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Abstract. This paper presents an executable rewriting logic semantics
of R5RS Scheme using the K definitional technique [19]. We refer to
this definition as K-Scheme. The presented semantics follows the K lan-
guage definitional style but is almost entirely equational. It can also be
regarded as a denotational specification with an initial model semantics
of Scheme. Equational specifications can be executed on common rewrite
engines, provided that equations are oriented into rewrite rules, typically
from left-to-right. The rewriting logic semantics in this paper is the most
complete formal definition of Scheme that we are aware of, in the sense
that it provides definitions for more Scheme language features than any
other similar attempts. The presented executable definition, K-Scheme,
can serve as a platform for experimentation with variants and extensions
of Scheme, for example concurrency. K-Scheme also serves to show the
viability of K as a definitional framework for programming languages.

Key words: Programming language semantics, Rewriting logic seman-
tics, Term rewriting, Scheme.

1 Introduction

Scheme is a general purpose programming language with a unified handling of
data and code. It also has a powerful macro system, using pattern matching,
to express syntax transformations. The Revised5 Report on the Algorithmic
Language Scheme (R5RS [9]) gives a thorough but informal description of the
language, as well as a partial denotational semantics. The denotational semantics
in [9] is missing definitions of important language features, such as definitions of
eval and dynamic-wind, it does not define the “top level” used throughout the
informal specification, and, most importantly, it is not executable. Executability
of a language definition gives one confidence in the appropriateness of the defini-
tion. Indeed, one can execute hundreds of programs exercising various language
features or combinations of features, and thus find and fix errors in the defini-
tion. Many subtle errors were detected and fixed in our subsequent definition
due to its executability.
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2 A K Definition of Scheme

Recent attempts have been made at giving formal, operational/executable
semantics to fragments of Scheme [11, 3]. Unfortunately, the partial definition
in [3] does not use a proper representation for vectors and lists, so it cannot
be extended to the complete Scheme, and neither [11] nor [3] gives definitions
for quasiquote or macros. Furthermore, neither uses a unified representation
of data and code, which is one of the crucial defining aspects of Scheme. It
should be noted that one motivation of this definition with respect to [11] was
to use a completely different definitional style, in addition to defining more.
These approaches, their limitations and comparisons with our current definition
are further discussed in Section 4.

In this paper we introduce a novel formal executable definition of large sub-
set of R5RS Scheme, called K-Scheme. K-Scheme uses a proper representation
for lists and vectors, a unified representation of code and data, and defines
quasiquote and a large portion of define-syntax macros. This definition uses
the K definitional technique [19] within rewriting logic [13]. K is a language
definitional framework consisting of the K-technique, based on a first-order rep-
resentation of computations as lists or stacks of “computational tasks”, and of
the K-notation, a domain-specific notation within rewriting logic that eases un-
derstanding and defining programming languages. Rewriting logic is a unified
logic for concurrency that extends equational logic with transitions; we mostly
use the equational fragment of rewriting logic in this paper. Rules are only used
to specify non-deterministic features of Scheme (procedure application sub-term
evaluation, copying in quote, and order of unquote expression evaluation in
quasiquote). One of the driving goals of K-Scheme has been to show the via-
bility of K for defining complex, real world languages, like Scheme. Scheme was
chosen particularly for its meta-programming facilities, which provide a strong
test for K. We chose to implement this definition directly in Maude [2] using
the K-style because, currently, there is no automatic translator from the K no-
tation to Maude, but in this paper we shall show the K notation for the rules
we discuss, as they are more compact and easier to understand.

Currently, K-Scheme consists of 802 Maude equations and 7 rules, 192 of
them for define-syntax macros and 610 for the core of the language (and a
few built-in procedures). We define 60 features of Scheme, using 285 auxiliary
operators and over 2500 lines of non-comment Maude; 374 lines of code, however,
define aspects of the K framework also common to other language definitions,
and simple helping operations.

The complete Maude definition of K-Scheme can be found on K-Scheme’s
webpage at [12], together with a web interface allowing one to “execute” pro-
grams directly within K-Scheme’s definition, using Maude’s capability to execute
rewriting logic specifications. The main limitations of K-Scheme at this point are
an incomplete standard library and the support of only integers among the nu-
meric types. These, as well as other implementation-specific features of Scheme,
can be added modularly (i.e., without having to modify the definitions of the ex-
isting features). Nevertheless, this is the most complete formal definition of R5RS
Scheme of which we are aware. In particular we believe we are first to give for-
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mal definitions to the operations of quasiquote, unquote, unquote-splicing,
a partial definition of define-syntax, as well as a definition of quote which
represents partial copying.

On Rewriting Logic Semantics and K. This paper is part of the rewriting
logic semantics (RLS) project (see [16, 14] and the references there). The broad
goal of the project is to develop a tool-supported computational logic frame-
work for modular programming language design, semantics, formal analysis and
implementation, based on rewriting logic [13]. It has been shown in [20] that con-
ventional definitional styles, such as big-step [8] and small-step SOS [18], MSOS
[17], reduction semantics with evaluation contexts [22], the chemical abstract
machine [1], and continuation-based semantics, can all be faithfully captured,
in the sense of intended computational granularity, as rewrite logic theories.
Therefore, rewriting logic can be indeed used as an ecumenical framework for
language definition using any of the above-mentioned styles, inheriting all their
advantages and disadvantages.

K [19] is an attempt to optimize the use of rewriting logic for language
definitions without obeying any of the styles above; it is, though, closest in spirit
to continuation-based semantics, in that it maintains the current computation
as a special structure that can be manipulated like any other data-type, in
particular, it can be altered. The K technique uses a subset of rewriting logic
and can be easily supported by other frameworks, for example by functional
programming systems; however, in that case one would use K for the sole purpose
of implementing interpreters.

2 Rewriting Logic Semantics

This section provides a brief introduction to term rewriting, rewriting logic, and
the use of rewriting logic in defining the semantics of programming languages.
Term rewriting is a standard computational model supported by many systems;
rewriting logic [13, 10] organizes term rewriting modulo equations as a complete
logic and serves as a foundation for programming language semantics [14–16].
Continuation-based rewriting logic semantics, the form of rewriting logic seman-
tics adopted in this paper, provides explicit representations of control context
which can be used in the definitions of language features that manipulate this
context, such as continuations, exceptions, or jumps.

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules –
potentially containing variables – which are each of the form: l → r. One step of
rewriting is performed by first finding a rule that matches either the entire term
or a sub-term. This is done by finding a substitution, θ, from variables to terms
such that the left-hand side of the rule, l, matches part or all of the current
term when the variables in l are replaced according to the substitution. The
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matched sub-term is then replaced by the result of applying the substitution to
the right-hand side of the rule, r. Thus, the part of the current term matching
θ(l) is replaced by θ(r). The rewriting process continues as long as it is possible
to find a sub-term, rule, and substitution such that θ(l) matches the sub-term.
When no matching sub-terms are found, the rewriting process terminates, with
the final term being the result of the computation. Rewriting, like other methods
of computation, may not terminate. Term rewriting is inherently parallel, since
non-overlapping parts of a term can be rewritten at the same time, and thus fits
well with current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic which pro-
vides support for concurrency. In equational logic, a number of sorts (types)
and equations are defined. The equations specify which terms are considered
to be equal. All equal terms can then be seen as members of the same equiv-
alence class of terms, a concept similar to that from the λ calculus where λ

terms can be grouped into equivalence classes based on relations such as α and
β equivalence. Rewriting logic provides rules in addition to equations, used to
transition between equivalence classes of terms. This allows for concurrency (non-
determinism), where different orders of evaluation could lead to non-equivalent
results, such as in the case of data races. The distinction between rules and
equations is crucial for formal analysis, since terms which are equal according to
equational deduction can all be collapsed into the same analysis state. Rewriting
logic is connected to term rewriting in that all the equations and rules of rewrit-
ing logic, of the form l = r and l ⇒ r, respectively, can be transformed into
term rewriting rules by orienting them properly (necessary because equations
can be used for deduction in either direction), transforming both into l → r.
This provides a means of taking a definition in rewriting logic and a term and
”executing” it.

2.3 K: A Computation-based Rewriting Logic Semantics

K [19] is a rewriting logic semantics framework consisting of a technique and a
specialized notation, to define programming languages as rewriting logic theories.
By K, we understand the K definitional technique within rewriting logic. Rules
in K are denoted by a solid line where rewriting takes place, while equations
are denoted by a dotted line. Only the part above the line is replaced, and the
special symbol · denotes nothing.

In K, the current program is represented as a potentially nested “soup”, (or
multi-set), of terms representing the current computation, memory, global def-
initions, etc. Information stored in the state can be nested, allowing logically
related information to be grouped and manipulated as a whole. The most im-
portant piece of information is the Computation, wrapped by the operator k,
which is a first-order representation of the current computation, made up of a
list of computational tasks separated by y. The computation can be seen as a
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stack, with the current computational task at the left and the remainder (contin-
uation) of the computation to the right. This stack, along with other state com-
ponents, can be saved and restored later, allowing complex control structures to
be defined. For example, if in a certain definitional context where the remaining
computation is represented by K one wants to schedule for processing/evaluating
expression E, all one needs to do is replace the current computation in the state
configuration by E y K. After E evaluates to Value V the computation will be
V y K.

Lists, used frequently in K, have special matching syntax, due to the fre-
quency of matching against them.

k(V1 y V2

·

〉 (2.3.1)

k〈V

·

) (2.3.2)

2.3.1 is an example of a rule which removes the second item in the Computa-
tion list. 2.3.2 is an equation which removes the last item in a list. In each case
the angle bracket denotes that the list continues in the direction of the bracket.
Lists are associative data structures, K also frequently makes use of associative
and commutative data structures, i.e. multisets. Multisets can use the same spe-
cial list matching syntax, but one must keep in mind that an equation or rule
will attempt to match modulo commutativity. The Computation k, mentioned
above, is an example of a list used in K, where y represents concatenation. En-
vironments, which map Names to Locations, and Stores, which map Locations
to Values, are examples of multisets of pairs.

3 Scheme in K

In K-Scheme we attempted to cover the entirety of core Scheme as defined, infor-
mally, in R5RS [9]. By “core” we mean those syntactic keywords and procedures
not marked as library. We also support select library syntax and procedures, and
intend to offer a full standard library in the future.

3.1 Scheme State Representation

When defining a language using K, one of the important decisions is the struc-
ture of the state. By “state”, we here mean all the information about a program
execution snapshot, including the program itself; in this sense, it is like a “config-
uration” in SOS [18]. The rewrite rules require this state structure to determine
the context of equation application. The major concerns are that all needed
information be available, and that the state is organized in a logical, extensi-
ble manner. Our goal is for additions to the state representation to be possible
without breaking existing equations in the semantics, when possible, and vice
versa.
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The state representation for K-Scheme consists of the components: k, the
current computation (which contains only the current “top level” expression1 ,
not the entire program); mem, the Store; nextLoc, the next free Location in the
store; env, the local Environment; globalenv, the global Environment; synmap
the syntax map for macros (see Section 3.6); output, the output of the program
modified by calls to display; program, the stored syntactic representation for
the rest of the program not currently in the computation; and unquotes, a list
of all the Values to be unquote’d in a given quasiquote expression.

3.2 Lists

In K-Scheme, All functioning programs are lists. To support the semantics of
lists, we use a storage model much like that given in the R5RS report [9]. In-
ternally, all lists are represented as cons cells. Cons cells are pairs of Locations,
which can be thought of as pointers. To form an actual list, the second Location,
the cdr of the cons cell, points to another cons cell. We chose this representation
both because it is the representation suggested by R5RS and because it easily
supports desired Scheme functionality. An example is the sharing of cdr’s. Two
lists may share cdr’s, wherein the update to the cdr of one list is reflected in
the cdr of the list sharing that cdr.2

k(apply(fbuiltin(car), cell({L1.L2}))

Mem[L1]

〉mem(Mem) (3.2.1)

k(apply(fbuiltin(cdr), cell({L1.L2}))

Mem[L2]

〉mem(Mem) (3.2.2)

k( apply(fbuiltin(set-car!), cell({L1.L2}, V ))

V y assignToLoc(L1) y symbol(unspecified)

〉mem(Mem) (3.2.3)

Fig. 1. List Operations

Recall that due to the program state attribute we only execute one expres-
sion in the continuation at a time. These expressions, however, can be arbi-
trarily complex. Each complete expression is first converted into this list repre-
sentation (before execution). Execution is on list structures consisting of cons
cells, excepting the creation of simple constants and variables. For example, in
(define x 4) (display x) x 4, the x and the 4 are not contained in cons
cells; they also have no effect on the output (though they are “executed” by
K-Scheme).

Figure 1 shows the Maude definitions for the list operations car, cdr, and
set-car!, other operations are similar and omitted due to space constraints. The
presence of apply(keyword(X), V1, V2...) or apply(fbuiltin(X), V1, V2...) denotes

1 We refer to both statements and expressions simply as expressions.
2 An example of this, “share-cdr”, can be seen on [12].
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the application of a built-in syntactic keyword or built-in function to the Values
V1, V2 ..., respectively.3 The constructor cell accepts a cons cell as an argument
and creates a Value, i.e., {L1 . L2}, is a cons cell, while cell({L1 . L2}) is a Value
(symbol does the same for Names). Mem[L] “returns” the Value L points to in
the store Mem.

The equation defining the semantics of the set-car! function places sym-
bol(unspecified) on the continuation because this is the return Value of the set
functions. We decided to have a literal unspecified Value in places where R5RS
declares the result to be unspecified. It is thus possible to have a list of unspec-
ified Values which, when printed, looks like (#<unspecified> ...). What the
set equations say, then, is: take the Value V, assign it to the Location in the
cons cell, and return the unspecified Value as a result to the rest of the compu-
tation (the continuation). We consider having a literal unspecified Value to be a
faithful depiction of R5RS, as K-Scheme alerts the user to a case where Scheme
defines the answer to be unspecified. Note that, while K-Scheme has support for
vectors and strings, the definitions are removed due to space constraints.

3.3 Lambda and Procedure Application

The keyword lambda and procedure application are integral to Scheme.

k( apply(keyword(lambda), V, V L)

fclosure(list2Names(V, Mem), V L, Env)

〉mem(Mem)env(Env) (3.3.1)

Equation 3.3.1 defines application of the keyword lambda. When lambda is
applied to Value V and a Value list VL, V represents the parameter list (as a
cons cell), while VL is the body of the procedure. list2Names converts a Scheme
list into a list of names. Note that we store the current Environment so that it
can be restored when the function is applied.

Procedure application is a little more complicated, because R5RS requires
that the order of evaluation of the terms in a an application form be non-
deterministic.4

Equation 3.3.2 defines what happens when we eval a list (evalk denotes that
the Value preceeding it need be evaluated). list2Values transforms a Scheme
list into a K list of Values, because it is easier to work with. The evaluation
of a list will either be an application of a continuation, function, or keyword.
A keyword must be matched early (Equation 3.3.3), as its arguments should
not be evaluated. Equation 3.3.4 matches any case where the cons of the list
is not a keyword. If the car is not a keyword we must non-deterministically
evaluate the sub terms of the form, i.e. VL. The operator app denotes that this

3 The major difference between syntactic keywords and built-in functions in K-Scheme
is that all of the Values passed to a function are pre-evaluated, while those to a
syntactic keyword are not (i.e. lazy evaluation). This is necessary for constructs
such as if.

4 The example “nd” on [12] shows this non-determinism in action.
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k( cell(C) y evalk

preApply(list2V alues(cell(C), Mem))

〉mem(Mem) (3.3.2)

k(preApply(keyword(X), V L)

apply(keyword(X), V L)

〉 (3.3.3)

k( preApply(V L)

randomEval(unEvalWrap(V L), length(V L)) y app

〉 otherwise (3.3.4)

k( randomEval(V L1, unEval(V ), V L2, N)

V y evalk y randomEval(V L1, hole, V L2, N − 1)

〉 (3.3.5)

k(V y randomEval(V L1, hole, V L2, N)

randomEval(V L1, V, V L2, N)

〉 (3.3.6)

k(randomEval(V L, 0) y app

apply(V L)

〉 (3.3.7)

( apply(V, V L)

WrongTypeToApply(V )

〉 if ¬isApplicable(V ) (3.3.8)

k( apply(fclosure(XL, V B, Env1), V L)

V L y bindTo(XL) y apply(keyword(begin), V B) y kenv(Env2)

〉env(Env2

Env1

〉

(3.3.9)

Fig. 2. Function Application

should lead to application, because randomEval is also used for evaluating the
unquote expressions in a given quasiquote. The operator unEvalWrap simply
wraps every Value in the Value list VL with the operator unEval. Rule 3.3.5
shows the non-deterministic evaluation of sub terms using randomEval. A Value
which has not been evaluated yet (and is thus wrapped with unEval) is chosen
and scheduled for evaluation. Its place is kept by the operator hole so that it
can be placed in the correct place in Equation 3.3.6, which will be matched
immediately after V is finished evaluating. Because V is placed back without the
operator unEval, it cannot be evaluated again. The natural number N is used to
know when all the Values have been evaluated (Equation 3.3.7). Equation 3.3.8
signals an error if a non-applicable type is the first Value in an apply operator.
Finally, in Equation 3.3.9 we see the final application of an fclosure, note that,
though we support variable argument number, the equation is not shown. When
an fclosure is applied, the arguments VL are bound to the parameter list XL, the
Environment is set to that of the closure, the body of the lambda is evaluated
(begin is applied because the bodies of procedures are allowed to consist of a list
of expressions), then the Environment is restored to the point before the fclosure
application via the operator kenv.

3.4 Eval, Quote, Quasi-Quote, and Unquote

In a language with a unified representation of code and data it is important to
have some way to distinguish data. In Scheme this is handled via quote and
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its cousin quasiquote. The function eval, on the other hand, allows for meta-
programming by allowing for the evaluation of lists as programs. Note, that
because all code in K-Scheme is represented internally as lists, eval is achieved
essentially for free. The application of eval to any list is treated as an application
form, and evaluated accordingly5.

On the other hand, quote, which causes a list to be treated as data, has
an interesting under specification in R5RS. R5RS suggests that all quoted data
be allocated before the program is run, in essence sharing a single quote’d list
between all uses. It does not, however, require this. The alternative would be
copying the quoted expression for each use. However, these two choices do not
encompass the standard, which allows for any combination of copying and shar-
ing.6

k(apply(keyword(quote), V )

dup(V )

〉 (3.4.1)

k( dup(cell({L1.L2}))

dup(Mem[L1]) y dup(Mem[L2]) y makeConsCell

〉mem(Mem) (3.4.2)

k( dup(cell({L1.L2}))

dup(Mem[L1]) y Mem[L2] y makeConsCell

〉mem(Mem) (3.4.3)

k( dup(cell({L1.L2}))

Mem[L1] y dup(Mem[L2]) y makeConsCell

〉mem(Mem) (3.4.4)

k( dup(cell({L1.L2}))

Mem[L1] y Mem[L2] y makeConsCell

〉mem(Mem) (3.4.5)

Fig. 3. Quote Semantics

Equation 3.4.1 simply says that when we apply quote to a Value, apply dup
to that Value. We use dup because it is needed in a few other places (such as
unquote-splicing). The operator dup non-deterministically decides whether or
not to copy Values, based on the four rules seen in Figure 3. dup is defined for
other types as well, but we only show the rules for lists. In each rule, applying
dup to an element of a cons cell means maybe copying the rest of it, while not
applying dup means that the Value will not be copied. makeConsCell simply
builds a cons cell with the two proceeding Values.

Unfortunately the definition for quasiquote is too long to meet the space
constraints, we offer instead a summary of the action, and urge the curious to
download the complete Maude definition. quasiquote of a vector or list iterates
through and collects any unquote expression at the proper depth. The proper

5 Application of eval to any other type is idempotent, except for symbols. eval’ing
symbols looks up the Value bound to the symbol.

6 An example of any possible combination of copying and sharing can be found on [12]
as “quote-nd”.
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depth is known by keeping a natural number. Any nested quasiquote increments
the depth, while an unquote decrements the depth. If the depth is 0, the unquote
expression is placed in the attribute unquotes, while the operator hole (seen
before in function application), is placed in the list or vector. The unquote

expressions are evaluated after the new list or vector is constructed, using the
randomEval operator seen in 3.3. After they are randomly evaluated they are
then spliced back into the list or vector7.

3.5 Call-with-current-continuation

We felt that the definition of call-with-current-continuation (call/cc)
must be included in this paper primarily because of how easy it is to express in
the K style, while it is difficult to impossible to express in other styles (e.g. nat-
ural semantics). The equations for call/cc can be seen in Figure 4. We defined
another Value type called continuation. It is basically the same as an fclosure
save without a parameter list.

k(apply(fbuiltin(call-with-current-continuation, V ) y K

apply(V, continuation(K, Env)

)env(Env) (3.5.1)

k(apply(continuation(K1, Env1), V ) y K2

V y K1

)env(Env2

Env1

) (3.5.2)

Fig. 4. Call-with-current-continuation

Equation 3.5.1 says that when call/cc is applied to a Value V, pass the
current continuation, wrapped in the continuation constructor, along with the
current Environment to V (which is assumed to be a function). Equation 3.5.2
defines what happens when a continuation object is applied to a Value V. That
Value is simply passed to the remaining computation stored in the continuation
object, replacing what was the remaining computation. Also the Environment in
the continuation replaces the current Environment. Recall from Section 3.1 that
k contains only the current “top level” expression. This is to keep call/cc from
capturing the whole rest of the program, as it should only capture the current
“top level” expression.

K-Scheme also contains a definition for call-with-values and an imple-
mentation of dynamic-wind. While [11] claims that special consideration for
dynamic-wind must be made, we use the version presented in [4]. Instead of
actually modifying the objects created by call/cc, this implementation is writ-
ten completely in Scheme. It does redefine call/cc, but we believe, because it
can be written with normal call/cc, that actually modifying the structure of

7 Example “quasiquote-nd” on [12] shows the non-deterministic nature of quasiquote
in action. Other quasiquote examples can be found as well.
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continuation objects is unnecessary. Note, however, that this is not a definition
of dynamic-wind.

3.6 Macros

K-Scheme supports the use of top-level define-syntax to define new macros.
This support is under development, so the types of macros that can be defined
are still limited: most macros with list-based patterns can be defined, but pat-
terns with improper lists or vectors are still not supported. Macros are also
assumed to not define new names using internal defines or reference free-names
not defined at top-level. Even with these limitations, K-Scheme can support a
number of standard macros, such as those used to define constructs like or and
let. Currently, macros are not hygienic or referentially transparent. Macro ex-
pansion happens up front, taking a K-Scheme syntax expression with macros
and yielding an expression without. This expansion process is orthogonal to the
K-Scheme semantics presented so far.

Processing Macro Definitions When a macro definition is encountered, K-
Scheme processes each provided pattern, transforming it into a form which can
more easily be used during matching. These patterns, along with the associated
templates, are then stored in a syntax definition map keyed by name. This allows
definitions to be quickly found during macro expansion.

trans((X I

I

〉, 〈 ·

patV ar(X, 0)

), XL) if ¬nameIn(X, XL) ∧ ¬isEllipses(I) (3.6.1)

The initial pattern is transformed using the trans operator, the definition of
which is shown above. trans takes the original list (kprefixX I), a working list
(the post-transformation list, 〈·)), and a list of names (XL). The names are
the literals defined in syntax-rules, and are used to distinguish literals from
pattern variables. The sample equation shows a potential match. Here, a name,
X, is at the head of the list being processed. If it is not in the list of literal names,
checked with nameIn, and if the following list item is not an ellipses, checked
with isEllipses, then X is a non-repeating pattern variable, and is marked as such
in the working list. The item that represents non-repeating pattern variables,
patVar, includes the name of the variable and a counter, which represents the
ellipses “depth” of the variable; this allows us to detect when the ellipses count
between the pattern and the template do not match.

Macro Expansion To support macro expansion, all expressions processed by
K-Scheme are first checked to determine if they make use of any defined macros.
If a macro usage is found, the macro is expanded, replacing it with the generated
syntax. The expression is then checked again, with this process repeated until no
further expansions occur. This model naturally supports both recursive patterns
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and the use of multiple distinct macros in an expression. The operators that
control this process are shown below:

applySyntax ::= ExpList Synmap → ExpList. (3.6.2)

applyToExp ::= Exp Synmap → Exp. (3.6.3)

applyOneStep ::= Exp Synmap → Exp. (3.6.4)

The first operator, applySyntax8, is invoked each time a new list of expressions is
processed by K-Scheme. It makes use of applyToExp to apply the syntax in the
syntax map (synmap) to each expression. applyToExp applies one step of syntax
transformation using applyOneStep, repeating this process until the expression
no longer changes.

applyToExp(E1

E2

, SM) if E2 := applyOneStep(E, SM) ∧ E1 6= E2 (3.6.5)

applyToExp(E, SM)

E

(3.6.6)

The first equation shows the case where the expression does change, meaning
that E1 contained a use of a macro that was then expanded in E2. In this case,
we continue looking for macros to expand in E2. The second equation represents
where no changes were found (i.e., where the first equation did not apply). In
this case, the expression E1, now fully expanded, is returned.

Matching and Substitution Expansion works using a two step process. In
the first step, matching, the expander searches for a pattern that matches the
supplied syntax. The list of patterns associated with the macro keyword is tried
in order. If a match is found, a mapping from pattern variables to expression
syntax is returned. Alternatively, match failure causes the next pattern to be
tried in turn. The match operation, with a sample equation, is shown below:

match((E

·

〉, (patV ar(X, N)

·

〉, ( ·

{patV ar(X, N), E}

〉 (3.6.7)

Here, match takes two lists. The first contains the current syntax being processed,
while the second contains the pattern. The final parameter is a set of pairs,
where each pair (surrounded by curly braces) is a map of pattern variables
to the syntax they are matched to. The final result is this set along with a
flag indicating whether matching was successful. The equation shows a sample
match. The next term in the pattern to match is a pattern variable, X; if the
next term in the syntax list is an expression, E, the match of X to E is recorded
in the set of matches.

8 ExpList Synmap → ExpList means that the operator takes an expression list and
a syntax mapping, and returns an expression list, the other operators can be read
similarly
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The second expansion step is substitution (performed by the subst operator).
Substitution uses the mapping found during matching, along with the template
associated with the matched pattern, to expand the macro to the proper syn-
tax. Variables in the pattern are replaced with the expression syntax from the
mapping, taking proper account of ellipses. A sample equation using the subst
operator is shown below:

subst((XI1

I1

〉, 〈 ·

I2

), N, ({patV ar(X, 0), I2}〉) if ¬isEllipses(I) (3.6.8)

The subst operator takes a template expression, the first argument, and gen-
erates the expanded expression, built up in the second argument and eventually
returned. The third parameter is a natural number (N), used to track expansion
properly for repeating names and repeating lists. The final parameter is the set
of matches developed using the match operation. The equation shows an example
of substituting the Value matched to a pattern variable in the match operation
for a pattern variable in the template. Here, if name X is encountered, and is
not followed by ellipses, and if X is also the name of a pattern variable matched
to list item I2, X is removed from the template list and its substitution, I2, is
added to the end of the working list. When subst has emptied the template list,
it is finished, and will return the working list.9

4 Comparisons and Related Work

The K technique has been used to define several languages previously. Kool [6,
7] is an object oriented language designed to show how object oriented language
features can be defined in the K framework. A formal definition of Java [5] given
in an earlier rewriting logic semantics style from which K descended also exists.
There is also a pre-alpha definition of Prolog using K at [21]. Again, one of our
main goals of this project has been to show K’s definitional viability by defining
a language with heavy meta-programming capabilities.

Previous attempts at defining Scheme, or portions of Scheme, also exist. As
already mentioned [9] gives a partial denotational semantics of Scheme which
misses several features (dynamic-wind, eval, a “top level”, etc.), and is not
executable.

[3] attempts a rewriting based approached to an operational semantics for
Scheme. Our work inherits nothing from this. [3] does not use a list-like internal
representation, most operations being performed directly on the program syntax.
In order to support quote and eval, which is mistakenly called unquote (referred
to as eval in the following), quote creates a “frozen” expression, which can be
later evaluated by eval. This is an incorrect approach because it means that
only expressions generated by quote can be evaluated by eval. Our approach
is general and supports the evaluation of arbitrary lists, as it should. Another
problem with [3] is that lists themselves are represented as Value lists rather than

9 Examples of macros can be run on [12].
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cons cells. This would not allow for sharing of cdr’s between lists. This works for
the subset defined because list modification was not supported (no set-car! or
set-cdr!). Vectors are also mishandled as Value lists, when they should be lists
of Locations. eqv? could not be handled properly within this framework either.
quasiquote was also not supported.

[11] provided an operational semantics of R5RS Scheme. The main contribu-
tions of their paper were a greater completeness than the formal definition given
in R5RS (they added eval, quote, and dynamic-wind), modeling multiple return
values in a way that is transparent to the rest of the definition, a model of unde-
fined order of evaluation, and the executability of their definition. We provide a
definition of Scheme with more features, offering definitions of define-syntax,
quasiquote, unquote, and unquote-splicing. Further, their definition of quote
assumes full sharing of quote’d values, rather than the non-deterministic sharing
allowed by R5RS that we allow in our definition. Our eval, unlike the definition
in [11], also supports the environment parameter mentioned in R5RS. Multiple
return values (only appropriate within the context of call-with-values) are
transparently handled in our definition, vals being a particular Value type in
K-Scheme, containing multiple Values. We also support an undefined order of
evaluation for procedure application and quasiquote. As mentioned earlier, we
do not feel modification of continuations is necessary to support dynamic-wind,
because an implementation completely written in Scheme exists in [4]. We feel
the biggest difference between our respective works is the definitional style. As
our motivation was to test K as a framework more so than to provide a “better”
definition of Scheme, their definition is less relevant to ours than is [3].

5 Future Work and Conclusions

Eventually, we intend to provide complete support for macros, with let-syntax

and letrec-syntax, as well as support for macros involving improper lists and
vectors. This will also entail hygiene and referential transparency. Hygiene can
be achieved by variable renaming, while referential transparency will require
tagging syntax mappings with syntax environments.

We have presented a formal definition of a significant subset of Scheme R5RS
Scheme, using the K definitional style within rewriting logic. The complete source
and an online trial of our definition can be found at [12]. Unlike earlier for-
mal, executable definitions, we provide definitions for quasiquote, unquote,
unquote-splicing, and define-syntax (with portions of its associated pat-
tern language).
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