A} imp {A and A} .

rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

==

reduce in CSYLL : not {A and A} imp [A imp B] .

rewrites: 26 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

==

reduce in CSYLL : not [A imp B] equ {A and not B} .

rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

Example 3 Consider the syllogism instance4:

‘All dogs are mammals and no mammal is a herbivore. Thus, no dog
is a herbivore.’

Using ΣCSYLL syntax we have:

[Dogs⇒ Mammals]∧¬{Mammals∧Herbivore} ⇒ ¬{Dogs∧Herbivore}.

Translating this into Maude we get:

Maude> red [Dogs imp Mammals] and

not {Mammals and Herbivore} imp

not {Dogs and Herbivore} .

reduce in CSYLL : not {Mammals and Herbivore} and

[Dogs imp Mammals] imp

not {Dogs and Herbivore} .

rewrites: 70 in 0ms cpu (0ms real) (~ rewrites/second)

result Sentence: TRUE

4 http://en.wikipedia.org/wiki/Monadic_predicate_logic

24

Another decision procedure using term rewriting for Syllogistic Logic
has been developed by Glashoff [11] using a quite different approach. His
approach consists in modeling Aristotle’s logic using the Aristotelian rules
of deduction as inference rules (i.e. as rewrite rules) while avoiding the use
of Boolean connectives. Given an input ‘syllogism’, this system generates
all the possible conclusions from the premises and then checks whether
the conclusion of the desired sentece belongs to the generated set: if it
does, the syllogism is indeed valid, otherwise it is not. Considering the
classification of interests on Syllogistic Logic, Glashoff’s approach can be
regarded as a pure philosophical approach. In contrast, our approach is
merely logical. We have extended a decision procedure for propositional
logic and exploited the novel idea of using Boolean connectives and the
complement relation to solve the word problem in a more general logic,
namely CSYLL. Our approach is analogous to the idea of Lukasiewics
of embedding Syllogistic Logic in a more general logic like FOL, except
that in our case we show that many-sorted equational logic is sufficient
and full FOL is not needed. Furthermore, this work seems a good step
towards the more ambitious goal of exploring, following the Dijkstra-
Scholten approach, other fragments of FOL which are both decidable and
admit an equational representation.

6 Conclusions

We have presented equational axiomatizations of the Dijkstra-Scholten
formulations of propositional logic and of a fragment of Monadic First-
Order logic, namely Syllogistic Logic with Complements and Boolean
connectives. We have explained how these axiomatizations, when speci-
fied in Maude, yield decision procedures for these logics. To the best of
our knowledge these mechanizations of the Dijkstra-Scholten logic and
of CSYLL are new. They can be useful as components of mechanized
reasoning systems for program verification in the spirit of Dijkstra.

There are several natural extensions of this work. One, already under-
taken in [25], is to compare the equational axiomatization of the Dijkstra-
Scholten propositional logic presented here with other decision procedures
for propositional logic. Another is to extend the present axiomatizations
to larger fragments of the Dijkstra-Scholten logic: first to full MFOL which
is still decidable, then to other still decidable segments of FOL, and then
to the undecidable case of full First-Order logic not by equations only,
but by rewrite theories [22]. A third possible extension is the already-

25

mentioned use of these equational axiomatizations within program veri-
fication systems in the Dijkstra style.

References

1. L. Bachmair and N. Dershowitz. Inference rules for rewrite-based first-order theorem
proving. In LICS, pages 331–337. IEEE Computer Society, 1987.

2. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework. ACM
Transactions on Computational Logic, 5:528–576, 2004.

3. G. S. Boolos, J. P. Burgees, and R. C. Jeffrey. Computability and Logic. Cambridge
University Press, 4th edition, 2002.

4. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership
equational logic. Theor. Comput. Sci., 236(1-2):35–132, 2000.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Quesada.
Maude: specification and programming in rewriting logic. Theoretical Computer Science,
285:187–243, 2002.

6. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and C. Talcott.
All About Maude - A High-Performance Logical Framework. Springer LNCS Vol. 4350,
1st edition, 2007.

7. M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational logic,
many-sorted equational logic, horn logic with equality, and rewriting logic. Electr. Notes
Theor. Comput. Sci., 71, 2002.

8. J. Corcoran. Completeness of an ancient logic. J. Symb. Log., 37(4):696–702, 1972.
9. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Springer-

Verlag, 1990.
10. A. Foret. Rewrite rule systems for modal propositional logic. In Journal of Logic Pro-

gramming, volume 12, pages 281–298, 1992.
11. K. Glashoff. Aristotelian syntax from a computational–combinatorial point of view.

Journal of Logic and Computation, 15:949–937, 2005.
12. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and

programming. Journal of the ACM, 39(1):95–146, 1992.
13. D. Gries and F. B. Schneider. A Logical Approach to Discrete Math. Texts and Mono-

graphs in Computer Science. Springer Verlag, 1993.
14. D. Gries and F. B. Schneider. Equational propositional logic. Inf. Process. Lett.,

53(3):145–152, 1995.
15. J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness checking with propo-

sitional tree automata. Technical Report UIUCDCS-R-2005-2635, University of Illinois
Urbana-Champaign, 2005.

16. J. Hsiang. Topics in automated theorem proving and program generation. PhD thesis,
University of Illinois at Urbana-Champaign, 1982.

17. N. Jacobson. Basic algebra. I. W. H. Freeman and Co., San Francisco, Calif., 1974.
18. J.-P. Jouannaud, editor. Rewriting Techniques and Applications, First International

Conference, RTA-85, Dijon, France, May 20-22, 1985, Proceedings, volume 202 of Lecture
Notes in Computer Science. Springer, 1985.

19. Laboratoire de Recherche en Informatique. The CiME 2.0 System (http://cime.lri.
fr/).

20. V. Lifschitz. On calculational proofs. Ann. Pure Appl. Logic, 113(1-3):207–224, 2001.
21. J. Lukasiewicz. Aristotle’s Syllogistic, From the Standpoint of Modern Formal Logic.

Oxford University Press, 1951.
22. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical

Computer Science, 96(1):73–155, 1992.

26

23. L. S. Moss. Syllogistic logic with complements. Draft, 2007.
24. F. Parisi-Presicce, editor. Recent Trends in Algebraic Development Techniques, 12th

International Workshop, WADT’97, Tarquinia, Italy, June 1997, Selected Papers, volume
1376 of Lecture Notes in Computer Science. Springer, 1997.

25. C. Rocha and J. Meseguer. Five isomorphic Boolean theories and four equational decision
procedures. Technical Report 2007-2818, University of Illinois at Urbana-Champaign,
2007.

26. G. F. Simmons. Introduction to topology and modern analysis. McGraw-Hill Book Co.,
Inc., New York, 1963.

27

