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Abstract

Orc is a language for orchestration of web services developed by J.
Misra that offers simple, yet powerful and elegant, constructs to succinctly
program sophisticated web orchestration applications. However, because
of its real-time nature and the different priorities given to internal and
external events in an Orc program, giving a formal operational semantics
that captures the real-time behavior of Orc programs is nontrivial and
poses some interesting challenges. In this report, we first propose a real-
time operational Orc semantics, that captures the informal operational
semantics given in [26]. This operational semantics is given as a rewrite
theory Rsos

Orc in which the elapse of time is explicitly modeled. This is
followed by presenting a much more efficient reduction semantics of Orc,
which is provably equivalent to the SOS semantics. A detailed proof of
strong bisimilarity of the two semantic specifications is then given. In both
theories, the priorities between internal and external events and the time-
synchronous execution strategy used are modeled in two alternative ways:
(i) by a rewrite strategy; and (ii) by adding extra equational conditions
to the semantic rules. We show experiments demonstrating the much
better performance of the reduction semantics when compared to the SOS
semantics.

We view this reduction semantics as a key intermediate stage towards
a future, provably correct distributed implementation of Orc. We describe
a distributed, object-based view of the Orc model and its specification.
Using the Maude rewriting logic language, we also illustrate how the dis-
tributed semantics can be used to endow Orc with useful formal analysis
capabilities, including an LTL model checker and search for violations
of invariants. We illustrate these formal analysis features by means of
two applications: an online auction system and a meeting scheduler, both
of which are modeled as distributed systems of actors that perform Orc
computations.
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1 Introduction

At present, the reliability of web-related software is poor, to say the least; and
formal analysis is one of the most effective ways to increase the quality, reli-
ability, and security of webware. For example, formal specification and model
checking analysis of Internet Explorer has uncovered many, previously unknown,
types of address-bar and status bar spoofing attacks [25]. There is however, a
substantial gap between the level of the formal specifications readily amenable
to analysis, and the low level implementations of webware in conventional lan-
guages. This gap can be narrowed by the use of model checkers for conventional
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languages such as Java or C, which may be a reasonably practical way, though
hard to scale up, to verify legacy systems. But such a conventional approach to
the design of webware is not, by any means, the best way to design and verify
future web-based systems.

This work is part of a longer-term research effort to explore a new web-
ware design and implementation approach based on two main ideas: (i) the
systematic use of formal executable specifications in rewriting logic to precisely
capture the intended semantics and to verify relevant properties; and (ii) the
stepwise refinement of such specifications into a provably correct distributed
implementation. It helps of course very much to begin with a type of webware
that is mathematically elegant, simple, novel, and promising in its practical ap-
plications. We have focused on J. Misra’s Orc language, a simple and elegant
language to orchestrate complex web services [26, 27, 17]. In spite of its inherent
simplicity, the formal semantics of Orc presents interesting challenges. These
challenges center around two main aspects of the Orc semantics: (i) the inherent
priority that internal actions should have over external communication events;
and (ii) the real-time nature of the language.

In this report, we use rewriting logic to capture the intended real-time se-
mantics of Orc. We first present an SOS-like rewriting semantics that is directly
based on the SOS semantics of [27]. Then, a much more concurrent reduction
semantics of Orc is presented. This reduction semantics takes full advantage of
rewriting logic’s concurrent semantics and fully exploits rewriting logic’s crucial
distinction between equations and rewrite rules. We show how the real-time syn-
chronous semantics of Orc can be faithfully captured in the reduction semantics
and establish the semantic equivalence between the reduction semantics and the
SOS-like semantics. We also provide experimental evidence for the claim that
the reduction semantics is much more efficient than the SOS-like semantics.

The reduction semantics is a crucial step towards the refinement of Orc spec-
ifications into a distributed implementation. Indeed, the Orc semantics as such
focuses on the, possibly concurrent, evaluation of a single Orc expression, ab-
stracting away its interactions with external sites as “black boxes” in an external
environment. It is however very natural to view both Orc expressions and sites
as distributed objects, which interact with each other through message passing.
Therefore, we propose a distributed specification that encapsulates both Orc ex-
pressions and sites as distributed objects, essentially reusing the already given
reduction semantics in the semantic specification of Orc expression objects. All
this can be done easily and naturally by using rewriting logic’s approach to
distributed objects [20]. Although still a specification, this distributed object
semantics brings the Orc refinement quite close to a future distributed imple-
mentation. Our work also shows how nontrivial formal analyses of relevant Orc
applications can be carried out with good efficiency, even after these two steps of
refinement. Specifically, we show how Maude’s LTL model checker can be used
to verify the requirements of two applications: an online Orc auction system
and a meeting scheduler, both of which are realized as distributed collections of
Orc expression and site objects.
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2 Related Work

Several Orc semantics have already been given. A precise but informal oper-
ational semantics for Orc was given by Misra in [26]; we consider this as the
standard against which the success of any formal operational semantics should
be measured. A formal SOS asynchronous operational semantics has been given
by Misra and Cook in [27]; but since this asynchronous semantics allows some
undesirable behaviors, a refinement of the asynchronous semantics into a syn-
chronous semantics, distinguishing between internal and external actions was
also given in [27]. Different denotational semantics of Orc for that are well-suited
for reasoning about identities and algebraic laws in the language, rather than for
describing the operational behavior of Orc programs, were also given [16, 17].
Moreover, a denotational semantics was given in [32], which used labeled event
structures to analyze dependancies in program execution. Furthermore, Bruni,
Melgratti, and Tuosto [5] gave encodings of Orc in Petri nets and the join cal-
culus that reveal some of the subtleties of the semantics of the language. Most
recently, Ian Wehrman et al. [35] proposed a relative-time operational semantics
of Orc by extending the asynchronous SOS relation of [27] to timed events and
time-shifted expressions.

Our work, along with some of the operational approaches cited above, has
similarities with the various SOS semantics that have been given for different
timed process calculi, such as ATP [29] and TLP [15], and real-time extensions
to various process calculi, such as extensions of ACP [2, 1], CCS [7], and CSP
[33].

3 Preliminaries

3.1 Rewriting Logic as a Semantic Framework

Rewriting logic [19] is a general semantic framework that unifies in a natural way
a wide range of models of concurrency. In particular, it is well suited to both
give formal semantic definitions of programming languages, including concurrent
ones (see [18, 24] and references there), and to model real-time systems [30].
Three important aspects of rewriting logic have stimulated interest in using it
for specifying languages:

1. The generality and flexibility of the rewriting semantic framework makes
it suitable for specifying both the deterministic features of a language
using equations, and the non-deterministic ones with rewrite rules, within
a uniform model. This also provides a convenient way to control the level
of abstraction desired in a specification.

2. With the availability of high-performance rewriting logic implementations,
such as Maude [9], rewriting semantics specifications are immediately ex-
ecutable, providing an interpreter and an LTL model checker for the lan-
guage specified, essentially for free.
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3. The generic and efficient formal analysis tools developed for rewriting logic
specifications are readily available for analyzing properties based on their
rewriting semantics. These tools include, among others, a semi-decision
procedure for checking violations of invariants by breadth-first search, an
LTL model checker for finite state systems, an inductive theorem prover,
confluence and coherence checkers, and a termination tool.

A rewrite theory is a formal description of a concurrent system, including
its static state structure and its dynamic behavior. Since a rewrite theory has
an underlying equational theory in some equational logic, we briefly describe
specifications in a very general form of equational logic, namely Membership
Equational Logic theories. This is followed by a general description of rewrite
theories and a quick overview of the Maude system.

Membership Equational Logic

A Membership Equational Logic (MEL) theory [21] is a pair (Σ, E) with Σ a
MEL signature and E a set of MEL Σ-sentences. A MEL signature is a triple
(K, Σ, S) , where K is a set of kinds, Σ = {Σw,k}(w,k)∈K∗×K is a K∗×K-kinded
family of sets of operators, and S = {Sk}k∈K is a K-kinded family of disjoint sets
of sorts. Given a signature Σ, a Σ-algebra A is a structure that assigns a set Ak

to each kind K, a function fA : Ak1 ×· · ·×Akn → Ak to each operation symbol
f ∈ Σk1···kn,k, and a subset As ⊆ Ak to each sort s ∈ Sk. Two fundamental
Σ-algebras are the Σ-term algebra of ground terms denoted by TΣ, and the Σ-
algebra of terms over a K-kinded set of variables X = {x1 : k1, · · · , xn : kn},
denoted by TΣ(X). The kind of a sort s is denoted by [s].

A MEL Σ-sentence is then a universally-quantified, conditional formula
(∀X) φ if

∧
i pi = qi ∧

∧
j wj : sj , with φ an atomic formula being either

a Σ-equation of the form t = t′ (with t and t′ of the same kind), or a Σ-
membership of the form t : s (with t of kind [s]), where all terms are terms in
TΣ(X), and s and sj are sorts in S. If s1, s2 ∈ S, the notation s1 < s2 declares
s1 a subsort of s2, which abbreviates the Σ-sentence (∀x : k) x : s2 if x : s1.
Another notational convenience is that an operator can be declared at the sort
level f : s1 · · · sn → s, which corresponds to declaring it at the kind level and
adding the sentence (∀x1 : k1 · · ·xn : kn) f(x1 · · ·xn) : s if

∧
1≤i≤n xi : si. The

Σ-membership wj : sj asserts that wj , which is of kind [sj ], has sort sj , repre-
senting a well-defined term wj . This is in contrast to a term having a kind but
not belonging to any sort, which is considered to be an undefined or error term.
The introduction of kinds and sorts in MEL provides a natural and convenient
way to model partial functions [21].

The models of a MEL theory (Σ, E) are (Σ, E)-algebras, that is, Σ-algebras
that satisfy the equations in E. Of such models, the initial algebra TΣ/E , whose
elements are E-equivalence classes of Σ-terms modulo the provable equalities,
and whose memberships are those provable in the logic, gives a denotational
semantics to the theory (Σ, E). However, the operational semantics of the theory
is given by equational simplification using the equations in E as rewrite rules.
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For a detailed treatment of MEL, its models and deduction system, the reader
is referred to [21, 3].

Rewriting Logic

In its most general form, a rewrite theory is a 4-tuple R = (Σ, E, R, φ) with:

• (Σ, E) a MEL theory,

• R a set of universally quantified labeled conditional rewrite rules of the
form:

(∀X) r : t −→ t′ if
∧
i

pi = qi ∧
∧
j

rj : sj ∧
∧
l

wl −→ w′
l

where terms appearing in an equation or a rewrite are of the same kind,
X contains all the variables appearing in all terms, and for all j, the kind
of rj is [sj ], and

• φ : Σ → P(N) a function that assigns to each operator symbol f in Σ of
arity n > 0 a set of positive integers φ(f) ⊆ {1, . . . , n} representing frozen
argument positions where rewrites are forbidden.

A rule in R gives a general pattern for a possible change or transition in
the state of a concurrent system. Changes are deduced according to the set of
inference rules of rewriting logic, which are described in detail in [6]. Using these
inference rules, a rewrite theory R proves a statement of the form (∀X) t→ t′,
written as R ` (∀X) t→ t′, meaning that, in R, the state term t can transition
to the state term t′ in a finite number of steps. A detailed discussion of rewriting
logic as a unified model of concurrency and its inference system can be found
in [19]. [6] gives a precise account of the most general form of rewrite theories
and their models.

3.2 MSOS to Rewriting Logic Transformation

Modular structural operational semantics (MSOS) [28] specifications can be nat-
urally mapped to semantically equivalent rewrite theories in rewriting logic. In
general, a rule in MSOS corresponds to a conditional rewrite rule in rewriting
logic. Meseguer and Braga [23] described a semantics-preserving transforma-
tion from MSOS to rewriting logic that results in modular rewrite theories and
accounts for the single-step MSOS rules. Given an MSOS specification of the
semantics of a programming language L, the transformation uses a pair 〈P,R〉,
called a configuration, where P is a program text in L, and R is a record con-
sisting of fields that contain state information necessary for the semantics of P ,
such as environments, stores, and traces.

The transformation also describes a method of controlling the number of
rewrites in the condition of a rewrite rule. This is required in such a transfor-
mation because SOS transitions are single-step, whereas sequents in rewriting
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logic can involve an arbitrary (but finite) number of steps because of the re-
flexivity and the transitivity inference rules of the logic. First, assuming P is a
program expression and R is a record, to achieve the one-step SOS behavior, two
more syntactic forms of a configuration 〈P,R〉 are defined: [P,R] and {P,R}.
Then, all the semantic definitions are specified using rewrite rules of the form

{P,R} → [P ′, R′] if
n∧

i=1

{Pi, Ri} → [P ′
i , R

′
i] ∧ C

where C is (a possibly empty) conjunction of (conditional) equations and/or
memberships. Now a one-step rewrite of 〈P,R〉 is achieved by the following
rewrite rule.

Step : 〈P,R〉 → 〈P ′, R′〉 if {P,R} → [P ′, R′]

The reader is referred to [23] for a more detailed discussion of the methodology
and a proof of its semantics-preserving correctness.

3.3 The Maude System

Maude is a high-performance implementation of rewriting logic and its under-
lying MEL sublogic, with syntax that is almost identical to the mathematical
notation. A basic unit of specification in Maude can either be a functional mod-
ule, corresponding to a MEL theory (Σ, E), or a system module, representing
a rewrite theory (Σ, E, R, φ). Functional modules are declared with the syntax
fmod 〈name〉 is 〈body〉 endfm, where 〈name〉 is a name given to the module
and 〈body〉 consists of module inclusion assertions, sort and subsort declara-
tions, operator symbols declarations, and (possibly conditional) equations and
membership axioms. System modules, which are declared with the mod . . . endm
keywords, may additionally contain (possibly conditional) rewrite rules.

As a simple example, the following functional module specifies multisets of
natural numbers along with a (partial) function that computes the smallest
element of a given multiset of elements.

fmod NAT-MSET is

protecting NAT .

sort NatMSet .

subsort Nat < NatMSet .

op mt : -> NatMSet [ctor] .

op __ : NatMSet NatMSet -> NatMSet [ctor assoc comm id: mt] .

op min : NatMSet -> [Nat] .

vars N M : Nat . var S : NatMSet .

eq min(N N S) = min(N S) .

ceq min(N M S) = min(N S) if N < M .

eq min(N) = N .

endfm

The module NAT-MSET first includes Maude’s built-in NAT module while protect-
ing it from adding junk or introducing confusion. The other types of inclusion
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are the extending and the including module inclusions which are more relaxed
than the protecting inclusion (see [8] and [9] for details). The sort NatMSet is
then declared using the keyword sort, whereas subsorting information is given
using the subsort keyword. Each syntax declaration starts with an op (for
“operator”), followed by the syntax declaration itself, followed by “:”, followed
by the sorts or the kinds (corresponding to nonterminals in a CF grammar) of
the arguments, followed by “->”, followed by the sort or kind of expressions
with that syntax. The ctor attributes declares the corresponding operator as
a constructor operator, as opposed to defined operators. In this case, mt and
the juxtaposition operator are constructors for the sort NatMSet, while the
function min is a defined operator. Furthermore, a binary syntax construct can
be declared with semantic axioms such as associativity (assoc), commutativity
(comm), and identity (id). In particular, associativity makes use of parenthe-
ses unnecessary, and commutativity makes the order of arguments immaterial.
Other attributes of operators can be given, such as precedence information us-
ing the prec attribute, and left- and right-associativity information with the
gather attribute. Unconditional and conditional equations are introduced with
the eq and ceq keywords, memberships with mb and cmb, and rewrite rules (in
system modules) with rl and crl.

Maude provides several features and tools to formally analyze specifications
given as system modules. The features include: (1) the rewrite command
(abbreviated as rew), which applies in a fair manner the rules, equations, and
membership axioms in the system module on a given term, resulting in a sample
run of the program specified by the module, and (2) the search command, which
performs a breadth-first search on the states reachable from a given state while
looking for states matching a given pattern and satisfying a semantic condition.
In effect, the search command provides a semi-decision procedure for checking
violations of invariants. Maude also provides an LTL model checker to verify
more complex LTL safety and liveness properties about finite state systems.
The use of these tools for analyzing Orc programs is illustrated in Section 9.
For a complete description of these features and tools, and various other tools
provided by Maude, the reader is referred to the Maude book [8] and the Maude
manual [9].

3.4 The Maude Strategy Language

Maude’s strategy language [12] is a relatively simple language in which strat-
egy expressions specify how terms in a rewrite theory are rewritten. The goal
of the strategy language is to provide a means of controlling the application
of rules in a rewrite theory while keeping these control mechanisms separate
from the system specifications given by that theory. The strategy language of
Maude achieves this separation by having strategy modules specifying strategy
expressions that are distinct from system modules, which specify rewrite theo-
ries. Set-theoretically, the meaning of a strategy expression S is a function that,
when applied to a term t, yields a (possibly empty) set of terms, which are the
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L ∈ Labels
R ∈ Strategy names

B ∈ Basic Strategy ::= idle | fail | L | L[SL]
S, S1, S2 ∈ Strategy ::= R | B | S1;S2 | S1|S2

| S∗ | S+ | S? S1 : S2

SL ∈ Strategy List ::= S | S,SL
D ∈ Strategy Declaration ::= R := S

DL ∈ Strategy Specification ::= D | D,DL

Table 1: The syntax of a subset of Maude’s strategy language

terms that can be obtained by applying this strategy.

@ : Strat× TΣ(X)→ P(TΣ(X))

This function is extended to sets of terms, in the obvious way, so that if T ∈
P(TΣ(X)), then S @ T =

⋃
t∈T S @ t.

Besides providing basic strategies through the use of rule labels, the strat-
egy language permits combining these strategies into more complex ones using
several combinators. Furthermore, substrategies may be specified for rewrite
conditions of a rewrite rule. In the rest of this section, only the subset of the
strategy language that is most relevant for this work is described. For a detailed
discussion of the entire language, the reader is referred to [12].

Table 1 shows the syntax of a subset of the strategy language. The simplest
strategies are idle, which does not affect the term to which it is applied (i.e.,
idle @ t = {t}), and fail, which always gives the empty set as its result (fail @ t =
∅). A basic strategy can also be a label of a rule, which when applied to a term
results in the set of terms obtained by applying the rule to t. For a conditional
rewrite rule with n rewrite conditions, the label may optionally be followed by
a list of n strategy expressions controlling the way the rewrite conditions are
checked. If no such list is given, the conditions are not restricted to any strategy
and Maude’s breadth-first search is applied to evaluate conditions.

Strategy expressions may be combined using regular expression combinators:
the concatenation combinator (;), in which (S1;S2) @ t = (S1 @ t) ∪ (S2 @ t),
the union combinator (|), where (S1|S2) @ t = (S1 @ t)∪(S2 @ t), and two forms
of iteration, S∗ for zero or more iterations and S+ for one or more iterations.
Additionally, there is the generalized conditional combinator S ? S1 : S2, which,
when applied to a term t, behaves as follows. S is first applied to t resulting in a
set T . If S succeeds (i.e. T 6= ∅), then the result of S1 applied to T is returned.
Otherwise, if S fails (T = ∅), then the result of applying S2 to the original term
t is returned.

Several derived strategies may be defined using these combinators. For in-
stance, the negation of a strategy S, written ¬S, which succeeds whenever S
fails and vice versa, can be defined as ¬S = S ? fail : idle. The negation can
be used to define the normalization strategy !S, which applies the strategy S
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until it is no longer applicable: S! = S∗ ; ¬S. [12]
Finally, strategy expressions can be given names through strategy declara-

tions of the form R := S. This allows defining (mutually) recursive strategies,
in addition to modularly decomposing large strategy expressions into smaller
ones. A strategy specification is simply a list of strategy declarations.

4 Orc and its Semantics

Orc is a theory of orchestration that models the smooth integration of web
services. It is based on the abstract notion of sites and the composition of the
services they provide. The Orc model is fairly minimal, yet powerful enough to
express a wide range of computations [27]. Furthermore, Orc assumes a timed
framework in which services and object states may be time-sensitive.

A central concept in Orc is that of sites. A site is a basic service that provides
a computation of some kind. The particular nature of a site determines what
properties it possesses. For instance, a site could be a simple arithmetic function
that takes two integers as parameters and returns their sum. In this case, the
site has no side effects on its environment and a call to it should be placed in
a context where an integer value is expected. Another site could be a deposit
method of a bank account object that returns the new balance, in which case,
firstly the site has a potential side effect on the state of the object, and secondly
it might return different values at different invocations. A site could also be
time-sensitive, hence returning different values at different times, such as a site
responding with the current clock time value. A human user of an interactive
system could also be modeled as a site from the point of view of an Orc program.

Sites per se are not part of the theory. Instead, they are assumed to exist, and
the computations they provide constitute the data processed by Orc expressions.
In general, nothing is assumed about sites beyond their existence and the fact
that a site, when called, produces at most one value. A site may not respond to
a call, either because it was originally designed to behave this way (for example
a site that is designed to remain silent on a particular input), or due to a network
or a server failure. When a site responds to a call with a value v, the site is said
to publish the value v. Finally, site calls are strict, in the sense that a site call
cannot be initiated before its parameters are bound to concrete values.

There are six fundamental sites that are available to any Orc program. These
sites and the services they provide are shown in Table 4, assuming t is a positive
integer, b is a boolean, and x and y are values of arbitrary types.

Complex expressions in Orc are built from smaller ones using three com-
position operators: (1) the sequential composition operator (> x >); (2) the
symmetric parallel composition operator (|), which expresses parallel threads
of computation; and (3) the asymmetric parallel composition operator (where),
which expresses a form of parallelism where some concurrent threads of com-
putation can be selectively removed at some stage in their execution. An Orc
expression may, therefore, return as its result a sequence of values of possibly
different types, or it may not return a value at all.
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let(x, y, . . . ) A tuple constructor. Given a list of values, it returns a tuple
consisting of these values.

clock returns the current time as a non-negative integer.
atimer(t) returns a signal at time t.
rtimer(t) returns a signal after t time units.

signal returns a signal immediately.
if(b) returns a signal if b is true; otherwise it remains silent.

Table 2: Fundamental sites in Orc

In this section we present the syntax of the Orc language with some examples,
and briefly discuss its asynchronous SOS semantics, which was first given in [10].

4.1 Syntax and Informal Semantics

A sequential programming language can be extended to include Orc computa-
tions by adding the following statement to its syntax:

z :∈ E(L)

where E is an Orc expression name that must obviously have a defining equation
(i.e., a declaration). Since we are interested in analyzing Orc programs in iso-
lation, regardless of the host language, we adopt a variant of the syntax of Orc
that encapsulates Orc declarations and expressions into a single unit (an Orc
program). This variant originally appeared in an earlier version of [10]. The ex-
tended abstract syntax we use here is given in Table 3. In this syntax, we allow
polyadic communications in site calls and polyadic expression declarations and
calls. We also extend the original syntax with expressions that will be needed
for defining the semantics later on. The syntax, however, treats site names and
variables as two separate entities, implying that a site cannot be bound in an
expression or be used as a formal parameter in a declaration, although a site
may be used as an actual parameter in a site or an expression call.

An Orc program consists of an optional list of declarations followed by an
Orc expression. A declaration is similar to a procedure declaration, in that it
consists of a name, a (possibly empty) list of formal parameters, and an expres-
sion representing the body of the procedure. An expression can be either: (1)
the silent site (0), which is a site that never responds; (2) a site or an expression
call having an optional list of actual parameters; (3) the publishing of a value or
a variable; (4) a placeholder for an unfinished site call (more on this later); or
(5) the composition of two expressions by one of the three composition opera-
tors. Two expressions may be composed either sequentially with the sequencing
operator > x >, or in parallel. Parallel composition comes in two flavors: (1)
symmetric composition, using |, where multiple threads execute concurrently re-
turning a (possibly empty) stream of values; and (2) asymmetric composition,
using the where statement, in which the left expression executes concurrently
with possibly many threads of the right expression, choosing the first result
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D ∈ d1; . . . ; dn (A list of declarations)
E ∈ Expression Name
x ∈ Variable

M ∈ Site
c ∈ Constant
h ∈ Handle
P ∈ p1, . . . , pn (A list of actuals)
Q ∈ q1; . . . ; qn (A list of formals)

Orc program ::= D ; f
d ∈ Declaration ::= E(Q) =def f

f, g ∈ Expression ::= 0 | M(P ) | E(P )
| f | g
| f > x > g
| f where x :∈ g
| ! c | ! x | ? h

p ∈ Actual Parameter ::= x | c |M
q ∈ Formal Parameter ::= x

Table 3: Extended syntax of Orc

published by any one of them. Both sequential composition f > x > g and
asymmetric parallel composition g where x :∈ f bind the variable x in the
expression g. An occurrence of a variable that is not bound by one of these
composition operators is called a free occurrence. A sufficiently detailed in-
formal description of the intended meaning of the three composition operators
follows.

Symmetric parallel composition. An expression of the form f | g asserts
that f and g can be executed in parallel. A simple example is CNN | BBC,
where CNN and BBC are sites that return the news as a value of some type.
In this expression, the two sites are called concurrently. This may result in at
most two responses being received. If either site (or both sites) fails to respond,
the expression does not terminate. If both sites respond, the values published
by the expression would be the values published by both sites in time order.
In general, the sequence of values published by an expression f | g, when it
terminates, is a time-ordered interleaving of the values published by f and g.
For example, the expression let(1) | let(2) | let(3) publishes any permutation of
the the sequence [1, 2, 3], under the assumption of termination.

Sequential composition. In an expression of the form f > x > g, f is
executed first. If f does not publish a value, g is never executed, and the se-
quential composition does not terminate. A simple example is the expression
if (false) > x > Email(x, m), with Email(x,m) a site that sends a fixed message
m to user x. In this example, an e-mail message is never sent to any user, since
if (false) is silent. On the other hand, if, while executing f > x > g, f publishes
a value v, then g’s substitution instance g{v/x} is created and executed. For
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example, the expression lookup(user) > x > Email(x,m), where lookup(user)
is a site that returns the e-mail address of user, may result in sending the mes-
sage m to the address returned. If lookup(user) responds with an address a,
the value a is bound to x and Email(a,m) is called. In this case, assuming
Email(a,m) responds with some value (like an error code), the value returned
by Email(a,m) is the value published by the sequential composition as a whole.
If Email(a,m) does not respond, evaluation of the sequential composition does
not terminate and no value is ever published. Now suppose we have the ex-
pression (lookup(user1)|lookup(user2)) > x > Email(x,m). The evaluation of
this expression may result in up to two copies of m being sent, one to each
of the addresses of user1 and user2. If both calls to lookup publish values and
both calls to Email(x,m) respond, the sequential composition publishes the two
values returned by the calls to Email(x, m) in time order.

The sequencing operator > x > is also written as � when no value passing
takes place. In other words, the sequential composition f > x > g can be
written as f � g if and only if x does not occur free in g.

Asymmetric parallel composition. The expression f where x :∈ g
attempts to evaluate both expressions f and g concurrently. For instance, the
expression Email(x,m) where x :∈ lookup(user) attempts to call both sites, but
since site calls are strict, requiring concrete values for the call to be undertaken,
only lookup(user) is called at this point. Once the lookup(user) call responds
with a value v, Email(v,m) is called, and if it in turn responds, execution
terminates with this value being the result of the expression. Of course, if the
expression was Email(a,m) where x :∈ lookup(user), then both sites would
be called simultaneously, and if Email(a,m) responds, then the value published
by the expression is the value returned by Email(a,m), regardless of whether
lookup(user) responds or not. A more complex example would be one where g
publishes more than one value. In this case, during the evaluation of g, once it
publishes a value v, execution of g is terminated and the value v is assigned to
x and is used in the evaluation of f . As an example, the expression

(Email(admin,m) | Email(x,m)) where x :∈ (lookup(user1) | lookup(user2))

causes the message m to be sent to an administrator and to at most one of the
two users. If two e-mail messages are sent, the order in which they are sent
is not determined and depends on which call to Email was first made. The
above examples illustrate the fact that in an asymmetric parallel composition
f where x :∈ g, evaluation of the expression f may potentially block while
waiting for a concrete value for x to be published by g.

4.2 Examples

To illustrate the behavior of the different composition operators, we describe a
few example Orc expressions, which can be found, among many other examples,
in [27]. We will refer to some of these expressions later in the report. Also, to
cut down on the use of parentheses, we assume that the composition operators
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are ordered in decreasing precedence as follows: > x >, |, where. We also
let > x > and where be right associative, and | be commutative and fully
associative.

The following is an expression (which we call timed-mcall) that calls site
M four times, in intervals of one time unit each, starting immediately.

M | rtimer(1) > x > M | rtimer(2) > x > M | rtimer(3) > x > M

The program timeout below encodes a form of timeout. It consists of a
declaration of an expression f that has an input parameter t representing the
timeout, and an expression call setting the timeout to 3.

f(t) =def let(z) where z :∈M | rtimer(t) > x > let(0); f(3)

In the call f(3), t is bound to 3 and a call to site M is made. If M responds
before 3 time units, then its value is the value published by the expression, while
the value 0 is published if no response is received after 3 time units have elapsed.
If M responds exactly after 3 time units, either value is published.

Program priority below implements a prioritized site call:

DelayedN =def (rtimer(1) > x > let(u)) where u :∈ N
let(x) where x :∈M | DelayedN

Site M is given priority over site N , in that a response from M , if received
within 1 time unit, would be the value published by the expression. Otherwise,
either value published by M or N is published.

If we assume a site or(b1, b2) that publishes the logical or of its two boolean
arguments, then by the strictness of site calls, the booleans b1 and b2 have to
be evaluated to truth values before the site call is made. The following program
implements a non-strict Or, and uses it to evaluate a simple logical formula.

ift(a) =def if(a) > t > let(a);
Or(x; y) =def let(z) where z :∈ ift(x) | ift(y) | or(x, y);
Or(x, y)

where x :∈ eq(2, 2)
where y :∈ lt(3, 1)

The last example we present here illustrates simple recursive programs. The
following declares an expression that recursively publishes a signal every time
unit, indefinitely.

Metronome =def signal | rtimer(1) > x > Metronome

The expression Metronome can be used to repeatedly initiate an instance of
a task every time unit.
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h fresh

M(c)
M〈c,h〉

↪→ ?h
(SiteCall)

?h
h?c
↪→ !c (SiteRet)

!c
!c
↪→ 0 (Pub)

E(Q) =def f ∈ D

E(P )
τ
↪→ f{P/Q}

(Def)

f
l

↪→ f ′

f | g l
↪→ f ′ | g

(Sym1)

g
l

↪→ g′

f | g l
↪→ f | g′

(Sym2)

f
!c
↪→ f ′

f > x > g
τ
↪→ (f ′ > x > g) | g{c/x}

(Seq1V)

f
l

↪→ f ′ l 6= !c

f > x > g
l

↪→ f ′ > x > g
(Seq1N)

f
!c
↪→ f ′

g where x :∈ f
τ
↪→ g{c/x}

(Asym1V)

f
l

↪→ f ′ l 6= !c

g where x :∈ f
l

↪→ g where x :∈ f ′

(Asym1N)

g
l

↪→ g′

g where x :∈ f
l

↪→ g′ where x :∈ f
(Asym2)

Figure 1: Asynchronous semantics of Orc

4.3 Asynchronous Structural Operational Semantics of Orc

The asynchronous operational semantics introduced in [10] (and shown here in
Figure 1 below) formalizes the general description of the meanings of the vari-
ous Orc features given above. The SOS semantics is a highly non-deterministic
semantics that allows internal transitions (within an Orc expression) and ex-
ternal ones (interactions with sites) to be interleaved in any order. This high
degree of non-determinism may not always be desirable, as described in Section
2.3 of [10]. For example, in the expression DelayedN | M , the call to M may
be delayed, thus defeating the purpose of prioritizing the call to M . In order
to rule out such undesirable behaviors, a synchronous semantics is proposed in
[10] by placing further constraints on the application of SOS semantic rules of
Figure 1. The synchronous semantics is arrived at by distinguishing between
internal and external events, and splitting the SOS transition relation ↪→ into
two subrelations ↪→R, and ↪→A, and characterizing set-theoretically, the com-
plementary subsets of expressions (quiescent vs. non-quiescent) to which they
are respectively applied. However, in the above asynchronous semantics and
its synchronous refinement, time is not explicitly modeled: it is only modeled
implicitly by the fact that some external events may not yet be available and
the expression becomes quiescent. We fully address this pending issue in the
context of the real-time rewriting semantics of Orc in two alternative ways: (i)
by means of Maude’s strategy languages; and (ii) by a rewriting semantics with
additional equational conditions that requires no strategies.
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5 SOS-Based Rewriting Orc Semantics

In this section, we explain in some detail the rewriting semantics of the asyn-
chronous SOS definitions of Figure 1. Then, in Section 5.3 we characterize the
synchronous semantics as the restriction on the asynchronous semantics imposed
by a suitable rewriting strategy. We call both semantics instantaneous, in the
sense that time elapse is not yet modeled (this is done in Section 5.4). However,
even this instantaneous semantics has a rich computational granularity, because
within a given time interval various external responses can be received from the
environment, so that in the sense of [10] the evaluation of an expression may go
through several quiescent states, followed by processing of new internal events
after each external event reception.

Before giving the rewriting logic semantic definitions, we describe the basic
infrastructure that is needed to facilitate specification of the semantic rules. In
addition to the declarations given in Table 3, We assume the following sorted
(meta-)variable declarations throughout the rest of the report, except where
otherwise indicated.

m,n ∈ Nat C ∈ ConstList r, r′ ∈ Record
ρ ∈ MsgPool σ ∈ Context h ∈ Handle
ĉ ∈ PreConst e ∈ Event t ∈ EventList
c ∈ Const

5.1 Semantic Infrastructure

Events. As for any labeled transition system, labels in the semantic rules in
Figure 1 represent events generated as a result of a configuration evolving into
another. Lists of such events characterize traces of actions that a configuration
may exhibit. The four possible event constructors are shown below.

〈 , | 〉 : SiteName× ConstList×Handle×Nat→ Event
? | : Handle× Const×Nat→ Event
! | : Const×Nat→ Event

τ : → Event

The timed event M〈C, h|n〉 represents a site call made to site M at time n with
actual parameter list C. h is a fresh handle name that uniquely identifies this
particular call. On the other hand, a site return with return value c occurring at
time n and responding to the call whose handle is h is represented by the event
h?c|n. The third event operator, !c|n, denotes publishing a value c at time n,
and, finally, τ is an non-timed event representing a silent transition, as usual.

Handles. A handle is a name that distinguishes a given site call from
all other unfinished site calls, which are calls waiting for a response from the
environment. Because handle names are simple identifiers and are invisible to
the Orc programmer, we represent a handle as a term hn, with n a natural
number of sort Nat.

h : Nat→ Handle
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By the SiteCall rule of Figure 1, fresh handle names need to be generated.
This is accomplished by maintaining in a configuration the next handle name
to be used, which is updated appropriately as the configuration evolves.

Contexts. Since expressions may be abstracted with expression names, an
environment needs to be maintained by the configuration to resolve references to
such names. This is achieved by having a context structure in a configuration.
A Context is a set of declarations formed with an associative and commutative
multiset union operator ( , ), with mt as its identity element, and the multiset
elements are terms of sort Decl (which is a subsort of Context).

mt : → Context
, : Context× Context→ Context

Initially, a context is created out of the declaration list of an Orc program (see
Table 5) so that the following conditions hold: (1) a later declaration in the
list hides all previous declarations with the same expression name; and (2) all
declarations in the resulting context are visible to each other. This implies that
in a context, an expression name has a unique defining declaration, and that
(mutual) recursion is directly available.

Messages. Site calls and returns involve wide-area communications. To
model such communications, we introduce a message pool, as a multiset of mes-
sages, into an Orc configuration. A message is a triple of the form [M,C, h],
where M is a site name to which the message is targeted, C is either a list
of constants or a term of sort PreConst (more on this below), and finally h
is a handle name identifying the call that caused this message. Since not all
triples [M,C, h] are valid messages, the kinds [21] [ConstList ] and [Msg ] are
used instead of the sorts ConstList and Msg.

[ , , ] : SiteName× [ConstList]×Handle→ [Msg]

Incoming messages to the configuration and outgoing messages to the environ-
ment share the same format. In a message γ = [M,C, h], if M is the term self
(representing a reference back to the configuration) and C is a term of sort Pre-
Const (which subsumes the case where C is a constant value of sort Const, since
Const is a subsort of PreConst), then γ is an incoming message and represents
a (potential) response that is waiting in the message pool to be consumed by
the configuration. On the other hand, if M is a site name other than self and
C is a list of constants, then γ is an outgoing message destined for M , that was
emitted into the pool as a result of executing a site call. Otherwise, γ does not
represent a valid message. All this is specified compactly in membership equa-
tional logic using kind-level operators and (conditional) membership axioms to
characterize valid messages of sort Msg.

[self, ĉ, h] : Msg
[M,C, h] : Msg if M 6= self

Configurations. An Orc configuration constitutes a state of the system.
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A configuration consists of an Orc expression and a record.

〈 , 〉 : Expr× Record→ Conf

A record is a set of fields (built with an associative-commutative set union
operator | ), where each field represents a piece of information that we keep
track of as the configuration evolves. In our case, five fields are maintained in
a record. These are: the trace of events (tr : t), the context (con : σ), the clock
(clk : cn), the pool of messages (msg : ρ), and the next available handle name
(hdl : h). As explained in Section 3.2, besides configurations 〈f, r〉, we also allow
variants {f, r} and [f, r] to model single-step rewrites.

Having introduced the required infrastructure, we are now ready to discuss
the rewriting semantics rules next.

5.2 Rewriting Semantics Rules

Site calls and returns. Site calls and site returns are specified using two
rewrite rules. The first of these rules models a site call.

SiteCall : {M(C), tr : t | msg : ρ | hdl : hn | clk : cm | r}
→ [?hn, tr : t . M〈C, hn|m〉 | msg : ρ [M,C, hn] |

hdl : hn+1 | clk : cm | r]

The strictness of site calls is respected in the above rule by requiring the list of
actual parameters to be a list of constant values (naturals, booleans, a signal,
... etc). When such a site call is encountered, the site call is replaced by the
special expression (?h), where h is the fresh handle name maintained in the
configuration. At the same time, a message targeted to M is emitted into the
message pool, a site call event is appended to the trace, and the handle counter
is updated.

In the Orc SOS rules the environment is treated as a “black box”. This is
reasonable, since responses from remote site calls are unpredictable. However,
to obtain an executable Orc semantics that can be used as an interpreter, we
somehow need to simulate environment responses. This is done as follows: once
the message [M,C, hn] is emitted into the message pool, it is converted into the
message

[self, app(M,C, rand), hn],

which represents a potential response back to self. This message contains as its
contents the operation app applied to three arguments. app is an operation of
sort PreConst whose definition depends on the value of its arguments. It serves
two purposes. First, it provides a uniform and abstract means by which the
response of a particular site can be modularly defined. Second, it associates a
pseudo-random delay, given by rand above, to responses of (external) sites. The
operator rand simulates a pseudo-random integer between 1 and 10 inclusive
using the following rules:

Rand : rand → floor((random(counter)/4294967296)× 10)
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Count : counter → s(counter) Eval : counter → 0

with random an internal pseudo-random number generator1 and s the successor
function. The operational meaning is that a well-formed response is not gener-
ated until the delay reaches the value zero. Once the delay is zero (and assuming
the external site was known to the environment), the term app(M,C, 0) is eval-
uated according to the value of M to a constant value (a ground term of sort
Const). Only then, the response is ready to be consumed by the configuration,
which is modeled by the site return rule below.

SiteRet : {?h, tr : t | msg : ρ [self, c, h] | clk : cm | r}
→ [!c, tr : t . h?c|m)) | msg : ρ | clk : cm | r]

Besides consuming the message, the rule above replaces (?h) with the expression
publishing the value obtained, and generates the appropriate event.

Publishing a value. The rule for publishing a value is quite straightfor-
ward. The expression is replaced by 0, and the appropriate event is generated.

Pub : {!c, tr : t | clk : cm | r} → [0, tr : t . (!c|m)|clk : cm | r]

Like a site call, publishing a value is strict, as it requires the variable to be
substituted with its value before its publishing takes place.

Expression calls. Unlike site calls, expression calls are not strict. The
actual parameter list of an expression call need not be all constants for the call
to be evaluated.

Def : {E(P ), tr : t | con : σ,E(Q) =def f | r}
→ [f{P/Q}, tr : t . τ | con : σ,E(Q) =def f | r]

Using call-by-name semantics, the call is replaced with an instance of the body
of the corresponding defining equation, where actuals are substituted for the
formals one-at-a-time2. Moreover, a τ transition is recorded. Clearly, an ex-
pression call may entail an arbitrarily complex computation, which may evaluate
to a (possibly empty) stream of values.

Sequential Composition. There are two cases, describing how two se-
quentially composed expressions, f > x > g(x), may evolve. The first is when
f publishes a value c while evolving to f ′. In this case, a new instance of g hav-
ing c substituted for x is created and is run in parallel with the (now evolved)
composition f ′ > x > g(x), while a τ event is generated. Thus, for each value c

1The function random is defined in Maude in the module RANDOM (see [9]). Given a seed c,
random(c) generates a random number between 0 and 4294967296

2Substituting one variable at-a-time does not pose a problem as it is here equivalent to
being done simultaneously. A variable can only be substituted with a variable, a constant, or
a site name. Moreover, whenever renaming is needed to avoid free variable capture, CINNI
reflects this renaming in the substitution term, keeping track of the right substitution (see
sections 8.1 and 8.2).
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published by the evolution of f , a new instance g{c/x} of g(x) is created.

Seq1V : {f > x > g, tr : t | r} → [(f ′ > x > g)|g{c/x}, tr : t . τ | r′]
if {f, tr : nil | r} → [f ′, tr : (!c|m))|r′]

The other case, where f evolves while generating an event other than publish-
ing a value, is straightforward and is dealt with using three other sequential
composition rewrite rules, one rule for each type of event. These are the rules
labeled Seq1N1, Seq1N2, and Seq1N3, and shown below.

Seq1N1 : {f > x > g, tr : t | r} → [f ′ > x > g, tr : t . τ | r′]
if {f, tr : nil | r} → [f ′, tr : τ | r′]

Seq1N2 : {f > x > g, tr : t | r} → [f ′ > x > g, tr : t . h?c|m | r′]
if {f, tr : nil | r} → [f ′, tr : h?c|m | r′]

Seq1N3 : {f > x > g, tr : t | r} → [f ′ > x > g, tr : t . M〈C, h|m〉 | r′]
if {f, tr : nil | r} → [f ′, tr : M〈C, h|m〉 | r′]

The rules simply allow f to evolve while recording the appropriate event in the
execution trace.

Symmetric parallel composition. The semantic rule for parallel com-
position is straightforward and resembles that of a process calculus. It merely
stipulates that expressions running in parallel are allowed to evolve concur-
rently. Since the operator (|) is assumed associative and commutative, only one
instance of the rule (labeled Sym) is required.

Sym : {f | g, tr : t | r} → [f ′|g, tr : t . L | r′]
if {f, tr : nil | r} → [f ′, tr : L|r′]

Asymmetric parallel composition. In an expression of the form g(x)
where x ∈ f , the semantic rules allow g and f to evolve concurrently, unless f
publishes a value. When f publishes a value c, the composition is replaced by
g{c/x}. The rewrite rule that does just that is shown below.

Asym1V : {g where x :∈ f, tr : t | r} → [g{c/x}, tr : t . τ | r′]
if {f, tr : nil | r} → [f ′, tr : (!c|m) | r′]

Of course, any subexpression of g that requires the value of x in order to make
any progress would need to wait for f to publish its first value. The other cases
for f are specified by the rules labeled Asym1N1, Asym1N2 and Asym1N3,
shown below.

Asym1N1 : {g where x :∈ f, tr : t | r}
→ [g where x :∈ f ′, tr : t . τ | r′]

if {f, tr : nil | r} → [f ′, tr : τ | r′]
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Asym1N2 : {g where x :∈ f, tr : t | r}
→ [g where x :∈ f ′, tr : t . h?c|m | r′]

if {f, tr : nil | r} → [f ′, tr : h?c|m | r′]

Asym1N3 : {g where x :∈ f, tr : t | r}
→ [g where x :∈ f ′, tr : t . M〈C, h|m〉 | r′]

if {f, tr : nil | r} → [f ′, tr : M〈C, h|m〉 | r′]

Finally, g is also allowed to evolve while generating any kind of event. This is
specified by the following rule:

Asym2 : {g where x :∈ f, tr : t | r} → [g′ where x :∈ f, tr : t . L | r′]
if {g, tr : nil | r} → [g′, tr : L | r′]

The key point about the above rewriting Orc semantics is that it faithfully
mirrors the SOS Orc semantics from [10] given in Figure 1. This follows from
three key observations: (i) the SOS semantics can first be put in MSOS format:
this is a straightforward, mechanical transformation; (ii) the rewrite rules in
our theory described above, are, except for the additional rules labeled Count,
Eval, and Rand which we have added for execution purposes, the exact trans-
lation of the MSOS Orc rules by the transformation from MSOS to rewriting
logic summarized in Section 3.2 and described in full detail in [23]; and (iii)
by Theorem 1 in [23], there is a strong bisimulation between the MSOS se-
mantics of Orc and its corresponding rewriting logic semantics. Specifically,
the corresponding rewriting logic semantics is obtained by removing from the
rewrite theory given above the rules labeled Count, Eval, and Rand added
for execution purposes.

5.3 The Synchronous Execution Strategy

The rewrite theory described above does not enforce any execution strategy
among instantaneous transitions of an Orc configuration. It reflects the exact
behavior of the SOS semantics specification of Figure 1, which is in some sense
too loose. In particular, site returns may take place in an expression while site
calls that are ready to be made are waiting. In what follows, we describe how,
in agreement with the synchronous semantics of [10], internal actions (site calls,
expression calls, and publishing of values) are given precedence over the exter-
nal action of receiving responses from the environment using Maude’s strategy
language.

First, the following “in” strategy is defined, where Seq and Asym respec-
tively denote the set of labels of rewrite rules for sequential and asymmetric
parallel compositions.

in := SiteCall | Pub | Def | Sym[in] | Seq[in] | Asym[in]

22



The strategy “in” applies one of the internal action rules. Note that the strategy
expression has to be recursive, since we must make sure that only an internal
action rule is applied while checking a condition of a conditional rule. Similarly,
the following “ex” strategy, which applies the site return rule, either at the top
or in conditions of the Sym, Seq or Asym rules, is defined.

ex := SiteRet | Sym[ex] | Seq[ex] | Asym[ex]

Now, the complete strategy expression specifying the desired Orc execution
behavior, can be given as

sync := Step[in ? idle : ex]+

where Step is the label of the step rule described in Section 3.2, which repre-
sents a single step in the evolution of an Orc configuration. At each step, the
substrategy in ? idle : ex controls how the condition of the step rule is checked.
It tries (recursively) to match and apply an internal action. If it succeeds, the
resulting configuration is returned and the condition is satisfied. In this case,
the step is taken (at the top) with an internal action (this corresponds to a ↪→A

step in the sense of [10]). Otherwise, the external strategy is attempted on the
original Orc configuration (corresponding to a ↪→R step in the sense of [10]). If
both substrategies fail, the condition is not satisfied and thus the step rule is
not taken. We shall refer to the rewrite theory developed so far that implements
the synchronous execution strategy by Rsos

Orc. In the next section, we will show
how Rsos

Orc can be extended to Rsos
Orc that supports the timed semantics of Orc.

5.4 Timed Rewriting Orc Semantics

One important aspect of Orc that is outside the scope of the SOS semantic
definitions of Figure 1 is that of time elapse. Several fundamental sites such
as atimer and rtimer provide services whose meaning is dependent on time in
a very precise and exact way, so this needs to be modeled. The point is that
even though responses from atimer and rtimer are external events in the sense
of [10], these are nevertheless local sites for each Orc program, which do not
experience the unpredictable time delays and communication failures inherent
in the computational model for the responses from non-local sites such as, say,
CNN. Therefore, although no strong guarantees may be given about non-local
site invocations, nevertheless, due to its real-time character, an Orc program
may provide very strong guarantees for its behavior with respect to local site
invocations. In this section we give a formal specification of such a real-time
semantics in the theory Rsos

Orc. For this purpose, as usual for rewriting logic
semantic definitions of real-time systems [30], we use a (discrete) time domain
(maintained by the clk field in a configuration), and a “tick” rewrite rule to
advance time:

Tick : {f, clk : cn | r} → [f, clk : cn+1 | δ(r)]
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The function δ propagates the effect of a clock tick down the record structure
of a configuration. For instance, it updates time delays of messages in the mes-
sage pool. By updating time delays, response messages from site calls become
eventually available. It also updates contents of messages containing relative
timing information, such as responses from the rtimer(t) site.

5.4.1 The Timed Execution Strategy

By dealing with time explicitly, we are adding another dimension along which
Orc configurations could evolve. Care should be taken to avoid introducing
behaviors that are uninteresting or undesirable. For instance, an Orc configu-
ration that could take an instantaneous transition might instead choose to keep
advancing time indefinitely without making any real progress. This should be
avoided by giving time-elapsing rewrites the lowest possible priority. That is, we
need to define a time-synchronous execution semantics, in which a configuration
is not allowed to advance its time unless it reaches a state where no internal
or external action, other than a time tick, can be taken. Under this semantics,
an Orc configuration can be seen to evolve along two axes in a two-dimensional
plane. One axis is time, which is determined by discrete time clock ticks. The
other axis encompasses all other computations of the system, which are the
instantaneous transitions performed in a synchronous way. Instantaneous com-
putations are given precedence over ‘tick’ computations, in the sense that the
system is always allowed to evolve along the second ‘instantaneous’ axis as long
as it can before the next tick happens. Once it reaches a state where it can no
longer proceed along this instantaneous dimension, it takes a single step forward
in time and then the process is again repeated in this fashion.

Despite its usefulness in eliminating some undesirable behaviors, the timed
semantics sketched above has a limitation, as illustrated by the following exam-
ple. Suppose that we have the declaration E =def let(0) > x > E(). Now, using
the above-mentioned semantics, an Orc configuration whose expression is E()
will prevent time from ever advancing. However, for what we call “instanta-
neously terminating” Orc programs, such as the Metronome program described
in Section 4.2, where the expression evaluation always terminates within any
single clock tick, this limitation is avoided. Therefore, in our semantics, we
assume that such non-instantaneously terminating Orc programs are excluded.3

We describe below two approaches to specifying this timed strategy in rewrit-
ing logic: one using Maude’s strategy language, and the other purely equational
and not requiring any strategies. Since an implementation of the subset of
Maude’s strategy language that we use here is still under development as of
this writing, the equational approach has the advantage that it is currently
executable and, furthermore, can be subjected to formal analysis by model
checking.

3We do not address the pragmatic issue of instantaneously terminating Orc programs doing
so within reasonable bounds. Having some bounds (for example in number of rewrites needed)
for their instantaneous termination is of course important for the granularity of clock ticks
that are then feasible in practice.
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The Strategy Language Approach: To achieve the behavior described
above, we can easily extend the strategy expression sync-instant given in Section
5.3 for instantaneous transitions, so that the tick rule is taken into account .
The new strategy is

sync-timed := Step[in ? idle : (ex ? idle : Tick)]+

In this strategy, internal transitions are given precedence over external site re-
sponse transitions, which are, in turn, given precedence over the clock tick
transition.

In the presence of delays, a simpler strategy having a similar effect to the
strategy above may be specified. More specifically, assuming non-zero delays,
responses from external sites are not consumed by an Orc expression before at
least one clock tick takes place, and thereby having the effect of giving prece-
dence to internal actions over the site return action. This simpler strategy can
be specified by the following expression:

timed := Step[eager ? idle : Tick]+

where eager is defined as

eager := SiteCall | Pub | Def | SiteRet | Sym | Seq | Asym

with Seq and Asym standing, respectively, for the labels of the sequential and
asymmetric parallel composition rules, as before. Note that the strategy expres-
sion timed need not be recursive, since the tick rule cannot match any of the
rewrite conditions of the instantaneous rules.

An Equational Approach: The effect of giving to the tick rule above the
least priority possible can instead be achieved by making the rule conditional
to an eagerEnabled predicate as follows:

Tick : {f, clk : cn | r} → [f, clk : cn+1 | δ(r)]
if eagerEnabled({f, clk : cn | r}) 6= true

The predicate eagerEnabled is defined using a technique similar to the one pro-
posed in [31]. In this method, a predicate named eagerEnabled on configurations
is declared, which, given a configuration C, should evaluate to true if and only
if there exists an eager (that is, instantaneous) rule using which C could rewrite
to some other configuration. The approach of [31], however, is not directly ap-
plicable to our setting, because it assumes that rules have no rewrites in their
conditions. Here, we introduce a variant of that approach that overcomes this
limitation by taking advantage of some of the properties of our specifications.
We first declare the predicate as a partial function as follows,

eagerEnabled : Conf → [Bool] [frozen]

where the predicate is declared as a frozen operator to avoid useless rewrites
in the configuration. Then, for each eager (that is, non-tick) rule {f, r} →
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[f ′, r′] if C ∧
∧n

i=1{fi, ri} → [f ′i , r
′
i] in our rewrite theory, with C a possibly

empty conjunction of equational conditions (memberships and/or equations)
and n ≥ 0, we introduce an equation

eagerEnabled({f, r}) = true if C ∧
n∧

i=1

eagerEnabled({fi, ri})

Intuitively, this states that a configuration is eager if there exists a rewrite rule
that matches the configuration and is such that: (i) its equational conditions
are satisfied under this matching, and (ii) the controls of its rewrite conditions
are configurations that are themselves eager. Finally, the application of the tick
rule is subjected to the condition that the configuration is not eager. The reader
is referred to Appendix B for a detailed description and a proof of correctness
of a general construction of the eagerEnabled, not just for the Orc case, but for
a large class of rewrite theories encompassing in practice many rewrite theories
modeling small-step SOS semantics.

Note that this specification using the eagerEnabled predicate is equivalent
to the strategy ‘timed ’ given above in the strategy language. The same con-
struction can be used to equationally specify a rewrite theory whose behavior
is equivalent to the ‘sync-timed ’ strategy, by using (in addition to the eagerEn-
abled predicate) another predicate, called intAction, for which the site return
rule is the “lazy” rule and the internal action rules are the “eager” rules. In
particular, the predicate intAction is first declared as follows

intAction : Conf → [Bool] [frozen]

Then, for each rule in Rsos
Orc other than the SiteRet rule, {f, r} → [f ′, r′] if C∧∧n

i=1{fi, ri} → [f ′i , r
′
i], we introduce an equation

intAction({f, r}) = true if C ∧
n∧

i=1

intAction({fi, ri})

Finally, since a site return may occur in a subexpression of a composed expres-
sion f , we subject the application of a rule applying a site return transition to
the condition that f cannot take an internal action (i.e., the intAction predicate
is not true). In other words, we have the rules

r : {f ⊕ g, tr : t | r} → [f ′ ⊕ g, tr : t . (h?c|n) | r′]
if {f, tr : nil | r} → [f ′, tr : (h?c|n)|r′]

∧ intAction({f ⊕ g, tr : t | r}) 6= true

where ⊕ stands for an Orc composition operator, and similarly for g. We denote
by Rsos

Orc the rewrite theory specifying the synchronous, real-time semantics of
Orc using both the eagerEnabled and intAction predicates.
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6 Reduction Rewriting Orc Semantics

A serious operational drawback of the SOS-based semantics, Rsos
Orc, introduced

in the previous section is the excessive number of rewrite rules having rewrites
in their conditions, which is typical of the SOS specification style. A rewrite, as
opposed to an equation, is usually expensive to find a proof for or to disprove
as it is non-deterministic in nature. This non-determinism stems from the fact
that rewrite rules may introduce new variables that could typically be matched
in many different ways. In addition, the multiplicity of such rules in the spec-
ification can potentially cause nested (recursive) rewrite checks when checking
a rule’s conditions that adversely affect performance of execution and analysis.

In this section, we develop a rewriting semantics specification of Orc that,
unlike Rsos

Orc, is not based on the structural operational semantic rules of the
previous section, but is instead based on the inherently distributed semantics of
rewriting logic. This rewriting semantics is in the style of what is usually called
reduction semantics, but has the added advantage of using both equations and
rules, thus achieving a more flexible semantics and a potentially smaller state
space, since only transitions caused by rules appear in the state space. The
proposed specification, which we will henceforth call Rred

Orc, is still operational,
in that it describes in detail how Orc programs are evaluated, and is, in fact,
equivalent to Rsos

Orc, in the sense that, given any Orc program P , the state
transition systems of the semantics of P given by Rsos

Orc and Rred
Orc are strongly

bisimilar, assuming that program configurations are closed4. However, by re-
ducing the number of rewrites and their complexity we achieve a simpler and
indeed superior semantic specification that can be executed and analyzed much
more efficiently. In this formalization, only non-deterministic aspects of Orc are
modeled by rewrite rules, which are mostly unconditional. Orc’s deterministic
features are specified in a more abstract and efficient way with equations.

6.1 Semantic Infrastructure

The data structures and operations needed for a smooth development of the
semantic definitions of the language are similar to those of the SOS-based spec-
ifications, with a few exceptions. We list the three major differences below:

1. Unlike for the SOS-based semantics, events (or actions) are not essential
to Rred

Orc and so one could remove them altogether. However, to maintain
equivalence with Rsos

Orc and to provide a simple means by which we can
compare the semantics of programs of both models, we choose to keep
events and include traces as part of Orc configurations.

2. Unlike Rsos
Orc, where rewrites occur among terms representing Orc con-

figurations, rewrites in Rred
Orc may occur at the level of Orc expressions or

4Roughly speaking, a configuration 〈f, r〉 is closed if every expression name referenced in
f has a declaration in r. This is discussed in more detail when we introduce the equivalence
theorem in Section 7.
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subexpressions. This entails an appropriate change to the frozenness prop-
erties of the syntactic representations of the sequential composition opera-
tor. In Rred

Orc, we declare the sequential composition expression f > x > g
to be frozen on its third argument g, that is, we define φ( > > ) = {3}.

3. The strategy we used in the SOS-based semantics to implement one-
step rewrites is clearly no longer needed. This simplifies the specification
even further by eliminating the two configuration constructors introduced
by the MSOS-to-rewriting logic transformation method and the one-step
rewrite rule. However, rewrites at the expression level still need to be con-
trolled so that the single-step operational semantics is correctly captured.
For this purpose, the configuration operator 〈f, r〉 is declared frozen on
its first argument, i.e., φ(〈 , 〉) = {1}.

6.2 Orc Rewriting Semantics Specification

One can specify how an Orc program evolves at different levels of abstraction.
As was explained in the introduction, rewriting logic facilitates this flexibility
by providing equational definitions to abstract away deterministic aspects of
the behavior of a concurrent system, while truly concurrent features of interest
are modeled with rewrite rules. To provide a fair basis for comparison with the
semantic specifications of the previous section, we choose a level of abstraction
that captures precisely the same features given by the SOS-based specifications.

We now specify a rewrite Rred
Orc = (Σ, E, R, φ) theory that captures four

actions an Orc configuration can take: (1) calling a site, (2) calling an expression,
(3) publishing a value, and (4) returning a value from a site. For each of these
actions, except the site return action which is modeled by a single rewrite rule,
two rewrite rules are used: one rule is conditional at the Orc configuration level,
and the other is unconditional at the expression level. The first rule defined
at the configuration level is used to enforce the fact that during each rewrite
step of the configuration, exactly one action takes place within the underlying
expression. An error term of the kind [Expr ] is produced in the case of unwanted
interleaving of such actions.

err :→ [Expr ]

To guarantee confluence of the equations E, an expression having err as a
subterm immediately collapses to err, using the following equations,

err |W = err
err > x > W = err
W > x > err = err
err where x :∈W = err
W where x :∈ err = err

with W a variable of the kind [Expr ]. In the following paragraphs, we describe
the rules R and the rest of the equations in E. The complete specifications in
Maude can be found in Appendix A.1.6.
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Site Call. A site call is modeled by the following two rewrite rules.

SiteCall : 〈f, r〉 → 〈sc↑(f ′,M,C), r〉 if f → sc↑(f ′,M,C)
SiteCall* : M(C)→ sc↑(γ, M, C)

with γ a constant expression representing a temporary place holder expression.
A site call subterm of an expression f rewrites to an operator sc↑

sc↑ : Expr SiteName ConstList → [Expr ]

that propagates the call to the root of f , using the following equations,

sc↑(f1,M,C) | f2 = sc↑(f1 | f2,M,C) if f2 6= 0,

sc↑(f1,M,C) > x > f2 = sc↑(f1 > x > f2,M,C),
sc↑(f1,M,C) where x :∈ f2 = sc↑(f1 where x :∈ f2,M,C),
f2 where x :∈ sc↑(f1,M,C) = sc↑(f2 where x :∈ f1,M,C).

Once the root of the expression is reached, the effect of the call is reflected in
the containing configuration, using the following equation,

〈sc↑(f,M,C), tr : t | msg : ρ | hdl : hn | clk : cm | r〉
= 〈sc↓(f, hn), tr : t.M〈C, hn | m〉 | msg : ρ[M,C, hn] | hdl : hn+1|clk : cm|r〉

The effect comprises: (i) the emission of a message [M,C, hn] to the message
pool; (ii) recording of a site call event M〈C, hn|m〉 in the trace; (iii) updating the
handle counter for the next site call; and (iv) replacing the original expression
sc↑(f,M,C) by the expression sc↓(f, hn). Since the handle hn needs to propa-
gate back to the subterm where the site call was made (which was temporarily
substituted by the expression γ), sc↑(f,M,C) does not rewrite immediately to
f , but rather to an operator, sc↓,

sc↓ : Expr Handle → Expr [frozen (1)]

that traverses down the expression tree until it reaches the appropriate subterm
where the handle is inserted.

sc↓(f1 | f2, h) = sc↓(f1, h) | sc↓(f2, h) if f1 6= 0 ∧ f2 6= 0,

sc↓(f1 > x > f2, h) = sc↓(f1, h) > x > f2,

sc↓(f1 where x :∈ f2, h) = sc↓(f1, h) where x :∈ sc↓(f2, h),

sc↓(M(P ), h) = M(P ), sc↓(0, h) = 0, sc↓(!x, h) = !x, sc↓(!c, h) = !c,

sc↓(E(P ), h) = E(P ), sc↓(?h′, h) = ?h′, sc↓(γ, h) = ?h.

Finally, the cases in which mutiple (internal) actions take place concurrently
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with a site call are taken care of with the following equations,

sc↑(W,M,C) = err if W : Expr = false
sc↑(f,M,C) |W = err if W : Expr = false

sc↑(f,M,C) > x > W = err if W : Expr = false
sc↑(f,M,C) where x :∈W = err if W : Expr = false
W where x :∈ sc↑(f,M,C) = err if W : Expr = false

sc↓(W,h) = err if W : Expr = false

The conditions state that the term substituted for W , which is of the kind
[Expr ], cannot be reduced to one of the sort Expr, implying that an internal
action has already taken place along with the site call action.

Expression Call. The specification of an expression call is similar to a site
call, in that two operators,

ec↑ : Expr ExprName AParamList → [Expr ]
ec↓ : Expr Expr → Expr [frozen]

are defined to propagate the call and its effect to and from the enclosing con-
figuration. First, an expression call is modeled by the following two rewrite
rules.

Def : 〈f, r〉 → 〈ec↑(f ′, E, P ), r〉 if f → ec↑(f ′, E, P )
Def* : E(P )→ ec↑(γ, E, P )

Then, the call is propagated up the expression tree to the enclosing configura-
tion, using the equations,

ec↑(f1, E, P ) | f2 = ec↑(f1 | f2, E, P ) if f2 6= 0,

ec↑(f1, E, P ) > x > f2 = ec↑(f1 > x > f2, E, P ),
ec↑(f1, E, P ) where x :∈ f2 = ec↑(f1 where x :∈ f2, E, P ),
f2 where x :∈ ec↑(f,E, P ) = ec↑(f2 where x :∈ f1, E, P ).

where the effect of the call is recorded and the required declaration is accessed
with the equation,

〈ec↑(f,E, P ), tr : t | con : (σ,E(Q) =def g) | r〉
= 〈ec↓(f, g{P/Q}), tr : t.τ | con : (σ,E(Q) =def g) | r〉

The resulting expression is propagated back to the appropriate subterm, using
the ec↓ operator.

ec↓(f1 | f2, g) = ec↓(f1, g) | ec↓(f2, g) if f1 6= 0 ∧ f2 6= 0,

ec↓(f1 > x > f2, g) = ec↓(f1, g) > x > f2,

ec↓(f1 where x :∈ f2, h) = ec↓(f1, g) where x :∈ ec↓(f2, g),

ec↓(M(P ), g) = M(P ), ec↓(0, g) = 0, ec↓(!x, g) = !x, ec↓(!c, g) = !c,

ec↓(E(P ), g) = E(P ), ec↓(?h′, g) = ?h′, ec↓(γ, g) = g.
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Finally, to account for unwanted concurrent executions, the following equations
are used,

ec↑(W,E,P ) = err if W : Expr = false
ec↑(f,E, P ) |W = err if W : Expr = false

ec↑(f,E, P ) > x > W = err if W : Expr = false
ec↑(f,E, P ) where x :∈W = err if W : Expr = false
W where x :∈ ec↑(f,E, P ) = err if W : Expr = false

ec↓(W, g) = err if W : Expr = false

Publishing a Value. Publishing a value is treated slightly differently from
the previous internal actions. This is because the published value in a subterm
of f may be bound to a variable and then consumed in f by a sequential or
asymmetric parallel composition operator, in which case a τ event is propagated
to the enclosing configuration. If the published value is not bound in f , a publish
event is propagated up the tree all the way to the configuration.

The rewrite rules modeling the publishing of values are as follows.

Pub : 〈f, r〉 → 〈pub(f ′, c), r〉 if f → pub(f ′, c)
Pubτ : 〈f, r〉 → 〈pubτ (f ′), r〉 if f → pubτ (f ′)
Pub* : !c→ pub(0, c)

In these rules, two operators are used:

pub : Expr Const → [Expr ]
pubτ : Expr → [Expr ]

The operator pub propagates the published value up to a binding expression
or to the enclosing configuration (whichever it reaches first), specified by the
equations

pub(f, c) | f ′ = pub(f | f ′, c) if f ′ 6= 0

pub(f, c) > x > g = pubτ (f > x > g | g{c/x}) (1)
pub(f, c) where x :∈ f ′ = pub(f where x :∈ f ′, c)
g where x :∈ pub(f, c) = pubτ (g{c/x}) (2)

The equations 1 and 2 reflect, respectively, the semantics specified by the SOS
rules Seq1V and Asym1V of Figure 1. They also transfer the propagation task
to the second operator pubτ in the cases where the published value is consumed
by the expression. Otherwise, if the value is not consumed by the expression,
pub eventually reaches the top and a publish event is recorded.

〈pub(f, c), tr : t | clk : cm | r〉 = 〈f, tr : t.(!c|m) | clk : cm | r〉

31



The operator pubτ , which causes a τ event to be ultimately recorded if a pub-
lished value is consumed by an expression, is specified by the equations

pubτ (f) | f ′ = pubτ (f | f ′) if f ′ 6= 0

pubτ (f) > x > f ′ = pubτ (f > x > f ′)
pubτ (f) where x :∈ f ′ = pubτ (f where x :∈ f ′)
f ′ where x :∈ pubτ (f) = pubτ (f ′ where x :∈ f)

〈pubτ (f), tr : t | r〉 = 〈f, tr : t.τ | r〉

Finally, error terms are captured by the following equations

pub(W, c) = err if W : Expr = false
pub(f, c) |W = err if W : Expr = false

pub(f, c) > x > W = err if W : Expr = false
pub(f, c) where x :∈W = err if W : Expr = false
W where x :∈ pub(f, c) = err if W : Expr = false

pubτ (W ) = err if W : Expr = false
pubτ (f) |W = err if W : Expr = false

pubτ (f) > x > W = err if W : Expr = false
pubτ (f) where x :∈W = err if W : Expr = false
W where x :∈ pubτ (f) = err if W : Expr = false

Site Return. The following rule captures a site return.

SiteRet : 〈f, tr : t | msg : ρ[self, c, h] | clk : cm | r〉 →
〈sr(f, c, h), tr : (t.h?c|m) | msg : ρ | clk : cm | r〉 if h ∈ handles(f)

Application of the site return rule is subjected to the condition that the handle
name of the message to be consumed is referenced in f . This is to avoid useless
transitions that could take place when a thread, having an unfinished site call,
is pruned using the where statement. If the condition is satisfied, the incoming
message [self, c, h] is consumed, a site return event h?c|m is generated, and the
expression f is replaced with an operator sr

sr : Expr Const Handle → Expr [frozen(1)]

that propagates the return value down the expression tree to the appropriate
pending call, using the following equations

sr(f1 | f2, c, h) = sr(f1, c, h) | sr(f2, c, h) if f1 6= 0 ∧ f2 6= 0,

sr(f1 > x > f2, c, h) = sr(f1, c, h) > x > f2,

sr(f1 where x :∈ f2, c, h) = sr(f1, c, h) where x :∈ sr(f2, c, h),
sr(M(P ), c, h) = M(P ), sr(0, c, h) = 0, sr(!x, c, h) = !x, sr(!c′, c, h) = !c′,

sr(E(P ), c, h) = E(P ), sr(?h′, c, h) = if (h = h′) then !c else ?h′,
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Figure 2: Schematic diagrams of the propagation of information in an expression
just after the application of a rewrite rule

Error terms involving the sr operator are captured by the equation

sr(W, c, h) = err if W : Expr = false

A common characteristic of the specifications of the four actions described
above is the need to propagate information back and forth between a subterm
of an expression and the configuration it is contained within. As we saw above,
this propagation of information is specified using different axiliary functions
that are defined inductively on the structure of an expression. Figure 2 gives a
schematic representation of the mechanics of these basic actions. Figures 2(a)
and 2(c) show that the structures of a site call and an expression call are similar,
although the information propagated in both directions (and the side effects on
the enclosing configurations) are different.

6.3 Instantaneous Execution Strategy

In accordance with the synchronous semantics of [27], we specify an execution
strategy that gives the site return rule the least priority among the instantaneous
actions. We denote by Rred

Orc the rewrite theory described above and extended
to support the synchronous semantics of Orc. Here, again, we can use either
Maude’s strategy language or equational specifications to arrive at this Rred

Orc .
In this section we describe both approaches below.

Using Maude’s strategy language, the simple strategy

syncred = (SiteCall | Pub | Pubτ | Def ? idle : SiteRet)+

achieves the desired synchronous behavior. We note that this strategy is much
simpler than the corresponding strategy sync defined in Section 5.3 for Rsos

Orc.
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This is because rules in Rred
Orc have no rewrites in their conditions and the Step

rule is avoided in Rred
Orc.

Alternatively, the execution strategy can be specified equationally as follows.
We first introduce the notion of an active expression as any expression having
a site call, an expression call, or a publish expression as a sub-expression that
could evolve. More precisely, we define the set of active expressions inductively
as follows.

Definition 1. The set of active expressions factive in Rred
Orc is the smallest set

given by the following rules.

1. M(C), E(P ), and !c are all in factive.

2. f | g ∈ factive if f ∈ factive or g ∈ factive.

3. f > x > g ∈ factive if f ∈ factive.

4. g where x :∈ f ∈ factive if f ∈ factive or g ∈ factive.

Note that our notion of an active expression exactly corresponds to that
of a non-quiescent expression in [27]. This notion can be easily equationally
captured by a predicate

active : Expr → [Bool] [frozen]

defined by the equations

active(f | f ′) = active(f) ∨ active(f ′) if f 6= 0 ∧ f ′ 6= 0

active(f > x > f ′) = active(f)
active(f where x :∈ f ′) = active(f) ∨ active(f ′)

active(M(C)) = true
active(!c) = true

active(E(P )) = true

The predicate is then used to limit the application of the SiteRet, as follows

SiteRet : 〈f, tr : t | msg : ρ[self, c, hn] | clk : cm | r〉 →
〈sr(f, c, hn), tr : (t.hn?c|m) | msg : ρ | clk : cm | r〉

if hn ∈ handles(f) ∧ active(f) 6= true

6.4 Real-Time Semantics

So far we have only given an untimed semantics of Orc, that corresponds to the
synchronous semantics of Section 2.3 in [27]. To specify the intended real-time
semantics of Orc with the synchronous execution strategy of [27], we endow the
specifications above with a discrete time clock and a “tick” rule, and implement
a real-time synchronous strategy similar to the one given for the SOS-based
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specifications of Rsos
Orc, where non-tick rules are executed eagerly, representing

instantaneous transitions of an Orc configuration. The extended rewrite theory
is denoted Rred

Orc. To achieve this execution strategy, we can easily extend the
strategy expression syncred to account for timing as follows

sync-timedred = (SiteCall | Pub | Pubτ | Def ? idle : (SiteRet ? idle : Tick))+

which is, again, simpler than the corresponding strategy expression sync-timed
for Rsos

Orc given in Section 5.4.1.
Alternatively, the execution strategy can be specified equationally in the

following way. We first define an eager configuration as one that can make an
instantaneous action.

Definition 2. An Orc configuration C in Rred
Orc is eager if C is of one of the

following forms,

1. 〈f, r〉 with f ∈ factive.

2. 〈f,msg : ρ [self, c, h] | r〉 if h is referenced in f .

This notion of eager configurations can be easily captured by a predicate
eager

eager : Conf → [Bool] [frozen]

which evaluates to true if and only if it is applied to a configuration that can
make an instantaneous action.

eager(〈f, r〉) = true if active(f)
eager(〈f,msg : ρ [self, c, h] | r〉) = true if h ∈ handles(f)

Therefore, to capture the desired time-synchronous semantics in Rred
Orc, we re-

strict the application of the tick rule by the condition that the configuration is
not an eager configuration.

Tick : 〈f, clk : cm | r〉 → 〈f, clk : cm+1 | δ(r)〉 if eager(〈f, clk : cm | r〉) 6= true

7 The Equivalence Theorem

We shall now show that the SOS-based rewriting semantics, Rsos
Orc, and the

reduction-based rewriting semantics, Rred
Orc, are semantically equivalent, in the

sense that an Orc program behaves in exactly the same way in both semantic
models. We show this by proving a more general result, stating that the semantic
models given by Rsos

Orc and Rred
Orc of any closed Orc configuration are strongly

bisimilar. We first introduce what we mean by a configuration being closed
(detailed proofs of most of the results in this section can be found in Appendix
C).
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Definition 3. In a configuration 〈f, (con : σ) | r〉, an occurrence of an expres-
sion name E is bound in f if there exists a declaration for E in the context σ.
Otherwise, E is said to be free in f . Likewise, an occurrence of E is bound in
σ if there exists a declaration for E in σ, and is free in σ otherwise.

Definition 4. An Orc configuration 〈f, r〉 is well-formed if: (i) f does not
contain any auxiliary function symbol, such as sc↑, pub, or γ (i.e. f is built
using only the extended Orc syntax given in Table 3); and (ii) r contains at least
the following five fields

1. tr : t, with t an EventList

2. hdl : h, with h a Handle

3. con : σ, with σ a Context

4. msg : ρ, with ρ a MsgPool

5. clk : n, with n a Nat.

Moreover, a closed configuration is a well-formed configuration in which no
expression name appears free in f or σ.

We observe that a closed configuration in Rsos
Orc is also a closed configuration

in Rred
Orc and vice versa. This is due to the fact that both Rsos

Orc and Rred
Orc use

the same semantic infrastructure. Moreover, we have the following easy lemma.

Lemma 1. Let C be a closed configuration. If C →Rsos
Orc
C′ for some configuration

C′, then C′ is closed. Similarly, if C →Rred
Orc
C′, then C′ is closed.

Proof. This can be proved by rule induction on the rewriting relations in-
duced by Rsos

Orc and Rred
Orc, respectively. �.

Intuitively, preservation of well-formedness is trivial in both Rsos
Orc and Rred

Orc

by a quick examination of the rewrite rules. It is also easy to see that closed
configurations inRsos

Orc rewrite to configurations that are also closed. Essentially,
the only rule in Rsos

Orc that might introduce expression names in an expression
is the [Def] rule. But since all expression declarations are closed (have no
free occurrences), and since actual parameters cannot be expression names, the
resulting expression must also be closed. A similar argument applies to Rred

Orc

to see that closed configurations are preserved in Rred
Orc. In what follows, we

assume all configurations are closed.
The following simple lemma proves a useful property of both rewrite theories.

The property states that a list of events in the trace field of a configuration can
always be prefixed with an arbitrary EventList without affecting the ways in
which that configuration could later evolve. Intuitively, this is because rewrite
rules and equations can match any EventList t, and when they do, t is either
left unchanged or suffixed with a single event L.

Lemma 2. For any EventList s, if 〈f, tr : t | r〉 →Rsos
Orc
〈f ′, tr : t′ | r′〉 then

〈f, tr : s.t | r〉 →Rsos
Orc
〈f ′, tr : s.t′ | r′〉. This property also holds in Rred

Orc.
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Next, we present some important properties of Rred
Orc that form an essen-

tial part of the proof of the main result of this section. They largely follow
from the congruence inference rule of rewriting logic applied to expressions and
configurations, and the assumption of well-formedness of configurations.

Lemma 3. For any expression g,

1. 〈f, tr : t | r〉 →Rred
Orc
〈f ′, tr : t.L | r′〉 if and only if

〈f | g, tr : t | r〉 →Rred
Orc
〈f ′ | g, tr : t.L | r′〉,

for L a site call event, a publishing event, or a τ event. If L is a site
return event, then the equivalence holds provided that active(g) 6= true.

2. 〈f, tr : t | r〉 →Rred
Orc
〈f ′, tr : t.(!c|m) | r′〉 if and only if

〈f > x > g, tr : t | r〉 →Rred
Orc
〈f ′ > x > g | g{c/x}, tr : t.τ | r′〉

3. If L is not a publishing event, then

〈f, tr : t | r〉 →Rred
Orc
〈f ′, tr : t.L | r′〉

if and only if

〈f > x > g, tr : t | r〉 →Rred
Orc
〈f ′ > x > g, tr : t.L | r′〉

4. 〈f, tr : t | r〉 →Rred
Orc
〈f ′, tr : t.(!c|m) | r′〉 if and only if

〈g where x :∈ f, tr : t | r〉 →Rred
Orc
〈g{c/x}, tr : t.τ | r′〉

5. If L is a site call event or a τ event, then

〈f, tr : t | r〉 →Rred
Orc
〈f ′, tr : t.L | r′〉

if and only if

〈g where x :∈ f, tr : t | r〉 →Rred
Orc

g where x :∈ f ′, tr : t.L | r′〉

If L is a site return event, then the equivalence holds provided that active(g) 6=
true.

6. If L is not a site return event,

〈g, tr : t | r〉 →Rred
Orc
〈g′, tr : t.L | r′〉

if and only if

〈g where x :∈ f, tr : t | r〉 →Rred
Orc
〈g′ where x :∈ f, tr : t.L | r′〉

If L is a site return event, then the equivalence holds provided that active(f) 6=
true.
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The following lemma states that the definitions of eager configurations in
Rsos

Orc and Rred
Orc coincide.

Lemma 4. For any configuration C, Rsos
Orc ` eagerEnabled(C) = true if and

only if C is an eager configuration in Rred
Orc.

Similarly, the definitions of active configurations in Rsos
Orc and Rred

Orc coincide.
This is stated by the following lemma.

Lemma 5. For any configuration C, Rsos
Orc ` intAction(C) = true if and only if

C is an active configuration in Rred
Orc.

Now we are ready to present the main result of this section.

Theorem 1. For any configurations C and C′, the following equivalence holds,

C →Rsos
Orc
C′ ⇐⇒ C →Rred

Orc
C′.

The main result of this section can be derived as a consequence of Theorem
1 by taking as C the initial configuration of a program P given by [P ].

Corollary 1. For any Orc program P and configuration C, we have

[P ]→Rsos
Orc
C ⇐⇒ [P ]→Rred

Orc
C.

Proof. Immediate from Theorem 1 and the fact that [P ] is closed, by definition.

Therefore, for any Orc program P , the state transition systems defined by
Rsos

Orc and Rred
Orc are strongly bisimilar.

8 Specifications in Maude

In this section, we describe the specifications of both rewrite theories Rsos
Orc and

Rred
Orc in Maude. The full Maude specifications can be found in Appendix A and

at the web site

http://www.cs.uiuc.edu/homes/alturki/orc-maude.

8.1 Specifying Names and Substitution

In the syntax given in Table 3 in Section 4.1 above, we distinguish four classes
of names. These are: site names, expression names, variable names, and handle
names. In Maude, a name can be represented as a quoted identifier, or a qid
for short, which is a ground term of sort Qid. One way to represent classes
of names is to define for each class a wrapper constructor that encapsulates a
qid. Another approach, which we find more attractive, is to declare all name
classes as subsorts of Qid. Then, using conditional membership equations, we
specify the conditions under which a qid is of a particular class of names. This
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classification is based on the first letter (after the quote) of a qid, as follows. A
qid starting with an ‘s’ is a site name, with an ‘e’ an expression name, and with
a ‘v’ a variable name. Any other qid is considered an invalid name. Although
this approach of representing classes of names might introduce additional checks
while rewriting, it makes writing and reading programs a lot easier.

subsorts SiteName ExprName Var < Qid .

var Q : Qid .

cmb Q : SiteName if substr(string(Q), 0, 1) == "s" .

cmb Q : ExprName if substr(string(Q), 0, 1) == "e" .

cmb Q : Var if substr(string(Q), 0, 1) == "v" .

The keyword cmb above introduces a conditional membership axiom. The con-
ditions use basic string manipulation functions defined in the Maude prelude.
As described in Section 5.1, handle names, on the other hand, are represented
differently using a wrapper over the natural numbers.

op h : Nat -> Handle .

This approach of defining names makes it easier to generate new handle names
as required by the SiteCall rule.

Of the four classes of names mentioned above, only variable names may occur
free or bound in an expression. Although expression names refer to expressions
defined in the declarations, and thus they are in a sense bound by their defining
equations, they are not passed as arguments and they cannot be communicated,
unlike variable names5. In the syntax above, the only variable name binding
constructs are the sequential and the asymmetric parallel composition operators.
In an expression f > x > g, x is bound in g, whereas x is bound in f in the
composition f where x :∈ g. Otherwise, a variable name occurring in an
expression f that is not bound by either of these operators is free.

To account for substitution of variable names with other variable names or
constants, we use the CINNI calculus of explicit substitution [34]. This is con-
sistent with our choice of first-order representation of Orc constructs in Maude.
Thus, in specifying this particular instance of CINNI, we introduce indexed vari-
able names, which represent free or bound occurrences of a variable (rather than
binding occurrences of that variable which are represented by regular variable
names).

op _{_} : Var Nat -> IVar [ctor prec 1] .

As done in [34], for a process calculus, we define three kinds of substitutions:
the simple substitution [ := ], which accounts for substituting a name for a free
name (assuming no free name capture), the shift-up substitution [shiftup ],
having the effect of substituting fresh names for free names, and finally the lift

5The notion of free and bound expression names is deferred to later sections, where it is
more relevant. Here, for the purpose of defining substitution, we focus on free and bound
variable names.

39



[x := a] [shiftup a] [lift x σ]
x{0} a x{1} x{0}
x{1} x{0} x{2} [shiftup x](σ (x{0}))

...
...

...
...

x{n} x{n− 1} x{n + 1} [shiftup x](σ (x{n− 1}))
y{n} y{n} y{n} [shiftup x](σ (y{n}))

Table 4: CINNI’s explicit substitution operators. The top row shows substitu-
tion expressions, which are being applied to the indexed variables in the leftmost
column.

substitution [lift ], which represents a more general substitution that avoids
capturing free names. See the referenced paper for a detailed discussion of a
similar instance of CINNI for the π-calculus.

op [_:=_] : Var AParam -> Subst .

op [shiftup_] : Var -> Subst .

op [lift__] : Var Subst -> Subst .

The sort Subst is the sort of substitutions. The effect of these substitution
operators on indexed variables is illustrated in Table 4, where we assume that
x 6= y and σ is a meta-variable ranging over terms of sort Subst. For instance,
the following set of equations specify the lift substitution.

eq [lift a S] a{0} = a{0} .

eq [lift a S] a{s(n)} = [shiftup a] S a{n} .

ceq [lift a S] b{n} = [shiftup a] S b{n} if a =/= b .

The substitutions, as described above, are the same in every instance of
CINNI because they do not depend on the particular language being specified.
Once they are extended from variables to expressions in the language, the CINNI
instance is distinguished from instances for other languages. In general, if the
we denote by ⇑x S the lift substitution [lift x S], a CINNI substitution is
extended to language expressions by adding, for each syntactic constructor f of
arity n in the language, an equation of the form,

S f(P1, . . . , Pn) = f(⇑Pj1,1 . . . ⇑Pj1,m1
S P1, . . . ,⇑Pjn,1 . . . ⇑Pjn,mn

S Pn) (3)

where each Pi is an expression in the language, and Pji,1, . . . , Pji,mi
are the vari-

able arguments that f binds in the ith expression argument Pi. This equation
instantiated to Orc expressions along with examples are further discussed in the
next section where the specification of Orc expressions in Maude are introduced.

8.2 Syntax Specifications and Examples

Building on the observations made above, we present the abstract syntax of Orc
specified in Maude in Table 5.
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fmod ORC-SYNTAX is

op _;_ : DeclList Expr -> Prog [ctor prec 50] .

op nilD : -> DeclList [ctor] .

op _;_ : DeclList DeclList -> DeclList [ctor assoc id: nilD prec 40] .

op __:=_ : ExprName FParamList Expr -> Decl [ctor frozen(3) prec 30] .

op zero : -> Expr [ctor] .

op _(_) : SiteName AParamList -> Expr [ctor prec 10] .

op _(_) : ExprName AParamList -> Expr [ctor prec 10] .

op !_ : IVar -> Expr [ctor prec 5] .

op !_ : Const -> Expr [ctor prec 5] .

op _>_>_ : Expr Var Expr -> Expr [ctor frozen(3) prec 15 gather (e & E)] .

op _|_ : Expr Expr -> Expr [ctor assoc comm prec 20] .

op _where_:in_ : Expr Var Expr -> Expr [ctor prec 25 gather (E & e)] .

op ?_ : Handle -> Expr [ctor prec 1] .

endfm

Table 5: An excerpt from the functional module ORC-SYNTAX which specifies the
extended syntax of Orc in Maude.

The special expression ? H, where H is a handle name, is not part of the
original syntax but is required in the semantics rules of the language to represent
a site call that is yet to return. The name H acts as a identifier for the call. Based
on the algebraic properties of the Orc language constructs [10, 27], the sequential
and asymmetric parallel composition operators are declared right associative,
while the symmetric parallel operator is fully associative, commutative, and
has the identity zero. Furthermore, the left annihilator axiom of sequential
composition is specified, as an equation (using the eq keyword), as follows.

eq zero > x > f = zero .

In addition to the operators of Table 5, a few syntactic sugar operators
are defined below, where S and F are meta-variables of sorts SiteName and
ExprName. respectively.

op _:=_ : ExprName Expr -> Decl [prec 30] .

eq E := f = E nilF := f .

op _() : SiteName -> Expr [prec 10] .

op _() : ExprName -> Expr [prec 10] .

eq M() = M(nilA) .

eq E() = E(nilA) .

Finally, the prec attribute, which appears in Table 5 and in the syntactic sugar
operators above, specifies operator precedence; the lower the number associ-
ated with an operator, the higher the operator precedence. For instance, the
expression
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’sFormat(’vn{0}) > ’vx > ’sDisplay(’vx{0}) where ’vn :in ’sCNN() | ’sBBC()

is correctly parsed as

(((’sFormat(’vn{0})) > ’vx > (’sDisplay(’vx{0})))

where ’vn :in ((’sBBC()) | (’sCNN()))

Using these syntactic specifications, the program Priority given in Section
4.1, for instance, is represented as a term of the the theory ORC-SYNTAX as
follows:

’eDelayedN := rtimer(1) > ’vz > (let(’vu{0}) where ’vu :in ’sN()) ;

let(’vx{0}) where ’vx :in ’sM() | ’eDelayedN()

The CINNI calculus for explicit substitution is also extended to expressions.
When a substitution is applied to an expression, the substitution propagates
down the expression tree while keeping track of bound variable instances, so
that the substitution can be correctly performed with no free variable capture.
The substitutions are defined with equations that are instances of the equation
3 above. In our case, the most interesting CINNI equations are the sequential
and the asymmetric parallel composition equations:

eq S (f > x > f’) = (S f) > x > ([lift x S] f’) .

eq S (f where x :in f’) = ([lift x S] f) where x :in (S f’) .

To illustrate how substitutions applied to expressions are performed, consider
the expression

’eGetNews := ’sFormat(’vn{0}, ’vp{0}) > ’vx > ’sDisplay(’vx{0})

where ’vn :in ’sCNN()

We first note that ’vn{0} and ’vx{0} are bound in ’sFormat( ’vn{0}, ’vp{0}
) > ’vx > ’sDisplay( ’vx{0} ) and ’sDisplay(’vx{0}), respectively, while
’vp{0} occurs free in ’eGetNews. The zero index appearing in these occur-
rences means that if the variable is bound, then it is bound by the nearest
binding occurrence of that variable. Now, suppose that we want to substitute
’va{0} for ’vp{0} in ’eGetNews, that is, we want to evaluate [’vp := ’va{0}]
’eGetNews. This substitution is simple (no free variable capture), and when ap-
plied to ’eGetNews yields the expression

’sFormat(’vn{0}, ’va{0}) > ’vx > ’sDisplay(’vx{0}) where ’vn :in ’sCNN()

However, the substitution, [’vp := ’vn{0}] has the potential of causing the
free occurrence of ’vp{0} to be captured by the binding occurrence of ’vn.
CINNI resolves this issue by renaming (shifting up the name of) the variable,
giving the following expression as the result of the substitution.

’sFormat(’vn{0}, ’vn{1}) > ’vx > ’sDisplay(’vx{0}) where ’vn :in ’sCNN()
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Note that ’vn{1} is still free in the resulting expression. Finally, note that
the substitutions [’vx := ’va{0}] and [’vn := ’va{0}] have no effect on
’eGetNews, since there are no free occurrences of these variables in the expres-
sion. Other substitutions in which a variable is replaced by a constant value or
a site name are simpler since neither values nor site names occur free or bound
in an expression.

8.3 The Semantic Infrastructure and Rules

Since Maude supports a rich mixfix notation, the specifications of the semantic
entities maintained in an Orc configuration and the rewrite rules defining the
semantics of Orc are almost identical to those given in Section 5.1 and Section
5.2. Obviously, the Maude specification spells out all the necessary details for it
to be complete. The reader is referred to Appendix A.1.3 for the Maude speci-
fications of the semantic infrastructure, and to appendices A.1.5 and A.1.7 for
the specifications of the synchronous instantaneous semantics given respectively
by Rsos

Orc and Rred
Orc.

8.4 Real-Time Semantics and Site Definitions

As is explained in sections 5.4 and 6.4, the tick rule models the elapse of time
in both rewrite theories Rsos

Orc and Rred
Orc. In Rsos

Orc, for instance, the tick rule is
given as,

crl [Tick] :

< f, (clk : clock(m)) | r > => < f, (clk : clock(s m)) | delta(r) >

if eagerEnabled(< f, (clk : clock(m)) | r >) =/= true .

The tick rule advances time by one unit. The function delta(r) propagates
the effect of a clock tick down the record structure. One such effect is updating
time delays for messages6.

eq delta([self,app(M, C, s(n)), h]) = [self, app(M, C, n), h] .

delta(r) also updates contents of messages containing relative timing informa-
tion, such as messages from the rtimer(t) site.

eq delta([self,app(rtimer, s(n), m), h]) = [self, app(rtimer, n, m), h] .

In order to be able to experiment with the above semantics of the Orc lan-
guage and execute and verify programs, sites, especially fundamental ones, need
to be specified. One important design goal of this work was to keep definitions
of sites separate from Orc definitions, as they are supposed to be. This was
achieved in part by defining the abstract application function app(). Then,

6Responses from the sites clock, signal, atimer(t), and rtimer(t) are not subjected to delays
to preserve their meaning. let is also not subjected to delays as it is assumed to be local to
the expression being evaluated.
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separate modules that define sites can be declared and can be used to give
concrete definitions of the app() function for each site of interest.

An example specification of a simple site module is that of the if(b) site
shown below.

mod IF-SITE is

inc ORC-SEMANTICS .

op if : -> SiteName [ctor] .

eq app(if, tr(true), 0) = sig .

endm

First, the site name is syntactically introduced, and then the semantics of
app() is defined for it, with sig being a constant representing a signal. Note
that app(if, tr(false), 0) is a PreConst term that does not reduce to any
ground Const term, mimicking a site not responding.

Sometimes, the definition of a site cannot be specified in isolation from its
environment. For instance, the clock site needs to access the current clock time
from the configuration. This can be easily done as follows.

eq < f , r | (msg : (rho [self, app(clock, nilA, n), h])) |

(clk : clock(m)) > =

< f , r | (msg : (rho [self, m, h])) | (clk : clock(m)) > .

To add some basic computational power to our Orc specification, we also
define sites performing basic arithmetic functions, binary relations, and binary
logical operations (See Appendix A.1.8).

9 Formal Analysis and Verification

In this section we illustrate how the real-time rewriting semantics we have de-
veloped can be used to experiment with Orc programs, explore traces of com-
putations, and verify properties about them. By Theorem 1, we are at liberty
to choose either Rsos

Orc or Rred
Orc to illustrate the rewriting semantics of Orc. As

we shall see in Section 10, although the two theories are semantically equiva-
lent, Rred

Orc is much more efficiently executable and analyzable. In this section,
we focus on the use of Maude’s features and tools in formally analyzing Orc
programs and verifying properties about them. A performance comparison of
the two specifications given by Rsos

Orc and Rred
Orc is deferred to the next section.

However, before we get to the examples, a vital observation is in order. Recall
that time is kept track of using the clock(m) operator as part of a configuration.
This may directly cause the number of states reachable from a given configu-
ration to be infinite. Moreover, the state space of the pseudo-counter used to
generated random delays is the space of natural numbers and, thus, causes the
state space of an Orc configuration to grow indefinitely. Of course, an Orc
configuration having a recursive expression could be inherently an infinite-state
system. However, for finite-state expressions, clock(m) and counter may cause
even these finite-state systems to become infinite-state, which may severely limit
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our ability to analyze programs in the language. To counter these problems, we
limit the time domain to a fixed number of clock ticks and limit the counter to a
fixed subset of the natural numbers. These fixed numbers can be easily changed
to better suit the example at hand by appropriately adjusting the following two
lines,

eq clock(9) = halt .

and

eq s_^5(counter) = counter .

in the CLOCK and the SIMCOUNTER modules, respectively (see Appendix A.1.3).
Using the specifications above, time might advance by ten clock ticks, and at
most five pseudo-random numbers (between 0 and 10, inclusive) might be gen-
erated. For the following examples we shall assume the settings shown above,
except where otherwise noted. Also, some portions of Maude’s output are re-
moved for presentation compactness.

9.1 Simple Examples

Site Calls and Time Delays. Assume CNN is a site that, when called,
returns a signal (representing the news, as we are not really interested in the
actual value returned). We want to examine a trace of a call to that site that
successfully finishes. We can achieve that by issuing the following breadth-first
search command in Maude (the number 1 in square brackets asks for exactly
one solution, and the arrow =>+ stands for one or more rewrites starting from
the given configuration).

Maude> search [1] [nilD ; ’sCNN()] =>+ < zero , R:Record > .

Solution 1 (state 29)

states: 30 rewrites: 407 in 0ms cpu (12ms real) (~ rewrites/second)

R:Record --> (tr : (’sCNN < nilA,h(0) | 0 >) . (h(0) ? sig | 5) . !! sig |

5) | (con : mt) | (clk : clock(5)) | (msg : empty) | hdl : h(1)

The command searches for a state of the system constructed by [nilD ;
’sCNN()] where there is nothing more to evaluate. The trace of this particular
solution can be extracted from the tr indexed field, which is (’sCNN < nilA,’h
| 0 >) . (’h ? sig | 5) . !! sig | 5). Note that the call event was
made at time 0, while the response was not received or published until time 5.
This implies that the response was delayed by 5 time units.

Consider now the signal site, which returns a signal immediately upon be-
ing called. Since responses of such site are insensitive to delays, they are re-
ceived and published at the time the call is made. Thus, the trace of a sim-
ple call signal() is (signal < nilA,’h | 0 >) . (’h ? sig | 0) . !!
sig | 0 and appears in 10 states corresponding to the 10 clock ticks.
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Maude> search [nilD ; signal()] =>+ < zero , R:Record > .

Solution 1 (state 8)

states: 9 rewrites: 64 in 0ms cpu (12ms real) (~ rewrites/second)

R:Record --> (tr : (signal < nilA,h(0) | 0 >) . (h(0) ? sig | 0) . !! sig

| 0) | (con : mt) | (clk : clock(0)) | (msg : empty) | hdl : h(1)

...

up to

...

Solution 10 (state 18)

states: 19 rewrites: 242 in 10ms cpu (151ms real) (24200 rewrites/second)

R:Record --> (tr : (signal < nilA,h(0) | 0 >) . (h(0) ? sig | 0) . !! sig

| 0) | (con : mt) | (clk : halt) | (msg : empty) | hdl : h(1)

No more solutions.

states: 19 rewrites: 242 in 10ms cpu (155ms real) (24200 rewrites/second)

Similarly, a call to the site rtimer(t) would result in the trace (rtimer
< t,’h | 0 >) . (’h ? sig | t) . !! sig | t, where t is a natural
number less than 10 (the maximum clock time), which appears in 10 - t states.

A site call might not return a response. A simple example is the call
if(tr(false)). Since the state space of this call is finite, we can verify this
property using the breadth-first search command of Maude.

Maude> search [nilD ; if(tr(false))] =>+ < zero , R:Record > .

No solution.

states: 38 rewrites: 626 in 10ms cpu (17ms real) (62600 rewrites/second)

Compositions. Next we consider a simple sequential composition expres-
sion. We look for a state where execution terminates and the value is published.

Maude> search [1] [nilD ; let(2) > ’vx > rtimer(’vx{0})] =>+

< zero , R:Record > .

Solution 1 (state 25)

states: 26 rewrites: 283 in 0ms cpu (10ms real) (~ rewrites/second)

R:Record --> (tr : (let < 2,h(0) | 0 >) . (h(0) ? 2 | 0) . tau . (rtimer

< 2,h(1) | 0 >) . (h(1) ? sig | 2) . !! sig | 2) | (con : mt) | (clk :

clock(2)) | (msg : empty) | hdl : h(2)

the first tau event was generated as a result of applying the Seq1V rule, which
creates a new instance of rtimer(’vx{0}) with ’vx{0} bound to 2. Of course,
if we try to find a similar state but with a clock time less than 2, the search
fails.

Maude> search [1] [nilD ; let(2) > ’vx > rtimer(’vx{0})] =>+

< zero , (clk : clock(1)) | R:Record > .

No solution.

states: 34 rewrites: 464 in 0ms cpu (25ms real) (~ rewrites/second)
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Recall that in a sequential composition f > x > g, there are as many new
instances of g created as values published by f . To illustrate this point, consider
the following expression, where we look for states during the first two clock ticks
and in which execution is completed 7. There are four solutions for each clock
tick value of 2 and 3. The solutions differ only in the order of the actions taken.
Only two solutions are shown below.

Maude> search [nilD ; (! 2 | ! 1) > ’vx > rtimer(’vx{0})] =>+

< zero , (clk : clock(N:Nat)) | R:Record > such that N:Nat < 4 .

Solution 1 (state 251)

states: 252 rewrites: 4011 in 60ms cpu (79ms real)

(66850 rewrites/second)

R:Record --> (tr : tau . (rtimer < 1,h(0) | 0 >) . tau . (rtimer < 2,h(1)

| 0 >) . (h(0) ? sig | 1) . (!! sig | 1) . (h(1) ? sig | 2) . !! sig |

2) | (con : mt) | (msg : empty) | hdl : h(2)

N:Nat --> 2

...

Solution 5 (state 280)

states: 281 rewrites: 4765 in 90ms cpu (294ms real)

(52944 rewrites/second)

R:Record --> (tr : tau . (rtimer < 1,h(0) | 0 >) . tau . (rtimer < 2,h(1)

| 0 >) . (h(0) ? sig | 1) . (!! sig | 1) . (h(1) ? sig | 2) . !! sig |

2) | (con : mt) | (msg : empty) | hdl : h(2)

N:Nat --> 3

...

No more solutions.

states: 324 rewrites: 6284 in 120ms cpu (377ms real)

(52366 rewrites/second)

Symmetric parallel execution was also in a sense illustrated by the previ-
ous example as the new instances created execute in parallel with the evolved
expression. The system state could get very large quickly as the number of
expressions running in parallel increases. For example, the following modest
expression has 1,036 states, 6 states of which represent terminating configura-
tions in which evaluation terminates with the zero expression (the symbol =>!
specifies that the resulting state must be a terminal state).

Maude> search [nilD ; atimer(1) | rtimer(2) | let(5)] =>!

< zero , R:Record > .

Solution 1 (state 1030)

states: 1036 rewrites: 27674 in 240ms cpu (306ms real)

(115308 rewrites/second)

R:Record --> (tr : (let < 5,h(0) | 0 >) . (atimer < 1,h(1) | 0 >) .

(rtimer < 2,h(2) | 0 >) . (h(0) ? 5 | 0) . (!! 5 | 0) . (h(1) ? sig |

1) . (!! sig | 1) . (h(2) ? sig | 2) . !! sig | 2) | (con : mt) |

7In this example, and in some examples to come, we use the internal publish expression ! c
to skip over details of the site call let(c).
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(clk : halt) | (msg : empty) | hdl : h(3)

...

Solution 6 (state 1035)

states: 1036 rewrites: 27674 in 280ms cpu (589ms real)

(98835 rewrites/second)

R:Record --> (tr : (rtimer < 2,h(0) | 0 >) . (atimer < 1,h(1) | 0 >) .

(let < 5,h(2) | 0 >) . (h(2) ? 5 | 0) . (!! 5 | 0) . (h(1) ? sig | 1)

. (!! sig | 1) . (h(0) ? sig | 2) . !! sig | 2) | (con : mt) | (clk :

halt) | (msg : empty) | hdl : h(3)

No more solutions.

states: 1036 rewrites: 27674 in 280ms cpu (595ms real)

(98835 rewrites/second)

Next, consider the following expression where atimer is called with either
the value 1 or 2, depending on which expression publishes its value first, using
asymmetric parallel composition.

Maude> search [nilD ; atimer(’vx{0}) where ’vx :in (! 1 | ! 2)] =>+

< zero , (clk : clock(N:Nat)) | R:Record > such that N:Nat < 3 .

Solution 1 (state 23)

states: 24 rewrites: 248 in 10ms cpu (10ms real)

(24800 rewrites/second)

R:Record --> (tr : tau . (atimer < 1,h(0) | 0 >) . (h(0) ? sig | 1) .

!! sig | 1) | (con : mt) | (msg : empty) | hdl : h(1)

N:Nat --> 1

Solution 2 (state 29)

states: 30 rewrites: 346 in 20ms cpu (81ms real)

(17300 rewrites/second)

R:Record --> (tr : tau . (atimer < 1,h(0) | 0 >) . (h(0) ? sig | 1) .

!! sig | 1) | (con : mt) | (msg : empty) | hdl : h(1)

N:Nat --> 2

Solution 3 (state 32)

states: 33 rewrites: 408 in 20ms cpu (120ms real)

(20400 rewrites/second)

R:Record --> (tr : tau . (atimer < 2,h(0) | 0 >) . (h(0) ? sig | 2) .

!! sig | 2) | (con : mt) | (msg : empty) | hdl : h(1)

N:Nat --> 2

No more solutions.

states: 48 rewrites: 753 in 30ms cpu (128ms real)

(25100 rewrites/second)

There are three such states during the first three clock ticks. Either the value 1
is published first and used to evaluate atimer, which returns a signal at time 1
and remains at that state for another clock tick, or the value 2 is published and
a signal is returned at time 2.
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9.2 Simulating Orc Programs and Verifying Simple Prop-
erties

Using Maude’s rewrite command, Orc programs can be simulated to obtain
possible runs. We can also use Maude’s search command to check violations of
invariants. These two aspects of formal analysis in Maude are illustrated below.

Consider the program Timeout given in Section 4.2. We can simulate a run
of the program using Maude’s rew command, assuming that M is a site that
returns the value 1 (the operator [P] constructs an initial configuration given
an Orc program P).

Maude> rew [’eF ’vt := let(’vz{0}) where ’vz :in (’sM() | rtimer(’vt{0})

> ’vx > ! 0) ; ’eF(3)] .

rewrites: 528 in 0ms cpu (5ms real) (~ rewrites/second)

result Conf: < zero,(tr : tau . (’sM < nilA,h(0) | 0 >) . (rtimer < 3,h(1)

| 0 >) . (h(1) ? sig | 3) . tau . tau . (let < 0,h(2) | 3 >) . (h(2) ? 0

| 3) . !! 0 | 3) | (con : ’eF ’vt := let(’vz{0}) where ’vz :in ’sM(nilA)

| rtimer(’vt{0}) > ’vx > ! 0) | (clk : halt) | (msg : [self,1,h(0)]) |

hdl : h(3) >

The execution trace shows that the call to M has timed out, and thus the value
0 was published (at clock tick 3). By increasing the timeout to, say 6, we get
the following run.

Maude> rew [’eF ’vt := let(’vz{0}) where ’vz :in (’sM() | rtimer(’vt{0})

> ’vx > ! 0) ; ’eF(6)] .

rewrites: 542 in 0ms cpu (5ms real) (~ rewrites/second)

result Conf: < zero,(tr : tau . (’sM < nilA,h(0) | 0 >) . (rtimer < 6,h(1)

| 0 >) . (h(0) ? 1 | 5) . tau . (let < 1,h(2) | 5 >) . (h(2) ? 1 | 5) .

!! 1 | 5) | (con : ’eF ’vt := let(’vz{0}) where ’vz :in ’sM(nilA) |

rtimer(’vt{0}) > ’vx > ! 0) | (clk : halt) | (msg : [self,sig,h(1)]) |

hdl : h(3) >

In this run, the response from M (the value 1) is the value published by the
expression, since the response was delayed by 5 time units, which is less than
the timeout.

Recall the timed-mcall program presented in Section 4.1, in which a site
M is called three times, in intervals of one time unit, starting immediately. We
first simulate a run of the program using the rewrite command of Maude, which
results in a configuration whose trace satisfies the specifications of the program.

Maude> rew [nilD ; ’sM() | rtimer(1) > ’vx > ’sM() |

rtimer(2) > ’vx > ’sM() | rtimer(3) > ’vx > ’sM()] .

rewrites: 1482 in 10ms cpu (9ms real) (148200 rewrites/second)

result Conf: < zero,(tr : (’sM < nilA,h(0) | 0 >) . (rtimer < 1,h(1) | 0 >)

. (rtimer < 2,h(2) | 0 >) . (rtimer < 3,h(3) | 0 >) . (h(1) ? sig | 1) .

tau . (’sM < nilA,h(4) | 1 >) . (h(2) ? sig | 2) . tau . (’sM < nilA,h(5)

| 2 >) . (h(3) ? sig | 3) . tau . (’sM < nilA,h(6) | 3 >) . (h(0) ? 1 |

5) . (!! 1 | 5) . (h(4) ? 1 | 6) . (!! 1 | 6) . (h(5) ? 1 | 7) . (!! 1 |
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7) . (h(6) ? 1 | 8) . !! 1 | 8) | (con : mt) | (clk : halt) | (msg :

empty) | hdl : h(7) >

We now verify that the property that no two calls to M occur at the same
time is satisfied in any state to which the program could evolve. This can be
achieved by issuing the following search command, for which no solution exists,
as required (the notation =>* stands for zero, one, or more rewrites starting
from the given configuration).

Maude> search [nilD ; ’sM() | rtimer(1) > ’vx > ’sM() |

rtimer(2) > ’vx > ’sM() | rtimer(3) > ’vx > ’sM()]

=>* < E:Expr , (tr : e:EventList . (’sM < nilA, H:Handle | N:Nat >) .

e’:EventList . (’sM < nilA, H’:Handle | N:Nat >) .

e’’:EventList) | R:Record > .

No solution.

states: 181865 rewrites: 7961763 in 71370ms cpu (75622ms real)

(111556 rewrites/second)

We now turn our attention to the priority example, whose idea was also
introduced in Section 4.1. Assume M and N are two sites that return the values
1 and 2, respectively. The two sites are executed concurrently and the result is
the response of M if it responds immediately, otherwise the result is the response
of either site. In a sense, M is given priority within a time limit after which the
two sites are treated equally.

In the absense of delays, priority will always result in publishing the value
1 of M . This can be checked with the following command (we check whether
the result can be that of N before the timeout).

Maude> search [’eDelayedN := rtimer(1) > ’vz > (let(’vu{0}) where ’vu :in

’sN()) ; let(’vx{0}) where ’vx :in ’sM() | ’eDelayedN()] =>*

< E:Expr , (tr : e:EventList .

(let < 2, H:Handle | N:Nat >) .

e’:EventList) | R:Record > .

=>* <

E:Expr,R:Record | tr : e:EventList . (let < 2,H:Handle | N:Nat >) .

e’:EventList > .

No solution.

states: 51 rewrites: 1399 in 10ms cpu (23ms real)

(139900 rewrites/second)

This means that before the timeout is up, the value 2 can never be the value of
the expression. On the other hand, the result could be the value of ’sM, namely
1, as shown by the sample run below.

Maude> rew [’eDelayedN := rtimer(1) > ’vz > (let(’vu{0}) where ’vu :in

’sN()) ; let(’vx{0}) where ’vx :in ’sM() | ’eDelayedN()] .

rewrites: 503 in 0ms cpu (4ms real) (~ rewrites/second)
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result Conf: < zero,(tr : tau . (’sM < nilA,h(0) | 0 >) . (rtimer < 1,

h(1) | 0 >) . (h(0) ? 1 | 0) . tau . (let < 1,h(2) | 0 >) . (h(2) ?

1 | 0) . !! 1 | 0) | (con : ’eDelayedN nilF := rtimer(1) > ’vz > (

let(’vu{0}) where ’vu :in ’sN(nilA))) | (clk : halt) | (msg : [self,

sig,h(1)]) | hdl : h(3) >

9.3 Model Checking Using Maude’s LTL Model Checker

Section 9.2 above described a few examples illustrating how the Maude spec-
ifications can be used to formally verify some simple safety properties using
Maude’s breadth-first search capability. However, using Maude’s LTL Model
Checker, more complex safety as well as liveness properties of finite-state sys-
tems can be checked. In this section, some of the model-checking capabilities
of Maude are illustrated through an implementation of the Dining Philosophers
problem in Orc.

Before we present the model-checking examples below, a couple of minor
changes need to be made to the specifications above to directly support model-
checking. First, recall that an Orc configuration contains a field hdl : h(n)
with n a natural number to maintain the next handle name available. Since
n is unbounded, it might grow unnecessarily arbitrarily large (for example, a
recursive expression calling some sites repeatedly) while the number of site calls
in any expression is always finite. This is easily solved by keeping track of the
set of handle names being used in the expression, instead of maintaining the
next available handle name. The site call and site return rules are modified
accordingly to maintain this set. The other, perhaps more subtle, issue is the
use of traces of events in a configuration. The trace of a configuration is allowed
to grow indefinitely even for what could otherwise be a finite-state system (the
Dining Philosophers is an example of such a system). For Rred

Orc, this is not a real
issue as events can be eliminated altogether (see Section 6). For Rsos

Orc, however,
events cannot just be removed. Instead, what can be done is to disregard the
history of events that a configuration has taken8. This is achieved by a single
equation,

eq < f , r | (tr : s:Event) > = < f , r | (tr : nil) > .

Therefore, an event is used only to build a proof of a single-step rewrite. Once
the step is taken, the event is removed from the trace.

We denote by R̂sos
Orc and R̂red

Orc the modified versions of Rsos
Orc and Rred

Orc,
respectively. With these technicalities out of the way, we are ready to present
the model-checking examples.

The Dining Philosophers Problem and its Specification in Maude

The Dining Philosophers problem (DF) is a classical metaphor in the field of
computer science introduced by E. Dijkstra to model a general resource sharing

8Note that, by Lemma 2, this change does not affect how a configuration evolves and, thus,
the original behavior is preserved.
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problem along with possible solutions. The metaphor describes a situation in
which n philosophers (representing processes) are sitting on a table having n
forks (corresponding to shared resources). A philosopher is either thinking,
hungry, or eating. A hungry philosopher will attempt to pick up one of the
forks next to him and then the other. If both attempts are successful, the
philosopher goes into the eating state, eats, returns the forks one at a time,
and then goes into the thinking state, from which he can transition back to the
hungry state.

A specification of the dining philosophers problem in Orc is given in [27],
and shown below. In a configuration of n philosophers, the ith philosopher is
modeled by the Orc expression Pi:

Pi := fork[i](get)� fork[i′](get)� eat[i]()�
fork[i](put)� fork[i′](put)� Pi()

with i′ = i + 1 mod n. The ith fork is represented by the site fork[i], and the
site eat models the eating stage of a philosopher.

In Maude, an Orc configuration is first extended with a new field t-forks
: MX that maintains a set of names MX of forks that are currently taken. Then,
new site names for eat and fork[i] sites, and new constants for the messages get
and put are introduced.

op eat : -> SiteName [ctor] .

op fork[_] : Nat -> SiteName [ctor] .

ops put get : -> Const [ctor] .

When a site fork[i] is called with the value get, a signal is published granting
the philosopher that initiated the call access to the fork, if the fork is not in use.

ceq < f , r | (msg : (rho [self, app(fork[i], get, 0), h])) |

(t-forks : MX) > =

< f , r | (msg : (rho [self, sig, h])) |

(t-forks : MX . fork[i]) >

if not (fork[i] in MX) .

If the fork site is called with a put message and the fork is currently is in
use, a signal is sent back confirming successful release of the fork and the fork
name is dropped from the taken forks set.

eq < f , r | (msg : (rho [self, app(fork[i], put, 0), h])) |

(t-forks : MX . fork[i]) > =

< f , r | (msg : (rho [self, sig, h])) | (t-forks : MX) > .

The eat site captures the eating state of philosophers. A call to an eat site
simply publishes a signal back to the caller.

Finally, an operator df(n), with n a positive integer, is defined to construct
an Orc program of n philosophers.
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op df : NzNat -> Prog .

op df-decl : Nat NzNat -> DeclList .

op df-exp : Nat -> Expr .

ceq df(n) = df-decl(n - 1,n) ; df-exp(n - 1) if n > 1 .

eq df-exp(s(m)) = phil[s(m)]() | df-exp(m) .

eq df-exp(0) = phil[0]() .

eq df-decl(s(m), n) = phil[s(m)] nilF :=

fork[s(m)](get) > ’vt > fork[(s(m) + 1) rem n](get) > ’vt >

eat() > ’vt >

fork[s(m)](put) > ’vt > fork[(s(m) + 1) rem n](put) > ’vt >

phil[s(m)]() ; df-decl(m, n) .

eq df-decl(0, n) = phil[0] nilF :=

fork[0](get) > ’vt > fork[1](get) > ’vt > eat() > ’vt >

fork[0](put) > ’vt > fork[1](put) > ’vt > phil[0]() .

where m is a natural number and phil[i] is an expression name for the ith
philosopher.

LTL Model Checking

Linear Temporal Logic (LTL) is a very widely used property specification lan-
guage. It is an expressive logic that can be used to specify properties of concur-
rent systems with infinite behaviors. Terms in the logic are temporal formulae
that are constructed out of a set of operators and logical connectives, which
include, among others, ¬ (negation), ∧ (conjunction), 3 (eventually) and 2

(henceforth). The logic has well-established proof methods and decision proce-
dures that, when given a state in a model of the system in question and an LTL
formula, can be used to check the satisfiability of the formula at that state. The
natural model for a temporal logic specification is a Kripke structure, which is
a triple having a set of states, a total transition relation, and a labeling func-
tion assigning to each state a set of atomic propositions that hold in that state.
Maude’s LTL Model Checker builds on the foundation that every rewrite theory
in rewriting logic has an underlying Kripke structure. The tool implements a
high-performance, explicit-state model checker that allows for the specification
and verification of LTL properties of Maude’s system modules. For a detailed
discussion of the tool and its theory, the reader is referred to [14, 13], and to
[11] for a textbook on the subject of model-checking. To simplify analysis and
presentation here, we assume no delays and limit the clock ticks to one9. We
follow a verification strategy similar to the one explained in [22].

A fundamental property of df is relative exclusion, which asserts that no two
adjacent philosophers may eat at the same time. To model-check this property,
we define the following parameterized eats predicate,

eq < (eat() > x > f) > x’ > phil[i]() | f’, r > |= eats(i) = true .

9timing and delays are not relevant for this example and, thus, by limiting the clock to one
tick, no interesting behavior is lost under these assumptions.

53



The predicate eats(i) is true in any state in which the ith philosopher is currently
eating, i.e. Pi is ready to call the eat site. Next, the relative-exclusion property
is given by the operator rel-excl(n), where n is the number of philosophers,
defined below.

op rel-excl : NzNat -> Formula .

op re : Nat NzNat -> Formula .

eq rel-excl(n) = [] re(n - 1, n) .

eq re(s(m), n) = ~(eats(s(m)) /\ eats((s(m) + 1) rem n)) /\ re(m,n) .

eq re(0, n) = ~(eats(0) /\ eats(1)) .

Now we show that the the relative exclusion property is satisfied by an
instance of DF with four philosophers (given by df(4)) by issuing the following
command in Maude using R̂red

Orc,

Maude> red modelCheck( { df(4) } , rel-excl(4) ) .

rewrites: 493754 in 1780ms cpu (2298ms real) (277389 rewrites/second)

result Bool: true

where the operator {P} constructs an initial Orc configuration given a program
P.

However, the program df(4) is not deadlock-free. This is because, for ex-
ample, all philosophers may choose to pick their right forks first at the same
time, in which case, they will all be waiting indefinitely for their left forks. To
model-check this property we axiomatize it in our theory as follows. We first
note that a configuration is deadlocked if it reaches a state where no transition
(other than the one advancing the clock) can be taken. Therefore, by the defini-
tion of the eagerEnabled predicate (in both R̂s

Orc and R̂red
Orc), a configuration C

being deadlocked coincides with the eagerEnabled(C) not being true. Therefore,
we define the enabled predicate accordingly.

ceq < f , r > |= enabled = true if eagerEnabled(< f , r >) .

The deadlock-freeness property given by no-deadlock is defined simply as fol-
lows.

eq no-deadlock = [] enabled .

Now, we can use the model checker obtain a run of the configuration yielding a
deadlock (the output of the run showing the counterexample is somewhat long
and is mostly omitted here).

Maude> red modelCheck( { df(4) } , no-deadlock ) .

reduce in DF-CHECK : modelCheck({df(4)}, no-deadlock) .

rewrites: 4598 in 10ms cpu (22ms real) (459800 rewrites/second)

result ModelCheckResult: counterexample({< phil[0](nilA) | phil[1](nilA)

| phil[2](nilA) | phil[3](nilA),(tr : (nil).EventList) | ...
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One solution to the deadlock problem is to impose a restriction on the order
in which forks are picked up as follows. When the first philosopher is hungry,
he picks up his left fork first and then his right fork. All other philosophers
pick their right forks first. The operator df-df(n) reflects this change to the
df specification given above. The new specification is verified deadlock-free by
the model checker.

Maude> red modelCheck( { df-df(4) } , no-deadlock ) .

rewrites: 22540262 in 83390ms cpu (88047ms real) (270299 rewrites/second)

result Bool: true

10 Performance Comparison

In this section we compare the performance of the different variants of the
rewriting semantics of Orc presented in previous sections. We emphasize the
performance advantage that the reduction semantics enjoys over the SOS-based
semantics. In particular, we compare four variants of the rewriting semantics of
Orc:

1. The asynchronous real-time SOS-based semantics using the eagerEnabled
predicate, Rasos

Orc .

2. The synchronous real-time SOS-based semantics using both the eagerEn-
abled and the intAction predicates, Rsos

Orc.

3. The asynchronous real-time reduction semantics using the notion of eager
configurations, Rared

Orc .

4. The synchronous real-time reduction semantics using both notions of eager
configurations and active expressions, Rred

Orc.

Throughout all experiments, performance is measured in terms of the time
taken to perform a particular task. The numbers reported by Maude are accu-
rate enough for our purposes. The tasks are: (1) simulating four Orc programs
using Maude’s rewrite command, (2) exploring the state space of these four
programs using Maude’s breadth-first search command, and (3) model check-
ing three problem instances of the dining philosophers problem using Maude’s
LTL model checker. For the first two tasks, the clock is limited to ten clock
ticks, and pseudo-random delays are assumed. However, for the model checking
task, time is limited to a single clock tick with no delays (see Section 9.3). The
results of these experiments are summerized, respectively, in Table 6, Table 7,
and Table 8. To guarantee fairness in comparison, the experiments were carried
out on the same machine, using the same version of Maude, and under the same
operating conditions10.

10The experiments were carried out on a 3.2GHz dual-core machine with 2GB of memory
using Maude 2.3.
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Rasos
Orc Rsos

Orc Rared
Orc Rred

Orc

timed-mcall 10 2,178 4 4
timeout 13 27 2 2
priority 21 47 3 2

parallel-or 141 3,247 3 3

Table 6: A performance comparison of different variants of rewriting semantics
of Orc using the the rewrite command applied to four programs. A number
in the table represents the CPU time in milliseconds, as reported by Maude, to
simulate a run of an Orc program.

Rasos
Orc Rsos

Orc Rared
Orc Rred

Orc

timed-mcall 325,398 ∞ 58,703 34,396
timeout 127 376 32 31
priority 915 1,921 422 188

parallel-or 56,922 143,158 10,117 4,861

Table 7: A performance comparison of different variants of rewriting semantics
of Orc using the search command applied to four programs. A number in the
table represents the CPU time in milliseconds, as reported by Maude, to explore
all the states of an Orc program.

Problem Size R̂asos
Orc R̂sos

Orc R̂ared
Orc R̂red

Orc

2 109 213 94 53
3 12,702 51,268 4,830 1,502
4 ∞ ∞ 243,927 45,860

Table 8: A performance comparison of different variants of rewriting semantics
of Orc using Maude’s LTL model checker applied to three instances of the din-
ing philosohpers problem. A number in the table represents the CPU time in
milliseconds, as reported by Maude, to model check the absence of deadlock in
df-df(n).
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In Table 6, it is clear that the reduction semantics of Orc is much more ef-
ficiently executable than the SOS-based semantics. This is mainly because the
SOS-based semantics makes extensive use of rewrite rules that are mostly con-
ditional with rewrites in their conditions, which are by their non-deterministic
nature, more expensive to check than unconditional rules. Furthermore, rules
in the SOS-based semantics are always applied at the top (at the level of a
configuration) as opposed to being localized to subterms where actual changes
of state occur. The reduction semantics, on the other hand, minimizes both
the number of rewrite rules and the number of rewrites in the conditions, while
using equations to specify the deterministic features of the language, and hence,
its efficiency advantage. We also note in Table 6 that the synchronous SOS-
based semantics given by Rsos

Orc, using both the eagerEnabled and the intAction
predicates, is much slower than the asynchronous one using only the eagerEn-
abled predicate. This is due to the fact that in Rsos

Orc, the rewrite rules for the
composition operators had to be duplicated to distinguish the different possi-
ble transitions that can be made in order to be able to restrict the site return
transition. This increase in the number of conditional rewrite rules, along with
need for additional checks for the intAction predicate, makes Rsos

Orc much less
efficient than Rasos

Orc .
Using the search command in Maude, we observe a similar pattern in Table

7 to that in Table 6 with the rewrite command. Obviously, the performance
gap between the SOS-based semantics and the reduction semantics is larger with
the search command since searching tries to build proofs of all reachable states,
exposing it to the limitations of the SOS-based semantics even more. Further-
more, the performace difference becomes even more pronounced as expressions
become more complex. This is justified since the more complex an expression is,
the larger the number of compositions used, which translates into a larger num-
ber of conditional rewrite checks in the SOS-based semantics. Finally, we note
in Table 7 that the synchronous reduction semantics is about twice as efficient
as the asynchronous one, which is probably due to the fact that the state space
to be explored is often considerably reduced in the synchronous semantics.

With the SOS-based semantics, Maude’s LTL model checker successfully re-
ported the result of model checking the dining philosophers specification df-df(n)
against the deadlock-freeness property for n = 2, 3. For any larger problem in-
stance, the model checker would run out of memory. Using the synchronous
reduction semantics, the model checker was able model check a problem in-
stance with four philosophers. Any larger instance, however, would cause the
model checking to run out of memory. In any model checking experiment, we
again observe a similar pattern in which the reduction semantics, especially the
synchronouse semantics, is much more efiicient than the SOS-based semantics.
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11 Distributed Object-based Rewriting Orc Se-
mantics

Many orchestration applications, especially relatively large ones, can be thought
of as consisting of multiple Orc subexpressions independently orchestrating dif-
ferent but related tasks. For instance, in the dining philosophers implemen-
tation in Orc [27] with n philosophers, there are n subexpressions running in
parallel, one for each philosopher. In more practical web-based applications,
such subexpressions normally run on physically distributed autonomous agents
spread across the web. Furthermore, sites, whose responses were only simulated
in the rewriting semantics developed in the previous section to arrive at an exe-
cutable specification, normally maintain local states to support the services they
provide, such as counter sites and channel (buffer) sites. Therefore, it is natural
to think of Orc expressions and sites as objects in a distributed configuration.
Expression objects are active objects (or actors in the actor model) having a
state and one or more threads of control, and are capable of initiating (asyn-
chronous) message exchange. Site objects are reactive objects having internal
states and are capable only of responding to incoming requests. They can be
thought of as actors that have a passive-reactive behavior.

The reduction semantics described in Section 6 is a key step towards the
specification of the object-based semantics of the Orc’s orchestration model. In
addition, within the Maude framework, the object-based semantics lends itself
nicely to a future (physically) distributed deployment using Maude’s socket pro-
gramming capabilities. This leads to a formal analysis and verification environ-
ment that is faithful to the distributed nature of Orc’s wide-area computations.

11.1 Distributed Orc Semantics

A distributed Orc configuration is modeled by a multiset of objects and messages
(constructed by an associative and commutative juxtaposition operator ). We
describe these objects and messages in detail next.

Objects. An object is a term of the form 〈Oid : Cid | AttributeSet〉, with
Oid the object identifier, Cid the class of the object, and AttributeSet a set
of attributes, which are typically of the form AttributeName : AttributeValue.
In a distributed Orc configuration, there are three classes of objects, namely,
expression, site, and clock objects:

1. An expression object is an object of class Expr having three attributes:
(i) exp, which holds an Orc expression to be computed; (ii) con, which
is the context where expression name declarations appear; and (iii) hdl,
which maintains a set of handle names that are currently being used by the
expression. For example, the object representing the program timeout is

〈o1 : Expr | exp : f(3),
con : f(t) =def let(z) where z :∈M | rtimer(t) > x > let(0), hdl : ∅〉
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2. A site object is an object of class Site with the following attributes:

(a) name: the name of the site, such as if, rtimer, CNN, BBC, . . . etc.

(b) op: the current operation being performed by the site, which can
either be exec(C, h,Oid) or free. This attribute indicates whether
the site object is currently blocking or accepting incoming messages.
It also serves as a means to modularly specify a particular site defi-
nition.

(c) state: the processing state of a site object. This field is abstractly
defined as a list of items whose concrete meaning depends on the par-
ticular site being specified. Fundamental sites, such as if and rtimer,
and other basic sites, such as arithmetic functions, are stateless and
thus make no use of this field. However, more complex sites may
require this attribute to maintain their state.

For instance, the fundamental site if is represented by the object 〈oif :
Site | name : if , op : free, state : nil〉, while a more sophisticated site, say
CNN, could be represented by the following object

〈oCNN : Site | name : CNN , op : free, state : (d1, p1), . . . , (dn, pn)〉

where a pair (di, pi) maintains the news page pi for the date di.

3. A clock object is a simple object of class Clock, which maintains a single
field, called clk, representing the current clock time.

〈oclock : Clock | clk : cm〉

Messages. A message is either a site call message of the form M ←
sc(Oid , C, h,m), with M the name of the site being called, and Oid the object
identifier of the caller expression object, or a site return message of the form
Oid ← sr(c, h, m), with Oid the identifier of the expression object receiving the
published value c.

The distributed semantics of an Orc expression object is essentially that of
the reduction semantics specification of Section 611, with the exception that mes-
sages are now managed by the distributed Orc configuration. This distributed
semantics generalizes the reduction semantics to multiple Orc expressions, and
provides an explicit treatment of message exchange between expression and site
objects. For instance, a site call is modeled by the following two rules

SiteCall : 〈Oid : Expr | exp : f,AS 〉
→ 〈Oid : Expr | exp : sc↑(f ′,M,C),AS 〉 if f → sc↑(f ′,M,C)

SiteCall* : M(C)→ sc↑(γ, M, C)

The first rule resembles the SiteCall of the reduction semantics except that
it is defined on an Orc expression object, while the second rule is exactly the

11We use the variant of the reduction semantics in which traces are not used.
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same as the corresponding rule in the reduction semantics. The operator sc↑

is also very similarly defined except when it reaches the top of the expression,
where the effect of a site call is reflected:

〈Oid : Expr | exp : sc↑(f ′,M,C), hdl : H,AS 〉
= 〈Oid : Expr | exp : sc↓(f, h), hdl : h#H,AS 〉

M ← sc(Oid , C, h, 0) if h := gFresh(H)

The operator sc↓, which propagates the new handle down the expression tree to
the appropriate subexpression, is defined exactly as before. Notice here the site
call caused a message to be emitted into the distributed configuration so that a
site object with the name M , if defined, may consume and respond to it. The
changes to the specifications of the other internal and external actions have the
same pattern.

Finally, the timed, synchronous semantics of Orc is also achieved using the
same “active expression“ and “eager configuration” notions, with the exception
that now the tick rule encloses the entire distributed configuration into a system,
so that the global effect of a clock tick is properly captured:

{〈oclock : Clock | clk : cm〉 CF} → {〈oclock : Clock | clk : cm+1〉 δ(CF )}
if eager(〈oclock : Clock | clk : cm〉 CF ) 6= true

The complete specification of the distributed semantics in Maude can be found
in Appendix A.2. Next, we illustrate through an application how Maude’s LTL
model checker can be used to verify properties of distributed Orc systems.

11.2 Case Studies

We present two distributed applications: (1) auction, an online auction man-
agement program; and (2) meeting, a meeting scheduler and monitor program,
both of which were inspired by the examples given in [27]. We illustrate how
the distributed semantics facilitates the formal verification of programs using
Maude’s LTL model checker.

11.2.1 Managing an Online Auction

The distributed Orc auction program uses a number of expression declarations
that we describe first. The two main declarations are PostingDecl and Bid-
dingDecl. PostingDecl defines an expression Posting(S) that gets items that are
available to be advertised from the seller site list S, which is given below12.

Posting(S) =def if (empty(S)) � let(0) | if (¬empty(S)) �
(S0(PostNext) > item > auction(post , item) � rtimer(item1 + 1)
� Posting(tail(S)))

12Subscripts are used to denote zero-based indexing of elements in a list. For example, S0

is the first element in S and item1 is the second element in item.
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An item is a tuple (id , t, m), with id the item’s identifier, t the duration of the
auction, and m the minimum bid. Once an item is posted, the expression waits
for the auction to end before proceeding to the next item. The declaration
BiddingDecl defines the bidding expression that manages the bidding process
and announces winning bidders.

Bidding(B) =def auction(getNext) > item > Bids(item0, item1, item2, B, 0) > w >
(if (w1 = 0) � Bidding(B) | if (w1 6= 0) � w1(won, item0, w0))

B is a list of bidders and Bids is an expression, declared by BidsDecl shown be-
low, which, if successful, returns a pair (wbid ,wbidder) consisting of the winning
bid and the winning bidder name.

Bids(id , duration, bid , B,winner) =def if (duration = 0) � let(bid ,winner)
| if (duration 6= 0) � Collect(nextBid , B, id , bid) > bidList >

MaxBid(bidList) > m > rtimer(1) � Bids(id , duration − 1,m0, B,m1)

The Bids expression collects bids in rounds, each lasting for one time unit. In
each round, the maximum bid is computed and published by the site MaxBid ,
and then used as the minimum bid for the next round. The Collect expression
(declared by CollectDecl shown below) returns a list of bidding pairs of the form
(bid , bidder).

Collect(m,B, id ,minBid) =def if (empty(B)) � let(nil) | if (¬empty(B)) �
(append(x, xs) where x :∈ B0(m, id ,minBid)

where xs :∈ Collect(m, tail(B), id ,minBid))

In addition to the clock object, the initial configuration of auction consists
of the followig objects:

• Two expression objects: the posting expression object and the bidding
expression object,

〈o1 : Expr | exp : Posting(seller0), con : PostingDecl , hdl : ∅〉
〈o2 : Expr |exp : Bidding(b0, b1, b2), con : BiddingDecl ,BidsDecl ,CollectDecl , hdl : ∅〉,

• The fundamental site objects:

〈oif : Site | name : if , op : free, state : nil〉
〈olet : Site | name : let , op : free, state : nil〉

〈ortimer : Site | name : rtimer , op : free, state : nil〉
〈oatimer : Site | name : atimer , op : free, state : nil〉
〈oclock : Site | name : clock , op : free, state : nil〉
〈osignal : Site | name : signal , op : free, state : nil〉

• A seller site object, whose state maintains two items to be auctioned

〈oseller : Site | name : seller0, op : free, state : [(t1, 5, 500)), (t2, 8, 700)]〉
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• Three bidder site objects named bi, for i = 0, 1, 2,

〈obi
: Site | name : bi, op : free, state : nil〉

The bidder objects use their state during program execution to keep track
of their bids and the items they win.

• An auction site object that manages auction items and services bidder
requests

〈oauction : Site | name : auction, op : free, state : nil〉

The state field is used during program execution to maintain a list of
available items and another of bidding requests.

• A site object for the MaxBid site

〈oMaxBid : Site | name : MaxBid , op : free, state : nil〉

The site is stateless as it merely computes the highest bid amongst a list
of bids.

The behaviors of the different site objects are specified easily in Maude. We
refer the reader to Appendix A.2.4 for the complete specification.

Using this specification in Maude, we can specify some correctness properties
of auction, and then verify them using Maude’s LTL Model Checker. Four
atomic predicates, which are parametric to items, are used:

1. hasbid(t), which is true in a state where the item t has been bid on,

2. sold(t), which is true in a state where the item t has been sold,

3. max (t), which is true in a state where the item t has been sold to the
highest bidder,

4. conflict(t) which is true whenever t has two or more winning bidders.

The correctness properties along with Maude’s output are as follows,

1. An item that has at least one bid is eventually sold: 2
∧

i(hasbid(ti) →
3sold(ti)). In Maude, the operator commitAll specifies this property for
the items t1 and t2.

Maude> red modelCheck(init, commitAll) .

rewrites: 33366205 in 59315ms cpu (59332ms real) (562516 rewrites/second)

result Bool: true

2. An item is always sold at the maximum bid to the highest bidder: 2
∧

i(sold(ti)→
max (ti)). In Maude, the operator winAll specifies this property for the
items t1 and t2.
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Maude> red modelCheck(init, winAll) .

rewrites: 33739349 in 61027ms cpu (61024ms real) (552852 rewrites/second)

result Bool: true

3. An item cannot have two winners: ¬3
∨

i conflict(ti). This is specified for
the items t1 and t2 in Maude using the operator uniqueWinnerAll.

Maude> red modelCheck(init, uniqueWinnerAll) .

rewrites: 33290882 in 59742ms cpu (59739ms real) (557235 rewrites/second)

result Bool: true

11.2.2 Scheduling a Meeting

The meeting scheduler program meeting manages the process of arranging a
meeting time and location among a group of participants, and monitors the re-
sulting room reservation against possible preemptions. The top level expression
declaration MeetingDecl used by the program is shown below.

MeetingScheduler(P ) =def

if (empty(T )) � let(false)
| if (¬empty(T )) � ArrangeMeeting(P )

where P is a list of participants. MeetingScheduler(P ) publishes the value true
if it successfully schedules a meeting venue. Otherwise, the value false is pub-
lished. The expression ArrangeMeeting(P ), whose declaration ArrangeDecl is
shown below, first solicits schedules of participants P . If enough responses are
received, it then uses a site MeetTime to compute the earliest possible time t for
the meeting. If successful, the site RoomReserve is called with the meeting time
t and the number of participants n to reserve a suitable room r for the meeting.
If any of these steps fail, a cancel message is broadcast to all participants.

ArrangeMeeting(P ) =def GetSchedules(P ) > s >
(if (size(s) < 2) � Broadcast(cancel , P ) � let(false)
| if (size(s) ≥ 2) � MeetTime(s) > t >

(if (t = 0) � Broadcast(cancel , P ) � let(false)
| if (t 6= 0) � RoomReserve(t, size(s)) > r >

(if (r = 0) � Broadcast(cancel , P ) � let(false)
| if (r 6= 0) � Broadcast(t, r, P ) � Monitor(t− 1, r, size(s), P )
)

)
)

Once a reservation is made, the expression Monitor is called to monitor the
status of the reservation using the site RoomCanceled. If the reservation is
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preempted before the threshold, a new reservation is attempted.

Monitor(t; r;n;P ) =def let(b) where b :∈
(atimer(t) � let(true) |

(RoomCanceled(r) � RoomReserve(t) > s >
(if (s = 0) � Broadcast(cancel , P ) � let(false)
| if (s 6= 0) � let(true)
)

)
)

The declarations for the expressions GetSchedules(P ) and Broadcast(x, P ), re-
spectively named GetSchedulesDecl and BroadcastDecl, are shown below.

GetSchedules(P ) =def

if (empty(P )) � let(nil)
| (if (¬empty(P )) � append(x, xs)

where x :∈ ((head(P ))(get) | rtimer(5))
where xs :∈ GetSchedules(tail(P ))

)

Broadcast(x;P ) =def

if (empty(P )) � let(signal)
| if (¬empty(P )) � (head(P ))(x ) � Broadcast(x, tail(P ))

The expression GetSchedules requests user schedules and waits for responses
within a timeout period of five time units.

The Orc program meeting assumes three participants p1, p2 and p3. It
contains one expression object that manages scheduling a meeting among the
three participants:

〈omeeting : Expr | exp : MeetingScheduler([p1, p2, p3]),
con : MeetingDecl ;ArrangeDecl ;GetSchedulesDecl ;MonitorDecl ;BroadcastDecl ,
hdl : ∅〉

In addition to the clock object and the fundamental site objects, meeting also
contains the following site objects:

1. Three participant site objects, each representing a single participating
user, of the following form:

〈spi
: Site | name : pi, op : free, state : (s, x) >

where the state of a participant is a pair (s, x), with s a schedule and
x a status flag indicating whether the user is ready to take part in the
meeting to be scheduled, waiting for a response from the scheduler, or has
his meeting successfully scheduled or canceled.
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2. A MeetTime site object of the form,

〈sMeetTime : Site | name : MeetTime, op : free, state : nil >

The site is stateless since it represents a function that computes the earliest
meeting time possible given a list of user schedules.

3. A RoomReserve site object of the form,

〈sRoomReserve : Site | name : RoomReserve, op : free, state : R >

where R is a database of room availability tuples of the form (r, n, s), with
r the room number, n the capacity of the room, and s a list of time slots
during which the room r is available.

4. A RoomCanceled site object of the form,

〈sRoomCanceled : Site | name : RoomCanceled , op : free, state : M >

where M maintains a list of room reservations to monitor.

We now specify and then verify two correctness properties about meeting
using Maude’s LTL model checker. The first property states that if a user does
not respond to the scheduler within the timeout (five time units), the user will
not ever particpate in the meeting. This can be specified as

2(timedout ∧ ¬success(n)→ ¬3success(n)) (4)

where timedout is an atomic predicate which is true in a state in which the
timeout period has elapsed, and success(n) is a state formula which evaluates
to true whenever all the n users are successfully scheduled. In Maude, the
program, whose initial state is given by init(3), is model checked against this
property as follows.

Maude> red modelCheck(init(3), scheduled-after-timeout(3)) .

rewrites: 540704307 in 1079855ms cpu (1079848ms real) (500718 rewrites/second)

result Bool: true

The operator scheduled-after-timeout(n) captures the property given by
the formula 4 above. The second property states that every participating user
will eventually be informed whether the meeting is successfully scheduled or
canceled. This is specified by the formula,

2
∧
i

(participant(i)→ 3(scheduled(i) ∨ canceled(i)))

where participant(i), scheduled(i) and canceled(i) are atomic propositions that
are true in a state whenever the ith participant is, respectively, waiting for a
response from the scheduler, has his meeting successfully scheduled, or has it
canceled. The property is model checked in Maude using the following com-
mand:

Maude> red modelCheck(init(3), [] gr-all(3)) .

reduce in MT-CHECK : modelCheck(init(3), []gr-all(3)) .

rewrites: 541347035 in 1199067ms cpu (1214902ms real) (451473 rewrites/second)

result Bool: true
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12 Concluding Remarks

We have presented two approaches to the operational semantics of Orc using
rewriting logic. The first uses a semantics-preserving transformation from Orc’s
SOS specification to an SOS-like rewrite theory. The second is in the style of
reduction semantics and is based on the distinction between rules and equations
in rewriting logic. Both rewrite theories were further refined to support Orc’s
timed synchronous semantics using two alternative methods: strategy expres-
sions and equationally defined predicates. We have shown that the two refined
theories are semantically equivalent through a strong bisimulation, and that the
reduction semantics is much more efficiently executable and analyzable using
various experiments in Maude. We have also extended the reduction semantics
into a distributed object semantics and have shown how LTL properties of Orc
programs can be model checked using the distributed semantics. A natural fu-
ture extension of this work is the development of a provably correct distributed
implementation of Orc. The key idea is to shift the emphasis in the use of rewrit-
ing logic from executable specification to declarative distributed programming.
In particular, we expect to make heavy use of Maude’s support for sockets as
external objects [8] to develop such a distributed implementation.
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A Maude Specifications

A.1 The SOS-based and the Reduction Semantics

A.1.1 Syntax

fmod NAMES is

protecting QID .

sorts SiteName ExprName Var IVar Const PreConst ConstList .

subsorts SiteName ExprName Var < Qid .

subsorts Nat < Const < PreConst .

subsorts Const < ConstList .

op tup : ConstList -> Const [ctor] .

op tr : Bool -> Const [ctor] .

op sig : -> Const [ctor] .

op self : -> SiteName [ctor] .

op _{_} : Var Nat -> IVar [ctor prec 1] .

var Q : Qid .

cmb Q : SiteName if substr(string(Q), 0, 1) == "s" .

cmb Q : ExprName if substr(string(Q), 0, 1) == "e" .

cmb Q : Var if substr(string(Q), 0, 1) == "v" .

endfm

fmod PARAMETER is

protecting NAMES .

sorts AParam FParam AParamList FParamList .

subsorts Var < FParam < FParamList .

subsorts IVar SiteName Const < AParam < AParamList .

subsorts ConstList < AParamList .

op nilF : -> FParamList [ctor] .

op _;_ : FParamList FParamList -> FParamList [ctor assoc id: nilF prec 8] .
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op nilA : -> ConstList [ctor] .

op _,_ : AParamList AParamList -> AParamList [ctor assoc id: nilA prec 8] .

op _,_ : ConstList ConstList -> ConstList [ctor assoc id: nilA prec 8] .

endfm

fmod ORC-SYNTAX is

protecting PARAMETER .

sorts Prog Decl DeclList Expr Handle .

subsort Decl < DeclList .

op h : Nat -> Handle [ctor] .

op _;_ : DeclList Expr -> Prog [ctor prec 50] .

op nilD : -> DeclList [ctor] .

op _;_ : DeclList DeclList -> DeclList [ctor assoc id: nilD prec 40] .

op __:=_ : ExprName FParamList Expr -> Decl [ctor frozen(3) prec 30] .

op zero : -> Expr [ctor] .

op _(_) : SiteName AParamList -> Expr [ctor prec 10] .

op _(_) : ExprName AParamList -> Expr [ctor prec 10] .

op !_ : IVar -> Expr [ctor prec 5] .

op !_ : Const -> Expr [ctor prec 5] .

op _>_>_ : Expr Var Expr -> Expr [ctor frozen (3) prec 15 gather (e & E)] .

op _|_ : Expr Expr -> Expr [ctor assoc comm prec 20] .

op _where_:in_ : Expr Var Expr -> Expr [ctor prec 25 gather (E & e)] .

op ?_ : Handle -> Expr [ctor prec 1] .

var x : Var . var f : Expr .

var E : ExprName . var M : SiteName .

eq zero > x > f = zero .

eq zero | f = f .

*** Syntactic Sugar

op _:=_ : ExprName Expr -> Decl [prec 30] .

eq E := f = E nilF := f .

op _() : SiteName -> Expr [prec 10] .

op _() : ExprName -> Expr [prec 10] .

eq M() = M(nilA) .

eq E() = E(nilA) .

endfm

A.1.2 CINNI Substitution Calculus

fmod CINNI is

protecting PARAMETER .
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sort Subst .

op [_:=_] : Var AParam -> Subst [ctor] .

op [shiftup_] : Var -> Subst [ctor] .

op [lift__] : Var Subst -> Subst [ctor] .

op __ : Subst IVar -> IVar [ctor] .

vars n : Nat .

vars a b : Var .

vars x : AParam .

vars S : Subst .

eq [a := x] a{0} = x .

eq [a := x] a{s(n)} = a{n} .

ceq [a := x] b{n} = b{n} if a =/= b .

eq [shiftup a] a{n} = a{s(n)} .

ceq [shiftup a] b{n} = b{n} if a =/= b .

eq [lift a S] a{0} = a{0} .

eq [lift a S] a{s(n)} = [shiftup a] S a{n} .

ceq [lift a S] b{n} = [shiftup a] S b{n} if a =/= b .

endfm

fmod SUBSTITUTION is

protecting CINNI .

protecting ORC-SYNTAX .

op __ : Subst Expr -> Expr [frozen (2)] .

op __ : Subst AParamList -> AParamList .

op [_<-_]_ : FParamList AParamList Expr -> Expr [frozen (3)] .

vars id : Qid . vars n : Nat .

vars p : AParam . vars P : AParamList .

vars Q : FParamList .

vars d : Decl . vars D : DeclList .

vars ix : IVar . vars x : Var . vars c : Const .

vars f f’ : Expr .

vars S : Subst .

vars E : ExprName . vars M : SiteName .

var h : Handle .

eq [x ; Q <- p, P] f = [x := p] ([Q <- P] f) .

eq [nilF <- nilA] f = f .

eq S zero = zero .

eq S (id ( P )) = id ( S P ) .

eq S ! ix = ! (S ix) .

eq S ! c = ! c .
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eq S (f > x > f’) = (S f) > x > ([lift x S] f’) .

eq S (f | f’) = (S f) | (S f’) .

eq S (f where x :in f’) = ([lift x S] f) where x :in (S f’) .

eq S (? h) = ? h .

eq S (nilA) = nilA .

ceq S (x{n}, P) = (S x{n}) , (S P) if P =/= nilA .

eq S (p , P) = p , (S P) [owise] .

endfm

A.1.3 Semantic Infrastructure

fmod CLOCK is

pr NAT .

sort Clock .

op halt : -> Clock [ctor] .

op clock : Nat -> Clock [ctor] .

eq clock(1) = halt . --- finite state clock

endfm

fmod EVENT is

protecting ORC-SYNTAX .

sort Event .

op _<_,_|_> : SiteName ConstList Handle Nat -> Event [ctor] .

op _?_|_ : Handle Const Nat -> Event [ctor] .

op !!_|_ : Const Nat -> Event [ctor] .

op tau : -> Event [ctor] .

endfm

fmod EVENT-LIST is

protecting EVENT .

sort EventList .

subsort Event < EventList .

op nil : -> EventList [ctor] .

op _._ : EventList EventList -> EventList [ctor assoc id: nil] .

endfm

fmod CONTEXT is

protecting ORC-SYNTAX .

sort Context .

subsort Decl < Context .

op mt : -> Context [ctor] .

op _,_ : Context Context -> Context [ctor assoc comm id: mt prec 42] .

op _<-_ : Context Decl -> Context [ctor prec 45 gather (E e)] .

var E : ExprName .

var f f’ : Expr .

var sigma : Context .
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var d : Decl .

var Q Q’ : FParamList .

eq E Q := f , sigma <- E Q’ := f’ = E Q’ := f’ , sigma .

eq sigma <- d = d , sigma [owise] .

endfm

fmod MESSAGES is

protecting ORC-SYNTAX .

sorts Msg MsgPool .

subsort Msg < MsgPool .

op [_,_,_] : SiteName [ConstList] Handle -> [Msg] [ctor] .

op empty : -> MsgPool [ctor] .

op __ : MsgPool MsgPool -> MsgPool [ctor assoc comm id: empty] .

var M : SiteName . var C : ConstList . var h : Handle .

var pc : PreConst .

mb [self, pc, h] : Msg .

mb [M, C, h] : Msg .

endfm

fmod HANDLE-SET is

protecting ORC-SYNTAX .

sort HandleSet .

subsort Handle < HandleSet .

op mth : -> HandleSet [ctor] .

op _#_ : HandleSet HandleSet -> HandleSet [ctor assoc comm id: mth] .

vars h h’ : Handle .

vars H : HandleSet .

var n : Nat .

eq h # h # H = h # H .

op _usedin_ : Handle HandleSet -> Bool .

eq h usedin (h’ # H) = h == h’ or h usedin H .

eq h usedin mth = false .

op gFresh : HandleSet -> Handle .

op gFreshAux : HandleSet Handle -> Handle .

eq gFresh(H) = gFreshAux(H, h(0)) .

eq gFreshAux(H, h(n)) = if h(n) usedin H

then gFreshAux(H, h(s n))

else h(n) fi .

endfm

fmod RECORD-HS is
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pr EVENT-LIST .

pr CONTEXT .

pr CLOCK .

pr MESSAGES .

pr HANDLE-SET .

sorts Index Field Record .

subsort Field < Record .

ops tr con clk msg hdl : -> Index [ctor] .

op null : -> Record [ctor] .

op _|_ : Record Record -> Record [ctor assoc comm id: null] .

op _:_ : Index EventList -> Field [ctor] .

op _:_ : Index Context -> Field [ctor] .

op _:_ : Index Clock -> Field [ctor] .

op _:_ : Index MsgPool -> Field [ctor] .

op _:_ : Index HandleSet -> Field [ctor] .

endfm

fmod RECORD-HC is

pr EVENT-LIST .

pr CONTEXT .

pr CLOCK .

pr MESSAGES .

sorts Index Field Record .

subsort Field < Record .

ops tr con clk msg hdl : -> Index [ctor] .

op null : -> Record .

op _|_ : Record Record -> Record [ctor assoc comm id: null] .

op _:_ : Index EventList -> Field [ctor] .

op _:_ : Index Context -> Field [ctor] .

op _:_ : Index Clock -> Field [ctor] .

op _:_ : Index MsgPool -> Field [ctor] .

op _:_ : Index Handle -> Field [ctor] .

endfm

mod RCONF-HC is

inc RECORD-HC .

sort Conf .

op <_,_> : Expr Record -> Conf [ctor frozen(1)] .

endm

mod SOS-RCONF-HC is

inc RCONF-HC .

op {_,_} : [Expr] [Record] -> [Conf] [ctor] .
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op [_,_] : [Expr] [Record] -> [Conf] [ctor] .

vars f f’ : Expr . vars r r’ : Record .

crl [step] : < f , r > => < f’ , r’ > if {f,r} => [f’,r’] .

endm

mod RCONF-HS is

inc RECORD-HS .

sort Conf .

op <_,_> : Expr Record -> Conf [ctor frozen(1)] .

endm

mod SOS-RCONF-HS is

inc RCONF-HS .

op {_,_} : [Expr] [Record] -> [Conf] [ctor] .

op [_,_] : [Expr] [Record] -> [Conf] [ctor] .

vars f f’ : Expr . vars r r’ : Record .

crl [step] : < f , r > => < f’ , r’ > if {f,r} => [f’,r’] .

endm

mod SIMCOUNTER is

pr NAT .

op counter : -> [Nat] .

rl [count] : counter => s(counter) .

rl [eval] : counter => 0 .

eq s_^5(counter) = counter . --- finite state counter

endm

mod SIMRANDOM is

pr RANDOM .

pr SIMCOUNTER .

pr RAT .

pr CONVERSION .

op rand : -> [Nat] .

----rl [rnd] : rand => floor((random(counter) / 4294967296) * 10) .

eq rand = 0 .

endm

A.1.4 Asynchronous SOS-Based Semantics

mod ORC-SEMANTICS is

inc SOS-RCONF-HC .

pr SUBSTITUTION .

pr SIMRANDOM .
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op initCon : DeclList -> Context .

op [_] : Prog -> Conf .

op app : SiteName ConstList Nat -> PreConst .

op eagerEnabled : Conf -> [Bool] [frozen] .

var d : Decl . var D : DeclList .

var h : Handle .

var M : SiteName . var c : Const . var x : Var .

var P : AParamList . var C : ConstList .

vars f f’ g g’ : Expr .

var s : Event . var n m : Nat .

var E : ExprName . var Q : FParamList .

var t : EventList .

var sigma : Context .

var rho : MsgPool .

vars r r’ : Record .

eq initCon(nilD) = mt .

eq initCon(D ; d) = initCon(D) <- d .

eq eagerEnabled(< f, r >) = eagerEnabled({f, r}) .

eq [D ; f] = < f , (tr : nil) | (con : initCon(D)) |

(clk : clock(0)) | (msg : empty) | (hdl : h(0)) > .

rl [SiteCall] : { M(C) , (tr : t) | (msg : rho) |

(hdl : h(n)) | (clk : clock(m)) | r}

=> [ ? h(n) , (tr : (t . M < C , h(n) | m >)) |

(msg : (rho [M, C, h(n)])) |

(hdl : h(s n)) | (clk : clock(m)) | r] .

eq eagerEnabled({ M(C) , (tr : t) | (msg : rho) | (hdl : h(n)) |

(clk : clock(m)) | r}) = true .

ceq [M, C, h] = [self, app(M, C, rand), h] if M =/= self .

rl [SiteRet] : { ? h , (tr : t) | (msg : (rho [self, c, h])) |

(clk : clock(m)) | r}

=> [ ! c , (tr : (t . h ? c | m)) | (msg : rho) |

(clk : clock(m)) | r] .

eq eagerEnabled({ ? h , (tr : t) | (msg : (rho [self, c, h])) |

(clk : clock(m)) | r}) = true .

rl [Pub] : {! c , (tr : t) | (clk : clock(m)) | r}

=> [zero, (tr : t . (!! c | m)) | (clk : clock(m)) | r] .

eq eagerEnabled({! c , (tr : t) | (clk : clock(m)) | r}) = true .
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rl [Def] : { E(P), (tr : t) | (con : (sigma , E Q := f)) | r }

=> [ ([Q <- P] f), (tr : t . tau) |

(con : (sigma , E Q := f)) | r ] .

eq eagerEnabled({ E(P), (tr : t) | (con : (sigma , E Q := f)) | r })

= true .

crl [Sym] : { f | g , (tr : t) | r} => [ f’ | g, (tr : (t . s)) | r’]

if { f , (tr : nil) | r} => [ f’ , (tr : s) | r’ ] .

ceq eagerEnabled({ f | g , (tr : t) | r}) = true

if eagerEnabled({ f , (tr : nil) | r}) .

crl [Seq1V] : { f > x > g , (tr : t) | r}

=> [ (f’ > x > g) | ([x := c] g) , (tr : t . tau) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (!! c | m)) | r’ ] .

ceq eagerEnabled({ f > x > g , (tr : t) | r}) = true

if eagerEnabled({ f , (tr : nil) | r }) .

crl [Seq1N1] : { f > x > g , (tr : t) | r}

=> [ f’ > x > g , (tr : t . tau) | r’ ]

if { f , (tr : nil) | r } => [ f’ , (tr : tau) | r’ ] .

crl [Seq1N2] : { f > x > g , (tr : t) | r}

=> [ f’ > x > g , (tr : (t . h ? c | m)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (h ? c | m)) | r’ ] .

crl [Seq1N3] : { f > x > g , (tr : t) | r}

=> [ f’ > x > g , (tr : (t . M < C , h | m >)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (M < C , h | m >)) | r’ ] .

crl [Asym1V] : { g where x :in f , (tr : t) | r}

=> [ ([x := c] g) , (tr : t . tau) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (!! c | m)) | r’ ] .

ceq eagerEnabled({ g where x :in f , (tr : t) | r}) = true

if eagerEnabled({ f , (tr : nil) | r }) .

crl [Asym1N1] : { g where x :in f , (tr : t) | r}

=> [ g where x :in f’ , (tr : t . tau) | r’ ]

if { f , (tr : nil) | r } => [ f’ , (tr : tau) | r’ ] .

crl [Asym1N2] : { g where x :in f , (tr : t) | r}

=> [ g where x :in f’ , (tr : (t . h ? c | m)) | r’ ]
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if { f , (tr : nil) | r }

=> [ f’ , (tr : (h ? c | m)) | r’ ] .

crl [Asym1N3] : { g where x :in f , (tr : t) | r}

=> [ g where x :in f’ , (tr : (t . M < C , h | m >)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (M < C , h | m >)) | r’ ] .

crl [Asym2] : { g where x :in f , (tr : t) | r}

=> [ g’ where x :in f , (tr : (t . s)) | r’ ]

if { g , (tr : nil) | r } => [ g’ , (tr : s) | r’ ] .

ceq eagerEnabled({ g where x :in f , (tr : t) | r}) = true

if eagerEnabled({ g , (tr : nil) | r }) .

endm

A.1.5 Synchronous SOS-Based Semantics

mod ORC-SEMANTICS is

inc SOS-RCONF-HC .

pr SUBSTITUTION .

pr SIMRANDOM .

op initCon : DeclList -> Context .

op [_] : Prog -> Conf .

op app : SiteName ConstList Nat -> PreConst .

op eagerEnabled : Conf -> [Bool] [frozen] .

op intActions : Conf -> [Bool] [frozen] .

var d : Decl . var D : DeclList .

var h : Handle .

var M : SiteName . var c : Const . var x : Var .

var P : AParamList . var C : ConstList .

vars f f’ g g’ : Expr .

var s : Event . var N T : Nat .

var E : ExprName . var Q : FParamList .

var t : EventList .

var sigma : Context .

var rho : MsgPool .

vars r r’ : Record .

eq initCon(nilD) = mt .

eq initCon(D ; d) = initCon(D) <- d .

eq [D ; f] = < f , (tr : nil) | (con : initCon(D)) |

(clk : clock(0)) | (msg : empty) | (hdl : h(0)) > .

eq eagerEnabled(< f, r >) = eagerEnabled({f, r}) .
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rl [SiteCall] : { M(C) , (tr : t) | (msg : rho) | (hdl : h(N)) |

(clk : clock(T)) | r} =>

[ ? h(N) , (tr : (t . M < C , h(N) | T >)) |

(msg : (rho [M, C, h(N)])) |

(hdl : h(s N)) | (clk : clock(T)) | r] .

eq eagerEnabled({ M(C) , (tr : t) | (msg : rho) | (hdl : h(N)) |

(clk : clock(T)) | r}) = true .

eq intActions({ M(C) , (tr : t) | (msg : rho) | (hdl : h(N)) |

(clk : clock(T)) | r}) = true .

ceq [M, C, h] = [self, app(M, C, rand), h] if M =/= self .

rl [SiteRet] : { ? h , (tr : t) | (msg : (rho [self, c, h])) |

(clk : clock(T)) | r} =>

[ ! c , (tr : (t . h ? c | T)) | (msg : rho) |

(clk : clock(T)) | r] .

eq eagerEnabled({ ? h , (tr : t) | (msg : (rho [self, c, h])) |

(clk : clock(T)) | r}) = true .

rl [Pub] : {! c , (tr : t) | (clk : clock(T)) | r}

=> [zero, (tr : t . (!! c | T)) | (clk : clock(T)) | r] .

eq eagerEnabled({! c , (tr : t) | (clk : clock(T)) | r}) = true .

eq intActions({! c , (tr : t) | (clk : clock(T)) | r}) = true .

rl [Def] : { E(P), (tr : t) | (con : (sigma , E Q := f)) | r } =>

[ ([Q <- P] f), (tr : t . tau) |

(con : (sigma , E Q := f)) | r ] .

eq eagerEnabled({ E(P), (tr : t) | (con : (sigma , E Q := f)) | r })

= true .

eq intActions({ E(P), (tr : t) | (con : (sigma , E Q := f)) | r })

= true .

crl [SymV] : { f | g , (tr : t) | r}

=> [ f’ | g, (tr : t . (!! c | T)) | r’]

if { f , (tr : nil) | r}

=> [ f’ , (tr : (!! c | T)) | r’ ] .

crl [SymN1] : { f | g , (tr : t) | r} => [ f’ | g, (tr : t . tau) | r’]

if { f , (tr : nil) | r} => [ f’ , (tr : tau) | r’ ] .

crl [SymN2] : { f | g , (tr : t) | r}

=> [ f’ | g, (tr : t . h ? c | T) | r’]

if intActions({ f | g , (tr : t) | r}) =/= true
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/\ { f , (tr : nil) | r} => [ f’ , (tr : h ? c | T) | r’ ] .

crl [SymN3] : { f | g , (tr : t) | r}

=> [ f’ | g, (tr : t . M < C , h | T >) | r’]

if { f , (tr : nil) | r}

=> [ f’ , (tr : M < C , h | T >) | r’ ] .

ceq eagerEnabled({ f | g , (tr : t) | r}) = true

if eagerEnabled({ f , (tr : nil) | r}) .

ceq intActions({ f | g , (tr : t) | r}) = true

if intActions({ f , (tr : nil) | r}) .

crl [Seq1V] : { f > x > g , (tr : t) | r}

=> [ (f’ > x > g) | ([x := c] g) , (tr : (t . tau)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . (!! c | T))) | r’ ] .

crl [Seq1N1] : { f > x > g , (tr : t) | r}

=> [ f’ > x > g , (tr : (t . tau)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . tau)) | r’ ] .

crl [Seq1N2] : { f > x > g , (tr : t) | r}

=> [ f’ > x > g , (tr : (t . h ? c | T)) | r’ ]

if intActions({ f > x > g , (tr : t) | r}) =/= true

/\ { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . h ? c | T)) | r’ ] .

crl [Seq1N3] : { f > x > g , (tr : t) | r}

=> [ f’ > x > g , (tr : (t . M < C , h | T >)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . M < C , h | T >)) | r’ ] .

ceq eagerEnabled({ f > x > g , (tr : t) | r}) = true

if eagerEnabled({ f , (tr : nil) | r }) .

ceq intActions({ f > x > g , (tr : t) | r}) = true

if intActions({ f , (tr : nil) | r }) .

crl [Asym1V] : { g where x :in f , (tr : t) | r}

=> [ ([x := c] g) , (tr : (t . tau)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . !! c | T)) | r’ ] .

crl [Asym1N1] : { g where x :in f , (tr : t) | r}

=> [ g where x :in f’ , (tr : (t . tau)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . tau)) | r’ ] .

crl [Asym1N2] : { g where x :in f , (tr : t) | r}

=> [ g where x :in f’ , (tr : (t . h ? c | T)) | r’ ]
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if intActions({ g where x :in f , (tr : t) | r}) =/= true

/\ { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . h ? c | T)) | r’ ] .

crl [Asym1N3] : { g where x :in f , (tr : t) | r}

=> [ g where x :in f’ , (tr : (t . M < C , h | T >)) | r’ ]

if { f , (tr : nil) | r }

=> [ f’ , (tr : (nil . M < C , h | T >)) | r’ ] .

ceq eagerEnabled({ g where x :in f , (tr : t) | r}) = true

if eagerEnabled({ f , (tr : nil) | r }) .

ceq intActions({ g where x :in f , (tr : t) | r}) = true

if intActions({ f , (tr : nil) | r }) .

crl [Asym2V] : { g where x :in f , (tr : t) | r}

=> [ g’ where x :in f , (tr : (t . !! c | T)) | r’ ]

if { g , (tr : nil) | r }

=> [ g’ , (tr : (!! c | T)) | r’ ] .

crl [Asym2N1] : { g where x :in f , (tr : t) | r}

=> [ g’ where x :in f , (tr : (t . tau)) | r’ ]

if { g , (tr : nil) | r } => [ g’ , (tr : tau) | r’ ] .

crl [Asym2N2] : { g where x :in f , (tr : t) | r}

=> [ g’ where x :in f , (tr : (t . h ? c | T)) | r’ ]

if intActions({ g where x :in f , (tr : t) | r}) =/= true

/\ { g , (tr : nil) | r }

=> [ g’ , (tr : h ? c | T ) | r’ ] .

crl [Asym2N3] : { g where x :in f , (tr : t) | r}

=> [ g’ where x :in f , (tr : (t . M < C , h | T >)) | r’ ]

if { g , (tr : nil) | r }

=> [ g’ , (tr : M < C , h | T >) | r’ ] .

ceq eagerEnabled({ g where x :in f , (tr : t) | r}) = true

if eagerEnabled({ g , (tr : nil) | r }) .

ceq intActions({ g where x :in f , (tr : t) | r}) = true

if intActions({ g , (tr : nil) | r }) .

endm

A.1.6 Asynchronous Reduction Semantics

--- sync: traces, handle counter

mod ORC-SEMANTICS is

inc RCONF-HC .

pr SUBSTITUTION .

pr SIMRANDOM .

op initCon : DeclList -> Context .
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op [_] : Prog -> Conf .

op app : SiteName ConstList Nat -> PreConst .

op eagerEnabled : Conf -> [Bool] [frozen] .

op eagerEnabled : Expr -> [Bool] [frozen] .

op active : Expr -> [Bool] [frozen] .

var d : Decl . var D : DeclList .

var h h’ : Handle .

var M : SiteName . var c c’ : Const .

var x : Var . var ix : IVar .

var P : AParamList . var C : ConstList .

vars f f’ g g’ : Expr .

var s : Event . var t : EventList .

var n n’ m : Nat .

var E : ExprName . var Q : FParamList .

var sigma : Context .

var rho : MsgPool .

vars r r’ : Record .

vars W W’ : [Expr] . ---- #eq

eq initCon(nilD) = mt .

eq initCon(D ; d) = initCon(D) <- d .

eq [D ; f] = < f , (tr : nil) | (con : initCon(D)) | (clk : clock(0)) |

(msg : empty) | (hdl : h(0)) > .

--- error terms ---- #eq

op err : -> [Expr] .

eq err | W = err .

eq err > x > W = err .

eq W > x > err = err .

eq err where x :in W = err .

eq W where x :in err = err .

op tmph : -> Expr .

eq S:Subst tmph = tmph .

*** SiteCall

************

op scallup : Expr SiteName ConstList -> [Expr] . ---- #eq

op scalldn : Expr Handle -> Expr [frozen (1)] .

crl [SiteCall] : < f , r > => < scallup(f’, M, C) , r >

if f => scallup(f’, M, C) . ---- #eq

rl [SiteCall*] : M(C) => scallup(tmph, M, C) .

ceq scallup(f, M, C) | f’ = scallup(f | f’, M, C) if f’ =/= zero .

eq scallup(f, M, C) > x > f’ = scallup(f > x > f’, M, C) .

eq scallup(f, M, C) where x :in f’ = scallup(f where x :in f’, M, C) .
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eq f’ where x :in scallup(f, M, C) = scallup(f’ where x :in f, M, C) .

eq < scallup(f, M, C) , (tr : t) | (msg : rho) | (hdl : h(n)) | (clk : clock(m)) | r > =

< scalldn(f, h(n)) , (tr : (t . M < C , h(n) | m >)) |

(msg : rho [M, C, h(n)]) | (hdl : h(s n)) |

(clk : clock(m)) | r > .

ceq scalldn(f | f’, h) = scalldn(f, h) | scalldn(f’, h)

if f =/= zero /\ f’ =/= zero .

eq scalldn(f > x > f’, h) = scalldn(f, h) > x > scalldn(f’, h) .

eq scalldn(f where x :in f’, h) = scalldn(f, h) where x :in scalldn(f’, h) .

eq scalldn(zero, h) = zero .

eq scalldn(M(P), h) = M(P) .

eq scalldn(E(P), h) = E(P) .

eq scalldn(! ix, h) = ! ix .

eq scalldn(! c, h) = ! c .

eq scalldn(? h’, h) = ? h’ .

eq scalldn(tmph, h) = ? h .

--- error terms

ceq scallup(W, M, C) = err if W :: Expr == false .

ceq scallup(f, M, C) | W = err if W :: Expr == false .

ceq scallup(f, M, C) > x > W = err if W :: Expr == false .

ceq scallup(f, M, C) where x :in W = err if W :: Expr == false .

ceq W where x :in scallup(f, M, C) = err if W :: Expr == false .

ceq scalldn(W, h) = err if W :: Expr == false .

*** SiteRet

***********

op sret : Expr Const Handle -> Expr [frozen(1)] .

op _in_ : Handle Expr -> Bool [frozen (2)] .

crl [SiteRet] : < f , (tr : t) | (msg : (rho [self, c, h])) | (clk : clock(m)) | r >

=> < sret(f, c, h) , (tr : (t . h ? c | m)) |

(msg : rho) | (clk : clock(m)) | r >

if h in f .

ceq sret(f | f’, c, h) = sret(f, c, h) | sret(f’, c, h)

if f =/= zero /\ f’ =/= zero .

eq sret(f > x > f’, c, h) = sret(f, c, h) > x > sret(f’, c, h) .

eq sret(f where x :in f’, c, h) = sret(f, c, h) where x :in sret(f’, c, h) .

eq sret(zero, c, h) = zero .

eq sret(M(P), c, h) = M(P) .

eq sret(E(P), c, h) = E(P) .

eq sret(! ix, c, h) = ! ix .

eq sret(! c’, c, h) = ! c’ .

eq sret(? h(n’), c, h(n)) = if (n’ == n) then ! c else ? h(n’) fi .

---- error terms
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ceq sret(W, c, h) = err if W :: Expr == false .

ceq h in (f | f’) = h in f or h in f’

if f =/= zero /\ f’ =/= zero .

eq h in (f > x > f’) = h in f .

eq h in (f where x :in f’) = h in f or h in f’ .

eq h in zero = false .

eq h in M(P) = false .

eq h in E(P) = false .

eq h in ! ix = false .

eq h in ! c = false .

eq h(n) in ? h(n’) = if (n’ == n) then true else false fi .

*** Pub

*******

op pub : Expr Const -> [Expr] .

op pubTau : Expr -> [Expr] .

crl [Pub] : < f, r > => < pub(f’, c) , r > if f => pub(f’, c) .

crl [PubTau] : < f, r > => < pubTau(f’) , r > if f => pubTau(f’) .

rl [Pub*] : ! c => pub(zero, c) .

ceq pub(f, c) | f’ = pub(f | f’, c) if f’ =/= zero .

eq pub(f, c) > x > f’ = pubTau(f > x > f’ | ([x := c] f’)) .

eq pub(f, c) where x :in f’ = pub(f where x :in f’, c) .

eq f’ where x :in pub(f, c) = pubTau([x := c] f’) .

ceq pubTau(f) | f’ = pubTau(f | f’) if f’ =/= zero .

eq pubTau(f) > x > f’ = pubTau(f > x > f’) .

eq pubTau(f) where x :in f’ = pubTau(f where x :in f’) .

eq f’ where x :in pubTau(f) = pubTau(f’ where x :in f) .

eq < pub(f, c) , (tr : t) | (clk : clock(m)) | r > =

< f , (tr : t . (!! c | m)) | (clk : clock(m)) | r > .

eq < pubTau(f) , (tr : t) | r > = < f , (tr : t . tau) | r > .

---- error terms

ceq pub(W, c) = err if W :: Expr == false .

ceq pub(f, c) | W = err if W :: Expr == false .

ceq pub(f, c) > x > W = err if W :: Expr == false .

ceq pub(f, c) where x :in W = err if W :: Expr == false .

ceq W where x :in pub(f, c) = err if W :: Expr == false .

ceq pubTau(W) = err if W :: Expr == false .

ceq pubTau(f) | W = err if W :: Expr == false .

ceq pubTau(f) > x > W = err if W :: Expr == false .

ceq pubTau(f) where x :in W = err if W :: Expr == false .

ceq W where x :in pubTau(f) = err if W :: Expr == false .
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*** Expr Call

*************

op ecallup : Expr ExprName AParamList -> [Expr] .

op ecalldn : Expr Expr -> Expr [frozen] .

crl [ExprCall] : < f , r > => < ecallup(f’, E, P) , r > if f => ecallup(f’, E, P) .

rl [ExprCall*] : E(P) => ecallup(tmph, E, P) .

ceq ecallup(f, E, P) | f’ = ecallup(f | f’, E, P) if f’ =/= zero .

eq ecallup(f, E, P) > x > f’ = ecallup(f > x > f’, E, P) .

eq ecallup(f, E, P) where x :in f’ = ecallup(f where x :in f’, E, P) .

eq f’ where x :in ecallup(f, E, P) = ecallup(f’ where x :in f, E, P) .

eq < ecallup(f, E, P) , (tr : t) | (con : (sigma , E Q := g)) | r > =

< ecalldn(f, ([Q <- P] g)) , (tr : t . tau) | (con : (sigma , E Q := g)) | r > .

ceq ecalldn(f | f’, g) = ecalldn(f, g) | ecalldn(f’, g)

if f =/= zero /\ f’ =/= zero .

eq ecalldn(f > x > f’, g) = ecalldn(f, g) > x > ecalldn(f’, g) .

eq ecalldn(f where x :in f’, g) = ecalldn(f, g) where x :in ecalldn(f’, g) .

eq ecalldn(zero, g) = zero .

eq ecalldn(M(P), g) = M(P) .

eq ecalldn(E(P), g) = E(P) .

eq ecalldn(! ix, g) = ! ix .

eq ecalldn(! c, g) = ! c .

eq ecalldn(? h, g) = ? h .

eq ecalldn(tmph, g) = g .

---- error terms

ceq ecallup(W, E, P) = err if W :: Expr == false .

ceq ecallup(f, E, P) | W = err if W :: Expr == false .

ceq ecallup(f, E, P) > x > W = err if W :: Expr == false .

ceq ecallup(f, E, P) where x :in W = err if W :: Expr == false .

ceq W where x :in ecallup(f, E, P) = err if W :: Expr == false .

ceq ecalldn(W, g) = err if W :: Expr == false .

---- simulating responses

ceq [M, C, h] = [self, app(M, C, rand), h] if M =/= self .

*** Active Expressions

ceq active(f | f’) = active(f) == true or active(f’) == true

if f =/= zero /\ f’ =/= zero .

eq active(f > x > f’) = active(f) .

eq active(f where x :in f’) = active(f) == true or active(f’) == true .

eq active(M(C)) = true .

eq active(! c) = true .

eq active(E(P)) = true .
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*** Eager Configurations

ceq eagerEnabled(< f , (msg : (rho [self, c, h])) | r >) = true if h in f .

ceq eagerEnabled(< f , r >) = true if active(f) .

endm

A.1.7 Synchronous Reduction Semantics

Other than the change noted in section 6.3 for the site return rule, the syn-
chronous reduction semantics specification is the same as the one for the asyn-
chronous semantics given in Appendix A.1.6 above.

A.1.8 Sites and Timing

--- STANDARD SITES

mod SIGNAL-SITE is

inc ORC-SEMANTICS .

op signal : -> SiteName [ctor] .

eq app(signal, nilA, n:Nat) = sig .

endm

mod IF-SITE is

inc ORC-SEMANTICS .

op if : -> SiteName [ctor] .

eq app(if, tr(true), 0) = sig .

endm

mod LET-SITE is

inc ORC-SEMANTICS .

op let : -> SiteName [ctor] .

eq app(let, c:Const, n:Nat) = c:Const .

eq app(let, C:ConstList, n:Nat) = tup(C:ConstList) [owise] .

endm

mod CLOCK-SITE is

inc ORC-SEMANTICS .

op clock : -> SiteName [ctor] .

var f : Expr . var r : Record .

var rho : MsgPool . vars n m : Nat .

var h : Handle .

eq < f , r | (msg : (rho [self, app(clock, nilA, n), h])) | (clk : clock(m)) > =

< f , r | (msg : (rho [self, m, h])) | (clk : clock(m)) > .

endm

mod ATIMER-SITE is

inc ORC-SEMANTICS .

op atimer : -> SiteName [ctor] .
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var f : Expr . var r : Record .

var rho : MsgPool . vars n m m’ : Nat .

var h : Handle .

ceq < f , r | (msg : (rho [self, app(atimer, m, n), h])) | (clk : clock(m’)) > =

< f , r | (msg : (rho [self, sig, h])) | (clk : clock(m’)) > if m == m’ .

endm

mod RTIMER-SITE is

inc ORC-SEMANTICS .

op rtimer : -> SiteName [ctor] .

eq app(rtimer, 0, n:Nat) = sig .

endm

*** NON-STANDARD SITES

mod ARITHMETIC-SITES is

inc ORC-SEMANTICS .

ops add sub mul div : -> SiteName [ctor] .

vars m n : Nat .

eq app(add, (n, m), 0) = n + m .

eq app(sub, (n, m), 0) = if m < n then n - m else 0 fi .

eq app(mul, (n, m), 0) = n * m .

eq app(div, (n, m), 0) = if m > 0 then n quo m else 0 fi .

endm

mod BINRELATION-SITES is

inc ORC-SEMANTICS .

ops lt gt le ge eq ne : -> SiteName [ctor] .

vars m n : Nat .

eq app(lt, (n, m), 0) = tr(n < m) .

eq app(gt, (n, m), 0) = tr(n > m) .

eq app(le, (n, m), 0) = tr(n <= m) .

eq app(ge, (n, m), 0) = tr(n >= m) .

eq app(eq, (n, m), 0) = tr(n == m) .

eq app(ne, (n, m), 0) = tr(n =/= m) .

endm

mod LOGICAL-SITES is

inc ORC-SEMANTICS .

ops not and or : -> SiteName [ctor] .

vars B B’ : Bool .

eq app(not, tr(B), 0) = tr(not B) .

eq app(and, (tr(B), tr(B’)), 0) = tr(B and B’) .

eq app(or, (tr(B), tr(B’)), 0) = tr(B or B’) .

endm

mod TUPLE-SITES is

inc ORC-SEMANTICS .

ops head tail empty : -> SiteName [ctor] .

var c : Const . var C : ConstList .
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eq app(head, tup(c,C), 0) = c .

eq app(tail, tup(c,C), 0) = C .

eq app(empty, tup(nilA), 0) = tr(true) .

eq app(empty, tup(c,C), 0) = tr(false) .

endm

mod RT-SEMANTICS is

inc SIGNAL-SITE .

inc IF-SITE .

inc LET-SITE .

inc CLOCK-SITE .

inc ATIMER-SITE .

inc RTIMER-SITE .

inc ARITHMETIC-SITES .

inc BINRELATION-SITES .

inc LOGICAL-SITES .

inc TUPLE-SITES .

var h : Handle . var n m : Nat . var fld : Field . var Msg : Msg .

var M : SiteName . var c : Const . var C : ConstList .

var rho : MsgPool . var r : Record . var f : Expr .

crl [Tick] : < f, (clk : clock(m)) | r > => < f, (clk : clock(s m)) | delta(r) >

if eagerEnabled(< f, (clk : clock(m)) | r >) =/= true .

op delta : Record -> Record .

op delta : MsgPool -> MsgPool .

eq delta(null) = null .

ceq delta(fld | r) = delta(fld) | delta(r) if r =/= null .

eq delta(msg : rho) = msg : delta(rho) .

eq delta(fld) = fld [owise] .

eq delta(empty) = empty .

ceq delta(Msg rho) = delta(Msg) delta(rho) if rho =/= empty .

eq delta([self,app(rtimer, s(n), m), h]) = [self, app(rtimer, n, m), h] . --- ignore delay

eq delta([self,app(M, C, s(n)), h]) = [self, app(M, C, n), h] .

eq delta([self,app(M, C, 0), h]) = [self, app(M, C, 0), h] .

--- needed for the case when a site doesn’t respond

eq delta([M,C,h]) = [M,C,h] [owise] .

endm

A.1.9 Dining Philosophers Specification

mod SiteNameSet is

inc RT-SEMANTICS .

sort SiteNameSet .

subsort SiteName < SiteNameSet .

op mts : -> SiteNameSet [ctor] .

88



op _._ : SiteNameSet SiteNameSet -> SiteNameSet [ctor assoc comm

id: mts] .

op _in_ : SiteName SiteNameSet -> Bool .

var M : SiteName .

var MX : SiteNameSet .

eq M in M . MX = true .

eq M in MX = false [owise] .

endm

mod DINING-PHILOSOPHERS is

inc SiteNameSet .

--- sites syntax

op eat : -> SiteName [ctor] .

op fork[_] : Nat -> SiteName [ctor] .

--- new constants

ops put get : -> Const [ctor] .

--- extension of configurations

op t-forks : -> Index [ctor] .

op _:_ : Index SiteNameSet -> Field [ctor] .

--- dining philosophers sites behavior

var f : Expr . var r : Record .

var rho : MsgPool . var h : Handle .

vars i m n : Nat .

var MX : SiteNameSet .

--- fork get request

ceq < f , r | (msg : (rho [self, app(fork[i], get, 0), h])) |

(t-forks : MX) > =

< f , r | (msg : (rho [self, sig, h])) | (t-forks : MX . fork[i]) >

if not (fork[i] in MX) .

--- fork put request

eq < f , r | (msg : (rho [self, app(fork[i], put, 0), h])) |

(t-forks : MX . fork[i]) > =

< f , r | (msg : (rho [self, sig, h])) | (t-forks : MX) > .

--- eat request

eq app(eat, nilA, 0) = sig .

endm

mod DF-PROGRAM is

89



inc DINING-PHILOSOPHERS .

--- philosopher expression names

op phil[_] : Nat -> ExprName [ctor] .

--- construct an Orc program with the given number of philosophers

op df : NzNat -> Prog .

op df-decl : Nat NzNat -> DeclList .

op df-df : NzNat -> Prog .

op df-decl-df : Nat NzNat -> DeclList .

op df-exp : Nat -> Expr .

var n : NzNat .

var m : Nat .

ceq df(n) = df-decl(n - 1,n) ; df-exp(n - 1) if n > 1 .

eq df-exp(s(m)) = phil[s(m)]() | df-exp(m) .

eq df-exp(0) = phil[0]() .

eq df-decl(s(m), n) = phil[s(m)] nilF :=

fork[s(m)](get) > ’vt > fork[(s(m) + 1) rem n](get) > ’vt >

eat() > ’vt >

fork[s(m)](put) > ’vt > fork[(s(m) + 1) rem n](put) > ’vt >

phil[s(m)]() ; df-decl(m, n) .

eq df-decl(0, n) = phil[0] nilF :=

fork[0](get) > ’vt > fork[1](get) > ’vt >

eat() > ’vt >

fork[0](put) > ’vt > fork[1](put) > ’vt >

phil[0]() .

ceq df-df(n) = df-decl-df(n - 1,n) ; df-exp(n - 1) if n > 1 .

eq df-decl-df(s(m), n) = phil[s(m)] nilF :=

fork[s(m)](get) > ’vt > fork[(s(m) + 1) rem n](get) > ’vt >

eat() > ’vt >

fork[s(m)](put) > ’vt > fork[(s(m) + 1) rem n](put) > ’vt >

phil[s(m)]() ; df-decl-df(m, n) .

eq df-decl-df(0, n) = phil[0] nilF :=

fork[1](get) > ’vt > fork[0](get) > ’vt >

eat() > ’vt >

fork[0](put) > ’vt > fork[1](put) > ’vt >

phil[0]() .

var f : Expr . var D : DeclList .

--- constructs an initial configuration for the df problem with the

--- trace field
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op {_} : Prog -> Conf .

eq {D ; f} = < f , (tr : nil) | (con : initCon(D)) | (clk : clock(0)) |

(msg : empty) | (hdl : mth) | (t-forks : mts) > .

--- constructs an initial configuration for the df problem *without*

--- the trace field

op {_}* : Prog -> Conf .

eq {D ; f}* = < f , (con : initCon(D)) | (clk : clock(0)) |

(msg : empty) | (hdl : mth) | (t-forks : mts) > .

endm

mod DF-PREDS is

pr DF-PROGRAM .

inc SATISFACTION .

subsort Conf < State .

op enabled : -> Prop .

op eats : Nat -> Prop .

var C : Conf .

var i : Nat .

vars x x’ : Var .

vars f f’ : Expr .

var r : Record .

ceq < f , r > |= enabled = true if eagerEnabled(< f , r >) .

eq < (eat() > x > f) > x’ > phil[i]() | f’, r > |= eats(i) = true .

endm

mod DF-CHECK is

pr DF-PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

op init : -> Conf .

op rel-excl : NzNat -> Formula .

op re : Nat NzNat -> Formula .

op no-deadlock : -> Formula .

var n : NzNat .

var m : Nat .

eq rel-excl(n) = [] re(n - 1, n) .

eq re(s(m), n) = ~(eats(s(m)) /\ eats((s(m) + 1) rem n)) /\ re(m,n) .

eq re(0, n) = ~(eats(0) /\ eats(1)) .

eq no-deadlock = [] enabled .

endm
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A.2 The Distributed Object-based Semantics

A.2.1 Syntax and CINNI Substitution Calculus

See appendices A.1.1 and A.1.2.

A.2.2 Objects and Messages

fmod CLOCK is

pr NAT .

sort ClockAttr .

op halt : -> ClockAttr [ctor] .

op c : Nat -> ClockAttr [ctor] .

eq c(20) = halt . --- finite state clock

endfm

mod ORC-CLOCK is

pr CLOCK .

inc CONFIGURATION .

op Clock : -> Cid [ctor] .

op clk:_ : ClockAttr -> Attribute [ctor gather (&)] .

ops C1 : -> Oid [ctor] .

endm

fmod HANDLE-SET is

pr ORC-EXTENDED-SYNTAX .

sort HandleSet .

subsort Handle < HandleSet .

op mth : -> HandleSet [ctor] .

op _#_ : HandleSet HandleSet -> HandleSet [ctor assoc comm id: mth] .

vars h h’ : Handle .

vars H : HandleSet .

var n : Nat .

vars f f’ : Expr .

var M : SiteName . var E : ExprName . var u : Builtin .

var P : AParamList .

var ix : IVar . var x : Var . var c : Const .

eq h # h # H = h # H .

op _usedin_ : Handle HandleSet -> Bool .

eq h usedin (h’ # H) = h == h’ or h usedin H .

eq h usedin mth = false .

op gFresh : HandleSet -> Handle .
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op gFreshAux : HandleSet Handle -> Handle .

eq gFresh(H) = gFreshAux(H, h(0)) .

eq gFreshAux(H, h(n)) = if h(n) usedin H

then gFreshAux(H, h(s n))

else h(n) fi .

op handles : Expr -> HandleSet [frozen (1)] .

ceq handles(f | f’) = handles(f) # handles(f’)

if f =/= zero /\ f’ =/= zero .

eq handles(f > x > f’) = handles(f) # handles(f’) .

eq handles(f where x :in f’) = handles(f) # handles(f’) .

eq handles(zero) = mth .

eq handles(M(P)) = mth .

eq handles(E(P)) = mth .

eq handles(u(P)) = mth .

eq handles(ix(P)) = mth .

eq handles(! ix) = mth .

eq handles(! c) = mth .

eq handles(? h) = h .

endfm

fmod CONTEXT is

protecting ORC-EXTENDED-SYNTAX .

sort Context .

subsort Decl < Context .

op mt : -> Context [ctor] .

op _,_ : Context Context -> Context [ctor assoc comm id: mt prec 42] .

op _<-_ : Context Decl -> Context [ctor prec 45 gather (E e)] .

var E : ExprName .

var f f’ : Expr .

var sigma : Context .

var d : Decl .

var Q Q’ : FParamList .

eq E Q := f , sigma <- E Q’ := f’ = E Q’ := f’ , sigma .

eq sigma <- d = d , sigma [owise] .

endfm

mod ORC-EXPR is

pr ORC-EXTENDED-SYNTAX .

pr HANDLE-SET .

pr CONTEXT .

inc CONFIGURATION .

op Expr : -> Cid [ctor] .

op E : Nat -> Oid [ctor] .
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op exp:_ : Expr -> Attribute [ctor gather (&) frozen] . ----#eq

op con:_ : Context -> Attribute [ctor gather (&)] .

op hdl:_ : HandleSet -> Attribute [ctor gather (&)] .

endm

mod ORC-SITE is

pr ORC-EXTENDED-SYNTAX .

inc CONFIGURATION .

sorts Op OState .

op free : -> Op [ctor] .

op exec : ConstList Handle Oid -> Op .

op nil : -> OState [ctor] .

op __ : OState OState -> OState [ctor assoc id: nil] .

op Site : -> Cid [ctor] .

op name:_ : SiteName -> Attribute [ctor gather (&)] .

op op:_ : Op -> Attribute [ctor gather (&)] .

op state:_ : OState -> Attribute [ctor gather (&)] .

--- standard sites

ops S : Nat -> Oid [ctor] .

ops let if clock rtimer atimer signal : -> SiteName [ctor] .

endm

mod ORC-MESSAGE is

pr ORC-EXTENDED-SYNTAX .

inc CONFIGURATION .

sort Content .

op _<-_ : Oid Content -> Msg [ctor prec 15] .

op _<-_ : SiteName Content -> Msg [ctor prec 15] .

op sr : Const Handle Nat -> Content [ctor] .

op sc : Oid ConstList Handle Nat -> Content [ctor] .

endm

A.2.3 Distributed Semantics

mod SIMCOUNTER is

pr NAT .
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op counter : -> [Nat] .

rl [count] : counter => s(counter) .

rl [eval] : counter => 0 .

eq s_^5(counter) = counter . --- finite state counter

endm

mod ORC-RWSEM is

pr ORC-EXPR .

pr ORC-SITE .

pr ORC-CLOCK .

pr ORC-MESSAGE .

pr SUBSTITUTION .

pr RANDOM .

pr SIMCOUNTER .

pr RAT .

pr CONVERSION .

sort System .

var OE OS OT OC : Oid .

vars AS AS’ : AttributeSet .

vars CF CF’ : Configuration .

var d : Decl . var D : DeclList .

var h h’ : Handle . var H H’ : HandleSet .

var M : SiteName . var c c’ : Const .

var x : Var . var ix : IVar .

var P : AParamList . var C : ConstList .

vars f f’ g g’ : Expr .

var n n’ m : Nat .

var E : ExprName . var Q : FParamList .

var sigma : Context .

var u : Builtin .

vars W W’ : [Expr] . ---- #eq

op {_} : Configuration -> System [ctor] .

op active : Expr -> [Bool] [frozen] .

op eagerEnabled : System -> [Bool] [frozen] .

op rand : -> [Nat] .

---rl [rnd] : rand => floor((random(counter) / 4294967296) * 10) .

eq rand = 0 .

--- error terms

op err : -> [Expr] .

eq err | W = err .

eq err > x > W = err .

eq W > x > err = err .

eq err where x :in W = err .

eq W where x :in err = err .
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*** SiteCall

************

op scallup : Expr SiteName ConstList -> [Expr] .

op scalldn : Expr Handle -> Expr [frozen (1)] .

op tmph : -> Expr .

eq S:Subst tmph = tmph .

crl [SiteCall] : < OE : Expr | exp: f , AS >

=> < OE : Expr | exp: scallup(f’, M, C) , AS >

if f => scallup(f’, M, C) . ---- #eq

rl [SiteCall*] : M(C) => scallup(tmph, M, C) .

ceq scallup(f, M, C) | f’ = scallup(f | f’, M, C) if f’ =/= zero .

eq scallup(f, M, C) > x > f’ = scallup(f > x > f’, M, C) .

eq scallup(f, M, C) where x :in f’ = scallup(f where x :in f’, M, C) .

eq f’ where x :in scallup(f, M, C) = scallup(f’ where x :in f, M, C) .

ceq < OE : Expr | exp: scallup(f, M, C) , hdl: H , AS >

= < OE : Expr | exp: scalldn(f, h) , hdl: h # H , AS >

M <- sc(OE, C, h, 0)

if h := gFresh(H) .

ceq scalldn(f | f’, h) = scalldn(f, h) | scalldn(f’, h)

if f =/= zero /\ f’ =/= zero .

eq scalldn(f > x > f’, h) = scalldn(f, h) > x > scalldn(f’, h) .

eq scalldn(f where x :in f’, h) = scalldn(f, h) where x :in scalldn(f’, h) .

eq scalldn(zero, h) = zero .

eq scalldn(M(P), h) = M(P) .

eq scalldn(E(P), h) = E(P) .

eq scalldn(u(P), h) = u(P) .

eq scalldn(ix(P), h) = ix(P) . ---- newly added

eq scalldn(! ix, h) = ! ix .

eq scalldn(! c, h) = ! c .

eq scalldn(? h’, h) = ? h’ .

eq scalldn(tmph, h) = ? h .

--- error terms

ceq scallup(W, M, C) = err if W :: Expr == false .

ceq scallup(f, M, C) | W = err if W :: Expr == false .

ceq scallup(f, M, C) > x > W = err if W :: Expr == false .

ceq scallup(f, M, C) where x :in W = err if W :: Expr == false .

ceq W where x :in scallup(f, M, C) = err if W :: Expr == false .

ceq scalldn(W, h) = err if W :: Expr == false .

*** SiteRet

***********

op sret : Expr Const Handle -> Expr [frozen(1)] .

op _in_ : Handle Expr -> Bool [frozen (2)] .
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crl [SiteRet] : OE <- sr(c, h, 0)

< OE : Expr | exp: f , hdl: h # H , AS >

=> < OE : Expr | exp: sret(f, c, h) , hdl: H , AS >

if h in f .

ceq sret(f | f’, c, h) = sret(f, c, h) | sret(f’, c, h)

if f =/= zero /\ f’ =/= zero .

eq sret(f > x > f’, c, h) = sret(f, c, h) > x > sret(f’, c, h) .

eq sret(f where x :in f’, c, h) = sret(f, c, h) where x :in sret(f’, c, h) .

eq sret(zero, c, h) = zero .

eq sret(M(P), c, h) = M(P) .

eq sret(E(P), c, h) = E(P) .

eq sret(ix(P), c, h) = ix(P) . ---- newly added

eq sret(u(P), c, h) = u(P) .

eq sret(! ix, c, h) = ! ix .

eq sret(! c’, c, h) = ! c’ .

eq sret(? h(n’), c, h(n)) = if (n’ == n) then ! c else ? h(n’) fi .

---- error terms

ceq sret(W, c, h) = err if W :: Expr == false .

ceq h in (f | f’) = h in f or h in f’

if f =/= zero /\ f’ =/= zero .

eq h in (f > x > f’) = h in f .

eq h in (f where x :in f’) = h in f or h in f’ .

eq h in zero = false .

eq h in M(P) = false .

eq h in E(P) = false .

eq h in u(P) = false .

eq h in ix(P) = false . ---- newly added

eq h in ! ix = false .

eq h in ! c = false .

eq h(n) in ? h(n’) = if (n’ == n) then true else false fi .

*** Pub

*******

op pub : Expr Const -> [Expr] .

op pubTau : Expr -> [Expr] .

crl [Pub] : < OE : Expr | exp: f, AS >

=> < OE : Expr | exp: pub(f’, c) , AS > if f => pub(f’, c) .

crl [PubTau] : < OE : Expr | exp: f, AS >

=> < OE : Expr | exp: pubTau(f’) , AS > if f => pubTau(f’) .

rl [Pub*] : ! c => pub(zero, c) .

ceq pub(f, c) | f’ = pub(f | f’, c) if f’ =/= zero .

eq pub(f, c) > x > f’ = f > x > f’ | ([x := c] f’) .

eq pub(f, c) where x :in f’ = pub(f where x :in f’, c) .

eq f’ where x :in pub(f, c) = [x := c] f’ .
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eq < OE : Expr | exp: pub(f, c) , AS >

= < OE : Expr | exp: f , AS > .

ceq pubTau(f) | f’ = pubTau(f | f’) if f’ =/= zero .

eq pubTau(f) > x > f’ = pubTau(f > x > f’) .

eq pubTau(f) where x :in f’ = pubTau(f where x :in f’) .

eq f’ where x :in pubTau(f) = pubTau(f’ where x :in f) .

eq < OE : Expr | exp: pubTau(f) , AS > = < OE : Expr | exp: f , AS > .

---- error terms

ceq pub(W, c) = err if W :: Expr == false .

ceq pub(f, c) | W = err if W :: Expr == false .

ceq pub(f, c) > x > W = err if W :: Expr == false .

ceq pub(f, c) where x :in W = err if W :: Expr == false .

ceq W where x :in pub(f, c) = err if W :: Expr == false .

ceq pubTau(W) = err if W :: Expr == false .

ceq pubTau(f) | W = err if W :: Expr == false .

ceq pubTau(f) > x > W = err if W :: Expr == false .

ceq pubTau(f) where x :in W = err if W :: Expr == false .

ceq W where x :in pubTau(f) = err if W :: Expr == false .

*** Expr Call

*************

op ecallup : Expr ExprName AParamList -> [Expr] .

op ecalldn : Expr Expr -> Expr [frozen] .

crl [ExprCall] : < OE : Expr | exp: f , AS >

=> < OE : Expr | exp: ecallup(f’, E, P) , AS >

if f => ecallup(f’, E, P) .

rl [ExprCall*] : E(P) => ecallup(tmph, E, P) .

ceq ecallup(f, E, P) | f’ = ecallup(f | f’, E, P) if f’ =/= zero .

eq ecallup(f, E, P) > x > f’ = ecallup(f > x > f’, E, P) .

eq ecallup(f, E, P) where x :in f’ = ecallup(f where x :in f’, E, P) .

eq f’ where x :in ecallup(f, E, P) = ecallup(f’ where x :in f, E, P) .

eq < OE : Expr | exp: ecallup(f, E, P) , con: (sigma , E Q := g) , AS > =

< OE : Expr | exp: ecalldn(f, ([Q <- P] g)) , con: (sigma , E Q := g) , AS > .

ceq ecalldn(f | f’, g) = ecalldn(f, g) | ecalldn(f’, g)

if f =/= zero /\ f’ =/= zero .

eq ecalldn(f > x > f’, g) = ecalldn(f, g) > x > ecalldn(f’, g) .

eq ecalldn(f where x :in f’, g) = ecalldn(f, g) where x :in ecalldn(f’, g) .

eq ecalldn(zero, g) = zero .

eq ecalldn(M(P), g) = M(P) .

eq ecalldn(E(P), g) = E(P) .

eq ecalldn(u(P), g) = u(P) .
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eq ecalldn(ix(P), g) = ix(P) . ---- newly added

eq ecalldn(! ix, g) = ! ix .

eq ecalldn(! c, g) = ! c .

eq ecalldn(? h, g) = ? h .

eq ecalldn(tmph, g) = g .

---- error terms

ceq ecallup(W, E, P) = err if W :: Expr == false .

ceq ecallup(f, E, P) | W = err if W :: Expr == false .

ceq ecallup(f, E, P) > x > W = err if W :: Expr == false .

ceq ecallup(f, E, P) where x :in W = err if W :: Expr == false .

ceq W where x :in ecallup(f, E, P) = err if W :: Expr == false .

ceq ecalldn(W, g) = err if W :: Expr == false .

*** Site consuming a call

eq M <- sc(OE, C, h, 0) < OS : Site | name: M , op: free, AS >

= < OS : Site | name: M , op: exec(C, h, OE) , AS > .

*** Remove suprious responses

----ceq < OE : Expr | hdl: H , AS > OE <- sr(c, h, n)

---- = < OE : Expr | hdl: H , AS > if not(h usedin H) .

*** Active Expressions

ceq active(f | f’) = active(f) == true or active(f’) == true

if f =/= zero /\ f’ =/= zero .

eq active(f > x > f’) = active(f) .

eq active(f where x :in f’) = active(f) == true or active(f’) == true .

eq active(M(C)) = true .

eq active(! c) = true .

eq active(E(P)) = true .

*** Eager Systems

ceq eagerEnabled({OE <- sr(c, h, 0)

< OE : Expr | exp: f , AS > CF}) = true

if h in f .

eq eagerEnabled({M <- sc(OE, C, h, 0) < OS : Site | name: M , op: free, AS > CF}) = true .

ceq eagerEnabled({< OE : Expr | exp: f , AS > CF}) = true if active(f) .

endm

mod ORC-SITES is

inc ORC-RWSEM .

var OE OS OT OC : Oid .

vars AS AS’ : AttributeSet .

vars CF CF’ : Configuration .

var d : Decl . var D : DeclList .
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var h h’ : Handle . var H : HandleSet .

var M : SiteName . var c c’ : Const .

var x : Var . var ix : IVar .

var P : AParamList . var C : ConstList .

vars f f’ g g’ : Expr .

var n n’ m t t’ : Nat .

var E : ExprName . var Q : FParamList .

var sigma : Context .

--- ops to setup initial configuration

op initCon : DeclList -> Context .

op [_:_] : Oid Prog -> Configuration .

op stdSites : -> Configuration .

op initClk : -> Configuration .

op $_$ : Configuration -> System .

eq initCon(nilD) = mt .

eq initCon(D ; d) = initCon(D) <- d .

eq [OE : D ; f] = < OE : Expr |

exp: f , con: initCon(D) , hdl: mth > .

eq stdSites = < S(1) : Site | name: let ,op: free , state: nil >

< S(2) : Site | name: if , op: free , state: nil >

< S(3) : Site | name: clock , op: free , state: nil >

< S(4) : Site | name: rtimer , op: free , state: nil >

< S(5) : Site | name: atimer , op: free , state: nil >

< S(6) : Site | name: signal , op: free , state: nil > .

eq initClk = < C1 : Clock | clk: c(0) > .

eq $ CF $ = {CF stdSites initClk} .

--- standard sites behavior

--- let

eq < OS : Site | name: let, op: exec(c, h, OE) , AS > =

< OS : Site | name: let , op: free , AS >

OE <- sr(c, h, rand) .

eq < OS : Site | name: let, op: exec(C, h, OE) , AS > =

< OS : Site | name: let , op: free , AS >

OE <- sr(tup(C), h, rand) [owise] .

--- if

eq < OS : Site | name: if, op: exec(tr(true), h, OE) , AS > =

< OS : Site | name: if , op: free , AS >

OE <- sr(sig, h, rand) .

eq < OS : Site | name: if, op: exec(tr(false), h, OE) , AS > =

< OS : Site | name: if , op: free , AS > .
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--- clock

eq < OS : Site | name: clock, op: exec(nilA, h, OE) , AS > < OC : Clock | clk: c(t) > =

< OS : Site | name: clock , op: free , AS > < OC : Clock | clk: c(t) >

OE <- sr(t, h, 0) .

--- rtimer

eq < OS : Site | name: rtimer, op: exec(n, h, OE) , AS > =

< OS : Site | name: rtimer , op: free , AS >

OE <- sr(sig, h, n) .

--- atimer

eq < OS : Site | name: atimer, op: exec(t, h, OE) , AS > < OC : Clock | clk: c(t’) > =

< OS : Site | name: atimer , op: free , AS > < OC : Clock | clk: c(t’) >

OE <- sr(sig, h, t - t’) .

--- signal

eq < OS : Site | name: signal, op: exec(nilA, h, OE) , AS > =

< OS : Site | name: signal , op: free , AS >

OE <- sr(sig, h, 0) .

---- silent sites

eq if(tr(false)) = zero .

endm

mod ORC-RWTIME is

inc ORC-SITES .

var OE OS OT OC : Oid .

vars AS AS’ : AttributeSet .

vars CF CF’ : Configuration .

var h : Handle .

var M : SiteName . var c c’ : Const .

var C : ConstList . var t d : Nat .

var o : Object . var m : Msg .

op delta : Configuration -> Configuration [frozen] .

crl [tick] :

{< OC : Clock | clk: c(t) , AS > CF} =>

{< OC : Clock | clk: c(s(t)) , AS > delta(CF)}

if eagerEnabled({< OC : Clock | clk: c(t) , AS > CF}) =/= true .

eq delta(none) = none .

ceq delta(o CF) = delta(o) delta(CF) if CF =/= none .

ceq delta(m CF) = delta(m) delta(CF) if CF =/= none .

eq delta(< OS : Site | name: rtimer , op: exec(s(d), h, OE), AS >) =

< OS : Site | name: rtimer , op: exec(d, h, OE), AS > .

eq delta(M <- sc(OE, C, h, s(d))) = M <- sc(OE, C, h, d) .
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eq delta(OE <- sr(c, h, s(d))) = OE <- sr(c, h, d) .

eq delta(o) = o [owise] .

eq delta(m) = m [owise] .

endm

A.2.4 Non-standard Sites and Examples

mod ORC-INTERFACE is

inc ORC-RWTIME .

op get : -> Const [ctor] .

op put : -> Const [ctor] .

endm

mod ORC-COUNTER-SITE is

inc ORC-INTERFACE .

ops inc reset : -> Const [ctor] .

vars OS OE OE’ : Oid .

vars n i : Nat .

vars h : Handle .

var AS : AttributeSet .

****************

*** Counter Site

op SCNT : -> Oid [ctor] .

op count : -> SiteName [ctor] .

op count : Nat -> OState [ctor] .

*** increment message

eq < OS : Site | name: count, op: exec(inc, h, OE) , state: count(n) , AS > =

< OS : Site | name: count , op: free , state: count(s(n)) , AS >

OE <- sr(sig, h, 0) .

*** get message

eq < OS : Site | name: count, op: exec(get, h, OE) , state: count(n) , AS > =

< OS : Site | name: count , op: free , state: count(n) , AS >

OE <- sr(n, h, 0) .

*** reset message

eq < OS : Site | name: count, op: exec(reset, h, OE) , state: count(n) , AS > =

< OS : Site | name: count , op: free , state: count(0) , AS >

OE <- sr(sig, h, 0) .

endm

mod ORC-DF-SITE is

inc ORC-INTERFACE .

vars OS OE OE’ : Oid .

vars n i : Nat .
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vars h h’ h’’ : Handle .

var AS : AttributeSet .

var OL : OState .

************

*** Eat Site

ops SE1 SE2 SE3 SE4 : -> Oid [ctor] .

ops eat : Nat -> SiteName [ctor] .

*** eat message

eq < OS : Site | name: eat(i), op: exec(nilA, h, OE) , AS > =

< OS : Site | name: eat(i) , op: free , AS >

OE <- sr(sig, h, 0) .

**************

*** Fork Sites

ops SF1 SF2 SF3 SF4 : -> Oid [ctor] .

op fork : Nat -> SiteName [ctor] .

---ops fork1 fork2 fork3 fork4 : -> SiteName [ctor] .

ops obj : Oid Handle -> OState [ctor] .

op cur : -> Handle [ctor] .

*** get fork message

eq < OS : Site | name: fork(i), op: exec(get, h, OE) , state: nil , AS > =

< OS : Site | name: fork(i) , op: free , state: obj(OE , cur) , AS >

OE <- sr(sig, h, 0) .

eq < OS : Site | name: fork(i), op: exec(get, h, OE) , state: obj(OE’, h’) OL , AS > =

< OS : Site | name: fork(i) , op: free , state: obj(OE, h) obj(OE’, h’) OL , AS > .

*** put fork message

eq < OS : Site | name: fork(i), op: exec(put, h, OE) ,

state: OL obj(OE’,h’) obj(OE, cur) , AS > =

< OS : Site | name: fork(i) , op: free , state: OL obj(OE’,cur) , AS >

OE <- sr(sig, h, 0)

OE’ <- sr(sig, h’, 0) .

eq < OS : Site | name: fork(i), op: exec(put, h, OE) , state: obj(OE, cur) , AS > =

< OS : Site | name: fork(i) , op: free , state: nil , AS >

OE <- sr(sig, h, 0) .

endm

mod ORC-MEETING-SITE is

inc ORC-INTERFACE .

sort Status .

ops ready pending scheduled canceled : -> Status .

vars OS OE OE’ : Oid .

vars m n i t r : Nat . var p : NzNat .
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var c c’ : Const . vars C C’ T T’ : ConstList .

vars h h’ h’’ : Handle .

var AS : AttributeSet .

var OL : OState .

var st : Status .

----op update : Nat -> Const .

op cancel : -> Const .

****************

*** Participant Site

op P : Nat -> Oid [ctor] .

op par : Nat -> SiteName [ctor] .

op sch : Const Status -> OState [ctor] .

--- get message when ready

eq < OS : Site | name: par(i), op: exec(get, h, OE) , state: sch(c, ready) , AS > =

< OS : Site | name: par(i) , op: free , state: sch(c, pending) , AS >

OE <- sr(c, h, rand) .

--- get message when ready, after being canceled

eq < OS : Site | name: par(i), op: exec(get, h, OE) , state: sch(c, canceled) , AS > =

< OS : Site | name: par(i) , op: free , state: sch(c, pending) , AS >

OE <- sr(c, h, rand) .

--- scheduled meeting time message

eq < OS : Site | name: par(i), op: exec(t, h, OE) ,

state: sch(tup(C, t, C’), pending) , AS > =

< OS : Site | name: par(i) , op: free , state: sch(tup(C, C’), scheduled) , AS >

OE <- sr(sig, h, rand) .

--- cancel message

eq < OS : Site | name: par(i), op: exec(cancel, h, OE) , state: sch(c, st) , AS > =

< OS : Site | name: par(i) , op: free , state: sch(c, canceled) , AS >

OE <- sr(sig, h, rand) .

****************

*** ’sMeetTime Site

op resolve : ConstList -> Const .

op resolve* : ConstList ConstList -> Const [comm] .

--- resolve meeting time

eq < OS : Site | name: ’sMeetTime, op: exec(tup(C), h, OE) , AS > =

< OS : Site | name: ’sMeetTime , op: free , AS >

OE <- sr(resolve(C), h, rand) .

eq resolve(tup(C), tup(C’), T) = resolve(tup(resolve*(C, C’)), T) .

eq resolve(tup(c, C)) = c .

eq resolve(tup(nilA)) = 0 .
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eq resolve(nilA) = 0 .

eq resolve*((c, C) , (c’, C’)) =

if c == c’ then (c , resolve*(C, C’))

else if c < c’ then resolve*(C, (c’, C’))

else resolve*((c, C), C’) fi fi .

eq resolve*(nilA , C) = nilA .

*****************

*** ’sRoomReserve Site

op row : Nat Nat Const -> OState .

ceq < OS : Site | name: ’sRoomReserve, op: exec((t,n), h, OE) ,

state: row(r, m, tup(C, t, C’)) OL , AS > =

< OS : Site | name: ’sRoomReserve, op: free , state: row(r, m, tup(C, C’)) OL , AS >

OE <- sr(r, h, rand)

if n <= m .

eq < OS : Site | name: ’sRoomReserve, op: exec((t,n), h, OE) , state: OL , AS > =

< OS : Site | name: ’sRoomReserve, op: free , state: OL , AS >

OE <- sr(0, h, rand) [owise] .

*****************

*** ’sRoomCanceled Site

op monitor : Nat Handle Oid -> OState .

op cancel : Nat -> Const .

--- request to monitor a room

eq < OS : Site | name: ’sRoomCanceled , op: exec(r, h, OE) , state: OL , AS > =

< OS : Site | name: ’sRoomCanceled , op: free , state: monitor(r, h, OE) OL , AS > .

--- emit a message if the room is canceled

eq < OS : Site | name: ’sRoomCanceled , op: exec(cancel(r), h, OE) ,

state: monitor(r, h, OE) OL , AS > =

< OS : Site | name: ’sRoomCanceled , op: free , state: OL , AS >

OE <- sr(sig, h, rand) .

*****************

*** configuration setup

op meeting-sites : NzNat -> Configuration .

op par-sites : NzNat -> Configuration .

eq par-sites(2) =

< S(21) : Site | name: par(1), op: free , state: sch(tup(3, 7, 8), ready) >

< S(22) : Site | name: par(2), op: free , state: sch(tup(5, 6, 7, 8), ready) > .

eq par-sites(3) =

< S(21) : Site | name: par(1), op: free , state: sch(tup(3, 7, 8), ready) >

< S(22) : Site | name: par(2), op: free , state: sch(tup(5, 6, 7, 8), ready) >

< S(23) : Site | name: par(3), op: free , state: sch(tup(1, 2, 7), ready) > .
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eq par-sites(4) =

< S(21) : Site | name: par(1), op: free , state: sch(tup(3, 7, 8), ready) >

< S(22) : Site | name: par(2), op: free , state: sch(tup(5, 6, 7, 8), ready) >

< S(23) : Site | name: par(3), op: free , state: sch(tup(1, 2, 7), ready) >

< S(24) : Site | name: par(4), op: free , state: sch(tup(3, 7, 9), ready) > .

eq meeting-sites(p) =

par-sites(p)

< S(25) : Site | name: ’sMeetTime, op: free , state: nil >

< S(26) : Site | name: ’sRoomReserve, op: free , state:

row(1120, 5, tup(1, 2, 5, 7, 8, 9)) row(1120, 3, tup(4, 8, 9)) >

< S(27) : Site | name: ’sRoomCanceled, op: free , state: nil > .

endm

mod ORC-AUCTION-SITE is

inc ORC-INTERFACE .

sort Item ItemList Req ReqList .

subsort Item < ItemList .

subsort Req < ReqList .

vars OS OE OE’ : Oid .

vars id m n n’ i t r : Nat . var p : NzNat .

var c c’ : Const . vars C C’ T T’ : ConstList .

vars h h’ h’’ : Handle .

var AS : AttributeSet .

var OL : OState .

var M M’ : SiteName .

var RQ : ReqList . var IT : ItemList .

ops seller bidder : Nat -> SiteName .

ops auction maxBid none : -> SiteName .

ops postNext getNext post nextBid won : -> Const .

op iNil : -> ItemList .

op _,_ : ItemList ItemList -> ItemList [assoc id: iNil] .

op rNil : -> ReqList .

op _,_ : ReqList ReqList -> ReqList [assoc id: rNil] .

----op bNil : -> BidList .

----op _,_ : BidList BidList -> BidList [assoc id: bNil] .

----op wNil : -> WonList .

----op _,_ : WonList WonList -> ReqList [assoc id: rNil] .

op itms : ItemList -> OState .

op reqs : ReqList -> OState .

op item : Nat Nat Nat -> Item .
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op req : Oid Handle -> Req .

op witem : Nat Nat -> OState .

op bid : Nat Nat -> OState .

**** seller site

****************

eq < OS : Site | name: seller(i) , op: exec(postNext, h, OE) ,

state: itms(item(id, t, m), IT) , AS > =

< OS : Site | name: seller(i) , op: free , state: itms(IT) , AS >

OE <- sr(tup(id, t, m), h, rand) .

**** auction site

*****************

--- post message

eq < OS : Site | name: auction , op: exec((post, tup(id, t, m)), h, OE) ,

state: reqs(RQ) itms(IT) , AS > =

< OS : Site | name: auction , op: free , state: reqs(RQ)

itms(IT, item(id, t, m)) , AS >

OE <- sr(sig, h, rand) .

--- get message

eq < OS : Site | name: auction , op: exec(getNext, h, OE) ,

state: reqs(RQ) itms(IT) , AS > =

< OS : Site | name: auction , op: free ,

state: reqs(RQ, req(OE, h)) itms(IT) , AS > .

--- servicing a request

eq < OS : Site | name: auction , op: free ,

state: reqs(req(OE, h) , RQ) itms(item(id, t, m), IT) , AS > =

< OS : Site | name: auction , op: free , state: reqs(RQ) itms(IT) , AS >

OE <- sr(tup(id, t, m), h, rand) .

**** bidder site

****************

--- won message

eq < OS : Site | name: bidder(i) , op: exec((won, id, m), h, OE) , state: OL , AS > =

< OS : Site | name: bidder(i) , op: free , state: OL witem(id, m) , AS >

OE <- sr(sig, h, rand) .

--- bid message

eq < OS : Site | name: bidder(i) , op: exec((nextBid, id, m), h, OE) ,

state: bid(id, n) OL , AS > =

< OS : Site | name: bidder(i) , op: free , state: bid(id, s(m + i)) OL , AS >
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OE <- sr(tup((s(m + i)), bidder(i)), h, rand) .

eq < OS : Site | name: bidder(i) , op: exec((nextBid, id, m), h, OE) , state: OL , AS > =

< OS : Site | name: bidder(i) , op: free , state: bid(id, s(m + i)) OL , AS >

OE <- sr(tup((s(m + i)), bidder(i)), h, rand) [owise] .

**** maxBid site

****************

op mb : Const ConstList -> Const .

--- computing the largest bid

eq < OS : Site | name: maxBid , op: exec(tup(c, C), h, OE) , state: nil , AS > =

< OS : Site | name: maxBid , op: free , state: nil , AS >

OE <- sr(mb(tup(0, none), (c, C)), h, rand) .

eq mb(tup(n, M), (tup(n’, M’) , c, C)) =

if (n’ > n) then mb(tup(n’, M’), (c, C))

else mb(tup(n, M), (c, C)) fi .

eq mb(tup(n, M), tup(n’, M’)) =

if (n’ > n) then tup(n’, M’)

else tup(n, M) fi .

op auction-sites : -> Configuration .

eq auction-sites =

< S(20) : Site | name: seller(0) , op: free ,

state: itms(item(1910, 5, 500), item(1720, 8, 700)) >

< S(21) : Site | name: bidder(0) , op: free , state: nil >

< S(22) : Site | name: bidder(1) , op: free , state: nil >

< S(23) : Site | name: bidder(2) , op: free , state: nil >

< S(24) : Site | name: auction , op: free , state: reqs(rNil) itms(iNil) >

< S(25) : Site | name: maxBid , op: free , state: nil > .

endm

A.2.5 LTL Model Checking Modules for auction

in orc-objexamples.maude

in ../../maude/model-checker.maude

mod AU-PREDS is

pr EXAMPLES .

inc SATISFACTION .

subsort System < State .

sort Pair .

op [_,_] : Const Const -> Pair .

ops first second : Pair -> Const .

ops hasBid sold maxbid maxbidder max conflict : Nat -> Prop .
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ops mxbd mxbdr : Nat Configuration -> Const .

op mxbd* : Nat Nat SiteName Configuration -> Pair .

var S : System . var CF : Configuration .

vars id t i j m m’ : Nat . vars OL OL’ OL1 OL2 OL3 OL4 : OState .

vars x x’ : Var .

vars f f’ f’’ : Expr .

var OE : Oid .

vars AS AS’ : AttributeSet .

var c c’ : Const .

var B : SiteName .

eq first([c,c’]) = c .

eq second([c,c’]) = c’ .

eq { < OE : Site | name: bidder(i) , state: OL witem(id, m) OL’ , AS > CF }

|= sold(id) = true .

eq { < OE : Site | name: bidder(i) , state: OL bid(id, m) OL’ , AS > CF }

|= hasBid(id) = true .

eq { < OE : Site | name: bidder(i) , state: OL1 witem(id, m) OL2 , AS >

< OE : Site | name: bidder(j) , state: OL3 witem(id, m’) OL4 , AS’ > CF } |=

conflict(id) = true .

eq { < OE : Site | name: bidder(i) , state: OL witem(id, m) OL’ , AS > CF }

|= maxbid(id)

= m >= mxbd(id, < OE : Site | name: bidder(i) ,

state: OL witem(id, m) OL’ , AS > CF) .

eq { < OE : Site | name: bidder(i) , state: OL witem(id, m) OL’ , AS > CF }

|= maxbidder(id)

= bidder(i) == mxbdr(id, < OE : Site | name: bidder(i) ,

state: OL witem(id, m) OL’ , AS > CF) .

ceq { < OE : Site | name: bidder(i) , state: OL witem(id, m) OL’ , AS > CF }

|= max(id)

= true if

m >= mxbd(id, < OE : Site | name: bidder(i) ,

state: OL witem(id, m) OL’ , AS > CF) /\

bidder(i) == mxbdr(id, < OE : Site | name: bidder(i) ,

state: OL witem(id, m) OL’ , AS > CF) .

eq mxbd(id, < OE : Site | name: bidder(i) ,

state: OL bid(id, m) OL’ , AS > CF)

= first(mxbd*(id, m, bidder(i), CF)) .

eq mxbdr(id, < OE : Site | name: bidder(i) ,

state: OL bid(id, m) OL’ , AS > CF)
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= second(mxbd*(id, m, bidder(i), CF)) .

eq mxbd*(id, m, B, < OE : Site | name: bidder(i) ,

state: OL bid(id, m’) OL’ , AS > CF)

= if m’ > m then mxbd*(id, m’, bidder(i), CF)

else mxbd*(id, m, B, CF)

fi .

eq mxbd*(id, m, B, CF) = [m, B] [owise] .

endm

mod AU-CHECK is

pr AU-PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

op init : -> System .

ops commit winbid winbidder win uniqueWinner : Nat -> Formula .

ops commitAll winbidAll winbidderAll uniqueWinnerAll winAll : -> Formula .

var i n id : Nat .

eq commit(id) = hasBid(id) -> <> sold(id) .

eq commitAll = [] (commit(1910) /\ commit(1720)) .

eq winbid(id) = sold(id) -> maxbid(id) .

eq winbidAll = [] (winbid(1910) /\ winbid(1720)) .

eq winbidder(id) = sold(id) -> maxbidder(id) .

eq winbidderAll = [] (winbidder(1910) /\ winbidder(1720)) .

eq win(id) = sold(id) -> max(id) .

eq winAll = [] (win(1910) /\ win(1720)) .

eq uniqueWinnerAll = [] ~ (conflict(1910) \/ conflict(1720)) .

eq init =

$ [ E(1) : Posting ; PostingExpr ]

[ E(2) : Bidding ; Bids ; Collect ; BiddingExpr ]

auction-sites $ .

endm

B Timed SOS-Based Rewriting Transformation
Methodology

We describe and formally prove the correctness of the eagerEnabled predicate
transformation that was used in Section 5.4. This is done by describing a general
method, of which the transformation in Section 5.4 is an instance, to embed
a discrete time domain into the SOS specifications of a language L given as a
rewrite theory RL in rewriting logic. We specify constraints on RL under which
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the methodology yields a theory R′
L with a correct behavior, and then prove its

correctness.

B.1 The Transformation Methodology

Suppose that RL = (ΣL, EL, RL, φL) is a rewrite theory representing the (non-
timed) SOS definitions of a language L (typically obtained by the modular
methodology explained in [4]). In accordance with [4], we assume that a config-
uration in RL is given by a pair 〈E,R〉 with E a program expression and R a
record consisting of fields each of which maintains a piece of state information,
such as a clock or an environment, required to compute E. A field is itself a
pair (i : comp), with i an index identifying the field and comp a component
holding the data relevant to the field. Fields are grouped into a record using
the associative and commutative “|” operator. We also assume that one-step
rewrites, corresponding to small-step SOS specifications, are implemented as
rules of the form {E,R} → [E,R] if cond.

Given RL, we first extend the signature ΣL with a declaration of a (partial)
predicate eagerEnabled as follows,

eagerEnabled : Conf → [Bool] [frozen]

with Conf the sort of a configuration of L. The predicate, as is, serves as a
means by which one can tell whether a rule in RL is applicable to an instance of
a configuration in L. In the next section we will prove a stronger assertion that,
under certain assumptions, the predicate tells us exactly when a rule in RL can
be taken on a configuration in L. The reader might note that the predicate is
declared as a frozen operator to avoid useless rewrites in the configuration while
the predicate is computed.

EL is then extended with equations defining the eagerEnabled predicate as
follows. For each rule r : {E,R} → [E′, R′] if C ∧

∧n
i=1{Ei, Ri} → [E′

i, R
′
i] in

RL, with C a possibly empty conjunction of equational conditions (memberships
and/or equations) and n ≥ 0 13 , we introduce an equation

eagerEnabled({E,R}) = true if C ∧
n∧

i=1

eagerEnabled({Ei, Ri}).

Finally, a new “clock” field of the form clk : clock(c) is added to the fields of
the record, and a clock tick rule of the form

{E,R | clk : clock(c)} → {E′, R′ | clk : clock(c + 1)}
if eagerEnabled(E,R | clk : clock(c)) 6= true

is added to RL. The tick rule advances the clock by one time unit and propagates
the effect of the lapse of time on the other components of R. Such rule is usually

13Here we are implicitly assuming that every rule in RL is of this form. We will elaborate
on that and justify it in the next section.
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referred to as a lazy or a tick rule, whereas rules in RL are called eager or
instantaneous rules. We refer to the resulting theory as R′

L = (Σ′
L, E′

L, R′
L, φ′L).

For this approach to be sound, however, we make the following, quite rea-
sonable assumptions about the rewrite theory RL. A more formal description
of these assumptions is deferred to the next section.

1. EL is confluent and terminating, and RL is coherent with respect to EL.

2. All rules in RL are structural.

3. Rules in RL are either unconditional (axioms), conditional with equational
conditions, or conditional with equations and rewrites in the condition. If
the condition of a rule consists of equations and rewrites, then all newly
introduced variables are local to the equations or rewrites which intro-
duced them. In other words, no chaining of newly introduced variables
is allowed in any rule of RL. The idea is to ensure that new variables in
a conjunct are not referenced in other conjuncts, as this would result in
ill-formed conditional equations of the eagerEnable predicate.

4. If a configuration could evolve in different ways, then all such ways are
accounted for in RL.

For almost all practical purposes, the above-mentioned constraints are not
at all restrictive. In fact, when giving SOS definitions of the semantics of almost
any language, the corresponding rewrite theory is highly likely to automatically
satisfy these conditions. This can easily be seen by recalling that a semantic rule
in the SOS definitions of almost any language is structural (although this is not
a requirement of SOS itself), has premises that are independent of each other,
and preserves a configuration structure. Moreover, even when the definitions
do not satisfy some of these conditions, they can often be easily transformed
into equivalent definitions satisfying them. This underscores the fact that we
are still dealing with a fairly large class of SOS specifications.

B.2 Correctness of the Methodology

In this section we prove some properties about R′
L. More importantly, we show

why a system implemented using this methodology behaves as described above.

B.2.1 Basic Definitions and Notation

We begin by introducing some basic definitions. We say that a term t is of the
form (or has the form, or is an instance of) t′ if there exists a substitution θ such
that θ(t′) = t. This notion is extended to equations, memberships and rewrite
rules in the obvious way. Moreover, we define equality among terms of the same
sort as syntactic equality modulo variable renaming. We also say that a term
t is a strict subterm of t′ if t is a subterm of t′ and t 6= t′. For a rewrite rule
r : t → t′ if cond, we let lhs(r) = t, rhs(r) = t′, eqc(r) be the equational part
of the condition cond, and rwci(r) be the ith rewrite condition of cond. For
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instance, if r : f(a)→ f ′(b) if g(a) = t∧h(a)→ h′(c)∧p(c) : s∧q(c)→ q′(b), then
eqc(r) = g(a) = t∧p(c) : s, rwc1(r) = h(a)→ h′(c), and rwc2(r) = q(c)→ q′(b).

We let E and R (and their decorated variants) range over terms of sort
Expr and Record, respectively, and W,X, Y, Z and their variants range over
sets of variables. We denote by RE the set of eager rules in R, and by PE the
corresponding set of equations defining the eagerEnabled predicate. We also let
Rn

E ⊆ RE be the set of eager rules with exactly n rewrite conditions. Finally, we
call a configuration of the form {E,R}, [E,R], or 〈E,R〉 a valid configuration
if R is a record having all the necessary fields required by the semantics of the
language.

In addition, the following construction will prove useful later. We define a
partition P on RE based on the left-hand sides of the rules and the left-hand
sides of their rewrite conditions, such that two rules are in the same partition if
and only if they share the same left-hand side and have fixed number n of rewrite
conditions that (under an appropriate re-ordering) share the same corresponding
left-hand sides. More precisely, a partition Pt,t1,··· ,tn

is defined as follows,

Pt,t1,··· ,tn
= {r ∈ Rn

E | lhs(r) = t and if n > 0 then there exists π such that
lhs(rwci(r)) = tπ(i) for all i, 1 ≤ i ≤ n}

with π a permutation of [1 . . . n]. We write PRE
for the set of all such partitions.

Moreover, if X =
⋃n

i=1 vars(ti), then we denote by Θt,t1,··· ,tn
the set of substi-

tutions on X such that if θ ∈ Θt,t1,··· ,tn
then for each i, there exists ri ∈ RE

and a substitution ρi, such that θ(ti) = ρi(lhs(ri)). We call θ a simultaneous
substitution on the terms ti.

B.2.2 Constraints

Beside the confluence and termination of EL, and the coherence of RL with
respect to EL, we assume that for any r ∈ RE , r is of one of two forms (which
we shall refer to throughout the rest of the section), either

{E(W ), R(X) | R} → [E′(Y ), R′(Z) | R] if C(Y,Z) (5)

or

{E(W ), R(X) | R} → [E′(Y ), R′(Z) | R]
if C(Yc, Zc) ∧

∧n
i=1{Ei(W ), Ri(X) | R} → [E′

i(Yi), R′
i(Zi) | R] (6)

where in both cases C is a possibly empty conjunction of equational conditions,
and R is record variable standing for “the rest of the record”14, and in the second
case n > 0, such that the following local properties hold.

14The record variable R (along with the structural axioms of the “|” operator) is used to
implement the record inheritance modularity technique explained in [4] in Maude. Record in-
heritance is important in our construction since it allows us to add the clock field to the record
structure of a configuration without requiring any change to be made to the instantaneous
rules to preserve their applicability.
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1. If r is of the form (6), then Ei is a strict subterm of E, for all i ≤ n
(being structural). Moreover, {Yc, Zc} ⊆ {Y, Z}, and for all i, if v ∈
{Yi, Zi} − {W,X} then for all j 6= i, v /∈ {Yj , Zj} − {W,X}, and, finally,
for all i, {Yi, Zi} ⊆ {Y,Z}

2. In any rule r, for every field f = (i : comp) for some index i and component
comp, if R = f | R̄ for some record R̄, then there exists a field f ′ = (i :
comp′) with some component comp′ and there exists a record R̄′ such that
R′ = f ′ | R̄′ (preservation of configuration).

In addition to the local constraints given above, two global constraints must
be met by RE , as follows. If Pt,t1,··· ,tn

∈ PRE
and if we denote the jth rule in

Pt,t1,··· ,tn by t→ t(j) if c(j) ∧
∧n

i=1 ti → t′i(j)
, then

1. if r, r′ ∈ Pt,t1,··· ,tn
then eqc(r) = eqc(r′), and

2. for each simultaneous substitution θ ∈ Θt,t1,··· ,tn
, there exists j such that

for all i with 1 ≤ i ≤ n, there exists ri ∈ Rn
E and a substitution ρi such

that ρi(lhs(ri)) = θ(ti) and ρi(rhs(ri)) is an instance of θ(t′i(j)
))).

The above local and global constraints give sufficient conditions under which
the predicate eagerEnabled, when introduced to RL, is well-defined. They also
guarantee that the theory RL represents a well-defined system, and that RE

specifies all the ways in which it could evolve.
Now considering R′

L, the discretely timed theory that one would obtain by
applying the transformation described above on RL, we observe that the con-
straints above imply similar properties for the eagerEnabled predicate. More
specifically, each p ∈ PE (the set of equations defining the eagerEnabled predi-
cate in RL

′) has one of two forms, namely

eagerEnabled({E(W ), R(X)}) = true if C(Y,Z) (7)

or

eagerEnabled({E(W ), R(X)}) = true
if C(Yc, Zc) ∧

∧n
i=1 eagerEnabled({Ei(W ), Ri(X)}) = true. (8)

Moreover, if p is of the form (8), Ei is a strict subterm of E, for all i ≤ n. We
also note that by construction, for each rule r there is exactly one eagerEnabled
predicate associated with it. In fact, one can easily see that this association is
actually a bijection between PE and PRE

. This bijection, however, is purely
conceptual and has no real significance in our methodology. It merely makes
thinking about the following proofs easier and perhaps more modular.

B.2.3 Executability Requirements of RL
′

In the original theory RL, executability requirements, namely confluence and
termination of EL, and coherence of RL with respect to EL, are assumed to be
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satisfied. Here, we show that such requirements are also satisfied in the theory
R′
L = (Σ′

L, E′
L, R′

L, φ′L). We first observe that we may assume without loss of
generality that the kind [Bool] is kept intact with only one sort, namely Bool,
and two constructors, true and false, and that the eagerEnabled predicate is
the only operator of this kind. We also note that, by construction, no term of
the kind [Bool] may occur as a subterm of a term of another kind.

Lemma 6. E′
L is confluent and terminating.

Proof. Let t ∈ TΣ′
L,k(X) for some kind k. Suppose r

∗← t
∗→ s for some

terms r, s ∈ TΣ′
L,k(X). If k 6= [Bool], then TΣ′

L,k(X) = TΣL,k(X) and, by the
confluence of EL, there exists a term t′ such that r

∗→ t′
∗← s. Otherwise, if

k = [Bool], then t is either true, false, or of the form eagerEnabled(C) for some
configuration C ∈ TΣ′

L,[Configuration](X) = TΣL,[Configuration](X). Since true and
false are in canonical form, we only need to consider the third case, where,
either r = s = true or r = eagerEnabled(C1) and s = eagerEnabled(C2) for some
configurations C1 and C2 such that C1

∗← C ∗→ C2. By the confluence of EL,
we know that there exists a configuration C′ such that C1

∗→ C′ ∗← C2 and thus
r

∗→ eagerEnabled(C′) ∗← s. Therefore, E′
L is confluent.

For termination of E′
L, suppose E′

L is not terminating. Then, there exists
an infinite sequence of rewrites starting at some term t ∈ TΣ′

L,k(X). Since EL is
assumed terminating, t can only be of the kind [Bool]. This can only happen if t
is of the form eagerEnabled(C) for some configuration C ∈ TΣL,[Configuration](X).
Since EL is terminating, there is no infinite sequence of rewrites starting at C,
and thus the only way t may not terminate is by rewriting at the top operator
of t, namely the eagerEnabled operator. However, if eagerEnabled(C) 1→ t′ at
the top, then t′ = true, which implies that sequences of rewrites starting at t
are all finite, contradicting the assumption. Therefore, E′

L is terminating. �

Lemma 7. R′
L is coherent with respect to E′

L.

Proof. let t ∈ TΣL,k(X) for some kind k. If k 6= [Bool], then there is nothing
to prove, by assumption. So suppose k = [Bool]. Then, t = eagerEnabled(C) for
some configuration C. Since eagerEnabled is declared frozen at its argument C,
and no rule rewrites a term of kind [Bool] in R′

L, it follows that R′
L is coherent

with respect to E′
L. �

B.2.4 Correctness

We now prove the main result of this section. We show that in R′
L, a tick rule

will never be applied to a state at which some eager rule can still be taken.

Theorem 2. For all Et(Wt) and Rt(Xt) such that {Et(Wt), Rt(Xt)} is a valid
configuration, R′

L ` (∀Wt, Xt) eagerEnabled({Et(Wt), Rt(Xt)}) = true if and
only if there exists a valid configuration C such that

R′
L ` (∀Wt, Xt) {Et(Wt), Rt(Xt)} → C.
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Proof. (⇐=) Assuming there exists a valid configuration C such that

R′
L ` (∀Wt, Xt) {Et(Wt), Rt(Xt)} → C,

we show that (∀Wt, Xt) eagerEnabled({Et(Wt), Rt(Xt)}) = true is provable
from R′

L by induction on the number n of Nested Replacement inference rule
applications in a proof of R′

L ` (∀Wt, Xt) {Et(Wt), Rt(Xt)} → C.
Base Case. When n = 0, there exists a rewrite rule r ∈ RE of the form

(5), with an associated equation of the form (7), such that θ({E(W ), R(X)}) =
{Et(Wt), Rt(Xt)} and C = θ([E′(Y ), R′(Z)]), for some substitution θ. There-
fore, R′

L ` (∀Wt, Xt) θ(C(Y, Z)) = true, which implies

R′
L ` (∀Wt, Xt) eagerEnabled(θ({E(W ), R(X)})) = true,

as asserted.
Inductive Step. Suppose for k = n − 1, where n > 0, the proposition

holds. Since n > 0, there exists a rewrite rule r ∈ RE of the form (6), with an
associated equation of the form (8), with θ({E(W ), R(X)}) = {Et(Wt), Rt(Xt)}
and C = θ([E′(Y ), R′(Z)]), for some substitution θ. This implies, by the Nested
Replacement inference rule that, R′

L ` (∀Wt, Xt) θ(C(Yc, Zc)) = true, and for
all i,

R′
L ` (∀Wt, Xt) θ({Ei(W ), Ri(X)})→ θ([E′

i(Yi), R′
i(Zi)]).

By the induction hypothesis, this implies for all i,

R′
L ` (∀Wt, Xt) eagerEnabled(θ({Ei(W ), Ri(X)})) = true,

which implies R′
L ` (∀Wt, Xt) eagerEnabled(θ({E(W ), R(X)})) = true. This

concludes the proof of this direction of the implication.
(=⇒) Suppose R′

L proves (∀Wt, Xt) eagerEnabled({Et(Wt), Rt(Xt)}) = true.
We show that there exists a valid configuration C such that

R′
L ` (∀Wt, Xt) {Et(Wt), Rt(Xt)} → C

by induction on the number n of applications of the modus ponens inference
rule in the equational deduction of eagerEnabled({Et(Wt), Rt(Xt)}) = true.

Base Case. When n = 1, there exists an equation of the form (7) with an as-
sociated rewrite rule of the form (5), with θ({E(W ), R(X)}) = {Et(Wt), Rt(Xt)}.
Therefore, R′

L ` (∀Wt, Xt) θ(C(Yc, Zc)) = true, which implies by the Replace-
ment rule, that R′

L ` (∀Wt, Xt) θ({E(W ), R(X)}) → θ([E′(W ), R′(X)]), and
hence C = θ([E′(W ), R′(X)]).

Inductive Step. Suppose the proposition is true for all k < n. Since n > 0,
there exists an equation of the form (8), with at least one associated rewrite
rule of the form (6), such that θ({E(W ), R(X)}) = {Et(Wt), Rt(Xt)}. This
implies that R′

L ` (∀Wt, Xt) θ(C(Yc, Zc)) = true, and for all i, R′
L ` (∀Wt, Xt)

eagerEnabled(θ({Ei(W ), Ri(X)})) = true. By the induction hypothesis, this
implies for all i, there exists a valid configuration Ci such that R′

L ` (∀Wt, Xt)
θ({Ei(W ), Ri(X)}) → Ci.
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Now since θ is a simultaneous substitution on {Ei(W ), Ri(X)}, then there
exists a rule rj ∈ P{E,R},{E1,R1},...,{En,Rn} such that for all i, there exists a
substitution ρ such that Ci = ρ(θ([E′

i(W ), R′
i(X)](j))) and ρ|W∪X∪Yc∪Zc

= id.
Thus, for all i,

R′
L ` (∀Wt, Xt) θ({Ei(W ), Ri(X)})→ ρ(θ([E′

i(W ), R′
i(X)](j))),

which implies that

R′
L ` (∀Wt, Xt) θ({E(W ), R(X)})→ ρ(θ([E′(W ), R′(X)](j))),

and therefore C = ρ(θ([E′(W ), R′(X)](j))). This concludes the proof. �

C Proofs of the Results of Section 7

In what follows, we refer to the theories Rsos
Orc and Rred

Orc respectively by Rs
Orc

and Rr
Orc for brevity.

Proof of Lemma 2

Proof. Suppose 〈f, tr : t | r〉 →Rs
Orc
〈f ′, tr : t′ | r′〉. Then, there exists a rewrite

rule of the form 〈fw; tr : tw | rw〉 →Rs
Orc
〈f ′w; tr : t′w | r′w〉 with tw a variable of

sort EventList and t′w being either the variable tw or the term tw.L for some
variable-free term L of sort Event, and a substitution θ such that θ(tw) = t
and θ(t′w) = t′. Thus, if t′w = tw, then t′ = θ(t′w) = θ(tw) = t. Otherwise, if
t′w = tw.L, then t′ = θ(t′w) = θ(tw.L) = θ(tw).L = t.L. Consequently, for any
EventList s, we can choose another substitution αs such that αs(tw) = s.t and
equal to θ otherwise. Now, if t′w = tw, then αs(t′w) = s.t = s.t′. Otherwise,
αs(t′w) = (s.t).L which by associativity of the . operator is equal to s.(t.L) = s.t′.

A similar argument applied to the rules and equations of Rr
Orc proves the

property holds in Rr
Orc as well.

Proof of Lemma 3

Proof. (1) Suppose L = M〈C, h|m〉. Then f →Rr
Orc

sc↑(f̂ , M, C), with f̂ =
f [p ← γ] for some position p in f . By the congruence rule, f | g →Rr

Orc

sc↑(f̂ , M, C) | g = sc↑(f̂ | g,M,C), which implies

〈f | g, tr : t | r〉 →Rr
Orc
〈sc↑(f̂ | g,M,C), tr : t | r〉

= 〈sc↓(f̂ | g, h), tr : t.L | r′〉 with h the current handle given by r

= 〈sc↓(f̂ , h) | sc↓(g, h), tr : t.L | r′〉
= 〈f ′ | g, tr : t.L | r′〉
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For the other direction, we have by the SiteCall rule, f | g→Rr
Orc

sc↑(f̂ | g,M,C) =
sc↑(f̂ , M, C) | g, which by congruence implies f →Rr

Orc
sc↑(f̂ , M, C) and thus,

〈f, tr : t | r〉 →Rr
Orc
〈sc↑(f̂ , M, C), tr : t | r〉

= 〈sc↓(f̂ , h), tr : t.L | r′〉 with h the current handle given by r

= 〈f ′, tr : t.L | r′〉

The cases for L a publishing of event and a τ event are similar. If L = c?h|m,
then by the SiteRet rule, h appears in f , active(f) 6= true, and f ′ = f [p←!c].
Since active(g) 6= true, we have

〈f | g, tr : t | r〉 →Rr
Orc
〈sr(f | g, c, h), tr : t.L | r′〉

= 〈sr(f, c, h) | sr(g, c, h), tr : t.L | r′〉
= 〈f ′ | g, tr : t.L | r′〉

For the other direction, the SiteRet rule implies active(f) 6= true and active(g) 6=
true, and that h appears in f | g. However, since sr(g, c, h) = g, g is not changed,
and thus h can only appear in f . Therefore, an application of the SiteRet rule
and the equations for sr conclude the proof.

(2) (=⇒) we have 〈f, tr : t | r〉 →Rr
Orc
〈pub(f ′, c), tr : t.(!c|m) | r′〉, with

f ′ = f [p ← 0], for some position p in f . By congruence, this implies f > x >
g →Rr

Orc
pub(f ′, c) > x > g = pubτ (f ′ > x > g | g{c/x}). Therefore,

〈f > x > g, tr : t | r〉 →Rr
Orc
〈pubτ (f ′ > x > g | g{c/x}), tr : t | r〉

= 〈f ′ > x > g | g{c/x}, tr : t.τ | r′〉

(=⇒) This direction can be proved by simply reversing the argument given
above.

(3), (5), and (6) are similar to (1) above, replacing parallel composition
with sequential or asymmetric parallel composition and using the appropriate
equations in Rr

Orc, while (4) is similar to (2).

Proof of Lemma 4

Proof. (=⇒) By induction on a proof of Rs
Orc ` eagerEnabled(C) = true. There

are four base cases:

1. C = 〈M(C), r〉 (the [SiteCall] case),

2. C = 〈?h, r〉 (the [SiteRet] case),

3. C = 〈!c, r〉 (the [Pub] case)

4. C = 〈E(P ), r〉 (the [Def] case)

The first three cases follow trivially from the equations defining active expres-
sions and configurations in Rr

Orc and the fact that C is well-formed. The fourth
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case also follows trivially from the equations defining active expressions and
configurations in Rr

Orc and the assumption that C is closed.
Now suppose C = 〈f | g, tr : t | r〉 for non-zero expressions f and g. Then,

Rs
Orc ` eagerEnabled(〈f, tr : t | r〉) = true, which by induction implies Rr

Orc

` eager(〈f, tr : t | r〉) = true, which by the equations of Rr
Orc implies Rr

Orc `
eager(〈f | g, tr : t | r〉) = true. The other two inductive cases for sequential and
asymmetric parallel composition are similar.

(⇐=) This direction can be proved by case analysis on C. There are two
cases:

• Suppose C = 〈f,msg : (ρ [self, c, h]) | r〉 with h referenced in f is true.
Then we proceed by induction on f . If f =?h, then by the well-formedness
of C it follows immediately that eagerEnabled(C) = true is provable from
Rs

Orc (Note that this is the only possible base case as ?h is the only
base expression that satisfies the condition h in f). Now suppose f =
f1 | f2. Then, (modulo commutativity) h in f1 holds and thus 〈f1,msg :
(ρ [self, c, h]) | r〉 is an eager configuration in Rr

Orc, which by induction
implies Rs

Orc ` eagerEnabled(〈f,msg : (ρ [self, c, h]) | r〉) = true and hence
the desired result. The other two inductive cases are similar.

• Suppose C = 〈f, r〉 with f an active expression. Then we use induction
on f again. By definition, the base expressions that are active are !c,
M(C) and E(P ). The assumption of C being closed implies Rs

Orc ` ea-
gerEnabled(〈E(P ), r〉) = true, while well-formedness is enough to imply
that eagerEnabled(〈M(C), r〉) = true and eagerEnabled(〈!c, r〉) = true are
provable from Rs

Orc.

Now suppose f = f1 | f2. Then, f1 is active (modulo commutativity)
and thus by induction eagerEnabled(〈f1, r〉) = true is provable from Rs

Orc,
which implies the desired result. The other two inductive cases are similar.

Proof of Lemma 5

Proof. The proof is similar to that of Lemma 4. The only-if direction can be
shown by induction on a proof of Rs

Orc ` intAction(C) = true, while the if
direction is provable by case analysis on C.

Proof of Theorem 1

Proof. (=⇒) By induction on a proof of C →Rs
Orc
C′. There are five base cases

as follows.
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1. [SiteCall]. If

{M(C), tr : t | msg : ρ | hdl : hn | clk : cm | r}
→ [?hn, tr : t . M〈C, hn|m〉 | msg : ρ [M,C, hn] |

hdl : hn+1 | clk : cm | r]

then,

〈M(C), tr : t | msg : ρ | hdl : hn | clk : cm | r〉 →Rr
Orc

〈sc↑(γ, M, C), tr : t | msg : ρ | hdl : hn | clk : cm | r〉
= 〈sc↓(γ, hn), tr : (t.M〈C, hn | m〉) | msg : (ρ [M,C, hn]) |

hdl : hn+1 | ...〉
= 〈?hn, tr : (t.M〈C, hn | m〉) | msg : (ρ [M,C, hn]) | hdl : hn+1 |...〉

2. [SiteRet]. Suppose

〈?h, tr : t | msg : (ρ [self, c, h]) | clk : cm | r〉 →Rs
Orc

〈!c, tr : (t.h?c|m) | msg : ρ | clk : cm | r〉

Then, Rs
Orc proves that the intAction predicate is not true for this config-

uration. By Lemma 5, this configuration is not active in Rr
Orc, and since

h in ?h = true is provable from Rr
Orc, we get

〈?h, tr : t | msg : (ρ [self, c, h]) | clk : cm | r〉 →Rr
Orc

〈sr(?h, c, h), tr : (t.h?c|m) | msg : ρ | clk : cm | r〉
= 〈!c, tr : (t.h?c|m) | msg : ρ | clk : cm | r〉

3. [Pub]. If

〈!c, tr : t | clk : cm | r〉 →Rs
Orc
〈0, tr : t.(!c|m) | clk : cm | r〉

then,

〈!c, tr : t | clk : cm | r〉 →Rr
Orc

〈pub(0, c), tr : t | clk : cm | r〉
= 〈0, tr : t.(!c|m) | clk : cm | r〉

4. [Def]. Suppose

〈E(P ), tr : t | con : (σ,E(Q) =def f) | r〉 →Rs
Orc

〈f{P/Q}, tr : t.τ | con : (σ,E(Q) =def f) | r〉
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Then, we have

〈E(P ), tr : t | con : (σ,E(Q) =def f) | r〉 →Rr
Orc

〈ec↑(γ, E, P ), tr : t | con : (σ,E(Q) =def f) | r〉
= 〈ec↓(γ, f{P/Q}), tr : t.τ | con : (σ,E(Q) =def f) | r〉
= 〈f{P/Q}, tr : t.τ | con : (σ,E(Q) =def f) | r〉

5. [Tick]. Suppose

〈f, clk : cm | r〉 →Rs
Orc
〈f, clk : cm+1 | δ(r)〉

Then, Rs
Orc proves eagerEnabled(〈f, (clk : cm) | r〉) 6= true. By lemma 4.

this is equivalent to 〈f, (clk : cm) | r〉 not being an eager configuration in
Rr

Orc. Therefore, we have

〈f, clk : cm | r〉 →Rr
Orc
〈f, clk : cm | δ(r)〉

For the inductive step, there are six cases:

1. [Sym]. Suppose f and g are non-zero expressions. Then,

〈f | g, tr : t | r〉 →Rs
Orc
〈f ′ | g, tr : t.L | r′〉

implies 〈f, tr : nil | r〉 →Rs
Orc
〈f ′, (tr : L) | r′〉. By lemma 2 and the

inductive assumption, this implies 〈f, tr : t | r〉 →Rr
Orc
〈f ′, tr : t.L | r′〉,

which, by part (1) of lemma 3, holds if and only if

〈f | g, tr : t | r〉 →Rr
Orc
〈f ′ | g, tr : t.L | r′〉

We note that if L is a site return event, then active(g) 6= true, by assump-
tion.

2. [Seq1V]. Suppose

〈f > x > g, tr : t | r〉 →Rs
Orc
〈f ′ > x > g | g{c/x}, tr : t.τ | r′〉

Then, 〈f, tr : nil | r〉 →Rs
Orc
〈f ′, tr : (!c|m) | r′〉. By lemma 2 and the in-

ductive assumption, this implies 〈f, tr : t | r〉 →Rr
Orc
〈f ′, tr : t.(!c|m) | r′〉,

which, by part (2) of lemma 3, holds if and only if

〈f > x > g, tr : t | r〉 →Rr
Orc
〈f ′ > x > g | g{c/x}, tr : t.τ | r′〉

3. [Seq1N]. Suppose L is not a publishing event. Then,

〈f > x > g, tr : t | r〉 →Rs
Orc
〈f ′ > x > g, tr : t.L | r′〉

implies 〈f, tr : nil | r〉 →Rs
Orc
〈f ′, (tr : L) | r′〉. By lemma 2 and the

inductive assumption, this implies 〈f, tr : t | r〉 →Rr
Orc
〈f ′, tr : t.L | r′〉,

which, by part (3) of lemma 3, holds if and only if

〈f > x > g, tr : t | r〉 →Rr
Orc
〈f ′ > x > g, tr : t.L | r′〉
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4. [Asym1V]. Suppose

〈g where x :∈ f, tr : t | r〉 →Rs
Orc
〈g{c/x}, tr : t.τ | r′〉

Then, 〈f, tr : nil | r〉 →Rs
Orc
〈f ′, tr : (!c|m) | r′〉. By lemma 2 and the in-

ductive assumption, this implies 〈f, tr : t | r〉 →Rr
Orc
〈f ′, tr : t.(!c|m) | r′〉,

which, by part (4) of lemma 3, holds if and only if

〈g where x :∈ f, tr : t | r〉 →Rr
Orc
〈g{c/x}, tr : t.τ | r′〉

5. [Asym1N]. Suppose L is not a publishing event. Then,

〈g where x :∈ f, tr : t | r〉 →Rs
Orc
〈g where x :∈ f ′, tr : t.L | r′〉

implies 〈f, tr : nil | r〉 →Rs
Orc
〈f ′, (tr : L | r′〉. By lemma 2 and the

inductive assumption, this implies 〈f, tr : t | r〉 →Rr
Orc
〈f ′, tr : t.L | r′〉,

which, by part (5) of lemma 3, holds if and only if

〈g where x :∈ f, tr : t | r〉 →Rr
Orc
〈g where x :∈ f ′, tr : t.L | r′〉

If L is a site return event, then active(g) 6= true, by assumption.

6. [Asym2]. Suppose

〈g where x :∈ f, tr : t | r〉 →Rs
Orc
〈g′ where x :∈ f, tr : t.L | r′〉

Then, 〈g, tr : nil | r〉 →Rs
Orc
〈g′, (tr : L | r′〉. By lemma 2 and the inductive

assumption, this implies 〈g, tr : t | r〉 →Rr
Orc
〈g′, tr : t.L | r′〉, which, by

part (6) of lemma 3, holds if and only if

〈g where x :∈ f, tr : t | r〉 →Rr
Orc
〈g′ where x :∈ f, tr : t.L | r′〉

Again, if L is a site return event, then active(g) 6= true, by assumption.

(⇐=) If C →Rr
Orc
C′ is an instance of the [Tick] rule (C is of the form 〈f, clk :

cm | r〉 with it not being an eager configuration), then the implication holds
trivially by the corresponding [Tick] rule in Rs

Orc. So, suppose the hypothesis
is not an instance of the tick rule. Then, we observe that the hypothesis must
be of the form 〈f, tr : t | r〉 →Rr

Orc
〈f, tr : t.L | r〉, i.e., C evolves to C′ while

generating an event. To complete the proof, we proceed by induction on f .
If f is a base expression (a site call, a site return, a publishing expression, or

an expression call), then the implication holds easily by the equations in Rr
Orc

and the assumption that C is closed.
Suppose the hypothesis is of the form 〈f | g, tr : t | r〉 →Rr

Orc
〈f ′ | g, tr :

t.L | r′〉. Then by part (1) of lemma 3, this implies 〈f, tr : t | r〉 →Rr
Orc

〈f ′, tr : t.L | r′〉, which by the induction hypothesis implies 〈f, tr : t | r〉 →Rs
Orc

〈f ′, tr : t.L | r′〉, and thus the conclusion holds (when L is a site return event,
active(g) 6= true, by assumption).
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Suppose the expression component of C is of the form f > x > g. If L is a
publishing event, then the hypothesis is of the form

〈f > x > g, tr : t | r〉 →Rr
Orc
〈f ′ > x > g | g{c/x}, tr : t.τ | r′〉

which by Lemma 3, part 2, is equivalent to 〈f, tr : nil | r〉 →Rr
Orc
〈f ′, tr :

(!c|m) | r′〉, implying that 〈f, tr : nil | r〉 →Rs
Orc
〈f ′, tr : (!c|m) | r′〉, and thus

〈f > x > g, tr : t | r〉 →Rs
Orc
〈f ′ > x > g | g{c/x}, tr : t.τ | r′〉. Otherwise, if L

is not a publishing event, then the hypothesis is of the form

〈f > x > g, tr : t | r〉 →Rr
Orc
〈f ′ > x > g, tr : t.L | r′〉

which, by part 3 of Lemma 3 and the inductive assumption, implies the desired
conclusion.

The third case for the asymmetric parallel composition is similar and follows
by parts 4, 5 and 6 of lemma 3 and induction.
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