

Biology Faculty Works

Biology

2019

A rapidly expanding alga acts as a secondary foundational species providing novel ecosystem functions in the South Pacific

Sarah Joy Bittick Loyola Marymount University, sarah.bittick@lmu.edu

Follow this and additional works at: https://digitalcommons.lmu.edu/bio_fac

Part of the Biology Commons

Recommended Citation

Bittick, Sarah Joy, et al. "A Rapidly Expanding Macroalga Acts as a Foundational Species Providing Trophic Support and Habitat in the South Pacific." Ecosystems 22.1 (2019): 165-73. DOI: 10.1007/ s10021-018-0261-1

This Article - pre-print is brought to you for free and open access by the Biology at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact digitalcommons@lmu.edu.

1	Title: A rapidly expanding macroalga acts as a foundational species providing trophic
2	support and habitat in the South Pacific
3	
4	Authors: Bittick, Sarah Joy ^{1*} , Clausing, Rachel J. ¹ , Fong, Caitlin R. ² , Scoma, Samuel
5	R. ¹ , Fong, Peggy ¹
6	
7	¹ University of California Los Angeles, Department of Ecology and Evolutionary Biology,
8	621 Charles E. Young Dr South, Los Angeles, CA 90095, USA
9	
10	² University of California Santa Barbara, Department of Ecology, Evolution, and Marine
11	Biology
12	
13	* Correspondence author. Email: <u>bittick@zoology.ubc.ca</u> , Orcid ID <u>0000-0001-7891-</u>
14	7482, Current affiliation: University of British Columbia, Biodiversity Research Centre,
15	Department of Zoology, 2212 Main Mall, Vancouver, BC, Canada V6T 1Z4
16	1
17	Manuscript Highlights:
18	1) We examined the functional role of a macroalga that is expanding on a coral reef
19	2) Primary producers were facilitated by increased density of the macroalga
20	3) Foraging by fish primary consumers increased due to increased algal resources

Author contributions: SJB, CRF, RJC, PF designed the study and collected data. SRS devised methods to analyze epiphyte loading and edited early versions of the manuscript. SJB wrote the manuscript with feedback from all authors.

21	Abstract
22	Foundation species facilitate associated communities and provide key ecosystem
23	functions, making anthropogenically-driven phase shifts involving these species critically
24	important. One well documented such phase-shift has been from coral to algal
25	domination on tropical reefs. On South Pacific coral reefs, the macroalga Turbinaria
26	ornata has expanded its range and habitat but, unlike algae that often dominate after
27	phase-shifts, <i>T. ornata</i> is structurally complex and generally unpalatable to herbivores.
28	Therefore, it may serve a foundational role on coral reefs, such as providing habitat
29	structure to more palatable primary producers and corresponding trophic support to
30	fishes. We predicted increasing <i>T. ornata</i> density would facilitate growth of associated
31	algae, resulting in a positive trophic cascade to herbivorous fish. An experiment
32	manipulating T. ornata densities showed a unimodal relationship between T. ornata and
33	growth of understory algae, with optimal growth occurring at the most frequent natural
34	density. Epiphyte cover also increased with density until the same optimum, but remained
35	high with higher <i>T. ornata</i> densities. Foraging by herbivorous fishes increased linearly
36	with <i>T. ornata</i> density. An herbivore exclusion experiment confirmed <i>T. ornata</i>
37	facilitated epiphytes, but resource use of epiphytes by herbivores, though significant, was
38	not affected by T. ornata density. Therefore, T. ornata performs foundational roles
39	because it provides novel habitat to understory and epiphytic macroalgae and trophic
40	support to consumers, though likely this function is at the expense of the original
41	foundational corals.
42	Keywords: foundation species, phase-shift, macroalgae, coral reefs, herbivory, epiphytes,
43	foraging behavior

Introduction

Foundation species facilitate associated species and support ecosystem functions
through amelioration of harsh conditions, increased trophic support, and/or provision of
habitat (sensu Dayton 1972, Stachowicz 2001, Ellison and others 2005). Foundation
species often form habitat by providing physical structure for associated organisms to
grow on directly or in close proximity. For example, some epiphytes grow directly on
foundation species and are important for trophic support across systems (e.g. seagrasses,
Hughes and others 2004; freshwater macrophytes, Jaschinski and others 2011; oak trees,
Angelini and Silliman 2014). In addition, foundation species in many systems can
provide canopy that ameliorates harsh conditions (e.g. nutrient limitation,
photoinhibition, high wind or wave energy) for plants and macroalgae in the understory
(for example in terrestrial forests in Gentry and Dodson 1987, Ellison and others 2005;
kelp forests in Graham 2004). As the provision of structure, trophic support, and other
services by foundation species influences community composition and diversity, we need
a better understanding of the potential for species that may be favored by anthropogenic
induced phase-shifts to fill foundational roles.
Phase-shifts from one community state to another have been documented in
terrestrial, freshwater, and marine systems (Scheffer and others 2001; Folke and others
terrestrial, freshwater, and marine systems (Scheffer and others 2001; Folke and others 2004). This includes systems with structurally complex foundation species, such as
2004). This includes systems with structurally complex foundation species, such as
2004). This includes systems with structurally complex foundation species, such as terrestrial forests and coral reefs. While the shifted species may occupy the same space,

and fire frequency turned shrubland into grassland (Talluto and Suding 2008). These
shifts in terrestrial foundation species due to anthropogenic influence resulted in drastic
changes to ecosystems, such as changing community structure and trophic support, as the
species that dominate after a phase-shift often do not support the same associated
organisms or ecosystem functions (e.g. coral reef examples in McCook 1999; temperate
forest examples in Ellison and others 2005). In marine systems, foundation species tend
to be structure-forming invertebrates (e.g. mussels, Suchanek 1992; corals, Hughes and
others 2010) or marine macrophytes (e.g. kelp, Graham 2004; seagrasses, Orth and others
2006; rocky shore macroalgae, Korpinen and others 2010) that are also experiencing
natural and human-driven phase-shifts (reviewed in deYoung and others 2008). For
example, coral reefs are well documented to experience phase-shifts to algal domination
due to nutrient enrichment and overfishing (reviewed by Hughes and others 2010). As it
is well documented that some ecosystems have been increasingly subjected to phase-
shifts (e.g. coral reefs; Hughes and others 2010, Dudgeon and others 2010) it is critical to
examine the potential for shifted species to perform foundational roles.
Corals are the dominant foundation species in tropical marine systems with hard
substrates, while in nutrient-rich temperate waters fleshy macroalgae often fill this role.
In previous experimental studies, phase-shifts on coral reefs involved fast growing,
palatable macroalgal species or multi-species turf algae (e.g. multiple species Lewis and
Wainwright 1985; Cladophora Smith and others 2005; turf and macroalgae in Smith and
others 2010; turf algae in Muthukrishnan and others 2016). Although coral reef
macroalgae tend to be smaller, more cryptic, and more ephemeral than temperate
macroalgae (reviewed by Fong and Paul 2011); there has been a recent increase in fleshy

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

macroalgae on disturbed coral reefs (*Turbinaria* in Payri 1984, Martinez and others 2007; Lobophora in Jompa and McCook 2002; Sargassum in Hughes and others 2007). These increases in fleshy macroalgae have been attributed to decreased herbivory for Sargassum (Hughes and others 2007) or a combination of increased nutrient input and decreased herbivory for *Turbinaria* (Bittick and others 2016) and *Lobophora* (Jompa and McCook 2002). Whether these novel macroalgal communities that are complex, less palatable, and persistent macroalgal serve foundational roles in tropical reef systems has not been evaluated. Though it is widely acknowledged that algal-domination cannot sustain net reef growth because loss of coral results in lower calcification (Gattuso and others 1997), some coral reef macroalgae have been found to have positive impacts on biomass of fish (turf algae, Tootell and Steele 2016), abundance and diversity of invertebrates (Roff and others 2013), and macroalgal richness (Bittick and others 2010). As fleshy macroalgae have increased on many coral reefs, it is important to determine whether they function as foundation species and what ecosystem functions, if any, they may provide. Our overall objective was to evaluate if *Turbinaria ornata*, a marine macroalga that is expanding its range and habitat use in the South Pacific (Payri 1984; Martinez and others 2007), provides a foundational role following a phase-shift from coral dominance after disturbance to tropical reefs. Negative impacts of *T. ornata* on coral have been documented, including inhibiting coral recruits (Brandl and others 2013) and outcompeting coral in high flow conditions (Brown and Carpenter 2014). In Mo'orea, French Polynesia coral populations were recently decimated due to an outbreak of the coralivorous seastar, Acanthaster plancii (Kayal and others 2012), and patches of T.

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

ornata increased in size and dominance on fringing and back reefs (Carpenter 2015; Davis 2016). Further, T. ornata benefits from anthropogenic change as nutrient enrichment cause a strengthening of physical anti-herbivory defenses and therefore reduced herbivory (Bittick and others 2016). However, aggregations of *T. ornata* benefit understory macroalgae (Bittick and others 2010) by providing a refuge from herbivores thereby increasing species richness and it may protect invertebrates and juvenile fish (personal obs). We predicted that T. ornata would perform roles typically associated with structurally complex foundation species such as provision of habitat for primary producers and trophic support to consumers. We ask: (1) Does T. ornata facilitate epiphytic and understory macroalgae? and (2) Does this facilitation cascade up to herbivorous fish through increased resources? Methods Study site and survey — The study site was a fringing patch reef at the mouth of Opunohu Bay in Mo'orea, French Polynesia (17°28'59.81"S, 149°50'45.70"W). After the 2006-2010 Acanthaster plancii outbreak, and disturbance by 2010 hurricane Oli, coral cover was lost across much of Mo'orea, and near zero at this site (Kayal and others 2012). Turbinaria ornata requires hard substrate to settle such as dead coral skeletons and often grows in patches, or aggregations, of varying density (see ESM S1, Fig. S1). To characterize the aggregations, we constructed a density-frequency distribution from counts of thalli in 0.0625 m² areas (quadrats were 0.25m x 0.25m); we observed this area of aggregations to be the most common on the nearshore reefs during our 2012-2014 study period. This is larger than the median patch size of 0.022 m² observed by Davis (2016) in a 2012-2015 study. We randomly placed five 30 m transects, selected six

random points along each, and counted the number of thalli• 0.0625 m⁻² in the nearest 136 137 aggregation (N=30). Surveys were conducted in May 2012. 138 To characterize species distribution and sizes of fish from dominant taxa, we 139 utilized survey data from the Moorea Coral Reef Long Term Ecological Research 140 program (MCR LTER). Four surveys were conducted in August 2012 at two sites on the 141 north shore near our study area. Fish were counted along a 50 m transect 5 meters wide 142 and identified to species with an estimate of size to the nearest cm. We calculated the 143 density of fish primary consumer species per 100 m². We also calculated average length 144 (+/- SE cm) for the three most abundant species. 145 Density manipulation experiment— To measure the effect of T. ornata density on 146 growth of epiphytic and understory algae and the consequences to herbivore foraging, we 147 thinned existing aggregations of T. ornata (randomly selected, but initially with > 30148 thalli • 0.0625 m⁻²) to create plots of 8 densities: 0, 3, 7, 10, 15, 20, 25, and 30 thalli • 149 0.0625 m⁻² (n=3). We avoided damselfish territories (family Pomacentridae), although a 150 territory subsequently encroached on a plot of 15 thalli • 0.0625 m⁻² (reducing n to 2 for 151 this treatment). Treatments were maintained for 18 days in May 2012, during which we 152 conducted a growth bioassay within the experimental plots using a locally abundant 153 macroalga, Padina boryana. Two grams (standardized wet weight) of P. boryana were 154 placed in window screen cages and attached within the understory of each plot (see Fong 155 et al. 2006 for method). Algae were collected after 7 days (17-24 May, 2012), wet 156 weighed, and net growth was calculated as % change from initial wet weight. At the end of the experiment, three *T. ornata* thalli (5-12 cm tall) were collected 157 158 randomly (except for plots where density=3 where all were collected) from each density

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

plot. Photos were taken of one side of each alga (see Electronic Supplementary Material S1, Fig. S2) and percent cover of epiphytes quantified using the point intercept method in ImageJ (U.S. National Institutes of Health). We first measured two-dimension area in Image-J using the images. Due to varying image quality and T. ornata thalli size and shape, we used the grid overlay feature scaled for each thalli. The spacing of the grid was limited to whole pixel increments and scaled to produce a minimum of 30 random intersections. Grid overlays were between pixels, so the pixel to the top right was evaluated. Percent epiphyte cover was calculated as 100* the ratio of intersections with epiphytes present over the total intersections within the thalli area. To determine the relationship between *T. ornata* density and herbivorous fish, we observed and recorded foraging behavior within density plots. Each plot was observed by the same individual on snorkel three times over the 18 days for 10 minutes (total 30 min/plot). The observer remained at least 5 meters away from the plot and recorded when fish: 1) came within 0.25 meters of the plot and 2) took a bite from the canopy, stipe, or understory of the algal aggregation. Only fish from dominant herbivorous taxa were counted in our surveys. However, dominant species and sizes of herbivorous fish in this site were identified in the LTER data (see above). Fish behavior observations of plots did not begin until 72 hrs after plots were establish to allow for stabilization of epiphytes after physical disturbance. All observations were conducted from 14-20 May, 2012 and a paired t-test comparing frequency of bites by herbivorous fish from the first and last day supports no significant changes in behavior over time (t=0.85, p=0.41). Epiphyte herbivory experiment—To determine the influence of T. ornata density and herbivory on epiphyte load, we conducted an in situ 2-factor experiment

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

manipulating T. ornata density (as above) and access to herbivores (+/- H). The experiment was fully crossed with three replicates of each treatment (n = 48). Herbivore access was limited by exclusion cages (5-sided; 25×25×30cm³ L×W×H) constructed from hardware cloth with 1 cm openings. Light restriction by caging material was <10% with no measureable restriction to water flow in cages constructed of the same material and used at the same site (Clausing and others 2014). Ten randomly-selected thalli were collected from each plot and photos were taken for analysis of initial percent cover by epiphytes. After 16 days (sensu Bittick and others 2010) during May-June 2014, cages were removed and three thalli were collected from each plot, photographed, and analyzed in ImageJ for final percent cover by epiphytes. Initial epiphyte cover was 61.6 +/- 5.6 % SEM. Analysis—All analyses were conducted in R (R Core Team 2015). For all response variables, linear and/or non-linear least squares models were fit to the data and compared by Akaike Information Criterion (AICc). We tested whether the relationships between T. ornata density and both epiphytes and understory macroalgae were best explained as either: (1) linear, (2) logistic (i.e. positive effects saturate at a certain density), (3) exponential (i.e. positive effects increase fastest at lower densities with no saturation) or (4) quadratic (i.e. positive effects decline after an optimal density) equations. The model with the lowest AICc value (\triangle AIC=0) and highest AICc weight or, if AICs were similar (\triangle AIC<3-4), the equation with the lowest number of parameters was chosen by rule of parsimony (Burnham and others 2011) and presented for each data set. Full model comparisons and fit are provided in ESM S3. Further, we expected foraging behavior of herbivorous fish (as bites over a 10-minute observation period) would also

205 follow one of these patterns in response to availability of resources. The epiphyte 206 herbivory experiment was analyzed using analysis of covariance (ANCOVA) with caging 207 as the explanatory variable and density as a covariate. 208 Results 209 Survey— Turbinaria ornata density was normally distributed (Shapiro-Wilk W Test, W=0.98, P<W=0.80) ranging from 0-40 thalli • 0.0625 m⁻². Average density was 210 19.8 ± 1.9 SEM thalli • 0.0625 m⁻² and 83% of the aggregations were 30 thalli or less 211 212 (Figure 1 a). Approximately 80% of all fish observed approaching and foraging in the 213 density plots were acanthurids (see ESM S2 for distribution). From the MCR LTER 2012 214 annual survey data, the three most abundant species on the north shore fringing reef were: 215 Chlorulus sordidus (32%), Acanthurus nigrofuscus (26%) and Ctenochaetus striatus 216 (24%) (Fig. 1 b, c). The average lengths of these species were 11.4 +/- SE 1.9 cm, 10.3 217 +/- SE 9.3 cm, and 11.3 +/- SE 2.7 cm respectively. 218 Density manipulation experiment— There was an increase with density in 219 epiphyte cover on T. ornata thalli until an optimum of 15 thalli • 0.0625 m⁻² area (Fig. 2 220 a). Treatments with 3 thalli had ~40% cover by epiphytes, which increased to ~65% 221 cover in the 15 thalli treatments and remained at this level at higher densities; thus, cover 222 saturated in a logistic fit (Fig. 2 a; ESM S3). Similarly, macroalgae used as a bioassay for 223 understory macroalgal growth increased in biomass with *T. ornata* density up to 15 thalli • $0.0625 \text{ m}^{-2} \text{ (max} = 30\% \text{ growth} \cdot \frac{7 \text{ days}^{-1}}{3}$; Fig. 2 b). After this optimum, growth 224 225 declined precipitously to nearly zero in treatments with 30 thalli; this was best fit with a 226 quadratic equation (Fig. 1 b; ESM S3)

227

Foraging behavior measured as bites • 10 min⁻¹ was modelled as a linear increase

(Fig. 2 c; ESM S3). The relationship between bites • 10 min⁻¹ and *T. ornata* density was 228 229 positive, with no evidence of a decline. Of the 408 observed bites, 51% were taken from 230 the canopy, 8% along the algal stipe, and 40% in the understory at the margins of the 231 aggregation. 232 Epiphyte herbivory experiment— T. ornata density facilitated and herbivores 233 reduced abundance of epiphytes. Exclusion of herbivores and increasing T. ornata 234 density both resulted in higher epiphyte cover relative to low density with presence of 235 herbivores. As in the density manipulation experiment in 2012, the 2014 experiment 236 showed a positive effect of T. ornata density on epiphytes; however, this relationship was 237 linear instead of logistic (Fig. 3; ESM S3). We found a significant effect of caging 238 (F=16.92, P=0.0002) on percent epiphyte coverage, which was further explained by the 239 covariate T. ornata density (F=36.43, P<0.0001). However, the accumulation of 240 epiphytes with density (slope) is not significantly different between herbivore treatments 241 (t-test, p=0.16). The ranges in percent cover by epiphytes in 2012 and 2014 were also 242 comparable across years (28.2–72.6 and 27.2–76.3, respectively). 243 Discussion 244 Our results demonstrated *Turbinaria ornata* performs the role of a foundation species on fringing coral reefs in the South Pacific that have experienced phase-shifts to 245 246 macroalgae. We suggest this represents a facilitation cascade (e.g. Thomsen et al. 2010) 247 where T. ornata attaches to hard substrate formed by dead corals after a disturbance, and 248 once established, performs the key foundational role of facilitating an associated community. One line of evidence for its role as a foundation species is that, up to an 249 optimum, increasing density of *T. ornata* also increases the abundance of associated 250

primary producer groups such as epiphytes and understory macroalgae that are not
typically associated with coral dominated reefs (Fong and Paul 2011). Other ecosystem
functions that have been documented to increase with density of a macroalgal foundation
species include more efficient nutrient cycling (Human and others 2015) and reduced
photoinhibtion (Franklin and others 1996). In addition, the decline in growth of holdfast
macroalgae, but not epiphytes, in our experiment at high T. ornata densities may be
attributed to density-dependent increases in intensity of competition for light or nutrients.
This relationship has also been found in terrestrial forests where understory species can
survive in reduced light up to a critical threshold (Anderson and others 1969) and are
positively impacted by tree thinning (Canham and others 1990; Lieffers and others 1999),
but canopy-occupying species such as epiphytes benefit from larger trees and denser
canopies (Woods and others 2015). Similarly, epiphytes in the "canopy" of <i>T. ornata</i>
aggregations may not experience the same reduction in light or nutrients as understory
macroalgae. Whatever the mechanism involved, our study demonstrated that <i>T. ornata</i>
acts as a foundation species because, once it becomes abundant after a disturbance as it
facilitates an associated community of primary producers. How this ecosystem function
provided by T. ornata compares to those functions provides by the original, coral-
dominated foundation species is unknown, but certainly is a critical area for future
research as phase-shifts to macroalgal domination have occurred globally (reviewed in
Hughes and others 2010).
A second line of evidence that <i>T. ornata</i> is a foundation species is its facilitation
of reef consumers through enhanced food resources. Increased densities of <i>T. ornata</i>
aggregations caused a facilitation cascade in which more foraging by fish was supported

as epiphyte load and macroalgal understory increased. This is consistent with examples in
terrestrial and aquatic systems in which trophic support and/or consumer abundance and
diversity is negatively impacted by the loss of a foundation species (Hughes and others
2004; Rohr and others 2011; Angelini and Silliman 2014); similarly, in our study reduced
density of <i>T. ornata</i> also reduced trophic support. In other systems, primary producers
such as macroalgae and understory plants increase trophic support and consumer species
diversity (e.g. kelp forests, Graham 2004; temperate forests, Gilliam 2007; marshes,
Angelini et al. 2015). While the majority of grazing occurred on epiphytes on the surface
of the thalli within aggregations, understory macroalgae at the aggregation's edges
provided additional resources to grazers. Taken together these findings suggest higher
density <i>T. ornata</i> aggregations provide more food to herbivorous fish than less dense
aggregations via increased supplies of epiphytes and understory macroalgae,
demonstrating its role as a foundation species through enhanced trophic support.
However, while our study compared trophic support across different densities of <i>T</i> .
ornata, we were unable to compare these to the ecosystem functions provided by corals
as they had been lost to predation. Thus, comparisons between the trophic support
provided by corals vs. T. ornata aggregations are needed to fully assess differences in
ecosystem functions supported by these alternative communities.
The effects of <i>T. ornata</i> were strongly density-dependent, a phenomenon that has
rarely been evaluated in studies examining foundational communities. Rather, most
studies assess impacts to associated species in the presence and absence of a focal
foundation species (e.g. Graham 2004, Angelini et al. 2015). However, there are
terrestrial studies that showed decreased tree canopy cover, which may be a proxy for

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

density, reduced richness and abundance of associated species (e.g. Caners et al. 2010, Cach-Pérez et al. 2013), suggesting density effects may be important across systems. Further, we found that density effects varied across associated functional groups, with epiphytes responding linearly or logistically and understory macroalgae responding unimodally to T. ornata density. One possible explanation for the macroalgal response is nutrient or light limitation, which may have parallels in terrestrial systems. For example, in forests, canopy cover can have a unimodal effect on understory plant growth and diversity; in this case, nutrient input from the canopy has a positive effect while growth and diversity are negatively affected by canopy closure, creating a hump-shaped response to canopy cover (reviewed in Gilliam 2007). Thus, facilitation in the case of *T. ornata*, as in terrestrial forests, is highly density-dependent, and the density of T. ornata that persists after corals are removed by a disturbance can have a profound effect on reef community structure. In summary, our results demonstrated that T. ornata acts as a foundation species where aggregations facilitate both primary producers and consumers on tropical reefs. Further, we suggest this represents a facilitation cascade (Thomsen and others 2010) where corals form the hard substrate to which T. ornata attaches, and T. ornata provides habitat for epiphytes and increased trophic support for herbivorous fish. Much work is still needed to understand the functional roles of foundation species in many systems, especially when the foundation species dominates as the result of a phase-shift, as with corals and some macroalgae. These phase-shifts are often the result of human impacts that may cause "undesirable" changes to ecosystem functioning (see Ellison and others 2005 for terrestrial examples, coral reefs in Hughes and others 2010). However, in our

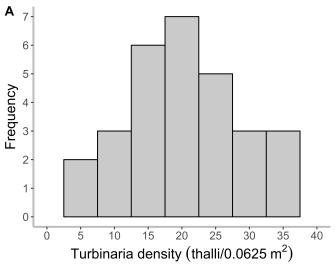
320	study, we found that a phase-shift to a different foundational species supports some
321	ecosystem functions, albeit likely very different than those supported by the original cora
322	community. However, even these functions may not be sustainable if <i>T. ornata</i>
323	domination persists at the expense of the original foundational coral community as
324	bioerosion will ultimately break down the reef structure (reviewed in Glynn and
325	Manzello 2015).
326	
327	Acknowledgements
328	Thank you to the undergraduate students from UCLA's field courses 2012-2016, and
329	ImageJ processing by Von Phan and Meera Solanki. A special thanks for 2014 field
330	assistance from Briana Fodor and funding from Aquarium of the Pacific. Funding in the
331	field for SJB and PF was provided by UCLA's OID and the EEB Department; RJC was
332	funded by these sources and the NSF GRFP; and CRF was funded by a Sigma Xi Grant-
333	in-Aid of Research (GIAR). Funding while writing was provided to SJB by the Eugene
334	Cota-Robles Fellowship Program and NSF GRFP. This is contribution XXX of the
335	University of California Berkeley's Gump South Pacific Research Station.
336	
337	Reference List
338	Anderson RC, Louck OL, Swain AM. 1969. Herbaceous Response to Canopy Cover,
339	Light Intensity, and Throughfall Precipitation in Coniferous Forests. Ecology
340	50:255–63.
841	Angelini C, van der Heide T, Griffin JN, Morton JP, Derksen-Hooijberg M, Lamers
342	LPM, Smolders AJP, Silliman BR. 2015. Foundation species' overlap enhances

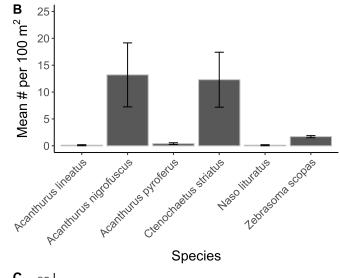
343	biodiversity and multifunctionality from the patch to landscape scale in southeastern
344	United States salt marshes. R Soc Proc B 282:20150421
345	Angelini C, Silliman BR. 2014. Secondary foundation species as drivers of trophic and
346	functional diversity: Evidence from a tree-epiphyte system. Ecology 95:185–96.
347	Bittick SJ, Bilotti ND, Peterson HA, Stewart HL. 2010. Turbinaria ornata as an herbivory
348	refuge for associate algae. Mar Biol 157:317–23.
349	Bittick SJ, Clausing RJ, Fong CR, Fong P. 2016. Bolstered physical defences under
350	nutrient-enriched conditions may facilitate a secondary foundational algal species in
351	the South Pacific. Silliman B, editor. J Ecol 104:646–53.
352	Brandl SJ, Hoey AS, Bellwood DR. 2013. Micro-topography mediates interactions
353	between corals, algae, and herbivorous fishes on coral reefs. Coral Reefs 33:421-30.
354	Brown AL, Carpenter RC. 2014. Water flow influences the mechanisms and outcomes of
355	interactions between massive Porites and coral reef algae. Mar Biol 162:459-68.
356	Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel
357	inference in behavioral ecology: some background, observations, and comparisons.
358	Behav Ecol Sociobiol 65:23–35.
359	Cach-Pérez MJ, Andrade JL, Chilpa-Galván N, Tamayo-Chim M, Orellana R, Reyes-
360	García C. 2013. Climatic and structural factors influencing epiphytic bromeliad
361	community assemblage along a gradient of water-limited environments in the
362	Yucatan. Trop Conserv Sci 6:283–302.
363	Caners RT, Macdonald SE, Belland RJ. 2010. Responses of boreal epiphytic bryophytes
364	to different levels of partial canopy harvest. Botany 88:315-28.
365	Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS. 1990. Light regimes

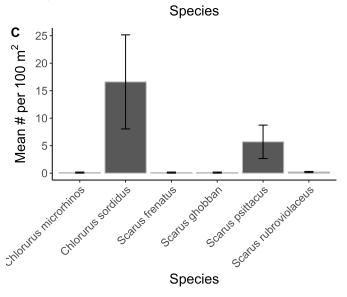
366	beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J
367	For Res 20:620–31.
368	Carpenter, R. C. 2015. MCR LTER: Long-term population and community dynamics:
369	benthic algae and other community components, ongoing since 2005.
370	DOI:http://dx.doi.org/10.6073/pasta/79a6edbcf3aa2380d43deed778856416.
371 372	Clausing R, Annunziata C, Baker G, Lee C, Bittick S, Fong P. 2014. Effects of sediment
373	depth on algal turf height are mediated by interactions with fish herbivory on a
374	fringing reef. Mar Ecol Prog Ser 517:121–9.
375	Davis S. 2016. Mechanisms Underlying Macroalgal Phase Shifts in Coral Reef
376	Ecosystems. Doctoral Dissertation, University of California Santa Barbara.
377	ProQuest Dissertations Publishing. 10194165
378	Dayton PK. 1972. Toward an understanding of community resilience and the potential
379	effects of enrichments to the benthos at McMurdo Sound, Antartica. In: Proceedings
380	of the colloquium on conservation problems in Antarctica.
381	deYoung B, Barange M, Beaugrand G, Harris R, Perry RI, Scheffer M, Werner F. 2008.
382	Regime shifts in marine ecosystems: detection, prediction and management. Trends
383	Ecol Evol 23:402–9.
384	Dudgeon SR, Aronson RB, Bruno JF, Precht WF. 2010. Phase shifts and stable states on
385	coral reefs. Mar Ecol Prog Ser 413:201–16.
386	Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR,
387	Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL,
388	Sobczak W V, Stinson KA, Stone JK, Swan CM, Thompson J, Holle B Von,
389	Webster JR. 2005. Loss of foundation species: consequences for the structure and

390 dynamics of forested ecosystems. Front Ecol Environ 3:479-86. 391 Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. 392 2004. Regime Shifts, Resilience, in Ecosystem Management. Annu Rev Ecol Evol 393 Syst 35:557–81. 394 Fong P, Paul VJ. 2011. Coral Reef Algae. (Dubinsky Z, Stambler N, editors.). Dordrecht: 395 Springer Netherlands 396 Fong P, Smith TB, Wartian MJ. 2006. Epiphytic cyanobacteria maintain shifts to 397 macroalgal dominance on coral reefs following ENSO disturbance. Ecology 398 87:1162-8. 399 Franklin LA, Seaton GGR, Lovelock CE, Larkum AWD. 1996. Photoinhibition of 400 photosynthesis on a coral reef. Plant Cell Environ 19:825–36. 401 Gattuso JP, Payri CE, Pichon M. 1997. Production, calcification, and air-sea CO2 fluxes 402 of a macroalgal-dominated coral reef community (Moorea, French Polynesia). J 403 Phycol 33:729–38. 404 Gentry AH, Dodson C. 1987. Contribution of nontrees to species richness of a tropical 405 rain forest. Biotropica 19:149–156. 406 Gilliam FS. 2007. The Ecological Significance of the Herbaceous Layer in Temperate 407 Forest Ecosystems. Bioscience 57:845–58. 408 Graham HM. 2004. Effects of local deforestation on the diversity and structure of 409 Southern California giant kelp forest food webs. Ecosystems 7:341–57. 410 Hughes AR, Bando KJ, Rodriguez LF, Williams SL. 2004. Relative effects of grazers and 411 nutrients on seagrasses: A meta-analysis approach. Mar Ecol Prog Ser 282:87–99. 412 Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS. 2010. Rising to the

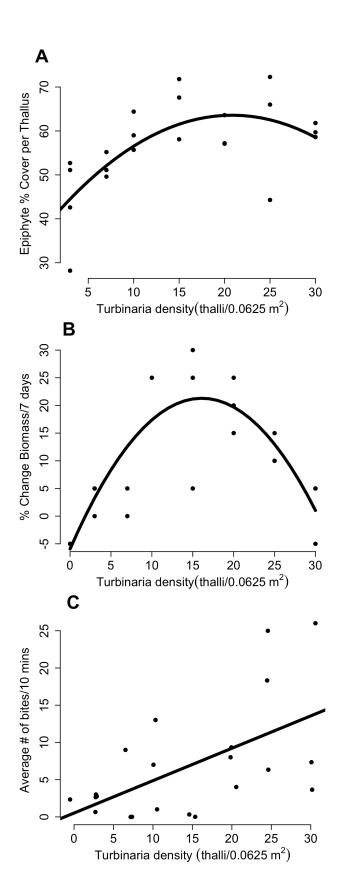
413	challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–42.
414	Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L,
415	Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B. 2007. Phase Shifts,
416	Herbivory, and the Resilience of Coral Reefs to Climate Change. Curr Biol 17:360-
417	5.
418	Human LRD, Snow GC, Adams JB, Bate GC, Yang SC. 2015. The role of submerged
419	macrophytes and macroalgae in nutrient cycling: A budget approach. Estuar Coast
420	Shelf Sci 154:169–78.
421	Jaschinski S, Brepohl DC, Sommer U. 2011. The trophic importance of epiphytic algae in
422	a freshwater macrophyte system (Potamogeton perfoliatus L.): Stable isotope and
423	fatty acid analyses. Aquat Sci 73:91-101.
424	Jompa J, McCook LJ. 2002. The effects of nutrients and herbivory on competition
425	between a hard coral (Porites cylindrica) and a brown alga (Lobophora variegata).
426	Limnol Oceanogr 47:527–34.
427	Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S,
428	Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M. 2012. Predator Crown-
429	of-Thorns Starfish (Acanthaster planci) Outbreak, Mass Mortality of Corals, and
430	Cascading Effects on Reef Fish and Benthic Communities. PLoS One 7:e47363.
431	Korpinen S, Jormalainen V, Pettay E. 2010. Nutrient availability modifies species
432	abundance and community structure of Fucus-associated littoral benthic fauna. Mar
433	Environ Res 70:283–92.
434	Lewis SM, Wainwright PC. 1985. Herbivore abundance and grazing intensity on a
435	Caribbean coral reef. J Exp Mar Bio Ecol 87:215–28.

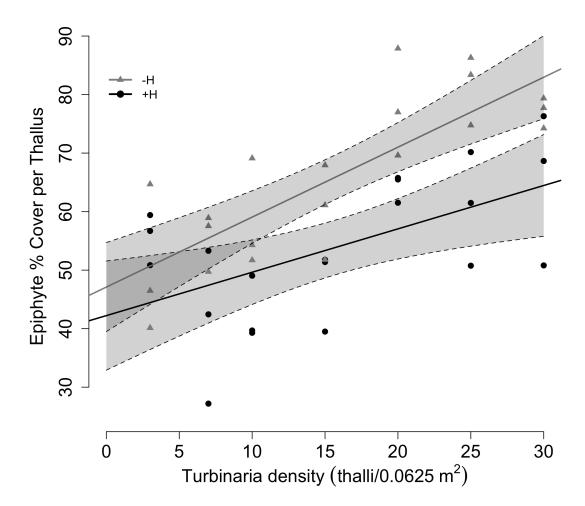

436	Lieffers VJ, Messier C, Stadt KJ, Gendron F, Comeau PG. 1999. Predicting and
437	managing light in the understory of boreal forests. Can J For Res 29:796–811.
438	Martinez E, Maamaatuaiahutapu K, Payri C, Ganachaud A. 2007. Turbinaria ornata
439	invasion in the Tuamotu Archipelago, French Polynesia: ocean drift connectivity.
440	Coral Reefs 26:79–86.
441	McCook LJ. 1999. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues
442	and management consequences for the Great Barrier Reef. Coral Reefs 367:357-67.
443	Muthukrishnan R, Lloyd-Smith JO, Fong P. 2016. Mechanisms of resilience: empirically
444	quantified positive feedbacks produce alternate stable states dynamics in a model of
445	a tropical reef. Silliman B, editor. J Ecol 104:1662-72.
446	Nowacki GJ, Abrams MD. 2008. The demise of fire and Mesophication" of forests in the
447	Eastern United States. Bioscience 58:123–38.
448	Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck Jr KL,
449	Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, others. 2006. A global crisis
450	for seagrass ecosystems. Bioscience 56:987–996.
451	Payri CE. 1984. The effect of environment on the biology and morphology of Turbinaria
452	ornata (Phaeophyta) from the Tiahura Reef (Moorea Island, French Polynesia). Bot
453	Mar 27:327–33.
454	R Core Team. 2015. R: A language and environment for statistical computing.
455	Roff G, Wabnitz CCC, Harborne AR, Mumby PJ. 2013. Macroalgal associations of
456	motile epifaunal invertebrate communities on coral reefs. Mar Ecol 34:409–19.
457	Rohr NE, Thornber CS, Jones E. 2011. Epiphyte and herbivore interactions impact
458	recruitment in a marine subtidal system. Aquat Ecol 45:213-9.


459	Scheffer M, Carpenter S, Foley J a, Folke C, Walker B. 2001. Catastrophic shifts in
460	ecosystems. Nature 413:591–6.
461	Smith JE, Hunter CL, Smith CM. 2010. The effects of top-down versus bottom-up
462	control on benthic coral reef community structure. Oecologia 163:497-507.
463	Smith JE, Runcie JW, Smith CM. 2005. Characterization of a large-scale ephemeral
464	bloom of the green alga Cladophora sericea on the coral reefs of West Maui,
465	Hawai'i. Mar Ecol Prog Ser 302:77–91.
466	Stachowicz JJ. 2001. the Structure of Ecological Communities. Bioscience 51:235–46.
467	Suchanek TH. 1992. Extreme biodiversity in the marine environment: Mussel bed
468	communities of Mytilus californianus. Northwest Environ J 8:150–2.
469	Talluto M V., Suding KN. 2008. Historical change in coastal sage scrub in southern
470	California, USA in relation to fire frequency and air pollution. Landsc Ecol 23:803-
471	15.
472	Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M
473	Silliman BR. 2010. Habitat cascades: The conceptual context and global relevance
474	of facilitation cascades via habitat formation and modification. Integr Comp Biol
475	50:158–75.
476	Tootell JS, Steele MA. 2016. Distribution, behavior, and condition of herbivorous fishes
477	on coral reefs track algal resources. Oecologia 181:13-24.
478	Woods CL, Cardelús CL, Dewalt SJ. 2015. Microhabitat associations of vascular
479	epiphytes in a wet tropical forest canopy. Piper F, editor. J Ecol 103:421-30.
480	
481	


482	Electronic Supplementary Material (ESM)
483	ESM S1 Sample images of Turbinaria ornata.
484	Figure S1 Examples of Turbinaria ornata aggregations on the reef.
485	Figure S2 Example image of a Turbinaria ornata thallus with red and green algae
486	epiphytes growing on its blades.
487	ESM S1 Fish abundances by Turbinaria ornata density at our site.
488	Figure S3 Average abundances of fishes by family and T. ornata density.
489	ESM S3 Least squares model fitting of the relationship between macroalgal
490	abundance and its epiphytes.
491	Table S1 Comparison of linear, logistic, exponential, and quadratic least squares
492	models.
493	

494	Figure Legends
495	Figure 1. (A) Results of survey of density of <i>T. ornata</i> aggregations on a fringing reef in
496	Mo'orea, French Polynesia. Mean density per 100 m² (±SE) of (B) Acanthuridae and (C)
497	Labridae (tribe Scarinae) species documented by the MCR LTER in our study site in
498	August 2012.
499	Figure 2. \triangle AICc selected models for: (A) relationship between <i>T. ornata</i> density and
500	percent epiphyte cover modelled as a logistic fit ($y = \frac{65.66x}{1.47+x}$, R ² =0.45, p<0.001) (B)
501	Growth of understory macroalgae in response to <i>T. ornata</i> canopy ($y = -7.01 +$
502	$3.28x - 0.10x^2$, R ² =0.62, p<0.001) (C) The number of bites by all fish had a positive
503	linear relationship with <i>T. ornata</i> density ($y = 1.49 + 0.42x$, R ² =0.30, and p<0.01).
504	Figure 3. Relationship between <i>T. ornata</i> density and percent epiphyte cover with
505	herbivores present (+H, grey, $y = 42.228555 + 0.7414138*x$, $r^2=0.32$, $p<0.01$) or absent
506	(-H, black, $y = 47.105735 + 1.1951281*x$, $r^2=0.65$, $p<0.0001$) and the respective 95%
507	confidence intervals between dotted lines.
508	


509 Figure 1



511 Figure 2 512

514 Figure 3

