
Proactive Detection of Insider Attacks

Benjamin Liebald, Dan Roth, Neelay Shah, and Vivek Srikumar

University of Illinois, Urbana-Champaign, USA

Abstract. Insider attacks are a significant threat to IT infrastructures
and are difficult to detect. The problem is exacerbated if the attacker
explicitly tries to masquerade as a legitimate user and evade detection.
In this paper, we describe a novel approach for detecting these attacks,
where the intrusion detection system (IDS) proactively influences the
user’s perception of the system. The IDS does so by switching among a set
of situational contexts and observing the user’s reaction to these changes.
This is done in a way that poses no significant problem to legitimate
users, but creates difficulties for attackers that have learned the system
in specific contexts, and therefore cannot improvise well enough to avoid
being detected. We present a framework for a generic proactive IDS
that shows promising experimental results, suggesting that this method
can indeed be effective in detecting masquerade attacks in a variety of
domains. We also present an implementation of this idea in a behavioral
biometrics domain, where we show that making the IDS proactive enables
detection of masquerades.

1 Introduction

Insider attacks are a serious threat to the security of information. This is because
hostile insiders have both the motivation and opportunity to impersonate legit-
imate users and access unauthorized information. This threat gets aggravated
if, in addition to having motivation and opportunity, the intruder also learns to
masquerade as a legitimate user. Conventional anomaly detection systems at-
tempt to solve this by learning a model of the legitimate users’ normal behavior.
Any user whose actions sufficiently deviate from the expected behavior is classi-
fied as an intrusion ([1], [2]). These ideas are applied for detecting masquarades
by Schonlau and his colleagues in [3], which compares six methods for masquer-
ade detection. Futher improvements in masquerader detection were presented in
[4] and [5].

Intrusion Detection Systems (IDS) can be evaded by a masquerader who ex-
pressly learns to pretend to be a legitimate user. Consider the following scenario
– Alice is an engineer and Bob is a accountant in a company. Bob wants to steal
engineering plans and manages to get Alice’s password. If Bob accesses the sys-
tem using Alice’s password, then the anomaly detection system will detect this
as an intrusion because Bob’s actions will be different from Alice’s. However, if
Bob observes Alice’s behavior and learns to imitate her, then an IDS that looks
for anomalous behavior may not report Bob’s activities as intrusive. Bob knows

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

how to achieve his goal by crafting a typical set of actions that looks like normal
behavior to the IDS. Thus, in order to beat an anomaly detector, the intruder
should learn to masquerade as a legitimate user. This scenario is formalized in
Sect. 2.

However, it is reasonable to assume that even if Bob manages to masquerade
as Alice, he need not necessarily be able to handle abnormal situations the same
way as Alice does. For example, in the event of a database error, Bob’s actions
need not be similar to the ones of Alice, who is an engineer. This motivates the
idea of an IDS that proactively presents uncommon situations to the users and
observes their reaction. If done right, it can allow the IDS to observe users’ be-
havior in other situations than those they “prepared” for, and thus with minimal
interruption to normal work, keep the system secure.

In this paper, we introduce the idea of a Proactive Intrusion Detection Sys-
tem that is based on this intuition (Sect. 3). To be in a realistic masquerading
situation, we assume that the users, and therefore potential masqueraders, have
access to at least some of the logs of system interactions and can learn the
normal behavior of other users. The underlying idea behind proactive intrusion
detection is to expose attackers and legitimate users of the system to multi-
ple contexts, in a way that poses no problem to legitimate users, but creates
significant difficulties to attackers who learned to use the system in a specific
context, and therefore cannot improvise well enough to avoid being detected.
The different situations that the IDS presents to the user, called modes of the
IDS, will depend on the system that is being protected. One of the modes will
be the normal mode of operation. The ability to change modes allows the IDS
to influence the user’s actions and observe their reactions to the changes.

If the IDS switches between modes, then the problem of choosing which mode
to present to the user becomes an important one. On one hand, the IDS must
pick modes such that even the smart masquerader will be identified. On the other
hand, the legitimate users should not face excessive disruption in normal activity.
These two goals are often diametrically opposed. We address the problem of
mode selection in this paper in Sect. 4 and present algorithms for proactive
systems that differ in the way they choose modes.

The performance of the algorithms is experimentally verified. We present the
results of two sets of experiments. The ideas were first verified via simulation
to show that proactive intrusion detection does indeed detect smart masquer-
aders who learn to behave like a legitimate user. We also show that this idea is
feasible in a real world situation in a behavioral biometrics domain. Using data
collected from real users, we constructed a strong masquerading attack that
is not detected by a conventional anomaly detector and show that the proac-
tive IDS detects it. The design and results of the experiments are discussed in
Sect. 5. The proposed system has wide ranging applications. We suggest ways
to apply proactive intrusion to detect masquerades in the UNIX command shell
environment, transaction systems and even online games (Sect. 6).

2 Problem Definition

Intrusion detection is a binary classification problem – given the user’s actions, a
classifier has to decide whether the user is an intruder or not. The classification
is done over a sequence of actions generated by the user.

Let Alice be a user. Let the set of user actions be

X = {X1, X2, · · · , X|X |}

where each Xi is an individual user action and the user can choose from |X |
such actions. The user’s actions are influenced by her eventual goal and also by
feedback from the system.

The task of the IDS is to identify whether a block of actions were performed
by a user or not. Let the size of the block under consideration be N . Let xi

represent the ith action in the block. For notational convenience, let xN1 be the
set of all the actions in the block. Then, IDS has to learn a classifier CAlice that
identifies whether xN1 were performed by Alice or not.

The classifier is a function that, given xN1 , extracts features from it and based
on these features, assigns a label to the block that states whether it represents a
legitimate user or an intruder. Existing literature in masquerade detection ([3–
5] and others) focuses extensively on the types of classifiers that can be used
to define the intrusion detection system and their relative merits and demerits.
However, recent work in machine learning ([6]), shows that all classifiers used
today – both discrimiative and probabilistic – can be thought of in terms of a
conditional probability distribution. This allows us to limit our discussion to a
probabilistic classifier that labels a window of actions as intrusive if the probabil-
ity of those actions given the current user is less than a threshold. Equivalently,
a block of actions xN1 is labeled as an intrusion if

− log P (xN1 |Alice) > θ (1)

If the condition is not satisfied, the block is labeled as a legitimate one. θ is
the threshold that may be learned by cross-validation over the training data.

Many anomaly detection systems in the literature (for example, [7, 8]) models
the user’s actions as a Markov model. The assumption made is that the present
data is indepenedent of the future, given the past. Making this assumption allows
us to simplify the probability of actions as follows –

− log P (xN1 |Alice) = − log

(N∏

i=1

P (xi|xi−1
1 , Alice)

)

=
N∑

i=1

− log P (xi|xi−1
1 , Alice)

Thus, a block of actions is labeled as an intrusion if the following holds –

N∑

i=1

− log P (xi|xi−1
1 , Alice) > θ (2)

Equation 2 defines the classifier CAlice(xN1).
Let Bob be another user who wants to masquerade as Alice. In order to do

so, Bob learns his own model of Alice’s actions and uses this to generate actions
as Alice. Note that, in addition to obtaining Alice’s login credentials, Bob learns
to masquerade as Alice by observing her usage of the system. This means that
the intruder is smarter than the ones in [3] and other similar work, where the
intruders only know the login credentials, but do not transform their input to
match the user’s input patterns. While this may seem like a strong assumption,
we show the feasibility of this in the experiments in Sect. 5.2.

3 Proactive Intrusion Detection

In the scenario described in Sect. 2, it is clear that if Bob can perfectly imperson-
ate Alice (a practically impossible task), then no IDS will be able to distinguish
between Alice and Bob. However, it is reasonable to assume that while Bob can
masquerade as Alice in normal situations, he will not have enough data to learn
her behavior in all situations. This assumption is true if Alice is an “expert” in
her domain and Bob, who is not one, has learned to behave like her. Therefore,
in uncommon situations, it is unlikely that he will behave the way she does. Am
intrusion detection should take advantage of such distinctive responses of users
to specific situations.

We introduce the notion of a Proactive Intrusion Detection System which is
based on this idea. In this proposed architecture, an anomaly detector observes
a user’s interaction with a system over a variety of different situations, yielding
a set of context specific classifiers. During the training phase, it is assumed
that the IDS observes the users behavior in all situations without contamination
by masqueraders. When deployed, the IDS actively switches between different
situations and classifies the observed behavior based on the context. The different
situations are called the modes of the IDS. The actual semantics of modes will
depend on the system.

For example, if the system being protected is a database system, then the
a sample set of modes could be the ones listed in Table 1. For each user, the
IDS learns a separate classifier for each mode. When deployed, the IDS does not
affect the system’s normal operation. However, it does affect the way the user
interacts with the system – the output seen by the user depends on the current
mode of the IDS. The most common mode would be Mode 1, where the IDS does
not alter the output. Occasionally, the IDS will change the mode to one of the
other modes based on a mode selection policy that will be discussed later. If the
current mode is Mode 2, then the IDS makes it appear as if there is a deadlock
in the object that the user is requesting for. If the current mode is Mode 3, the

IDS displays an error that says that an integrity constraint has been violated.
For each mode, the IDS observes the user’s reaction in response and performs its
classification task based on the reaction. If the masquerader has seen only the
normal behavior of the users, then the responses of the masquerader to other
modes will be detected by the respective classifiers.

Table 1. Example set of modes for an interactive database system. The proactive
IDS in this system learns how the users behave in response to the introduction of
these situations. Note that the IDS does not change the way the database works. It
only impacts user’s observations. When deployed, the IDS occasionally introduces these
situations to verify that the user’s responses to the changes are consistent with behavior
that has been learned.

Mode Situation represented

Mode 1 Normal usage
Mode 2 Simulate “Deadlock found”
Mode 3 Simulate “Integrity constraint violation”

There are two advantages of a proactive IDS over a passive one –

1. The user’s behavior becomes more distinctive in each specific situation. This
makes the task of classification easier.

2. If the modes are chosen such that reaction to them is at an instinctive level
rather than at a conscious level, then learning to impersonate the legitimate
user in different modes becomes very difficult.

In general, let the set of modes of an IDS be denoted by

M = {M1,M2, · · · ,M|M|}

The mode M1 will be designated as the normal mode, where the IDS will not
transform the output seen by the users. In all other modes, the IDS will transform
the output in some way. Since all modes other than M1 are disruptive, we may
wish to quantify and limit the disruption in some way. Let d(Mj) represent a
non-negative real number representing the disruption caused the IDS being in
mode Mj . Note that d(M1) = 0 because that represents the normal mode. For
all other modes, the disruption need not be zero.

As with the user actions, let the ith mode within a block be mi and let all the
modes in a block be denoted by mN

1 . We extend the definition of the classifier
defined in 2 to include the modes. The classifier has the same form as defined
earlier; it has additional input to make its decision. The classifier CAlice(xN1 , mN

1)
is redefined to report an intrusion if –

N∑

i=1

− log P (xi,mi|xi−1
1 , mi−1

1 , Alice) > θ (3)

Since the IDS proactively chooses modes after being deployed, we must spec-
ify a procedure for the selection of modes. Let the policy for picking modes be
called ModeSelectionPolicy. We will discuss different mode selection policies in
Sect. 4.

A generic Proactive IDS is represented in pseucode in Algorithm 1.

Algorithm 1 Proactive Intrusion Detection System
1: Set m1 = M1

2: while TRUE do
3: Observe xi

4: if C(xN1 , mN
1) == 1 then

5: Intrusion
6: else
7: Choose the next mode using ModeSelectionPolicy
8: end if
9: end while

Clearly, from Algorithm 1, we can see that the IDS is completely defined by
specifying the classifier C and ModeSelectionPolicy. These are two independent
aspects of the proactive IDS. The choice of classifiers is an extensively studied
problem in the field of intrusion detection. From the point of view of machine
learning, classification of sequences is a well understood problem. Instead of
explicitly specifying the type of classifier, we focus on the ModeSelectionPolicy
in this paper. When we describe our experiments in 5, we give brief information
about the specific classifiers used.

4 Choice of Modes

In this section, we examine different policies for the selection of modes.

4.1 Passive IDS

It is useful to note that a passive IDS (that is, an anomaly detector that does
not use different modes) can be thought of as a proactive IDS where mi = 1 for
all i. That is, a passive IDS is one that always operates in the normal mode.
This view of a passive IDS shows that the set of proactive intrusion detection
systems is a strict superset of the set of passive intrusion detection systems.

4.2 Random Proactive IDS

Another policy for the selection of modes is to pick each mode randomly and
independently. While this may seem näıve, experiments show that this does
indeed perform quite well.

4.3 Constrained Random Proactive IDS

The random proactive IDS does not place any constraints on the disruption
caused by the modes. We may to limit the total disruption caused by the IDS per
block to a value – Dlimit. Extending the random proactive IDS, a constrained
random proactive IDS picks modes randomly while ensuring that the total
disruption for the whole block is not more than Dlimit.

4.4 Decision Theoretic Proactive IDS

While the random proactive systems do offer improvement over the passive IDS,
we would like to control the choice of modes in a better way. Here, we present a
decision theoretic policy for the choice of modes. This approach is based on the
worst-case assumption that the IDS and the user have an adversarial relation-
ship.

The implicit goal of the intruder Bob is to make the classifier of the IDS
believe that he is Alice. In our current setting, his goal will be to make the left
hand side of Equation 3 less than the threshold θ. In further discussion, the left
hand side of Equation 3 will be referred to as the score of the classifier.

The additive form of the score can be interpreted as follows – each term in
the summation makes an incremental contribution of

− log P (xi,mi|xi−1
1 ,mi−1

1 , Alice)

to the final score. At the ith step, the goal of Bob is to pick an action xi such
that its incremental contribution is minimized. The assumption of an adversarial
relationship between the IDS and the user will imply that the proactive IDS
should pick mode mi such that the mode’s incremental contribution to the final
score is maximized for any action of Bob’s. This gives us the following decision
theoretic policy to pick modes –

mi = argM

(
min

X
max

M
− log P (xi,mi|xi−1

1 ,mi−1
1 , Alice)

)
(4)

4.5 Mixed Strategy Proactive IDS

The adversarial notion presented above can be analyzed as a zero sum game
between the IDS and the user. In the decision theoretic analysis presented above,
the IDS picks a single mode whose incremental contribution to the final score is
maximized for all possible actions of the user. Instead of picking a single mode,
we can derive a probability distribution over the modes such that the expected
incremental contribution to the final score is maximized for all possible user
actions. If p = (p1, p2, · · · , p|M|) is a probability distribution over the modes
where pj is the probability that the IDS will pick mode Mj , then we wish the
following to hold –

p = min
X

max
p

Ep

[− log
(
P (xi,mi|xi−1

1 ,mi−1
1 , Alice)

)]
(5)

where Ep denotes the expectation over the distribution p. Once we have the
optimal p, the next mode is picked by drawing from the distribution.

Linear programming is a common technique to solve zero-sum games (see,
for example, [9]). Computing the optimal set of probabilities p can be done by
converting the game to a linear program.

Let the actual expected incremental contribution of xi and mi be λ. The
IDS tries to maximize this value, giving us the objective function of the linear
program –

max λ (6)

Additionally, the user wants this value to be less or equal to the expected
incremental contribution for any action Xk that he performs (which is equiv-
alent to minimizing the quantity for all actions). This gives us the first set of
constraints for the the linear program –

λ ≤ Ep

[− log
(
P (xi = Xk, mi|xi−1

1 ,mi−1
1 , Alice)

)]
;∀Xk ∈ X (7)

The final constraints for the linear program ensure that the search space is
the probability simplex –

|M|∑

j=1

pj = 1 (8)

pj ≥ 0 ; ∀j (9)

The Equations 6, 7, 8, 9 together form the linear program whose solution
is the optimal probability distribution over the modes. The linear program will
always converge to an optimal solution because every matrix game with two
players has an optimal solution. The IDS then draws a mode using this proba-
bility distribution – called the mixed strategy – and switches to that mode. This
gives us the mixed strategy policy.

It must be noted that in this analysis, there is a departure from traditional
game theoretic analysis for mixed strategies. Traditionally, it is assumed that
both the players make their move simultaneously. Clearly this is not the case
here. The IDS picks its mode first and the user performs an action based on the
move. In a perfectly adversarial situation, the user will not think in terms of
probabilities over actions because once he knows the mode, he can pick a single
action that minimizes the score (in other words, he can use a pure strategy).
Yet, it is shown in the experiments that the mixed strategy is among the best
performing policies. This is because, in reality, the user is not really perfectly
adversarial. The goal of the user, in addition to thwarting the IDS, is also to
perform some malicious activity. Hence, the user will not necessarily use a pure
strategy all the time.

4.6 Constrained Mixed Strategy Proactive IDS

We may wish to place constraints on the disruption caused by the Mixed Random
IDS. In the linear program representation in Sect. 4.5, this can be done by

limiting the expected disruption to Dlimit. The new constraint added to the
linear program is

Ep [d(Mj)] ≤ Dlimit (10)
Adding this constraint will will not make the original linear program infea-

sible because d(M1) = 0 and hence, picking M1 with probability 1 will be a
feasible solution. Constrained games and their relation to linear programming is
discussed in [10]. The IDS that uses this constrained game to pick its mode will
be referred to as the constrained mixed strategy proactive IDS.

5 Experiments

Two sets of experiments were conducted. In the first one, the different mode
selection policies were compared with in terms of error in identifying intrusions
and disruption. In the second experiment, we adapted the idea of a proactive
IDS to detect masqueraders in a behavioral biometrics domain to show that it
is indeed a practical approach.

5.1 Comparison of Mode Selection Policies

The setup of this experiment was similar to that of [3]. The Schonlau dataset
provides a sequence of commands used by a set of 50 real users. However, this
data cannot be used to evaluate a proactive IDS because the training data in
terms of different modes is not known.

For the experiments, we assumed that the set of user actions was of size 15
and we defined 6 modes of operation for the IDS. Since the algorithms for the IDS
do not depend on the semantics of the modes, we did not define the semantics
of the modes and instead refered to them as modes M1,M2, · · · ,M6. As earlier,
M1 is assumed to be the normal mode, which means that its disruption is zero.
The other modes were assigned disruptions 1.

d(M1) = 0
d(Mi) = 1 ; 2 ≤ i ≤ 6

Since we could not use the data of real users, we used simulated users to test
the systems. Following [3] where a Markov model was among the best models
for users, users are simulated using a Markov chain. In other words, the users
were completely represented by a probability of the next action given the current
action and the current mode. Twenty such users were generated randomly. For
each user, a session was defined as 50 non-overlapping blocks, with 100 com-
mands in each block. Each block was defined such that all the commands in a
block were generated by the same user – either the masquerader or the session’s
legitimate user. This allowed us to perform classification on a per-block basis.

Given the definition of d, the maximum possible disruption per block is 100
(when all the modes in that block are disruptive). For the mode selection policies
that constrain the disruption, we set the value of Dlimit to 50 per block, (that
is, 2500 for the entire session of 50 blocks).

Masqueraders. The smart masquerader Bob will be able to pretend to be Alice
in a normal situation. When exceptional situations are encountered, Bob will re-
vert to his own behavior. This is captured by having the masquerader learn the
behavior of the user in normal mode using the same data that was used to train
the IDS. The masquerader’s learning protocol is the same as that of the IDS, ex-
cept that it is restricted to the normal mode. In all other modes, the masquerader
will be modeled by a different markov chain with its own parameters.

Masqueraders were inserted into user’s session in a similar fashion as [3]:
If the previous block was not a masquerade, then the current block is not a
masquerade with probability pu. If the previous block is a masquerade, then the
current block is a masquerade with probability pm. In our experiments, we set
the values of both pm and pu to 0.8.

Proactive IDS. All the IDSs described in Sect. 4 (including the passive IDS)
differ only in the way they choose modes. Hence, in order to provide fair com-
parison, the IDS models and the classifier were kept the same for all the IDSs.

The IDS’s internal model of the users was a Markov model. For each user,
during training, the IDS computes P (X|M, Xprevious, user). The classification is
done by computing the probability of the actions in the block given the modes.
That is, the block is declared as an intrusion if

− log
(
P (xN1 ,mN

1 |user)
) ≥ θ

where the threshold θ was tuned to get equal error rate for the passive IDS when
not facing masquerade attacks.

Results. For each IDS, we measure the error in predicting the current user –
an IDS is said to make an error both when it predicts that a masquerader is a
legitimate user and vice versa. In addition, we also measured the total disruption
for the entire user session for each IDS. For each proactive IDS, we defined a
metric called Effectiveness that captures the need for high accuracy and low
disruption. The effectiveness of a proactive IDS is defined as follows –

Effectiveness =
1− Error

Disruption

The errors in masquerade detection, disruptions and the effectiveness for each
five algorithm are shown in Table 2.

An immediate observation is that all the proactive IDSs perform better than
the passive IDS. The best performing proactive systems are the random proactive
IDS and the mixed strategy proactive IDS. However, looking at the correspond-
ing disruptions shows that the most desirable IDS in terms of disruption is the
passive IDS; among the proactive intrusion detection systems, the average dis-
ruption per user is best for the constrained mixed strategy proactive IDS. In
this case, the total disruption is very close to the expected disruption (2500).
The other IDS with constrained disruption – the constrained random IDS – does

not perform as well as the constrained mixed strategy IDS. This is shown more
clearly in terms of the effectiveness, where the constrained mixed strategy IDS
is the most effective one.

Table 2. Evaluation of different mode selection policies. All the proactive policies have
a lower error than the passive IDS. Random selection of modes is the best in terms
of average error followed by the mixed strategy IDS. However, constraining the error
for the random mode selection policy has makes it perform badly. In comparison, the
constrained mixed strategy has a very low error rate when the disruption is constrained
to a similar value. Effectiveness, which captures the need for high accuracy and low
disruption, shows that the most effective IDS is the constrained mixed strategy IDS.

IDS Type Average Error Average Disruption Effectiveness
×104

Passive 0.427 0 –
Random Proactive 0.019 4157.3 2.360
Decision Theoretic 0.049 4215.3 2.256
Mixed Strategy 0.027 4168.6 2.334
Constrained Mixed Strategy 0.107 2471.2 3.614
Constrained Random 0.303 2500.0 2.788

In order to caliberate the constrained mixed strategy IDS, we looked at the
errors in detection as a function of the parameter Dlimit/N - the constraint
on the disruption per mode. A plot of the error and the actual disruption as
functions of the expected disruption is shown in Fig. 1. As the limit on the
disruption becomes lower, the error rate of the IDS gets closer to 50%. That is,
if no disruptions are allowed, the proactive IDS will be forced to remain in mode
M1 and the error rate will be similar to that of a passive IDS. As expected, if
there is no limit on the disruption, then the error rate is very small just like that
of the mixed strategy proactive IDS.

The IDS needs to find the right balance between inactivity and disruptive-
ness. The expected disruption could be thought of as a parameter for creating an
IDS which is a combination of the passive IDS and the mixed strategy proactive
IDS. Interestingly, the even if the maximum possible disruption is allowed, the
actual disruption (as seen in Fig. 1) is less than the allowed amount.

5.2 Behavioral Biometrics

Behavioral biometric systems identify or authenticate users based on how their
current usage of a computer compares to profiles learned from their past be-
havior. Recent work ([11–13]) has shown the success of systems derived from
keystroke and mouse movement dynamics, but has not investigated their suc-
cess in the face of masquerade attacks. We have applied the idea of proactive
intrusion detection to detect masquerade attacks in this domain. As a baseline
for comparison, we implemented the system described in [11] which distinguishes
users based on their mouse movement.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Expected disruption as fraction of maximum disruption

Ratio of disruption to maximum disruption

Error in detection of masquerades

Fig. 1. Error and actual disruption of a constrained mixed strategy proactive IDS as
a function of Dlimit/N – the constraint on the disruption per mode. The error in
detecting masquerades (dashed line) is very close to zero if we allow high disruption
and the IDS’s performance with very low disruption is similar to that of a passive IDS.
This allows us to think of DExp as a parameter for tuning the constrained proactive
IDS as a mixture of a passive and a proactive IDS based on the amount of disruption
we can tolerate. Interestingly, the actual disruption (solid line) tapers off for higher
values of Dlimit/N which shows that even if the IDS is allowed to be disruptive at
every step, it does not do so.

System and User Description. Mouse movement data was collected from 10
users interacting with 3 applications {same-gnome, iagno, gnomine} on a Linux
workstation. These applications were chosen in part because the mouse is their
primary source of input. Although we experimented with segmenting the data by
application, we found that all data sets performed similarly and we only report
results for an aggregate data set consisting of 1555 strokes per user.

We implemented two intrusion detection systems – the passive IDS and the
random proactive IDS. For both of them, experiment we used 90% of the data
for training and 10% for testing. During training, a user’s mouse movements,
{x-coord, y-coord, button-state}, and corresponding timestamp are logged and
segmented into strokes where a stroke is the data collected between two succes-
sive mouse clicks. From each stroke an example is created by extracting spatial
and temporal features from the original points and from a smoothed represen-
tation. Example features include statistics such as the average and standard
deviation of the horizontal, vertical and angular velocities, as well as values such
as the jitter (ratio between the original path length and the smoothed path
length). For a complete description of all features see [11].

Examples formed from the strokes for each user are passed to a learning
algorithm to build a classifier for distinguishing strokes generated by user u
from strokes generated by others. One classifier is trained per user. While not
strictly necessary, in our implementation as well as in the original, a supervised
learning algorithm is used such that the strokes from a particular user form the
set of negative examples for his classifier and the strokes collected from other
users form the set of positive examples, that is intrusions. We experimented with
a number of different supervised learning algorithms and found that Support
Vector Machines (SVM) [14, 15] using a standard Gaussian kernel and tuned
according to the procedure described in [16] performed best.

During evaluation, the output of the classifier when presented a single stroke,
is a value between 0 and 1 that can be viewed as the confidence of the classifier
that the example was not generated by the legitimate user. Given individual
classifications for a sequence of strokes the entire sequence is classified as genuine
or not by adding the individual scores and comparing their sum to a threshold
tuned to achieve equal error rate.

Masquerade Attacks. We assumed that the attacker’s goal is to move the
mouse from point a to point b and execute a click. To demonstrate a successful
masquerade attack against the baseline system, we made the following assump-
tions –

1. The attacker has access to some fraction of the data used to train the system.
2. The attacker knows the learning algorithm used by the IDS and how to

extract features from the data.
3. The attacker has the ability to manipulate mouse events in such a way that

it can trap and transform strokes before they reach the IDS.

Given these assumptions, we implemented an masquerader script that accepts
a classifier and target stroke as input, and outputs a set of mouse movements
with the same start and end points as the target but that passes undetected
by the specified classifier. Thus, the masquerader is able to transform arbitrary
strokes into successful attacks. It does so using a genetic algorithm where the
specified classifier is used as a fitness function for potential solutions.

Baseline Passive IDS. First, we replicated the experiments reported in [11]
by using other users’ data as attack sequences, without using the masquerader
script. The results summarized in Fig. 2(a) are consistent with those reported
previously [11]. The average single-stroke error rate for the baseline system was
29%, but the error rate drops quickly as longer sequences of strokes are con-
sidered reaching 0.7% on sequences of length 50 and 0% on sequences of length
100.

We then implemented masquerade attacks on the IDS by generating attack
sequences, using as input, classifiers trained on 25% of the available training data.
Target strokes were taken directly from the raw data of other users. The results

summarized in Fig. 2(b) indicate that while the system is able to detect unmodi-
fied attacks (strokes taken straight from other users) it fails to detect those same
strokes once they’ve been transformed by the attacker even though the attacker
has only 25% of the training data at its disposal. The trend is only strengthened
when attacks are mounted with increasing amounts of training data. As far as we
are aware this is first time a masquerade attack has been demonstrated against
a behavioral biometrics system, and the first time a masquerade attack has been
demonstrated where the action space (in this case mouse movements) is distinct
from the feature space (that is, there is no one-to-one mapping from examples
to strokes).

� � � � � � � � � � � �
� � � 	
 � � �
 �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
�

(a) Error rate of the baseline sys-
tem for increasing window lengths.
As the sequence length being clas-
sified increases the error rate of the
system approaches 0%.

� � � � � � � � � � � �
� � � 	
 � � �
 �

� � �

� � �

� � �

� � �

� � �

� � �

��
�

(b) Error rate of the baseline sys-
tem for increasing window lengths
under masquerade attack mounted
with 25% of training data. While
the system is able to detect untrans-
formed strokes of other users (solid
line) its error rate approaches 100%
when detecting strokes transformed
by the attacker (dashed line).

Fig. 2. Evaluation of the passive baseline IDS

Proactive Masquerade Detection. We extended the baseline system to in-
corporate different modes of interaction during training and testing. We intro-
duced the following six modes and learned a set of classifiers per user (one
classifier per mode) –

1. Normal system interaction (no change)
2. Dropping short sequences of mouse movements at random.
3. Introducing a delay between when mouse movements are made and when

they appear.
4. Introducing a random amount of jitter to each movement.
5. Slowing down the pointer by reducing the amount of screen movement cor-

responding to a given physical movement.

6. Speeding up the pointer by increasing the amount of screen movement cor-
responding to a given physical movement.

To evaluate the extended system, we collected roughly one hour of mouse
movement data from each of 6 users. During each session, modes were chosen at
random by the IDS such that for each user we collected roughly 200 strokes per
mode. During testing the random mode selection policy was used.

In our experiments, we explored two different methods for learning mode-
specific classifiers. The two methods differ in how the sets of positive and neg-
ative examples for learning each 〈user,mode〉 classifier are formed. In the first
method, “user-vs-user”, each 〈user,mode〉 classifier is trained such that negative
examples are drawn from strokes collected from the given user u under the spec-
ified mode m, and positive examples are drawn from strokes collected from other
users v 6= u under the same mode m. In the second method, “mode-vs-mode”,
each 〈user,mode〉 classifier is trained such that negative examples are once again
drawn from strokes collected from the given user u under the specified mode
m, but in contrast to the previous method, positive examples are drawn from
strokes collected from all other 〈user=v,mode=n〉 pairs where either v 6= u or
n 6= m or both.

The two approaches for learning mode-specific classifiers, “user-vs-user” and
“mode-vs-mode”, behave quite differently when applied to natural sequences
which have not been manipulated by an attacker. While “mode-vs-mode” clas-
sifiers do well in distinguishing between different 〈user,mode〉 pairs when the
modes are different, they are bad at distinguishing between users under the
same mode. On the other hand, while “user-vs-user” classifiers do well in dis-
tinguishing between different 〈user,mode〉 pairs when the modes are the same,
they are in general worse at distinguishing between a single user under different
modes.

The opposite biases of the two types of classifiers led us to consider combining
them to boost the performance of the system. Finding “mode-vs-mode” classi-
fiers biased towards false negatives we combined the classifiers sequentially: given
a stroke we first use the appropriate “mode-vs-mode” classifier to determine if
the stroke has been generated from the current mode. If the classifier raises
an alarm (a positive classification) the result is passed on for use in sequence
classification. If an alarm is not raised the stroke is passed to the appropriate
“user-vs-user” classifier to determine if the stroke has been generated by the
specified user, the result of this classification is then passed on for use in se-
quence classification. The results are summarized in Fig. 3(a). The overall effect
of using two classifiers in sequence is to force a given example to fit both the
current mode and the current user.

To evaluate our proactive detection scheme against masquerade attacks we
ran the following experiment. The attacker proceeds as before but is ignorant of
the mode since this is only known to the proactive IDS. Because of this it learns
a single “average” classifier per user and uses that as the input to the attacker
script. When the IDS evaluates each stroke it does so on the basis of the current
mode of interaction (which it sets). Thus while the attacker generates strokes

� � � � � � � � � � � �
� � � 	
 � � �
 �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
�

(a) Evaluation of the proactive de-
tection system. Performance is con-
sistent with the baseline- as the se-
quence length being classified in-
creases the error rate of the system
approaches 5%.

� � � � � � � � � � � �
� � � 	
 � � �
 �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
�

(b) Evaluation of the proactive de-
tection system under masquerade
attack mounted with 100% of train-
ing data. Unlike the baseline system,
the proactive IDS is able to correctly
identify strokes both before (solid
line) and after (dashed line) they are
transformed by the attacker (achiev-
ing 0% error in the second case).

Fig. 3. Evaluation of a proactive IDS

that pass the “average” classifier these same strokes fail to pass the mode-specific
classifiers used by the proactive detection scheme. Clearly, as summarized in Fig.
3(b), the attacker no longer succeeds with any sequence length even though the
complete training set is used.

6 Application Domains

The proactive IDS, in the form described in this paper, is not specific to any one
domain. In section 5, we show an application of proactive intrusion detection
to behavioral biometrics. In this section, we provide other examples showing
how the model can be used in different domains. First, we need to outline the
properties of a domain to be amenable to the proactive IDS framework.

In general, we require that the domain has two properties:

1. The domain provides a large degree of interactivity, as indicated by the
set of allowed user actions X and the dependence of the user action Xi on
the observations. If the set of user actions is very small, it is not possible
to observe enough variation between users, irrespective of the IDS actions.
Additionally, if the user’s actions don’t depend on the observation, then, the
assumption that the changing the system to create a different system output
will change the user’s behavior will not be valid any longer.

2. The domain must have a certain amount of inherent randomness or irregu-
larity. The change of system state must not disrupt the normal activity of
the system to a very large extent.

Some domains which satisfy these requirements are listed below.

User interaction with a command line shell This is one of the best stud-
ied domains in terms of intrusion detection – [3] and many others discuss this
domain. The actions are the inputs by the user to the command line and the ob-
servations are the corresponding shell response. A user profile is usually learned
by collecting usage statistics over a period of time.

The domain is quite interactive and slight changes in the behavior of the
system could be tolerated. Examples of IDS actions could include changing com-
mand line internals or disabling certain programs.

Transaction based Systems A transaction based system consists of a number
of interconnected databases that can be queried and augmented by the user. The
user actions are represented as SQL and the database responses correspond to
the observations. A proactive IDS has several possibilities to change the mode
of interaction. For example, it can deny access to certain tables or joins.

Online multi-player games and fantasy sports Multi-player online games
are fast growing to be the among the most popular online activities. Users assume
avatars online to interact with other users. Intrusion and collusion prevention
are growing concerns in these games as they become more popular. Collusion
is a scenario where more than one person get together to play the game as one
avatar. An intrusion (in the context of this paper) is a scenario where a player’s
account is compromised by another player who pretends to be the first person
in the online environment. These and other security concerns in online games
are described in [17].

Fantasy sports are online games where people compete against each other
by building teams based on real players or teams of a professional sport. Here,
each user controls a team based on real world statistics and trends. A masquer-
ade would be a scenario where one player’s team is manipulated by another
unauthorized user.

Both these domains have a high level of interactivity. Additionally, there is
sufficient randomness in the games for the IDS to be proactive without causing
too much disruption. In the online games, the IDS could change the environment
of the avatar or the characteristics of the avatar itself. In the fantasy sports, the
IDS could tweak the statistics or trends so that the players are forced to behave
differently. Note that these changes could be made on a per-user basis without
reflecting it to the global environment.

7 Conclusion

In this paper, we introduced the novel idea of proactive intrusion detection to
detect insider attacks. The key intuition is that while average behavior could
be masqueraded, exceptional situations force people to revert to their own be-
havior and this idea can be used to detect intrusions. Another idea developed
in this paper is that the intrusion detection system, instead of just observing

the user’s actions, participates in influencing them with its own set of actions
called modes. This broadens the capability of the intrusion detection system.
These ideas are presented without special emphasis on any specific domain or
specific classifiers because they can be used with different classifiers in diverse
domains. We experimentally showed that proactive intrusion detection does de-
tect masqueraders and we presented its real life utility by applying the ideas to
behavioral biometrics.

References

1. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, Oakland, CA, IEEE Computer Society Press (1994) 202–212

2. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix
processes. In: Proceedinges of the 1996 IEEE Symposium on Research in Security
and Privacy, IEEE Computer Society Press (1996) 120–128

3. Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y.: Com-
puter intrusion: Detecting masquerades. Statistical Science 16(1) (2001) 58–74

4. Maxion, R., Townsend, T.: Masquerade detection using truncated command lines.
In: Proceeedings of the International Conference on Dependable Systems and Net-
works, IEEE Computer Society Press (2002) 219–228

5. Yung, K.H.: Using feedback to improve masquerade detection. In: ACNS. (2003)
48–62

6. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised
learning. In: ICML ’05: Proceedings of the 22nd international conference on Ma-
chine learning, New York, NY, USA, ACM Press (2005) 625–632

7. Ju, W.H., Vardi, Y.: A hybrid high-order Markov chain model for computer intru-
sion detection. Journal of Computational and Graphical Statistics 10(2) (2001)

8. DuMouchel, W.: Computer intrusion detection based on bayes factors for compar-
ing command transition probabilities. Technical Report TR91, National Institute
of Statistical Sciences (NISS) (1999)

9. Vaserstein, L., Byrne, C.: Introduction to Linear Programming. Pearson Educa-
tion, Inc (2002)

10. Charnes, A.: Constrained games and linear programming. Proceedings of the
National Academy of Sciences of the United States of America 39(7) (July 1953)
639–641

11. Gamboa, H., Fred, A.: An identity authentication system based on human com-
puter interaction behaviour. In: Pattern Recognition in Information Systems.
(2003)

12. Pusara, M., Brodley, C.: User re-authentication via mouse movements. In: ACM
workshop on Visualization and Data Mining for Computer Security. (2004)

13. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Transactions on
Information and System Security (2005)

14. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning (1995)
15. Burges, C.: A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery (1998)
16. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification.

Technical report (2006)

17. Yee, G., Korba, L., Song, R., Chen, Y.C.: Towards designing secure online games.
In: AINA ’06: Proceedings of the 20th International Conference on Advanced In-
formation Networking and Applications - Volume 2 (AINA’06), Washington, DC,
USA, IEEE Computer Society (2006) 44–48

