
Effective Predictive Runtime Analysis Using

Sliced Causality and Atomicity

Feng Chen and Traian Florin Şerbănuţă and Grigore Roşu

Department of Computer Science, University of Illinois at Urbana-Champaign
{fengchen,tserban2,grosu}@cs.uiuc.edu

Abstract. Predictive runtime analysis has been proposed to improve
the effectiveness of concurrent program analysis and testing. By observ-
ing one execution trace of the running system, predictive runtime anal-
ysis extracts a causality relation among runtime events, which is then
used as an abstract model of the program and checked against desired
properties. This way, one can predict concurrency errors without actu-
ally hitting them and without re-executing the program. The quality of
the extracted causality relation directly determines the effectiveness of
predictive runtime analysis. This paper presents an efficient and sound
approach to compute sliced causality and sliced atomicity. These signif-
icantly improve upon existing causalities: irrelevant causal relationships
are removed using an apriori static analysis process based on control
and data dependence, and on property relevance and atomicity analy-
sis. The algorithms presented in this paper have been implemented and
extensively evaluated. The results show that the proposed technique is
effective and sound: we found the previously known concurrency bugs
as well as some unknown errors in popular systems, like the Tomcat
webserver and the Apache FTP server, without any false alarms.

1 Introduction

Concurrent programs are notoriously difficult to test, analyze and debug, due
to their inherent non-deterministic nature. Predictive runtime analysis [19, 20,
7] has been proposed to improve the coverage and effectiveness of concurrent
program testing and analysis without breaking the soundness of the analysis (i.e.,
no false alarms). By observing executions of the analyzed concurrent program, a
predictive runtime analysis tool can infer and analyze feasible executions of the
program that may have never occurred during testing. This way, concurrency
bugs can be detected without having to generate test cases that make the program
hit the bugs and even without the need to re-execute the program at all.

A good causality relation extracted from the observed execution trace can
play a critical role in the effectiveness of predictive runtime analysis: the more
relaxed (i.e., less constrained) that causality is, the more potential runs we can
infer from the observed trace, and thus the larger the coverage and the better the
predictive capability of the analysis is. The “proof-of-concept” predictive runtime
analysis technique presented in [19] was based on the traditional happen-before

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

causality [14] and had comparatively little coverage. It was then improved in [20]
by relaxing the traditional happens-before with write-read atomicity. Recently,
[7] introduced the sliced causality, which drastically yet soundly improves the
happen-before causality by removing irrelevant causal orders using dependence
information from the program: it increases the analysis coverage exponentially.

However, the definition of sliced causality in [7] is built upon a dependence
relation which imposes a strict ordering among events, thus being still over re-
strictive in many cases. Not all relations between events impose a causal order;
the atomicity relation between a write and its subsequent reads, formally inves-
tigated in [20], is such an example. This paper presents a novel sliced causality
which starts with a causality with atomicity, as in [20], and computes from it a
sliced causality which is more relaxed than the one introduced in [7]. The key to
achieving that is the introduction of the relevance among events, which points
out relevant events without imposing an order between them. We show that
atomicity can also be ”sliced” using the property, without losing any feasible
linearizations of the property-related events. The obtained sliced causality and
atomicity can be efficiently computed from the observed trace. The presented al-
gorithm has been implemented in jPredictor, our predictive runtime analysis
tool for Java, and a series of experiments has been carried out.

There is much effort put in testing and dynamically analyzing concurrent
programs. Some approaches [8, 18] aim at checking general purpose properties,
while others [17, 22, 16, 11, 23] are specialized on particular properties, e.g., data-
races and/or block atomicity. The existing approaches tend to focus on either
soundness or coverage: for example, happen-before based techniques [8] try to
avoid false alarms at the expense of a limited coverage, while lock-set based
approaches [17, 16, 11] aim at providing better coverage at the expense of more
false alarms. Predictive runtime analysis is generic to the property to check, and
the sliced causality technique is proposed to improve the coverage of analysis
without breaking its soundness. Indeed, our evaluation results show that our
approach is viable and effective in practice: we were able to find all the previously
known errors as well as some unknown ones in a comprehensive benchmark suite
containing highly non-trivial Java applications.

The reminder of the paper is organized as follows. Section 2 revisits the basic
concepts of events, dependence, and atomicity introduced in [20, 7], providing
finer grained definitions of dependence. Section 3 introduces the relevance re-
lation. Section 4 is the theoretical core of the paper, introducing and proving
the soundness of the sliced causality with atomicity. Section 5 shows how our
technique can be used to verify trace-related properties. Algorithms to extract
sliced causality and atomicity are given in Section 6. Section 7 briefly presents
the evaluation results and Section 8 concludes the paper.

2 Preliminaries: Events, Causality, and Atomicity

This section recalls definitions and results from [20, 7]. Events represent atomic
steps observed in the execution of the program. In this paper, we focus on multi-

2

threaded programs and consider the following types of events (other types can
be easily added): write/read of variables, beginning/ending of function invoca-
tions, acquiring/releasing of locks, and start/exit of threads. A statement in the
program may produce multiple events. Events need to store enough information
about the program state to allow the observer to analyze the trace.

Definition 1. An event is a mapping of attributes into corresponding values.

For example, one event can be e1 : (counter = 8, thread = t1, stmt = L11, type =
write, target = a, state = 1), which is a write on location a with value 1,
produced at statement L11 by thread t1. One can easily include more information
into an event by adding new attribute-value pairs. We use key(e) to refer to the
value of attribute key of event e. The attribute state contains the value associated
to the event; specifically, for the write/read on a variable, state(e) is the value
written to/read from the variable; for ending of a function call, state(e) is the
return value if there is one; for the lock operation, state(e) is the lock object; for
other events, state(e) is undefined. To distinguish among different occurrences
of events with the same attribute values, we add a designated attribute to every
event, counter, collecting the number of previous events with the same attribute-
value pairs (other than the counter).

Definition 2. A trace τ is a finite ordered set of (distinct) events {e1 < e2 <
· · · < en}. Let Eτ = {e1, e2, . . . , en} be called the alphabet of τ and let <τ be the
total order induced by τ on Eτ . The thread ordering < is given by e < e′ if
e <τ e′ and thread(e) = thread(e′).

i>0

x = 1 y = 1

z = x

C1

S1 S2

S3

T F

Fig. 1. Control
dependence

Control dependence. Intuitively, a statement S control-
depends on a choice statement C, iff the choice made at C
determines whether S is executed or not. For example, in Fig-
ure 1, the write on x at S1 and the write on y at S2 have a
control dependence on the read on i at C1, while the write on
z at S3 does not have such control dependence.

The control dependence among events is parametric in a
control dependence relation among statements. All we need to
define it is a function returning the control scope of any state-
ment C, say scope(C), which is the set of statements whose
reachability depends upon the choice made at C, that is, the statements that
control depend on C, for some appropriate or preferred notion of control depen-
dence. For control statements with a complex condition, e.g., involving function
calls and side effects, we assume that one can transform the program to simplify
its condition to a simple check of a boolean variable.

Formally, e �ctrl e′ iff e < e′, stmt(e′) ∈ scope(stmt(e)), and there is no
e′′ such that e < e′′ < e′ and stmt(e′) ∈ scope(stmt(e′′)). The last condition
says that an event e is control dependent on the latest event issued by some
statement upon which stmt(e) depends. For example, in Figure 1, a write of x
at S1 is control dependent only on the most recent read of i at C1.

3

The soundness of the analysis based on sliced causality is contingent to the
correctness (no false negatives) of the employed control dependence: the analysis
produces no false alarms when the scope function returns for each statement at
least all the statements that control-depend on it. In our implementation of
jPredictor[4], we chose to use the termination-sensitive control dependence
(TSCD) introduced in [6].

Next three dependence relations (write-read, data and reference) were intro-
duced in [7] as a single dependence, namely data-flow dependence. We here chose
to introduce and name them separately to simplify the our presentation.

Fig. 2. WR dependence

Write-Read dependence. The write-read depen-
dence was originally introduced in [20]. We say e′

write-read depends on x e, written e �x
wr e′, iff e is

a write of x and e′ is a read of x such that the latest
write on x that happens-before e′ is e. In other words,
we say that e �x

wr e′ if and only if the value of x read
by event e′ is the value written by the event e.

Data dependence. Since the inter-thread data dependence is given by the
write-read dependence, this data dependence is precisely the common intra-
thread data dependence. For example, for an assignment x = E, the write of x
has data dependence on the reads generated by the evaluation of E.

Formally, we say that e′ data-depends on e, written e �data e′, if e < e′,
type(e) = read and stmt(e′) uses target(e) to compute state(e′).

Reference dependence. Accessing the element of an array or a field/method
of an object, for example, require that the location of the access if computed,
typically using values of other locations. This induces a dependence between the
target of an event and the reads events that are used to compute it. Consider,
for example the statement a[x] = 3. Here, the location at which the value 3
will be written, depends on the values read from both a and x.

Formally, we say that e′ reference-depends on e, written e′ �ref e, if state(e)
is used to compute target(e′).

Causal dependence. Let the causal dependence � be the transitive closure of
control-dependence, data-dependence, target-dependence and write-read depen-
dence, that is, �= (�ctrl ∪ �data ∪ �ref ∪ �wr)+.

Given a causally closed set of events R, a linearization τ of the events from
R is consistent with a dependence ordering � if ��R⊆<τ . That is, dependence
between events is preserved by the linearization.

All other events an event e causally depends on must occur in a linearization
if we want to ensure that e will also occur. However, the occurrence of all these
events in a linearization might not be enough to ensure the occurrence of e.
That is because there might be other events which, although e does not directly
depend on them, prove to be relevant for e under a different interleaving.

Write-Read atomicity[20]. Given a write event, say e, the set {e} ∪ {e′ |
e′ ∈ E ∧ e �x

wr e′} should be regarded as atomic with respect to any other event
outside the set writes x. Such a set is called an atomic set induced by e on target

4

x and is denoted by [e]x. A linearization of the events in Eτ is consistent with the
write-read atomicity if for any event e′ ∈ [e]x, any other write event e′′ of x, such
that e′′ �∈ [e]x, appears either before or after both e and e′ in the linearization.

As pointed out in [20], lock atomicity can be handled as a special type of
read-write atomicity by regarding lock acquire as a write event and lock release
as a read event. Therefore, we will use in the sequel “atomicity” to refer to both
lock atomicity and write-read atomicity.

In [20] is proved that any linearization of Eτ which is consistent with the
thread ordering, the write-read dependence, and atomicity is a feasible trace
on the multi-threaded system. This result takes into consideration all accesses
to shared variables, using them to restrict feasible linearizations. However, this
might prove too restrictive, since usually one only tries to verify one property
at a time, and that property usually only depends on a very small number of
shared variables. In this paper, we will prove a similar result but focusing only
on the “events of interest” from the observed trace, and thus, maximizing the
number of linearizations against which the property can be checked.

3 Relevance

[7] introduced a special kind of dependence, called relevance dependence, to
point out that some otherwise not causally dependent events are relevant in
the sense that they should not change in any consistent linearization. We here
relax this notion in the sense that it no longer needs to be a dependence relation,
keeping from it only the information that an should not be removed when slicing
the trace. This proves to further enrich our property checking capabilities, since
fewer dependencies yield more linearizations.

(a) Definition (b) Instance (c) Counter-example

Fig. 3. Relevance

Let R be a set of events closed under the causal dependence. To get a better
intuition about relevance, let us begin with a visual, though abstract, example.
Events in R are depicted by full discs and causality between them is pictured by
arrows. In Figure 3(a), assume e3 is the “latest” element in R before e4 in T3 and
e5 is the “first” element in R in T3, not control-dependent on e4. If e2 ≺R e3,
as in Figure 3(c), then e2 will always occur before e4 in any sound linearization,
thus e4 bears no relevance to e2. Similarly, if e5 ≺R e1, then again e4 is not
relevant for e2, because even if e′4 is reached and writes some value on x, e1 will
be generated after it, and before e2, setting the right value of x for e2 to read.

5

However, if neither of the above holds, then a permutation of the events in R in
the order e1, e3, e5, e2 might be unsound, as e′4 might be generated. Therefore,
in that case, e4 must become relevant to ensure that e′4 is not generated.

Definition 3. If e1 and e2 are from R, e1 �x
wr e2, and e′ contains in its scope

a statement which could generate a write on x, and if the scope of e′ can’t be
proved to be either before e1 or after e2 using the causality on R and the thread
ordering, then e′ is relevant for e2.

An interesting instance of the above definition, not captured using the above
intuition, occurs when in the above abstract example e4 and e′4 coincide, as
in Figure 3(b). In this setting, the definition above is read as follows: a write
event which could occur as the last write before a relevant read on the same
target, although it didn’t in the observed execution, must become relevant; note,
however, that by making it relevant, due to the write-read atomicity condition,
e4 won’t appear between e1 and e2 in any permutation of the relevant events
consistent with the write-read atomicity.

A similar kind of relevance arises in the case of lock acquire and release
operations. Indeed, if an acquire operation occurred before another on the same
lock in the observed trace, than the fact that the second acquire occurred depends
on the fact that the release corresponding to the first acquire has occurred before.
However, since we want to enable the blocks depending on the same lock to be
permuted, we chose to say that the release is relevant (if it cannot be proved
before the second acquire). To have a uniform treatment for relevant events, we
chose to treat release events also as writes of their target when computing the
relevant events and let the relevance as defined above handle them. Therefore,
when computing relevant events a release event will be treated as a succession
of a read event, depending on the write of the lock acquire and a write event
(with no event depending on it) to ensure release is made relevant if required.

Definition 4. We say that a set of events R ⊆ Eτ is relevance closed if (1)
if e � e′ and e′ ∈ R then e ∈ R; and (2) if e is relevant for e′ ∈ R, then e ∈ R.

As we will shortly prove, a relevance closed set of events has the (good)
property that all its linearizations consistent with the causality and atomicity
are feasible traces. An obvious example for a relevance closed set of events would
be the set of all events in a given trace, but this set is obviously not we are look-
ing for. Instead, our goal is to obtain a “small” relevance closed set of events
generated by the property-related events. We say “small” instead of “the small-
est” because indeed there might not exists such a “smallest” set. This is primary
due to the induced relevant events – their definition makes it possible that, when
building the closure, one would have to choose between two events which one
should be made relevant, and choosing any one of them might create enough
dependencies to prevent the other from being chosen.

6

4 Sliced Causality with Atomicity

Definition 5. Given a set of events R, let ≺R denote the sliced causality
relation induced by R, defined by ≺R= (��R ∪ <�R)+.

In [20], every write of a shared variable is grouped with all its subsequent
reads, forming an atomic block of variable accesses. We extend this atomicity to
event sets in our approach as follows.

Definition 6. Let R be a relevance closed set of events. For each write event e
on target x, the atomic block of e induced by ≺R is the set

[e]Rx = {e} ∪ {e′ | ∃e′′, e ≺R e′ ≺R e′′ and e �x
wr e′′}.

The R-sliced-causality-with-atomicity, weakens the sliced-causality introduced
in [7] through the addition of relevance and atomicity.

Definition 7. Let R be a relevance closed set of events. The R-sliced-causality-
with-atomicity, or simply, the R-sliced-causality is the triple (R,≺R, ([e]x)e,x),
where ≺R is the sliced causality relation induced by R and ([e]x)e,x) are the
atomic blocks induced by ≺R.

Given E ⊆ R, the E-sliced-causality induced by R, or, simply, the E-sliced-
causality, is the triple (E,≺E , ([e]Ex)e,x), where ≺E=≺R ∩E × E, and [e]Ex =
[e]Rx ∩ E for each atomic block [e]Rx .

A permutation l of elements from E is a linearization of the E-sliced
causality if ≺E⊆<l, and for any e1 <l e2 <l e3, such that there exists e, e′ ∈ E,
with e1, e3 ∈ [e]Ex and e2 ∈ [e′]Ex , then it must be that e = e′, that is, two atomic
blocks sharing the same location cannot not be interleaved.

Notice that, if one takes E to be the entire set R in the above definition,
it obtains the R-sliced causality. The following Theorem is the main result of
this paper. It basically ensures that, given a relevance closed set of events R, all
the linearizations of the R-sliced-causality are modeled by real executions of the
program.

Theorem 1. Consider a relevance closed set of events R ⊆ Eτ . For any lin-
earization l of the R-sliced-causality there exists a trace τ generated by the system
such that <l⊆<τ . Call any such trace τ , a model of l.

Proof. Let R be a relevance closed set of events. A prefix of a linearization of
the event in R is termed R-relevant trace. We say that a (partial) trace σ models
an R-relevant trace σ if Eσ ⊆ Eσ and <σ⊆<σ. σ is a minimal model for σ if,
additionally, the maximal elements of < σ are in Eσ. Note that if σ is a minimal
model for σe, then σ = σ′e and σ is a model for σ.

We will prove the following inductive property. Let σe be a prefix of l, and
suppose σ has a minimal model σ. Then there exists a minimal model for σe
containing σ as a prefix. The way this model is obtained is by simply continuing
the execution of σ on the thread of e.

7

Let us first show that stmt(e) is reached. Since all events e control-depends
on maintained their original values in the current execution, we infer that each
time a choice point which could have chosen a path not leading to stmt(e) was
reached, the execution took the same path as the original one.

Having proved that stmt(e) will be reached, let us show that it actually
generates e. First let us show that target(e) is read/written when stmt(e) is
executed. This is ensured by our target-relevance, since if target(e) is computed
by using a read (e.g., target(e) references a field/method of an object), then that
read was relevant, and thus it must have already occurred in σ. But this implies
that target(e) was computed in the same manner it originally had been.

Now, let’s prove that the value of target(e) after the execution of stmt(e) will
be state(e). If e is a write event, then, since all read events e data-depends on
have occurred, then the value computed for state(e) has to be the same, since it
is precisely computed from those reads. If e is a read event, then, by write-read
dependence, we know that the write event e′ whose state e read in the original
execution has already occurred in σ. However, in order to complete our proof we
need to show that no other write event e′′ has occurred in σ on target(e), after
e′. We will show that the existence of such a′′ would lead to contradiction. If
e′′ appeared in the original execution, then, it would have been relevant (from
the definition of the relevance closure), which leads to a contradiction since
the ordering e′, e′′, e would violate the atomicity consistency on the relevant
events. e′′ being an event which did not occurred in the original execution is also
impossible since the events which control-prevented e′′ from happening in the
original execution, are relevant (by the definition of relevance), thus they must
also occur in the current execution, preventing e′′ from occurring. �

One can use the above theorem as-is to check a trace property: select the
property-related events, compute their relevance closure, compute the sliced
causality, generate its linearizations and check them against the property. How-
ever, the thus obtained linearizations, though sound, will yield too many traces
with the same ordering between property events.

A naive solution to the above problem is to restrict the causality to just
the property-related events. It might seem that we can safely do that since the
relevant events have already played their role in building the causality between
the property-related events. However, this only solves half of the problem, since
our linearizations still depend on the atomicity, and it might be the case that
there exists atomicity introduced by the relevant, yet not property-related events.

Atomic Relevance. This new kind of relevance is motivated by the fact that
a linearization of the property-related-events-sliced-causality may still break the
actual atomicity if there exist atomic blocks containing no property-related
events. Let us consider the example in Figure 4. Suppose that all the events
are relevant events and they are observed in the order indicated in the fig-
ure. e1, e2, e3, e4, e5, e6 are property-related events with no causal dependence
among them except for the intra-thread ordering. According to the atomic block

8

Fig. 4. Empty atomic block

definition, e3, e4, e5, and e6 are not in any atomic
block of x. Therefore, e1, e3, e4, e5, e6, e2 is lin-
earization of the property-related-events-sliced-
causality, which breaks the atomicity for the block
[e′1]x. In order to fix that, the write event e′3 is rel-
evant for generating consistent traces of property
events. We term this new type of relevance atomic
relevance. But even if we consider e′3 together with
the property events, and thus the atomic block is
no longer empty, the atomicity is not yet guaran-
teed to hold. In the above example, although e′3 is
now relevant, one still can build the following linearization: e3, e

′
3, e4, e1, e2, e5, e6,

which breaks the atomicity for [e′3]x, therefore e′5 is also relevant.
Definition 8. Let R be a relevance-closed set of events and let E ⊆ R. A =
{e′ ∈ [e]Rx | thread(e) = t} is an atomically-relevant set for E if A �= ∅ and
E ∩A = ∅. E is atomically closed if it has no atomically relevant sets.

A very simple way to compute the atomic closure of a set E of events is
to randomly select an event from each atomically relevant set and add it to E.
However, one may employ strategies to add a minimal number of events, by
adding events which belong to multiple atomically relevant sets.

Theorem 2 shows that if we are interested just in linearizations of a particular
subset of a relevance closed set of events, then we can soundly “slice” the sliced
causality even more, without losing any existing linearization of the events of
interest, provided that we chose an atomically closed set of events to slice on.

Theorem 2. Let R be a relevance closed set of events. Let LR be the set of
linearizations of the R-sliced-causality. Let E ⊆ R be a atomically closed set of
events. Let LE be the set of linearizations of the E-sliced-causality.

Then, (1) for any linearization lR ∈ LR, there exists a linearization lE ∈
LE such that <lE⊆<lR; and (2) for any linearization lE ∈ LE, there exists a
linearization lR ∈ LR such that <lE⊆<lR.

Proof. (1) Trivial: since ≺E⊆≺R and [e]Ex ⊆ [e]Rx , any linearization of ≺R con-
sistent with ([e]Rx)e,x will also be a linearization of ≺E , consistent with ([e]Ex)e,x.

(2) The idea is to refine the causality ≺R and the atomic blocks ([e]Rx)e,x

using the order <lE and the atomic blocks induced by it on ([e]Ex)e,x such that
any consistent linearization of the new obtained causality and atomicity will be a
linearization of ≺R containing <lE and consistent with the atomicity. The proof
then proceeds by showing that the newly obtained causality admits linearizations
consistent with the atomicity. E being atomically closed plays a crucial role
in this part because, guarantees that no atomic block is broken in consistent
permutations of ≺E. �

5 Checking Properties

Our goal is to verify trace-related properties over possible runs of a program,
obtainable through different interleavings of the original execution, yet preserv-

9

ing unchanged the events related to the input property. Therefore, we aim to
filter the causal dependencies between events by using information about the
property to be checked.

Property Events. Each logical property ϕ conceptually defines a set Aϕ of
abstract events, that is, events which are needed for either validating or inval-
idating the formula ϕ. We call those events abstract because they only specify
parts of the attributes held by a regular event. For example, if ϕ is a formula
specifying a datarace on a target x, then the abstract events of this formula only
need to specify the thread, the target (which should be x) and the type of event
(whether a read or a write occurred on x).

Given an observed trace τ , one can identify within it the concrete events
related to ϕ, that is, which specialize abstract events from Aϕ. However, these
concrete events might contain more information than one needs for testing the
validity of ϕ (for example, the value read from or written to the target is not
relevant when testing dataraces). We therefore choose to enrich the trace by
inserting into τ a set of artificial events Eϕ, termed property events at places
where instances of the abstract events are found.

Property events are themselves instances of abstract events, carrying the
information of the abstract events they represent together with attributes (such
as counter and thread) making them unique among the other events from the
trace. Property events are inserted in the trace right before their corresponding
concrete events, in order to guarantee that every event which causally depends
on their associated concrete events, will also depend on them.

We extend the causal dependence on property events by letting them depend
on the same events their associated concrete events depend on, but only if the
dependence does not involve their undefined attributes (e.g., for dataraces we
need not consider data dependencies for property events, since they have no
state attribute). However, we allow no other event to directly depend on them.
Intuitively, this is due to the fact that we will slice the trace to insure that
property events are generated, therefore we only need in the sliced trace events
on which property events depend on. Nevertheless, if the events depending on a
property event e are relevant for another property event, then they will appear
in the sliced trace anyway, and their dependence to e will be preserved through
the corresponding concrete event, by the thread ordering. That is why we have
chosen property events to occur before their corresponding concrete event.

Property Closure. An event e is relevant for the absence of a property event,
termed relevant for ϕ, if a change in the state of e might lead to the apparition
of a new instance of an abstract event. An example of such a relevant event is
read event guarding the execution of a block in which an instance of a abstract
property event might be produced.

Definition 9. A relevance closed set of events R ∈ Eτ is property closed if
(1) Eϕ ⊆ R; and (2) if e is relevant for ϕ, then e ∈ R.

The first condition assures that all property events in τ will be taken into
account by R. The second condition insures that abstract property events which

10

don’t occur in τ will not appear in any execution modeling a linearization of
elements in R – requiring that all control points which could lead to generating
new abstract property events will not change.

In this setting, one can safely use Theorem 1 to generate linearizations of the
property closed set of events and check them against the property.

Corollary 1. For any linearizations of a property-closed set of events, consis-
tent with the sliced causality and the atomicity, there exists a real execution
modeling it, without introducing new instances of abstract property events.

Combining Theorem 2 with Corollary 1, we obtain that one can soundly and
without any loss of generality use the linearizations of any atomically closed set
of events which includes the properties events to check the property.

Corollary 2. Given R a property-closed set of events and E ⊆ R an atomically
closed set including Eϕ, any linearization of the E-sliced-causality is modeled by
a real execution, without introducing new instances of abstract property events.

6 Extracting Sliced Causality and Atomicity

We next present algorithms to extract the sliced causality and atomicity from
traces. First, a property closure is obtained using a slicing algorithm. Then we
adapt the vector clock based algorithm in [20] to compute the causal depen-
dence on the sliced trace. A new atomicity algorithm is devised to associate
property events with the sliced atomicity based on the computed causal depen-
dence. Finally, one can generate and verify permutations of property events that
are consistent with the sliced causality using a depth-first algorithm.

Slicing Traces Our goal here is to take a trace τ and a property ϕ, and to
generate a sliced trace τϕ which is the total order induced by τ reduced to a prop-
erty closed set of events of ϕ. We next briefly explain an algorithm to compute
ξϕ using a variant of dynamic program slicing [1] and give the corresponding
correctness result.

First one has to keep any event e with e �+ e′ for some property event (or
event preventing a property event from being generated) e′. This can be easily
achieved by traversing the original trace backwards, starting with ξϕ empty and
accumulating in ξϕ events that either are property events or have events depend-
ing on them already in ξϕ. One can employ any off-the-shelf analysis tool for
data- and control- dependence; e.g., our predictive analysis tool, jPredictor,
uses termination-sensitive control dependence [6]. One backwards traversal of
the trace does not suffice to correctly calculate all the relevant events since an
event may turn out to be relevant only when another event occurring before it
becomes relevant, e.g., e4 in the instance of the induced relevance shown in Fig.
3. Therefore, the backward traversal should be carried out until the computed
sliced trace stabilizes. The following holds:

Proposition 1. The computed sliced trace is ϕ property closed.

11

Computing causal dependence using vector clocks. [20] introduces an
algorithm to compute a “weak” causal partial order using vector clocks. That
algorithm can be easily adapted to capture the causal dependence from the
sliced trace. The major difference here is that we have user-defined property
events while the algorithm in [20] only handles writes/reads of shared variables.
What follows illustrates the adapted algorithm.

A vector clock (VC) is a function from threads to integers, VC : T → Int.
We say that VC ≤ VC′ iff ∀t ∈ T,VC(t) ≤ VC′(t). The max function on VCs is
defined as: max(VC1, ...,VCn)(t) = max(VC1(t), ...,VCn(t)). Intuitively, vector
clocks are used to track and transmit the causal partial ordering information in
a concurrent computation. If VC and VC′ are vector clocks such that VC(t) ≤
VC’(t) for some thread t, then we can say that VC’ has newer information
about t than VC. In our VC technique, every thread t keeps a vector clock,
VCt, maintaining information about all the threads obtained both locally and
from thread communications (reads/writes of shared variables). Every shared
variable is associated with a vector clock to enforce the order among writes of x.
Every property event e found in the analysis is associated a VC attribute, which
represents the computed causal partial order. When an event e is encountered
during the analysis, the VCs are updated as follows:
1. type(e) = write, target(e) = x, thread(e) = t (the variable x is written

in thread t) and x is a shared variable. In this case, the variable vector
clock VCx is updated to reflect the newly obtained information: VCx ←
max(VCx,VCt).

2. type(e) = read, target(e) = x, thread(e) = t (the variable x is read in t),
and x is a shared variable. Then the thread updates its information with the
information carried by x: VCt ← max(VCx,VCt).

3. e is a property event and thread(e) = t. In this case, let VC(e) := VCt. Then
VCt(t) is increased to capture the intra-thread total ordering: VCt(t) ←
VCt(t) + 1.

VCs associated with property events precisely capture the causal dependence:

Theorem 3. e � e′ iff VC(e) ≤ VC(e′).

The proof of Theorem 3 can be easily derived from the one in [20].

Computing sliced atomicity. The atomicity algorithm in [20] can be applied
directly on the sliced causality to extract the write-read atomicity. But it can be
over-restrictive when compared with the sliced atomicity, which can be captured
using the causal dependence computed above as follows:

A counter, called atomicity identifier, is associated with every shared variable,
to keep track of its atomic set. Let AIx denote the atomicity identifier associated
with x. An extra VC, denoted VCwr, is associated to every write of a shared
variable, containing the information about all the reads following this write, i.e.,
VCwr(e) = max(VC(e1), ...,VC(en)) with e1, ..., en are all the reads following
the write event e. VCwr can be computed via a backward traversal of the sliced
trace after the causal dependence is computed. Also, we associate two VCs, VCw

x

and VCr
x, with every shared variable, which are the VC and VCwr of the latest

12

globals ξϕ ← ϕ-sliced trace, CurrentLevel ← {Σ0...0}
procedure main()

while (ξϕ �= ∅) do verifyNextLevel()
endprocedure

procedure verifyNextLevel()
local NextLevel ← ∅
for all e ∈ ξϕ and Σ ∈ CurrentLevel do

if enabled(Σ, e) then NextLevel ← NextLevel ∪ createCut(Σ, e)
CurrentLevel ← NextLevel
ξϕ ← removeRedundantEvents()

endprocedure

procedure enabled(Σ, e)
return VC(e)(thread(e)) = VC(Σ)(thread(e)) + 1 and

VC(e)(t) ≤ VC(Σ)(t) for all t �= thread(e) and
SV(e)(x) = SV(Σ)(x) when both defined, for all shared variables x

endprocedure

procedure createCut(Σ, e)
Σ′ ← new copy of Σ
VC(Σ′)(thread(e))← VC(Σ)(thread(e)) + 1
if type(e) = acquire and target(e) = l then SV(Σ′)(x)← SV(e)(x)
if type(e) = release and target(e) = l then SV(Σ′)(x)← undefined
MS(Σ′)← runMonitor(MS(Σ), e)
if MS(Σ′) = “error” then reportViolation(Σ, e)
return Σ′

endprocedure

Fig. 5. Consistent runs generation algorithm

write of x respectively. Property events are enriched with a new attribute, SV,
which is a partial mapping from shared variable into corresponding counters.
And the variable atomicity information is updated as follows:

1. type(e) = write, target(e) = x, and x is a shared variable. Then we need to
increase the atomicity identifier of x: AIx = AIx + 1. Also, the variable’s
VCs are updated: VCw

x = VC(e) and VCr
x = VCwr(e).

2. e is a property event. In this case, SV(e)(x) = AIx for all x such that
VCw

x ≤ VC(e) ≤ VCr
x and SV(e)(x) is undefined for any other x.

Definition 6 and Theorem 3 yield the following corollary, stating that the VC
algorithm precisely captures the atomicity:

Corollary 3. Two events e1 and e2 are both in the atomic block [e]x iff SV(e1)(x) =
SV(e2)(x).

Generating consistent runs. We next show an algorithm to check all the
consistent permutations of events against the desired property ϕ.

The actual permutations of events are not generated, because that would
be prohibitive. Instead, a monitor is assumed for the property ϕ which is run

13

synchronously with the generation of the next level in the computation lattice,
following a breadth-first strategy. Figure 5 gives a high-level pseudocode to gen-
erate and verify, on a level-by-level basis, potential runs consistent with the
sliced causality with atomicity. ξϕ is the set of relevant events. CurrentLevel and
NextLevel are sets of cuts. We encode cuts Σ as: a VC(Σ) which is the max of
the VCs of all its threads (updated as shown in procedure createCut); a partial
mapping SV(Σ) which keeps for each x its current atomicity identifier (updated
as also shown in createCut); and the current state of the property monitor for
this run, MS. The property monitor can be any program, in particular those
generated automatically from specifications, like in MOP [5].

The pseudocode in Figure 5 glossed over many implementation details that
make it efficient. For example, ξϕ can be stored as a set of lists, each correspond-
ing to a thread. Then the VC of a cut Σ can be seen as a set of pointers into
each of these lists. The potential event e for the loop in verifyNextLevel can only
be among the next events in these lists. The function removeRedundantEvents()
eliminates events at the beginning of these lists when their VCs are found to be
smaller than or equal to the VCs of all the cuts in the current level. In other
words, to process an event, a good implementation of the algorithm in Figure 5
would take time O(|Threads|).

7 Evaluation

Here we present evaluation results of jPredictor on two types of common and
well-understood concurrency properties, which need no formal specifications to
be given by the user and whose violation detection is highly desirable: dataraces
and atomicity. jPredictor has also been tried on properties specified formally
and monitors generated using the MOP [5] logic-plugins, but we do not discuss
those here; the interested reader is referred to [4]. We discuss some case studies,
showing empirically that the proposed predictive runtime verification technique
is viable and that the use of sliced causality significantly increases the predictive
capabilities of the technique. All experiments were performed on a 2.6GHz X2
AMD machine with 2GB memory. Interested readers can find detailed result
reports on jPredictor’s website at [13].

7.1 Benchmarks

Table 1 shows the benchmarks that we used, along with their size (lines of code),1

number of threads created during their execution, number of shared variables

1 Different papers give different numbers of lines of code for the same program due to
different settings. In our experiments, we counted those files that were instrumented
during the testing, which can be more than the program itself. For example, the
kernel of hedc contains around 2k lines of code; but some other classes used in the
program were also instrumented and checked, e.g., a computing library developed
at ETH. This gave us a much larger benchmark than the original hedc.

14

Program LOC Threads S.V. Slowdown

Banking 150 3 10 0.34

Elevator 530 4 123 N/A

tsp 706 4 648 7.05

sor 17.7k 4 102 0.47

hedc 39.9k 10 119 0.56

StringBuffer 1.4k 3 7 0.61

Vector 12.1k 18 49 0.79

IBM Web Crawler unknown 7 76 0.01

StaticBucketMap 748 6 381 35.6

Pool 1.2 5.8k 2 119 0.29

Pool 1.3 7.0k 2 95 0.32

Apache Ftp Server 22.0k 12 281 N/A

Tomcat Components 4.0k 3 13 0.1

Table 1. Benchmarks

(S.V.) detected, and slowdown ratios after instrumentation 2. Banking is a sim-
ple example taken over from [10], showing relatively classical concurrent bug
patterns. Elevator, tsp, sor and hedc come from [22]. Elevator is a discrete event
simulator of an elevator system. tsp is a parallelized solution to the traveling
salesman problem. sor is a scientific computation application synchronized by
barriers instead of locks. hedc is an application developed at ETH that imple-
ments a meta-crawler for searching multiple Internet achieves concurrently.

StringBuffer and Vector are standard library classes of Java 1.4.2 [12]. IBM
web crawler is a component of the IBM Websphere tested in [9]. 3 StaticBuck-
etMap, Pool 1.2 and 1.3 are part of the Apache Commons project [2]: Stat-
icBucketMap is a thread-safe implementation of the Java Map interface; Pool
1.2 and 1.3 are two versions of the Apache Commons object pooling components.
Apache FTP server [3] is a pure Java FTP server designed to be a complete and
portable FTP server engine solution. Tomcat [21] is a popular open source Java
application server. The version used in our experiments is 5.0.28. Tomcat is so
large, concurrent, and has so many components, that it provides a base for al-
most unlimited experimentation all by itself. We only tested a few components
of Tomcat, including the class loaders and logging handlers.

For most programs, we used the test cases contained in the original packages.
The Apache Commons benchmarks, i.e., StaticBucketMap and Pool 1.2/1.3,
provide no concurrent test drivers, but only sequential unit tests. We manually
translated some of these into concurrent tests by executing the tests concur-
rently and modifying the initialization part of each unit test method to use a
shared global instance. For StringBuffer and Vector, some simple test drivers
were implemented, which simply start several threads at the same time to in-

2 Not applicable for some programs, e.g., Elevator.
3 No source code is available for this program.

15

voke different methods on a shared global object. The present implementation of
jPredictor tracks accesses of array elements, leading to the large numbers of
shared variables and significant runtime overhead in tsp and StaticBucketMap.
For other programs, the runtime overhead is quite acceptable.

Each test was executed precisely once and the resulting trace has been an-
alyzed. While multiple runs of the system, and especially combinations of test
case generation and random testing with predictive runtime analysis would al-
most certainly increase the coverage of predictive runtime analysis and is worth
exploring in depth, our explicit purpose in this paper is to present and eval-
uate predictive runtime analysis based on sliced causality in isolation. Careful
inspection of the evaluation results revealed that the known bugs that were
missed by jPredictor were missed simply because of limited test inputs: their
corresponding program points were not touched during the execution. Any dy-
namic analysis technique suffers from this problem. Our empirical evaluation
of jPredictor indicates that the use of sliced causality in predictive runtime
analysis makes it less important to generate “bad” thread interleavings in order
to find concurrent bugs, but more important to generate test inputs with better
code coverage.

7.2 Race Detection

Program Var to Trace Size Running Time (seconds) per S.V. Races
Check Logged Complete Preprocess Slice VC Verify Harmful Benign False

Banking 10 244 320 0.01 0.04 0.01 0.01 1 0 0

Elevator 48 62314 71269 1.0 8.1 1.2 0.15 0 0 0

tsp 47 141239 237801 2.2 26.1 2.3 0.23 1 0 0

sor 17 10968 12654 0.3 1.9 0.2 0.01 0 0 0

hedc 43 128289 183317 2.1 17.9 0.16 0.01 4 0 0

StringBuffer 4 738 871 0.06 0.28 0.05 0.01 0 0 0

Vector 47 876 1086 0.08 0.3 0.06 0.01 0 1 0

IBM Web Crawler 59 3128 3472 0.18 0.6 0.16 0.01 1 3 0

StaticBucketMap 39 319482 366743 7.6 131.6 12.2 0.03 1 0 0

Pool 1.2 54 20541 24072 0.26 1.42 0.34 0.01 35 0 0

Pool 1.3 45 1426 1669 0.16 0.76 0.23 0.01 1 0 0

Apache FTP Sever 71 19765 20047 0.69 3.87 0.34 0.02 11 5 0

Tomcat Components 13 3240 3698 0.21 0.62 0.2 0.01 2 2 0

Table 2. Race detection results

The results of race detection are shown in Table 2. The second column gives
the number of shared variables checked in the analysis, which is in some cases
smaller than the number of shared variables in Table 1 for the following rea-
sons. Some shared variables were introduced by the test drivers and therefore
not needed to check. Also, as already mentioned, many shared variables are just

16

different elements of the same array and it is usually redundant to check all of
them. jPredictor provides options to turn on an automatic filter that removes
undesired shared variables (using class names) or randomly picks only one el-
ement in each array to check. This filter was kept on during our experiments,
resulting in fewer shared variables to check. The third and the fourth columns
report the size of the trace (i.e., the number of events) logged at runtime and
the size of the trace constructed after preprocessing, respectively. The difference
between these shows that, with the help of static analysis, the number of events
to log at runtime is indeed reduced, implying a reduction of runtime overhead.

Columns 5 to 8 show the times used in different stages of the race detection.
Because jPredictor needs to repeat the trace slicing, the VC calculation, and
the property checking for every shared variable, the times shown in Table 2 for
these three stages are the average times for one shared variable. Considering
the analysis process is entirely automatic, the performance is quite reasonable.
Among all the four stages, the trace slicing is the slowest, because it is performed
on the complete trace. In spite of its highest algorithmic complexity, the actual
race detection is the fastest part of the process. This is not unexpected though,
since it works on the sliced trace containing only the property events, which is
much shorter than the complete one.

The last section of Table 2 reports the number of races detected in our
experiments. The races are categorized into three classes: harmful, benign (do not
cause real errors in the system) and false (not real races). jPredictorreported
no false alarms and, for all the examples used in other works except for the
FTP server, e.g., hedc and Pool 1.2, it found all the previously known dataraces.
Note that we only count the races on the same field once, so our numbers in
Table 2 may appear to be smaller than those in other approaches that use the
number of unsafe access pairs. Some races in the FTP server reported in [15]
were missed by jPredictor because the provided test driver is comparatively
simple and preformed limited testing of the server, avoiding the execution of the
buggy code.

Surprisingly, jPredictor found some races in Pool 1.2 that were missed by
the static race detector in [15], which is expected to have a very comprehensive
coverage of the code (at the expense of false alarms). jPredictor also reported
some unknown harmful races in StaticBucketMap, Pool 1.3 and Tomcat. The
race in StaticBucketMap is caused by unprotected accesses to the internal nodes
of the map via the Map.Entry interface. It leads to a harmful atomicity viola-
tion, explained in more detail in the next subsection. Although Pool 1.3 fixed
all the races found in Pool 1.2, jPredictor still detected a race when an ob-
ject pool is closed: in GenericObjectPool, a concrete subclasses of the abstract
BaseObjectPool class, the close process first invokes the close function in the
super class without proper synchronization. Hence, other methods can interfere
with the close function, leading to unexpected exceptions.

For Tomcat, jPredictor found four dataraces: two of them are benign and
the other two are real bugs. Our investigation showed that they have been pre-
viously submitted to the bug database of Tomcat by other users. Both bugs are

17

hard to reproduce and only rarely occur, under very heavy workloads; jPredic-
tor was able to catch them using only a few working threads. More interestingly,
one bug was claimed to be fixed, but when we tried the patched version, the bug
was still there. Let us take a close look at this bug.

This bug resides in findClassInternal of org.apache.catalina.loader. Webapp-
ClassLoader. This bug was first reported by jPredictor as dataraces on vari-
ables entry.binaryContent and entry.loadedClass at the first conditional state-
ment in Figure 6. The race on entry.loadedClass does not lead to any errors,
and the one on entry.binaryContent does no harm by itself, but together they
may cause some arguments of a later call to definePackage(packageName, en-
try.manifest, entry.codeBase)4 to be null, which is illegal. It seems that a Tomcat
developer tried to fix this bug by putting a lock around the conditional state-
ment, as shown in Figure 7. However, jPredictor showed that the error still
exists in the patched code, which was a part of the latest version of Tomcat 5
when we carried out our experiments. We reported the bug with a fix and it has
been accepted by the Tomcat developers.

if ((entry == null) || (entry.binaryContent == null)
&& (entry.loadedClass == null))
throw new ClassNotFoundException(name);

Class clazz = entry.loadedClass;
if (clazz != null) return clazz;

Fig. 6. Buggy code in WebappClassLoader

if (entry == null)
throw new ClassNotFoundException(name);

Class clazz = entry.loadedClass;
if (clazz != null) return clazz;
synchronized (this) {
if (entry.binaryContent == null && entry.loadedClass == null)

throw new ClassNotFoundException(name);
}

Fig. 7. Patched code in WebappClassLoader

7.3 Atomicity Violation Detection

The results of evaluating jPredictor on atomicity analysis are shown in Table
3. Although jPredictor allows the user to define different kinds of atomic
4 There is another definePackage function with eight arguments that allows null ar-

guments.

18

Program Running Time (seconds) Violations
Slice VC Verify Actual False

Banking 0.01 0.01 0.01 1 0

Elevator 0.4 3.2 0.6 0 0

tsp 0.5 2.5 0.6 1 0

sor 0.1 0.6 0.46 0 0

hedc 0.02 0.18 0.02 1 0

StringBuffer 0.01 0.05 0.01 1 0

Vector 0.06 0.15 0.06 4 0

StaticBucketMap 8 14 0.03 1 0

Pool 1.2 0.23 1.87 3.4 10 0

Pool 1.3 0.19 0.61 0.03 0 0

Table 3. Atomicity analysis results

blocks, we only checked for the atomicity of methods in these experiments. Not
all benchmarks were checked: we do not have enough knowledge of the IBM
Web Crawler to judge atomicity (its source code is not public), while method
atomicity is not significant for FTP and Tomcat, since their methods are complex
and usually not atomic (finer grained atomic blocks are more desirable there,
but this is beyond our purpose in this paper).

We do not need to repeat the pre-processing stage for atomicity analysis.
Hence, only the times for slicing, VC calculation and atomicity checking are
shown in columns 2 to 4 in Table 3. As discussed in Section ??, our evaluation of
atomicity analysis reused the trace slices generated for race detection to reduce
the slicing cost, which turned out to be effective according to the results. The
other two stages took more time in atomicity analysis than in race detection
because the analyzed trace slice was larger. The last part of Table 3 shows the
number of detected atomicity violations, which are divided into two categories:
actual violations and false alarms. No benign violations were found in our evalu-
ation, probably because the definition of atomicity that we adopted is based on
problematic patterns of event sequences.

jPredictor did not report any atomicity false alarm in its analysis. It also
found all the previously known harmful atomicity violations in the examples
also analyzed by other approaches, e.g., [23] and [11]. Moreover, jPredictor
found harmful atomicity violations in tsp and hedc that were missed by [23]
and [11] using the same test drivers. This indicates that jPredictor, through
its combination of static dependence analysis and sliced causality, provides a
better capability of predicting atomicity violations. Some unknown violations in
StaticBucketMap and Pool 1.2 were also detected. We next briefly explain the
violation in StaticBucketMap.

In StaticBucketMap, fine grained internal locks are used to provide thread-
safe map operations. Specifically, every bucket in the map is protected by a
designated lock. A data race was still detected by jPredictor in this well syn-
chronized implementation, caused by the usage of the Map.Entry interface. As

19

StaticBucketMap map;
...
Map.Entry entry = (Map.Entry)map.entrySet().iterator().next();
entry.setValue(null);

Fig. 8. Unprotected modification of the map entry

class MapPrinter implements Runnable{
public void run(){

Iterator it = map.entrySet().iterator();
while (it.hasNext()) {

Map.Entry entry = (Map.Entry)it.next();
if (entry.getValue() != null)

System.out.println(entry.getValue().toString());
}

}
public void atomicPrint(){

map.atomic(this);
}

}

Fig. 9. Atomic iteration on the map

shown in Figure 8, one can obtain a map entry, which represents a key-value
pair, via an iterator of the map and use the setValue method to change the
entry. jPredictor showed that the setValue method is not correctly synchro-
nized and causes a data race. This data race is benign in most cases, because no
new entry can be added or removed through the Map.Entry interface and also
because the bulk operations of the map, e.g., iteration, are not guaranteed to
be atomic. However, StaticBucketMap provides an atomic(Runnable r) method
to support atomic bulk operations. This method accepts a Runnable object and
executes the run() method of the object atomically with regards to the map.
Figure 9 shows an example of using this method to print out all the values in
the map atomically. However, this atomicity guarantee can be violated when
another thread accesses the map’s elements using the unsafe setValue method,
like the code in Figure 9, which can cause an unexpected null pointer exception.
jPredictor detected this violation (without directly hitting it during the ex-
ecution) in our experiments, generating a warning message that clearly points
out the cause of the violation.

8 Conclusions

Sliced causality with atomicity was defined in this paper, a novel causality which
generalizes the sliced causality from [7] with relevance and which incorporates
the write/read atomicity from [20]. The obtained causality, which is more than
a partial order, allows more sound permutations, or linearizations, of property
events than previous causalities. Thus, when used in the context of predictive
runtime analysis, it achieves an increased predictive capability (or coverage). We
showed that atomicity can also be soundly sliced w.r.t. the property to check,

20

improving the efficiency of the prediction algorithm. Algorithms to efficiently ex-
tract the sliced causality and atomicity were presented and implemented. Evalu-
ation results showed that our technique is viable and effective in practice: many
concurrent bugs were revealed in popular Java systems without false alarms.

References

1. H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI, pages 246–256,
1990.

2. Apache Commons project. http://commons.apache.org/.
3. Apache FTP server project. incubator.apache.org/ftpserver/.
4. F. Chen and G. Roşu. Predicting concurrency errors at runtime using sliced causal-

ity. Technical Report UIUCDCS-R-2005-2660, Department of Computer Science
at UIUC, 2005.

5. F. Chen and G. Roşu. MOP: An Efficient and Generic Runtime Verification
Framework. In Object-Oriented Programming, Systems, Languages and Applica-
tions(OOPSLA’07), 2007. to appear.

6. F. Chen and G. Rosu. Parametric and termination-sensitive control dependence.
In SAS, volume 4134 of LNCS, pages 387–404. Springer, 2006.

7. F. Chen and G. Rosu. Parametric and sliced causality. In CAV, volume 4590 of
LNCS, pages 240–253. Springer, 2007.

8. M. Christiaens and K. D. Bosschere. Trade: Data race detection for java. In
International Conference on Computational Science (2), volume 2074 of LNCS,
pages 761–770. Springer, 2001.

9. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded java program
test generation. IBM Systems Journal, 41(1):111–125, 2002.

10. E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In
International Parallel and Distributed Processing Symposium (IPDPS), 2003.

11. C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. In POPL, pages 256–267, 2004.

12. Java. http://java.sun.com.
13. jPredictor. http://fsl.cs.uiuc.edu/jPredictor/.
14. L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Comm. of ACM, 21(7):558–565, 1978.
15. M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. In

PLDI, pages 308–319, 2006.
16. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In PPoPP,

pages 167–178, 2003.
17. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a

dynamic data race detector for multithreaded programs. ACM Transaction of
Computer System, 15(4):391–411, 1997.

18. A. Sen and V. K. Garg. Detecting temporal logic predicates in distributed programs
using computation slicing. In Proceedings of the Seventh International Conference
on Principles of Distributed Systems (OPODIS), 2003.

19. K. Sen, G. Rosu, and G. Agha. Runtime safety analysis of multithreaded programs.
In ESEC / SIGSOFT FSE, pages 337–346, 2003.

20. K. Sen, G. Rosu, and G. Agha. Detecting errors in multithreaded programs by
generalized predictive analysis of executions. In FMOODS, volume 3535 of LNCS,
pages 211–226. Springer, 2005.

21

21. Apache group. Tomcat. http://jakarta.apache.org/tomcat/.
22. C. von Praun and T. R. Gross. Object race detection. In OOPSLA, pages 70–82,

2001.
23. L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity

errors in concurrent programs. In PPOPP, pages 137–146, 2006.

22

