
A Formal Rewriting Logic Semantic Definition

of Scheme ⋆

Patrick Meredith, Mark Hills, and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

201 N Goodwin Ave, Urbana, IL 61801
{pmeredit, mhills, grosu}@cs.uiuc.edu

Abstract. This paper presents a formal definition of Scheme (based on
the informal definition given in the R5RS report [12]). The definition
is purely equational, so it can be regarded as an algebraic denotational

specification with an initial model/algebra semantics of Scheme. More-
over, it is executable, in the sense that equations can be oriented from
left-to-right into rewrite rules and thus giving an operational semantics
of Scheme as well; this way, an interpreter for Scheme is obtained for
free by just executing the presented Scheme definition on term rewrite
engines. Maude is used in this paper, but other equational engines could
have been used as well. The definition in this paper is the most com-
plete formal definition of Scheme that we are aware of and can play two
important roles: as a formal definition of Scheme complementary to the
informal one in the R5RS report, and as a platform for experimenta-
tion with variants and extensions of Scheme, for example concurrency.
This work is part of the rewriting logic semantics project, whose broad
scope is to formally define languages and language features in rewriting
logic, and then use the generic support provided by rewriting logic to ob-
tain not only interpreters, but also formal analysis tools for the defined
languages.

keywords: Semantics, rewriting, Scheme.

1 Introduction

Scheme is a general purpose programming language with a unified handling of
data and code. It also has a powerful macro system, using pattern matching,
to express syntax transformations. The Revised5 Report on the Algorithmic
Language Scheme (R5RS [12]) gives a thorough, but informal description of the
language, as well as a partial denotational semantics. The denotational semantics
in [12] is missing definitions of important language features, such as definitions of
eval and dynamic-wind, it does not define the “top level” used throughout the
informal specification, and, most importantly, it is not executable. Executability
of a language definition gives one confidence in the appropriateness of the defini-
tion. Indeed, one can execute hundreds of programs exercising various language

⋆ Supported by NSF CCF-0448501 and NSF CNS-0509321.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

features or combinations of features, and thus find and fix errors in the defini-
tion. Many subtle errors were detected and fixed in our subsequent definition
due to its executablity.

More recent attempts have been made at giving formal, operational/executable
semantics to fragments of Scheme [15, 5]. Unfortunately, the partial definition in
[5] does not use a proper representation for vectors and lists, so it cannot be
extended to the complete Scheme, and neither [15] nor [5] gives definitions for
quasiquote or macros. Furthermore, neither uses a unified representation of
data and code, which is one of the crucial defining aspects of Scheme. These
approaches, their limitations and comparisons with our current definition are
further discussed in Section 4.

In this paper we introduce a novel formal executable definition of the Scheme
programming language, based on R5RS. Our definition uses a proper representa-
tion for lists and vectors, a unified representation of code and data, and defines
quasiquote and a large portion of define-syntax macros. This definition uses
the K definitional technique [23] within rewriting logic [17], so we refer to it as
K-Scheme. K is a language definitional framework consisting of the K-technique,
based on a first-order representation of computations as lists or stacks of “compu-
tational tasks”, and of the K-notation, a domain-specific notation within rewrit-
ing logic that eases understanding and defining programming languages; we do
not use the K notation in this paper. Rewriting logic is a unified logic for concur-
rency that extends equational logic with transitions; we use only the equational
fragment of rewriting logic in this paper.

We used the equational system Maude [3] to implement our equational defi-
nition of K-Scheme. Currently, K-Scheme consists of 772 equations, 192 of them
for define-syntax macros and 575 for the core of the language (and a few built-
in procedures). We define 60 features of Scheme, using 310 auxiliary operators
and 2152 lines of Maude code; 374 lines of code, however, define aspects of the
K framework also common to other language definitions, and simple helping op-
erations. Also, we note that many features of Scheme for which we give Maude
code definitions could be written as Scheme macros (e.g., let and cond), but we
did not follow that approach.

The complete Maude definition of K-Scheme can be found on K-Scheme’s
webpage at [16], together with a web interface allowing one to “execute” pro-
grams directly within K-Scheme’s definition, using Maude’s capability to execute
equational specifications. The main limitations of K-Scheme at this point are an
incomplete standard library, lack of internal define’s, and the support of only in-
tegers among the numeric types. These, as well as other implementation-specific
features of Scheme, can be added modularly (i.e., without having to modify the
definitions of the existing features) and will be added eventually. Nevertheless,
this is the most complete formal definition of Scheme of which we are aware.
In particular we believe we are first to give formal definitions to the opera-



3

tions of quasiquote, unquote, unquote-splicing, and a partial definition of
define-syntax.

On Rewriting Logic Semantics and K. This paper is part of the rewrit-
ing logic semantics (RLS) project (see [20, 18] and the references there). The
broad goal of the project is to develop a tool-supported computational logic
framework for modular programming language design, semantics, formal analy-
sis and implementation, based on rewriting logic [17]. It has been shown in [25]
that conventional definitional styles, such as big-step [11] and small-step SOS
[22], MSOS [21], reduction semantics with evaluation contexts [29], the chemi-
cal abstract machine [1], and continuation-based semantics, can all be faithfully
captured, in the sense of intended computational granularity, as rewrite logic
theories. Therefore, rewriting logic can be indeed used as an ecumenical frame-
work for language definition using any of the above-mentioned styles, inheriting
all their advantages and disadvantages.

K [23] is an attempt to optimize the use of rewriting logic for language defi-
nitions without obeying any of the styles above; it is, though, closest in spirit to
continuation-based semantics, in that it maintains the current computation as a
special structure that can be manipulated like any other data-type, in particular
altered. The K technique uses a subset of rewriting logic and can be easily sup-
ported by other frameworks, for example by functional programming systems;
however, in that case one would use K for the sole purpose of implementing
interpreters.

Since our definition of Scheme in this paper is purely equational, we indirectly
show that equational logic and algebraic specification are powerful enough to
formally define real languages, if used properly, such as in the K framework.
We invalidate once again, experimentally, the unfortunately common belief that
equational logic and standard initial algebra semantics are insufficient to deal
with complex languages. In fact, K-Scheme is an initial algebraic model for the
Scheme language, a non-trivial language. Moreover, the equations we use to
define K-Scheme can be executed as rewrite rules by equational engines with
support for rewriting, such as Maude, giving us an “interpreter” essentially for
free.

2 Rewriting Logic Semantics

This section provides a brief introduction to term rewriting, rewriting logic, and
the use of rewriting logic in defining the semantics of programming languages.
Term rewriting is a standard computational model supported by many systems;
rewriting logic [17, 14] organizes term rewriting modulo equations as a complete
logic and serves as a foundation for programming language semantics [18–20].
Continuation-based rewriting logic semantics, the form of rewriting logic seman-
tics adopted in this paper, provides explicit representations of control context
which can be used in the definitions of language features that manipulate this
context, such as continuations, exceptions, or jumps.



4

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules –
potentially containing variables – which are each of the form: l → r. One step of
rewriting is performed by first finding a rule that matches either the entire term
or a sub-term. This is done by finding a substitution, θ, from variables to terms
such that the left-hand side of the rule, l, matches part or all of the current
term when the variables in l are replaced according to the substitution. The
matched sub-term is then replaced by the result of applying the substitution to
the right-hand side of the rule, r. Thus, the part of the current term matching
θ(l) is replaced by θ(r). The rewriting process continues as long as it is possible
to find a sub-term, rule, and substitution such that θ(l) matches the sub-term.
When no matching sub-terms are found, the rewriting process terminates, with
the final term being the result of the computation. Rewriting, like other methods
of computation, may not terminate.

There exist a plethora of term rewriting engines, including ASF [27], Elan
[2], Maude [3], OBJ [8], Stratego [28], Tom [13], and others. Rewriting is also a
fundamental part of existing languages and theorem provers. Term rewriting is
inherently parallel, since non-overlapping parts of a term can be rewritten at the
same time, and thus fits well with current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic which pro-
vides support for concurrency. In equational logic, a number of sorts (types) and
equations are defined. The equations specify which terms are considered to be
equal. All equal terms can then be seen as members of the same equivalence
class of terms, a concept similar to that from the λ calculus where λ terms can
be grouped into equivalence classes based on relations such as α and β equiva-
lence. Rewriting logic provides rules in addition to equations, used to transition
between equivalence classes of terms. This allows for concurrency, where differ-
ent orders of evaluation could lead to non-equivalent results, such as in the case
of data races. The distinction between rules and equations is crucial for formal
analysis, since terms which are equal according to equational deduction can all
be collapsed into the same analysis state. Rewriting logic is connected to term
rewriting in that all the equations and rules of rewriting logic, of the form l = r

and l ⇒ r, respectively, can be transformed into term rewriting rules by orient-
ing them properly (necessary because equations can be used for deduction in
either direction), transforming both into l → r. This provides a means of taking
a definition in rewriting logic and a term and ”executing” it.

2.3 Maude: A Rewriting Logic System

In this paper we discuss a rewrite logic definition of Scheme using Maude [3], a
high-performance rewriting logic system. In Maude, equations are defined as eq



5

l = r, while rules are defined as rl l => r (the => symbolizing a one-way tran-
sition, versus an equality). Conditions may be added to both equations and rules,
with conditional equations represented as ceq l = r if c and conditional rules
represented as crl l => r if c. Terms, such as l, r, and c above, are formed
from operations, defined using the keyword op, and from variables, declared us-
ing the keyword var; by convention, operator names start with lowercase letters
or symbols, while variable names start with uppercase letters. Equations and
rules can be used directly to execute a program based on a rewriting logic defi-
nition. In this paper, since K-Scheme does not include concurrency features, we
only make use of equations, giving us a standard algebraic specification with
initial algebra semantics.

Maude provides several capabilities beyond standard equations and rules
which make it useful for defining languages and performing formal analysis of
programs. Maude allows commutative and associative operations with identity
elements, allowing straight-forward definitions of language features which make
heavy use of sets and lists, such as sets of program state information and lists
of computational tasks. Maude also provides built-in support (not explored in
this paper) for model checking and breadth-first state space exploration, using
the rules defined in the semantics to indicate competing tasks (memory accesses,
lock acquisition, etc) which can split the state space.

2.4 K: A Continuation-based Rewriting Logic Semantics

K [23] is a rewriting logic semantics framework consisting of a technique and
a specialized notation, to define programming languages as rewriting logic the-
ories. In this paper, we use the K technique to define Scheme in Maude; the
reader interested in the K notation, as well as in further details regarding the K
technique, is referred to [23]. By K, we understand the K definitional technique
within rewriting logic.

In K, the current program is represented as a potentially nested “soup”, (or
multi-set), of terms representing the current computation, memory, global def-
initions, etc. Information stored in the state can be nested, allowing logically
related information to be grouped and manipulated as a whole. The most im-
portant piece of information is the Continuation, wrapped by the operator k,
which is a first-order representation of the current computation, made up of a
list of computational tasks separated by ->. The continuation can be seen as a
stack, with the current computational task at the left and the remainder (con-
tinuation) of the computation to the right. This stack, along with other state
components, can be saved and restored later, allowing complex control struc-
tures to be defined. For example, if in a certain definitional context where the
remaining computation is represented by continuation K one wants to schedule
for processing/evaluating expression E, all one needs to do is replace the current
continuation in the state configuration by E -> K. After E evaluates to value V

the continuation will be V -> K.
Lists, used frequently in K, and Maude definitions in general, are defined in

Maude as associative operations with identity elements. An example is ValueList:



6

sort ValueList .

subsort Value < ValueList .

op nill : -> ValueList .

op _,_ : ValueList ValueList -> ValueList

[assoc id: nill] .

Here, ValueList can be seen as a new “type”, or sort; Value is declared to
be a subsort, meaning that a Value can be treated as a (trivial, one element)
ValueList. nill is declared as an operation with no arguments, also called a
constant, of result sort ValueList, and is made the identity of the list formation
operation, , , which allows us to assume that the list always has a tail (since
we can always add nill to the end of the list). List formation is associative,
allowing us to arbitrarily group elements in the list, but is not commutative,
since order is important.

Multisets are defined similarly in Maude, but are also commutative. An ex-
ample is Env, which represents environments:

sort Env .

op empty : -> Env .

op [_,_] : Name Location -> Env .

op __ : Env Env -> Env [assoc comm id: empty] .

op _[_] : Env Name -> Location .

op _[_<-_] : Env Name Location -> Env .

eq ([X,L] Env)[X] = L .

eq ([X,L] Env)[X <- L’] = ([X,L’] Env) .

eq Env[X <- L] = (Env [X,L]) .

Here, again, a new sort, Env, is defined. An environment is either empty or is
a pair of Name and Location. We can also form an environment by putting it
next to another environment, forming an environment set using the operation;
this operation is associative and commutative, with empty as the identity. The
final two operations allow environment lookup ( [ ]) and modification ( [ <- ]).
The definition of these two operations is shown in the three equations. The
first defines lookup: when looking up name X, if there is a pair with name X

and location L in the environment (Env is the rest – since environments are
sets and are defined as commutative, we can always assume that the pair we
are interested in is the first pair in the set), return location L. The next two
equations define environment modification. In the first, the name X is already
in the environment with location L, and we want to change this to location
L’, so we update the existing pair, leaving the rest unchanged. In the second,
X was not found in the existing environment, so we just add a new pair with
name X and location L. The first two equations make use of Maude’s complex
matching modulo equations, in this case modulo associativity and commutativity
(of operator ). Here, and in the rest of the paper, we rely on Maude’s order
of equation application, since the final equation would also encompass the case
in the second equation. One can easily translate our current definition into a
Maude definition that is not dependent on equation ordering, making use of
Maude features such as “otherwise” and conditional equations, but we do not



7

do this here since these translations tend to make the equations more complex.
Methods of automatically translating definitions using these features into pure
rewriting logic specifications that maintain the proper algebraic semantics are
available for both otherwise [4] and conditional equations [24].

Using lists and sets (combined with the appropriate state infrastructure,
defined in Section 3), we can then define more complex equations such as:

eq k((V,Vl) -> assignTo(X,Xl) -> K) mem(Mem)

env([X,L] Env)

= k(Vl -> assignTo(Xl) -> K) mem(Mem[L <- V])

env([X,L] Env) .

This equation assigns a list of values (computed based on a list of expressions)
to a list of names. V represents a value at the head of the list of values, with
Vl representing the tail. Similarly, X represents a name at the head of the list
of names, with Xl as the tail. assignTo is a continuation item, and is used to
represent the action of assigning computed values to a list of names. K matches
the rest of the computation – i.e., the next computational steps once the assign-
ment is complete. Mem represents the current memory, a mapping of locations
to values, while Env represents an environment, (as shown above) a mapping of
names to locations. L represents one of these locations.

The equation works as follows: given a name X, look up the location at which
X is stored. This leverages matching modulo associativity and commutativity (set
or multi-set matching) twice, first to bring in both the continuation and the en-
vironment parts of the “soup”, and second to identify the proper name/location
pair in the environment. With this location, the term representing the compu-
tation can be modified, representing a step of computation. This step will leave
the remaining parts of the assignment on the continuation (the remaining values
and names), will leave the environment unchanged, but will modify the memory,
replacing it with an altered memory where location L takes on value V. This will
use memory update equations like those for Env shown above.

3 Scheme in Rewriting Logic

In our K definition of Scheme, K-Scheme, we attempted to cover the entirety

of core Scheme as defined, informally, in R5RS [12]. By “core” we mean those
syntactic keywords and procedures not marked as library. We also support select
library syntax and procedures, and intend to offer a full standard library in the
future. Specifically, our K-Scheme currently includes formal definitions for the
following Scheme features: +, -, *, / (integer only), append, and, apply, begin,
boolean?, call-with-current-continuation, call-with-values, car, cdr,
cadr, cddr, char?, cond, cons, define, delay, do, define-syntax, dynamic-wind,
eq?, equal?, eqv?, eval, expt, force, if, lambda, let, let*, letrec, list,
display, make-string, make-vector, not, null?, number?, or, pair?, procedure?,
string-length, string-ref, string-set!, symbol?, syntax-rules, quote,



8

quasiquote, set!, set-car!, set-cdr!, unquote, unquote-splicing, vector?,
vector-length, vector-ref, and vector-set!.

In terms of core syntactic keywords, we lack proper support for internal
defines. All defines act as if they are at the top level. R5RS mentions, however,
that internal defines can be rewritten as letrec. We support quasiquote and
the define-syntax form of macros, which we consider part of the core language.
The macro support is not complete, but many standard examples can be handled
by our definition. We are primarily lacking only those core procedures which
operate on different types of numbers, since K-Scheme currently only supports
integers. The predicate number? returns #t for any integer. Conversions between
different data types are currently missing, but are easy to define. Characters,
while defined, are currently missing comparison operators. Input and output are
currently limited to the procedure display. The complete definition of K-Scheme
using the K technique can be found on K-Scheme’s webpage at [16].

3.1 Syntax

To make Scheme more palatable to Maude, the internal definition of the Scheme
syntax used by K-Scheme is slightly different from standard Scheme syntax. We
provide an external parser at [16] capable of converting normal Scheme code to
K-Scheme code, but currently output from programs uses K-Scheme syntax1.

Parenthesis are significant to Maude (to resolve precedence conflicts), so we
removed them in favor of square brackets. Note that many Scheme interpreters
already allow the use of square brackets to denote parentheses. Maude expects
strings to be delimited by double quotes, so strings in our syntax are wrapped in
curly braces, for example {"foo"}. Character constants use the same “#\” syntax
as Scheme, save that Maude characters are single character strings, so a character
in K-Scheme looks like #\("f"). The short-cut syntax for quote, quasiquote,
unquote, and unquote-splicing needed to be changed, because “’”, “‘”, and
“,” are all significant to Maude. We therefore use “$”, “!, “!!”, and “!@”
respectively. All variable names other than the 26 letters of the alphabet need to
be quoted. All examples in this paper are given in normal Scheme syntax, but in
some places K-Scheme syntax is used to show output. Also, some of the macro
equations use the K-Scheme syntax because they are syntax transformations.

3.2 Scheme State Representation

When defining a language using K, one of the important decisions is the struc-
ture of the state. By “state”, we here mean all the information about a program
execution snapshot, including the program itself; in this sense, it is like a “config-
uration” in SOS [22]. The rewrite rules require this state structure to determine
the context of equation application. The major concerns are that all needed

1 We must stress that programs can be written in normal Scheme syntax due to our
external parser at [16]



9

information be available, and that the state is organized in a logical, extensi-
ble manner. Our goal is for additions to the state representation to be possible
without breaking existing equations in the semantics, when possible, and vice
versa.

The state representation for K-Scheme consists of the components: k, the
continuation; mem, the store; nextLoc, the next free location in the store; env,
the local environment; globalenv, the global environment; synmap the syntax
map for macros (see Section 3.10); output, the output of the program; and
program, the stored syntactic representation for the rest of the program not
currently in the continuation.

As the heart of computation, k is the predominate feature in most of the
equations. An effort is maintained to match only the front of the continuation
in equations, both for ease of understanding, and efficiency reasons.

The store, mem, contains all program values bound to variables, or contained
in structures bound to variables. It is a mapping from location (given as the
constructor loc with a natural number argument, though any sort with a partial
ordering and an increment operator could be used in place of natural numbers)
to program values. The natural number value of nextLoc is incremented after
every allocation, ensuring that previous store values are not lost.

The environments, env and globalenv, map program variables (symbols) to
locations. A distinction between local environment and global environment is
necessary in the presence of closures. When a closure is formed, only the local
environment is saved in the closure, thus changes to the referent of variables
mapped in the global environment will be visible. This necessity is explained
further in Section 3.6. The separation of store from the variable binding of the
environment allows for an easier representation of the complex structures in
Scheme (e.g. lists, vectors).

Every time the built-in function display is called in a program, its argument
is converted to a string representation and appended to the value contained in
the output state component.

The last component, program, contains the syntactic representation of all ex-
pressions in the program not currently executing. K-Scheme allows for multiple
expressions, which are computed in order, as one would expect from a Scheme
program given to an interpreter or compiler in a non-interactive mode. The pres-
ence of call-with-current-continuation (call/cc) necessitates program.
call/cc requires the entire continuation be captured at the point of call, and
passed to its argument. If the entire program exists in the continuation, then
the entire program would be passed to the argument of call/cc; this is not
the desired behavior, and can result in unexpected non-termination cases (see
Section 3.7).

The following is the equation creating the initial state:

eq run(EL) = [k(initialize -> stop) mem(empty)

program(EL) globalenv(empty) env(empty)

synmap(empty) nextLoc(1) output(none)] .



10

When the run operator is applied to an ExpressionList EL, we place the
initialize operator followed by stop on the continuation. EL is placed in the
program attribute. initialize will bind the built-in functions and syntactic
keywords to their names; it also defines some built-in procedures via actual
scheme code. stop is a signal to the definition to place the next Expression

in the program attribute onto the continuation, or, if none exists, to end ex-
ecution. Recall that the “computational tasks” listed in the continuation with
the construct “-> ” are processed in order from left to right. We pass empty
environments and stores to env, globalenv, and mem, but these will be popu-
lated during initialization. synmap is also initialized to be empty. This equation
showcases well the attributes of K-Scheme’s state. Note that equations need only
reference attributes of the state significant to their operation.

3.3 Lists

The aspect of Scheme that we consider as the most important characteristic
of the language case study in this paper is the unified representation for both
program and data. All functioning programs are lists. To support the semantics
of lists, we use a storage model much like that given in the R5RS report [12].

Internally, all lists are represented as cons cells. Cons cells are pairs of loca-
tions, which can be thought of as pointers. To form an actual list, the second
location, the cdr of the cons cell, points to another cons cell. We chose this
representation both because it is the representation suggested by R5RS and be-
cause it easily supports desired Scheme functionality. An example is the sharing
of cdr’s. Two lists may share cdr’s, wherein the update to the cdr of one list is
reflected in the cdr of the list sharing that cdr:

(define x ’(1 2 3 4))

(define y ’(1 . 2))

(set-cdr! y (cdr x))

y ===> (1 2 3 4)

(set-car! (cdr x) 9)

x ===> (1 9 3 4)

y ===> (1 9 3 4)

Because we represent cons cells as pairs of locations, the cdr’s of the cons cells
representing x and y in the above example point to the same physical cons cell,
and any updates will be reflected in both. The Maude syntax for cons cell is:

sort ConsCell .

op {_._} : Location Location -> ConsCell .

This structure also allows the built-in Scheme operations on lists to be handled
fairly trivially. Finding the car of a list, x, simply amounts to looking up the
value pointed to by the first location in the cons cell representing x.

Recall that due to the program state attribute we only execute one expres-
sion in the continuation at a time. These expressions, however, can be arbi-
trarily complex. Each complete expression is first converted into this list repre-
sentation (before execution). Execution is on list structures consisting of cons



11

eq k(apply(fbuiltin(car), cell({L1 . 2})) -> K) mem(Mem)

= k((Mem[L1]) -> K) mem(Mem) .

eq k(apply(fbuiltin(cdr), cell({L1 . L2})) -> K) mem(Mem)

= k((Mem[L2]) -> K) mem(Mem) .

eq k(apply(fbuiltin(set-car!),cell({L1 . L2}),V) -> K)

= k(V -> assignToLoc(L1) -> symbol(unspecified) -> K) .

eq k(apply(fbuiltin(set-cdr!),cell({L1 . L2}),V) -> K)

= k(V -> assignToLoc(L2) -> symbol(unspecified) -> K) .

eq k(apply(fbuiltin(cons), V1, V2) -> K)

= k((V1, V2) -> makeConsCell -> K) .

eq k((V1,V2) -> makeConsCell -> K) nextLoc(N)

= k((V1,V2) -> assignToLoc(locs(N, 2))

-> cell({loc(N) . loc(N + 1)}) -> K) nextLoc(N + 2) .

eq list2Values(cell({L1 . L2}), (Mem [L2,V2]))

= if (V2 == symbol(nil)) then Mem[L1]

else ((Mem[L1]), list2Values(V2, (Mem [L2,V2]))) fi .

eq list2Values(symbol(nil), Mem) = nill .

eq list2Names(cell({L1 . L2}),(Mem [L1,symbol(X)][L2,V]))

= (X, list2Names(V, Mem [L1, symbol(X)][L2, V])) .

eq list2Names(symbol(X), Mem)

= if (X == nil) then () else (&rest, X) fi .

Fig. 1. List Operations

cells, excepting the creation of simple constants and variables. For example, in
(define x 4) (display x) x 4, the x and the 4 are not contained in cons
cells; they also have no effect on the output (though they are “executed” by
K-Scheme).

Figure 1 shows the Maude definitions for the list operations cons, car,
cdr, set-car!, set-cdr, and cons. The presence of apply(mbuiltin(X),V1,
V2...) or apply(fbuiltin(X),V1
,V2...) denotes the application of a built-in syntactic keyword or built-in func-
tion to the values V1, V2 ..., respectively.2 The constructor cell accepts a cons
cell as an argument and creates a value, i.e., {L1 . L2}, is a cons cell, while
cell({L1 . L2}) is a value. Mem[L] “returns” the value L points to in the
store Mem. Note that operator k wraps the continuation where all computation
happens, and that the K variable matches the rest of the continuation. The con-
structor symbol is to symbols what cell is to cons cells (it converts a symbol
into a value); the same is true for any other type constructor.

The equations defining the semantics of the two set functions place
symbol(unspecified) on the continuation because this is the return value of
the set functions. We decided to have a literal unspecified value in places where
R5RS declares the result to be unspecified. It is thus possible to have a list

2 The difference between syntactic keywords and built-in functions is that all of the
values passed to a function are pre-evaluated, while those to a syntactic keyword are
not. This is necessary for constructs such as if.



12

of unspecified values which, when printed, looks like (#<unspecified> ...).
What the set equations say, then, is: take the value V, assign it to the location
in the cons cell, and return the unspecified value as a result to the rest of the
computation (the continuation).

When cons is applied, we use the makeConsCell operator (several other
equations in the definition need to create cons cells, so the complexity is fac-
tored out). The equations for makeConsCell are given in Figure 1 as well. Note
that because we actually assign to locations, the nextLoc attribute described in
Section 3.2 is modified. The operator assignToLocs has been defined to allow
for the assignment of multiple values at a time.

The last equations shown in Figure 1 are for list2Values and list2Names.
These are for converting between the Scheme style lists, and flat ValueList’s and
NameList’s. ValueLists are necessary for passing to procedures (among other
things), while NameList’s are used for the parameter names for user defined
procedures (see Section 3.6). To understand why we need to convert a Scheme
list into a ValueList, consider the situation we find in a normal application of
a procedure in Scheme. The application is simply a list, where the car is the
procedure, and the cdr is the values passed as arguments to the procedure (e.g.,
(foo 3 4 5)). To actually apply the function it is necessary to pull those values
out of the Scheme list. This is the job of list2Values. The if then else fi

operator is defined in the Maude prelude (by two trivial equations); nill is the
identity element for ValueList’s.

The most interesting feature of list2Names is the way in which improper
lists are handled. Before the last name in an improper list, we insert the name
&rest (inspired by LISP). This signals to the procedure application equations
that a variable number of arguments is to be expected (see Section 3.6).

3.4 Vectors and Strings

When defining vectors and strings, we again rely on the Scheme storage model.
As R5RS mentions “A string... denotes as many locations as there are characters
in the string.... A new value may be stored into one of these locations using the
string-set! procedure, but the string continues to denote the same locations as
before.” Logically, strings in Scheme are nothing more than vectors of characters
with a special literal syntax. Thus, in K-Scheme, the equations for strings and
vectors look very much alike.

Both strings and vectors are defined using what we refer to as the location
array, defined as follows:

sort LocationArray .

op nill : -> LocationArray .

op [_;_] : Nat Location -> LocationArray .

op __ : LocationArray LocationArray -> LocationArray

[assoc comm id: nill] .

The operator nill is the identity operator for location arrays. The structure of
each entry in the location array is given by operator [ ; ]. What this means



13

is that each entry is a pair of natural number with location, which we use to
map natural numbers (vector or string indices) to locations in the store. The
last operator specifies the associative and commutative concatenation of entries,
so that a single array can be made up of multiple entries. It is commutative
because we want to keep the rules for looking up an item in the location array
simpler. It is associative because, logically, concatenation of location array cells
is irrespective of concatenation order.

Figure 2 shows operations on vectors. Strings, while defined, are omitted from
this paper due to their close resemblance to vectors. Both vectors and strings
consist of a location array and a natural number denoting the length of the string
or vector in question.

eq k(apply(fbuiltin(vector-set!),

vector([N ; L1] LA, I), int(N), V) -> K)

= k(V -> assignToLoc(L1) -> symbol(unspecified) -> K) .

eq k(apply(fbuiltin(vector-ref),

vector([N ; L] LA, I), int(N)) -> K) mem(Mem)

= k(Mem[L] -> K) mem(Mem) .

eq k(apply(fbuiltin(vector-length), vector(LA, I)) -> K)

= k(int(I) -> K) .

eq k(apply(fbuiltin(make-vector), int(I), V) -> K)

= k(makeVector(V, 0, I) -> K) .

eq k(apply(fbuiltin(make-vector), int(I)) -> K)

= k(makeVector(symbol(unspecified), 0, I) -> K) .

eq k(makeVector(V, 0, I) -> K) nextLoc(M)

= k(V -> assignToLoc(loc(M)) -> vector([0 ; loc(M)], I)

-> makeVector(V, 1, I) -> K) nextLoc(M + 1) .

eq k(vector(LA,I) -> makeVector(V,I,I) -> K) nextLoc(M)

= k(vector(LA,I) -> K) nextLoc(M) .

eq k(vector(LA,I) -> makeVector(V,N,I) -> K) nextLoc(M)

= k(V -> assignToLoc(loc(M))

-> vector(LA [N ; loc(M)], I)

-> makeVector(V, N + 1, I) -> K)

nextLoc(M + 1) .

Fig. 2. Vector Operations

The equation for vector-set! looks much like those for set-car! and
set-cdr! from Figure 1. The difference is that we must find the location mapped,
in the location array of the vector, to the index number specified in vector-set!.
The index is specified as the second parameter to vector-set!, matched by
int(N) in the equation. Likewise, vector-ref is highly reminiscent of car and
cdr, again, the only difference being the commutative lookup in the location ar-
ray. Because we store the length of the vector in the vector, and it is computed
when the vector is formed, vector-length does nothing more than “returning”



14

the length value stored in the vector. make-vector allows for the creation of
vectors of a given length with an optional initial value. R5RS states that if no
initial value is specified then the value of each vector element is unspecified. To
handle the unspecified case we again use the literal value symbol(unspecified).
The first two equations match these two cases: where make-vector is called with
an initial value, and where it is not. Each of these cases defers the work to the
operator makeVector. The first parameter to makeVector is the initializer value,
so for the unspecified case this value will be symbol(unspecified). The next
two parameters denote the current index being created and the length of the vec-
tor, respectively. The last three equations define the operation of the operator
makeVector. The first is the start case, when makeVector is first encountered:
it creates a new vector value (the vector constructor) and maps a location to
index 0, simultaneously, it assigns the initializer value to the newly mapped
location. The second equation is the termination case: if the index equals the
length, the whole vector has been allocated, so we drop the makeVector operator
and “return” the newly completed vector value. The last equation handles the
inductive step.

3.5 Quote, Quasi-Quote, Unquote, and Unquote-splicing

In a language with a unified representation of code and data it is important
to have some way to distinguish data. In Scheme this is handled via quote

and its cousin quasiquote. In K-Scheme, evaluation of any list is performed by
appending the operator evalk after that list in the continuation (See Section
3.9). The equation for quote is straightforward:

eq k(apply(mbuiltin(quote), V) -> K) = k(V -> K) .

As can be seen, application of the syntactic keyword quote results in moving its
argument onto the top of the continuation. Because it is not succeeded by the
operator evalk (unless the rest of the continuation matched by the variable K

deliberately contains evalk), the list is not evaluated. R5RS allows for an im-
plementation to use the same memory for all references to a quote’d expression,
thus we do not need to duplicate the value in this equation.

Application of Quasiquote, Unquote, and Unquote-splicing The equa-
tions for quasiquote, unquote and unquote-splicing can be seen in Figure 3.
Recall that in Scheme quasiquote has the shortcut syntax of “‘”, unquote of
“,”, and unquote-splicing of “,@”. The operator qq is placed on the continu-
ation whenever an application of the syntactic keyword quasiquote is specified
in a program, as can be seen in the first equation in Figure 3. It is also important
to bind unquote and unquote-splicing to their names before evaluation of the
qq operator, as we do not bind them at initialization time. The reason for this
is observed behavior in the interpreters we analyzed: they would call unquote
and unquote-splicing unbound variables if used outside of a quasiquote ex-
pression. Our whole definition is built around binding built-in functions and



15

macros to their names. This way, the names can be redefined by users, as al-
lowed in Scheme. The environment is restored after the reduction of qq in order
to remove the bindings for unquote and unquote-splicing. The operator kenv
restores the environment to its argument when it is matched as the top of the
continuation.

The presence of unquote applied to a value during evaluation (the second
equation in Figure 3), means that said value must be evaluated before being
placed into the list (or vector). Thus the value matched by the variable V is
placed on the continuation followed by evalk. Also, we unbind unquote and
unquote-splicing in order to produce the observed behavior of references to
unbound variables. What this means is that a program such as ‘(,3) will result
in (3) while ‘(,,3) will result in an unbound variable (unquote) error. Again
we use the kenv operator to restore the environment after the evaluation of V,
in this case rebinding unquote and unquote-splicing.

unquote-splicing is very similar to unquote. The difference is that after
the evalk we place the operator uqs. This operator will be matched by later
equations in order to know that the value preceding it should be spliced into the
list (or vector).

op qq : Value Nat -> ContinuationItem .

op uqs : -> ContinuationItem .

eq k(apply(mbuiltin(quasiquote), V) -> K) env(Env)

= k((mbuiltin(unquote), mbuiltin(unquote-splicing))

-> bindTo(unquote, unquote-splicing)

-> qq(V, 0) -> kenv(Env) -> K) env(Env) .

eq k(apply(mbuiltin(unquote), V) -> K)

env(Env [unquote, L1] [unquote-splicing, L2])

= k(V -> evalk

-> kenv(Env [unquote, L1] [unquote-splicing, L2])

-> K) env(Env) .

eq k(apply(mbuiltin(unquote-splicing), V) -> K)

env(Env [unquote, L1] [unquote-splicing, L2])

= k(V -> evalk

-> kenv(Env [unquote, L1] [unquote-splicing, L2])

-> uqs -> K) env(Env) .

Fig. 3. Quasiqoute, Unquote, and Unquote-splicing

Definition of Operator qq The equations in Figure 4 define the operator qq.
As mentioned in R5RS, “Quasiquote forms may be nested. Substitutions are
made only for unquote components appearing at the same nesting level as the
outermost back-quote.” In order to achieve this, qq keeps track of the current
nesting depth as a natural number (the Nat in the o qq operator declaration).



16

unquote is only evaluated when the nesting level of operator qq is 0. The equa-
tions for unquote-splicing are essentially identical to those for unquote, so
we do not list them. The equations are broadly separated between application
of qq to cons cells, and all other values. In the complete K-Scheme, there are
also special equations for vectors. The equations for vectors are very similar to
the equations for make-vector in Section 3.4, the only difference being that the
equations essentially copy an already existing vector, and that qq is applied to
each of the values in the vector being copied. The only particular caveat is that
splicing a list into a vector requires inserting each list element into the vector. We
have an equation for all non-list and non-vector values, so that the addition of a
new value type to the definition will not require a modification to the equations
for qq.

The first equation in Figure 4 corresponds to a quasiquote expression within
a quasiquote expression (a nested quasiquote). Because this occurs while copy-
ing a list, rather than evaluating a list, we must check to see if the car of the
list is the symbol quasiquote, rather than the equations seen previously where
we matched the apply operator with a specific built-in function or syntactic
keyword. This same strategy of looking at the car of the cons cell is used in all
of the qq equations where the argument to qq is a cons cell. symbol quasiquote
we create a new cons cell consisting of the symbol quasiquote and qq applied
to the cdr of the cell (as the cdr very well could be an unquote form, or another
quasiquote). The makePair operator is a wrapper for makeConsCell, which
we saw earlier. The difference is it evaluates and collects its arguments before
reducing to makeConsCell. We also increment the nesting depth, ensuring that
only the proper number of unquote expressions will be evaluated.

The equations for qq applied to a cons cell in which the car of the cell is
unquote are next. If the current nesting depth is 0, the cell is simply evaluated.
This will result in eventually matching the equations we saw earlier in Figure
3. If, however, the nesting depth is not 0, the nesting depth is decremented,
and we repeat the process of quasiquote repeated within a quasiquote expres-
sion. That is, we make a cons cell of the symbol in question (either unquote or
unquote-splicing) and qq applied to the cdr of the cons cell.

The last case for cons cells happens when the car of the cons cell is none of
the three symbols we care about (unquote, unquote-splicing, quasiquote).
In this case qq is applied to both the car and cdr or the list, and the resulting
values are made into a new cons cell via the makePair operator.

Finally, is the base case where the value in question is not a cons cell (or
vector). In this case the value is simply copied into the list (or vector), by placing
the value, as-is, onto the top of the continuation. This is correct because any
application of a function can only occur within a cons cell.

Unquote-splicing Specifics Figure 5 shows equations for unquote-splicing.
In Scheme, unquote-splicing works much like unquote. It evaluates its argu-
ment. However, with unquote-splicing, the argument must evaluate to a list.
This list is then spliced into its enclosing structure. In simple terms, parenthe-



17

eq k(qq(cell({L1 . L2}), N) -> K)

mem(Mem [L1, symbol(quasiquote)])

= k(symbol(quasiquote) -> qq(Mem [L2], N + 1) -> makePair

-> K) mem(Mem [L1, symbol(quasiquote)]) .

eq k(qq(cell({L1 . L2}), 0) -> K)

mem(Mem [L1, symbol(unquote)])

= k(cell({L1 . L2}) -> evalk -> K)

mem(Mem [L1, symbol(unquote)]) .

eq k(qq(cell({L1 . L2}), N) -> K)

mem(Mem [L1, symbol(unquote)])

= k(symbol(unquote) -> qq(Mem[L2], N + (-1)) -> makePair

-> K) mem(Mem [L1,

symbol(unquote)]) .

eq k(qq(cell({L1 . L2}), N) -> K) mem(Mem)

= k(qq(Mem[L1], N) -> qq(Mem[L2], N) -> makePair -> K)

mem(Mem) .

eq k(qq(V,N) -> K) = k(V -> K) .

Fig. 4. Operator qq

ses are removed. For example ‘( 1 2 ,@(list 3 4) 5) results in the list (1 2

3 4 5). As noted before, a given value has resulted from the evaluation of an
unquote-splicing if it is succeeded by the operator uqs.

op uqs : Value -> ContinuationItem .

eq k(cell({L1 . L2}) -> uqs -> qq(V, N) -> K)

= k(qq(V, N) -> uqs(cell({L1 . L2})) -> K) .

eq k(uqs(V1) -> makePair(V2) -> K)

= k(append(V1, V2) -> V1 -> K) .

eq k(append(cell({L1 . L2}), V) -> K)

mem(Mem [L2, symbol(nil)])

= k(V -> assignToLoc(L2) -> K)

mem(Mem [L2, symbol(nil)]) .

eq k(append(cell({L1 . L2}), V) -> K)

mem(Mem [L2, cell(C)])

= k(append(cell(C), V) -> K) mem(Mem [L2, cell(C)]) .

Fig. 5. Equations Specific to Unquote-splicing

The first equation in Figure 5 simply reorders the continuation so that evalu-
ation can happen. At this point we have a cons cell at the top of the continuation
resulting from the application of unquote-splicing. We know that it must be
a cons cell, because the result of an unquote-splicing form must be a list. The
reordering takes the qq operator after the uqs and places it at the top of the
continuation. The cell in front of uqs is placed as the argument of a second uqs



18

operator. Both of these operators were defined in Figure 3. The second equation
matches the latter uqs operator, which takes a value as an argument (and this
value must be a cons cell). The presence of uqs(V1) followed by makePair(V2)

(another makePair operator defined in our infrastructure), denotes that a cons
cell should be made from uqs(V1) and V2. uqs signals that V2 should be ap-

pended to V1, rather than the normal action of forming a cons cell. In this case,
appending means replacing the symbol(nil) at the end of V1 with V2. V1 must

end with a symbol(nil) as the argument to unquote-splicing must result in
a proper list. The right hand side of the equation, then, says to modify V1 in
place by appending, then “return” V1 to the continuation. The last two equa-
tions simply handle the case of recursively traversing V1 until symbol(nil) is
found, and then replacing the symbol by V2 via assigning to the location in the
cons cell that originally pointed to symbol(nil). The first of these equations is
the base case (where the cdr is symbol(nil)), the second is the inductive step
(where the cdr is anything else).

3.6 Lambda

op fclosure : NameList ValueList Env -> Value .

eq k(apply(mbuiltin(lambda), V, VL) -> K) mem(Mem)

env(Env)

= k(fclosure(list2Names(V, Mem), VL, Env) -> K) mem(Mem)

env(Env) .

eq k(apply(fclosure(Xl, &rest, X, VB, Env’), VL) -> K)

env(Env)

= k(values2List(restN(VL, length(Xl))) -> bindTo X

-> firstN(VL, length(Xl)) -> bindTo Xl

-> apply(mbuiltin(begin),VB) -> kenv(Env) -> K)

env(Env’) .

eq k(apply(fclosure(Xl, VB, Env’), VL) -> K) env(Env)

= k(VL -> bindTo Xl -> apply(mbuiltin(begin),VB)

-> kenv(Env) -> K)

env(Env’) .

eq k(apply(mbuiltin(begin), V, VL) -> K)

= k(V -> continue -> apply(mbuiltin(begin), VL) -> K) .

eq k(V -> continue -> apply(mbuiltin(begin), nill) -> K)

= k(V -> evalk -> K) .

eq k(V -> continue -> K) = k(V -> evalk -> discard -> K) .

Fig. 6. Lambda and Begin

The heart of the support for the lambda syntactic keyword is the fclosure

value type. The operator declaration for fclosure can be seen in Figure 6, as well
as the equations for fclosure application and creation. The fclosure operator



19

accepts a NameList, a ValueList, and an Env (environment) as arguments. The
Namelist is a list specifying the name of parameters; recall that we showed how
a Scheme-style list is converted to a NameList in Section 3.3. The ValueList is
the body of the procedure. Each Value in the ValueList is an expression, so it
will either be a cons cell or a simple type such as a variable or an integer. We
allow a ValueList because the bodies of procedures are allowed to consist of
multiple expressions that are to be executed in order, much as expressions given
to a begin syntactic keyword expression.

The first equation in Figure 6 is for the creation of fclosure Value’s via the
application of the syntactic keyword lambda. The equation says when lambda is
applied to a Value V followed by a ValueList VL, convert V into a NameList,
put VL into the fclosure as the body, and store Env as the environment of the
closure. The reason this works is the syntax of lambda. In a program lambda

always has the form (lambda (names ...) body). Because of this we can be
sure that the first Value passed to lambda must be a Scheme list consisting
of the parameter names. Note that we store only the local environment to the
closure, as we stated in Section 3.2. For an example of why we do this consider:

(define x 3)

(define y 4)

(define f #f)

(let ((y 3))

(set! f (lambda () (+ x y)))

)

(f) ===> 6

(set! y 5)

(f) ===> 6

(set! x 5)

(f) ===> 8

The idea illustrated here is that the change to x is visible to the closure, while
changes to y are invisible, because the x in f is global, while the y is local. When
a variable reference is evaluated the local environment is checked first, the global
is only checked if there is no reference to the variable in the local environment.

The next two equations show the application of fclosure’s. The first thing
to notice is that the environment is set to be that of the one stored in the closure,
giving us the desired behavior from the above example. In both cases the values
passed to the fclosure are bound to the names in the fclosure’s name list.

In the second equation we see our special symbol &rest. Recall that this
symbol is inserted by names2List when the specified list is improper, because
an improper parameter list is Scheme’s way of specifying a variable number
of parameters to a procedure. When &rest appears in the NameList we first
convert all the values passed after the &rest symbol into a Scheme list and then
bind it to the name appearing after the symbol &rest. The operator restN is
a simple operation on ValueList’s that takes the last Value’s of a ValueList

from a passed number and returns them as a ValueList. In this case we pass
the length of the NameList XL. We then use the firstN operator to pull the



20

first Value’s out of the list, and bind these to the beginning of the NameList. In
the third equation the situation is much less complicated, the passed Value’s are
simply bound to the NameList. In both equations we apply the syntactic keyword
begin to the ValueList that is the body of the fclosure. Using this strategy,
all sequences of expressions not at the top level (i.e., within an expression), are
handled by the begin operator. Because of this, in K-Scheme, any procedure or
keyword which requires sequential evaluation (e.g., do, let, let*, letrec, etc)
apply the keyword begin in their equation. The last requirement is to restore
the environment after executing the body; this is, again, handled by kenv.

begin itself is relatively simple. All it does is execute each expression in order
and discard the result, except for the last expression where the result is placed
on the continuation in order to “return” it. begin is defined by the final three
equations shown in Figure 6. The first of them is the termination case wherein
the ValueList being evaluated is exhausted. The last of them, which will only be
applied if the termination case cannot be, converts the operator continue into
an evalk followed by discard. Operator continue takes no arguments and is
just a convenient marker. discard simply throws away whatever Value precedes
it. Recall that evalk is an operator telling the definition to evaluate the Value

before it, rather than Keeping it as is (see Section 3.9).

3.7 Call-with-current-continuation

As one might guess, a semantics based on explicit continuations makes a proce-
dure like call-with-current-continuation (call/cc) fairly straightforward.
The equations for call/cc can be seen in Figure 7. We defined another Value

type called continuation. It is basically the same as an fclosure save without
a parameter list. The current (entire) continuation is saved in the continuation
with the current environment in the first equation. Because only one expression
at a time from the top level is in the k operator, this works. The following exam-
ple showcases why only the current expression should be grabbed by call/cc:

(define k #f)

(+ 4 (call/cc (lambda (c) (set! k c) 4))) ===> 8

(k 3) ===> 7

In this example, if the continuation of the whole program is grabbed, rather than
just the continuation of (call/cc (lambda (c) (set! k c))), this program
will not terminate. The reason for this is that (k 3) will be included in the
continuation it is calling! This non-termination can be recreated in K-Scheme,
or any correct Scheme implementation, by passing the call/cc expression and
(k 3) to begin.

Application of a continuation, as seen in the second equation, simply replaces
the current continuation (K2) with the one contained in the continuation op-
erator. The current environment is also replaced by that of the continuation.
Note that, unlike fclosure application, the existing environment is not saved by
continuation application. V, the value the continuation is applied to, is passed
to the remainder of the computation.



21

K-Scheme also contains definitions for call-with-values and dynamic-wind.
While [15] claims that special consideration for dynamic-wind must be made,
we use the version presented in [6]. Instead of actually modifying the objects
created by call/cc, this implementation is written completely in Scheme. It
does redefine call/cc, but we believe, because it can be written with normal
call/cc, that actually modifying the structure of continuation objects is un-
necessary. The version presented in [6] uses internal defines, which we do not
support. To avoid internal defines, we use the letrec equivalency presented in
R5RS.

eq k(apply(fbuiltin(call/cc), V) -> K) env(Env)

= k(apply(V, continuation(K, Env)) -> K) env(Env) .

eq k(apply(continuation(K1, Env1), V) -> K2) env(Env2)

= k(V -> K1) env(Env1) .

Fig. 7. Call-with-current-continuation

3.8 Equivalency Predicates

The eqv? function in Scheme is a fairly interesting case. According to R5RS
“The eqv? procedure defines a useful equivalence relation on objects. Briefly, it
returns #t if obj1 and obj2 should normally be regarded as the same object.”
For the most part this is fairly straightforward: two numbers are eqv? if they
are equal. The same is true for all simple data types. It is more interesting with
complex objects. Cons cells, vectors, and strings are equal if they represent the
same locations in the store. Thus:

(eqv? "foo" "foo") ===> #f

(define x "foo")

(eqv? x x) ===> #t

Interestingly enough, because of the way we defined our Value types, this comes
out to simple equality of terms of sort Value. The == operator in Maude (and
in all other rewrite engines) performs a (recursive) comparison of its two term
(normal form) arguments, modulo corresponding attributes such as assoc. and
comm.. If all the sub-objects are equivalent the objects are equivalent. This is
similar to equal? in Scheme (explained below). The equation for eqv? is in
Figure 8. All it does is return symbol(#t) if the two Value’s are equal. This
works, because for two cons cells to be equal as Maude terms, they must define
the same locations.3 This holds for strings and vectors as well. It also holds
for fclosures with some interesting results. R5RS states that two procedures,
when compared via eqv? must return #f if they represent two procedures with

3 Recall that a cons cell has the form {L1 . L2}.



22

eq k(apply(fbuiltin(eqv?), V1, V2) -> K)

= k(symbol(if V1 == V2 then #t else #f fi) -> K) .

eq k(apply(fbuiltin(eq?), V1, V2) -> K)

= k(symbol(if V1 == V2 then #t else #f fi) -> K) .

eq k(apply(fbuiltin(equal?), V1, V2) -> K) mem(Mem)

= k(if equal(V1, V2, Mem) then symbol(#t)

else symbol(#f) fi -> K) mem(Mem) .

eq equal(cell({L1 . L2}), cell({L3 . L4}), Mem)

= equal(Mem[L1], Mem[L3], Mem)

and equal(Mem[L2], Mem[L4], Mem) .

eq equal(vector([ N1 ; L1 ] LA1, N2),

vector([ N1 ; L2 ] LA2, N2), Mem)

= equal(Mem[L1], Mem[L2], Mem)

and equal(vector(LA1, N2), vector(LA2, N2), Mem) .

eq equal(vector(nill, N1), vector(nill, N1), Mem)

= true .

eq equal(V1, V2, Mem) = V1 == V2 .

Fig. 8. Equivalency Predicates

different semantics. It says the results of comparing two equivalent procedures
is undefined, however. In K-Scheme procedures with different semantics will not
be equivalent in terms of Maude equivalency because they will contain different
cons cells as the body. There are a few cases where our eqv? will return #t for
procedures. Either they can be the same physical procedure (i.e., two procedures
bound to a variable x followed by (eqv? x x)), or they can be two procedures
with the exact same parameters (and parameter names) with the same simple
type as the body, e.g.:

(eqv? (lambda (x) x) (lambda (x) x)) ===> #t

(eqv? (lambda (x y z) 3) (lambda (x y z)) 3) ===> #t

(eqv? (lambda (x) x) (lambda (y) y)) ===> #f

(eqv? (lambda (x) ’(x)) (lambda (x) ’(x))) ===> #f

The reason the last example returns #f is because ’(x) is not a simple type,
and in each lambda expression a different list consisting of only the symbol x is
allocated.

Aside from behavior on empty strings and empty vectors, eq? is only allowed
to return #t when eqv? returns #t. The idea, as is mentioned in R5RS, is that
eq can often be more easily implemented (and thus faster) than eqv?, such as
with a pointer comparison. Our decision was to use the same implementation
for eq? and eqv?, which conforms to the information specification.

equal? is a library procedure that actually recursively compares the elements
to complex structures, calling eqv? on simpler sub-elements (such as numbers).
As can be seen in the third equation in Figure 8, when equal? is applied to
two Value’s we pass these Value’s to the operator equal. If equal returns the
Maude boolean true, we return the symbol #t, if it returns false, we return #f.



23

The equal operator recursively compares complex structures. In the case of cons
cells, two cons cells are equivalent if the car’s and cdr’s are equivalent (equation
four). Vectors are equivalent if all elements they point to are pairwise equivalent
(equation five). It is identical for strings, as strings are little more than specialized
vectors. The last equation catches all simple Value’s. Two simple Value’s are
equivalent if they are equal according to Maude. Since this is what we did for
eqv? this is the same as applying eqv? for the simple Value’s; exactly what
R5RS states.

3.9 Eval

We have explained the role of the evalk continuation item operator in previous
sections. This is the motor behind the formal definition for the eval procedure.
The equation for eval can be seen in Figure 9 (the first equation), as well as the
equations for evaluating the different Value types of K-Scheme.

eq k(apply(fbuiltin(eval), V, environment(Env1)) -> K)

env(Env2)

= k(V -> evalk -> kenv(Env2) -> K) env(Env1) .

eq k(symbol(X) -> evalk -> K) = k(X -> K) .

eq k(X -> K) mem(Mem) env([X,L] Env)

= k(Mem[L] -> K) mem(Mem) env([X,L] Env) .

eq k(X -> K) mem(Mem) globalenv([X,L] Genv)

= k(Mem[L] -> K) mem(Mem) globalenv([X,L] Genv) .

eq k(cell(C) -> evalk -> K) mem(Mem)

= k(preApply(list2Values(cell(C),Mem)) -> K) mem(Mem) .

eq k(fclosure(Xl, VL, Env) -> evalk -> K)

= k(fclosure(Xl, VL, Env) -> K) .

eq k(fbuiltin(X) -> evalk -> K) = k(fbuiltin(X) -> K) .

eq k(mbuiltin(X) -> evalk -> K) = k(mbuiltin(X) -> K) .

eq k(int(I) -> evalk -> K) = k(int(I) -> K) .

Fig. 9. Eval

We can see in the first equation that the application of the procedure eval

to a Value V places V on the top of the continuation followed by evalk. eval
also expects an environment Value to be passed. Much like an fclosure, the
environment is swapped for the passed environment and restored via kenv after
execution.

The second equation shows the evaluation of symbols. The symbol operator
is stripped off. Other equations (the third and fourth) lookup symbols in the
store if the symbol is on the top of the continuation. Note, as was mentioned
earlier, the local environment is checked first; the global is only consulted if the
local has no binding for the given variable.



24

eq k(preApply(symbol(X),VL) -> K)

= k(X -> preApply(VL) -> K) .

eq k(preApply(V,VL) -> K)

= k(V -> evalk -> preApply(VL) -> K)

eq k(fbuiltin(X) -> preApply(VL) -> K)

= k(preEval(fbuiltin(X); VL) -> K) .

eq k(fclosure(Xl,VL,Env) -> preApply(VL’) -> K)

= k(preEval(fclosure(Xl,VL,Env); VL’) -> K) .

eq k(continuation(K,Env) -> preApply(VL’) -> K’)

= k(preEval(continuation(K,Env); VL’) -> K’) .

eq k(mbuiltin(X) -> preApply(VL) -> K)

= k(apply(mbuiltin(X), VL) -> K) .

Fig. 10. Operator preApply

The fifth equation handles evaluation of a cons cell. As Scheme requires, the
evaluation of a cons cell is always considered to be a procedure or syntactic key-
word application (note that user defined macros are expanded before evaluation).
The operator preApply (Figure 10) decides how to handle the ValueList passed
to it. If the first Value in the ValueList is a symbol the symbol is looked up. If
it is not a symbol it must be a literal applicable value. Applicable values consist
of fclosure, fbuiltin, mbuiltin, continuation, and literal lambda expres-
sions. The second equation in Figure 10 is this case where the first Value in the
preApply is not a symbol. It must be evaluated in case it is a literal lambda ex-
pression. The last four equations in Figure 9 show the evaluation of fclosure’s,
fbuiltin’s, mbuiltin’s and int’s. All simple Value types have similar equa-
tions, where they are simply placed onto the continuation as-is. Logically this
makes sense, as, in Scheme, ’4 is the same thing as 4. In the latter, 4 is evalu-
ated, but 4 evaluates to 4! The implication of this is that whether the first Value
in the preApply is a literal lambda or an already evaluated fclosure we will
eventually arrive at the fourth equation in Figure 10. In the case of preApply of
procedures and continuations, the preEval operator is used. All this operator
does is evaluate the rest of the arguments. Once all the arguments are evalu-
ated the apply operator, seen before, is placed on the continuation, with the
given fbuiltin, fclosure, or continuation. Syntactic keywords directly re-
duce to apply without evaluating the arguments (no preEval) as shown in the
last equation in Figure 10.

3.10 Macros

K-Scheme supports the use of top-level define-syntax to define new macros.
This support is under development, so the types of macros that can be defined are
still limited: most macros with list-based patterns can be defined, but patterns
with improper lists or vectors are still not supported. Macros are also assumed to
not define new names using internal defines or reference free-names not defined



25

at top-level. Even with these limitations, K-Scheme can support a number of
standard macros, such as those used to define constructs like or and let. This
provides two definitions of these constructs, one via semantic rules and one based
on translation into more basic constructs. Macro expansion happens up front,
taking a K-Scheme expression with macros and yielding an expression without.
This expansion process is orthogonal to the K-Scheme semantics presented so
far.

Processing Macro Definitions When a macro definition is encountered, K-
Scheme processes each provided pattern, transforming it into a form which can
more easily be used during matching. These patterns, along with the associated
templates, are then stored in a syntax definition map keyed by name. This allows
definitions to be quickly found during macro expansion.

op trans : List List NameList -> List .

ceq trans ( [ X I IL ] , [ IL’ ] , NL )

= trans ( [ I IL ] , [ IL’ patVar(X,0) ] , NL )

if nameIn(X,NL) == false /\ isEllipses(I) == false .

The initial pattern is transformed using the trans operator, the definition of
which is shown above. trans takes the original list, a working list (the post-
transformation list), and a list of names. The names are the literals defined in
syntax-rules, and are used to distinguish literals from pattern variables. The
sample equation shows a potential match. Here, a name, X, is at the head of the
list being processed. If it is not in the list of literal names, checked with nameIn,
and if the following list item is not an ellipses, checked with isEllipses, then
X is a non-repeating pattern variable, and is marked as such in the working list.
The item that represents non-repeating pattern variables, patVar, includes the
name of the variable and a counter, which represents the ellipses “depth” of the
variable; this allows us to detect when the ellipses count between the pattern
and the template do not match.

Macro Expansion To support macro expansion, all expressions processed by
K-Scheme are first checked to determine if they make use of any defined macros.
If a macro usage is found, the macro is expanded, replacing it with the generated
syntax. The expression is then checked again, with this process repeated until no
further expansions occur. This model naturally supports both recursive patterns
and the use of multiple distinct macros in an expression. The operators that
control this process are shown below:

op applySyntax : ExpList SynMap -> ExpList .

op applyToExp : Exp SynMap -> Exp .

op applyOneStep : Exp SynMap -> Exp .

The first operator, applySyntax, is invoked each time a new list of expressions is
processed by K-Scheme. It makes use of applyToExp to apply the syntax in the
syntax map (SynMap) to each expression. applyToExp applies one step of syntax
transformation using applyOneStep, repeating this process until the expression
no longer changes.



26

ceq applyToExp(E,SM) = applyToExp(E’,SM)

if E’ := applyOneStep(E,SM) /\ E =/= E’ .

eq applyToExp(E,SM) = E .

The first equation shows the case where the expression does change, meaning
that E contained a use of a macro that was then expanded in E’. In this case,
we continue looking for macros to expand in E’. The second equation represents
where no changes were found (i.e., where the first equation did not apply). In
this case, the expression E, now fully expanded, is returned.

Matching and Substitution Expansion works using a two step process. In
the first step, matching, the expander searches for a pattern that matches the
supplied syntax. The list of patterns associated with the macro keyword is tried
in order. If a match is found, a mapping from pattern variables to expression
syntax is returned. Alternatively, match failure causes the next pattern to be
tried in turn. The match operation, with a sample equation, is shown below:

op match : List List MatchPairs -> MatchPairsXBool .

eq match( [ E IL ] , [ patVar(X,N) IL’ ] , MPs )

= match( [ IL ], [ IL’ ], MPs { patVar(X,N), E } ) .

Here, match takes two lists. The first contains the current syntax being processed,
while the second contains the pattern. The final parameter is a set of pairs,
where each pair is a map of pattern variables to the syntax they are matched
to. The final result is this set along with a flag indicating whether matching was
successful. The equation shows a sample match. The next term in the pattern to
match is a pattern variable, X; if the next term in the syntax list is an expression,
E, the match of X to E is recorded in the set of matches.

The second expansion step is substitution. Substitution uses the mapping
found during matching, along with the template associated with the matched
pattern, to expand the macro to the proper syntax. Variables in the pattern are
replaced with the expression syntax from the mapping, taking proper account
of ellipses. The subst operation, with a sample equation, is shown below:

op subst : Exp Exp Nat MatchPairs -> Exp .

ceq subst( [ X I IL ],[ IL’ ], M,

({ patVar(X,0), I’ } MPs))

= subst( [ I IL ],[ IL’ I’ ], M,

({ patVar(X,0), I’ } MPs))

if isEllipses(I) == false .

The subst operator takes a template expression, the first argument, and gener-
ates the expanded expression, built up in the second argument and eventually
returned. The third parameter is a natural number, used to track expansion
properly for repeating names and repeating lists. The final parameter is the set
of matches developed using the match operation. The equation shows an example
of substituting the value matched to a pattern variable in the match operation
for a pattern variable in the template. Here, if name X is encountered, and is
not followed by ellipses, and if X is also the name of a pattern variable matched



27

to list item I’, X is removed from the template list and it’s substitution, I’, is
added to the end of the working list. When subst has emptied the template list,
it is finished, and will return the working list.

Example: Or A standard example of define-syntax is the definition of or:

(define-syntax or

(syntax-rules ()

((_) #f)

((_ e) e)

((_ e1 e2 e3 ...)

(let ((t e1)) (if t t (or e2 e3 ...))))))

This pattern includes multiple cases and the use of recursion (in the last case).
Expansion works as expected: (display (or)) translates to [display #f],
while (display (or (> 1 2) (> 3 4))) translates to [display [let [[’t

[’> 1 2]]] [if ’t ’t [’> 3 4]]]] .

Example: Let Another standard example is the definition of let, given as:

(define-syntax let

(syntax-rules ()

((_ ((X E) ...) B ...) ((lambda (X ...) B ...) E ...))))

This pattern includes just one non-recursive case, but the use of repeating pat-
tern variables is more complex than in the case of or. Again, expansion works
as expected: (let ((a 5) (b 6)) (display (+ a b)) (display (* a b)))

expands to [[lambda [’a ’b] [display [’+ ’a ’b]] [display [’* ’a ’b]]]

5 6] .

Example: Nested Ellipses A third example illustrates the use of nested el-
lipses:

(define-syntax test

(syntax-rules ()

((_ (X ...) ...) (list X ... ...))))

This pattern “strips off” the surrounding list structure, combining all items into
a single list. For instance, (display (test (1 2 3 4) (5 6) (7) (8 9 10)))

expands to [display [list 1 2 3 4 5 6 7 8 9 10]].

4 Comparisons and Related Work

The K technique has been used to define several languages previously. Kool
[9][10] is an object oriented language designed to show how object oriented lan-
guage features can be defined in the K framework. A formal definition of Java
[7] given in an earlier rewriting logic semantics style from which K descended
also exists. There is also a pre-alpha definition of Prolog using K at [26].



28

Previous attempts at defining Scheme, or portions of Scheme, also exist. As
already mentioned [12] gives a partial denotational semantics of Scheme which
misses several features (dynamic-wind, eval, a “top level”, etc.), and is not
executable.

[5] attempts a rewriting based approached to an operational semantics for
Scheme. Our work inherits nothing from this. [5] does not use a list-like internal
representation, most operations being performed directly on the program syn-
tax. In order to support quote and eval, which is mistakenly called unquote

(referred to as eval in the following), quote creates a “frozen” expression, which
can be later evaluated by eval. This is an incorrect approach because it means
that only expressions generated by quote can be evaluated by eval. Our ap-
proach is general and supports the evaluation of arbitrary lists, as it should.
We also feel that our evaluation of an internal list representation is more in
the spirit of the language. Another problem with [5] is that lists themselves
are represented as ValueList’s rather than cons cells. This would not allow for
sharing of cdr’s between lists. This works for the subset defined because list
modification was not supported (no set-car! or set-cdr!). Vectors are also
mishandled as ValueList’s, when they should be lists of locations. eqv? could
not be handled properly within this framework either. quasiquote was also not
supported (and adding support for it would be difficult, due to the lack of proper
list representation).

[15] provided an operational semantics of R5RS Scheme. The main contri-
butions of their paper were a greater completeness than the formal definition
given in R5RS (they added eval, quote, and dynamic-wind), modeling multi-
ple return values in a way that is transparent to the rest of the definition, a
model of undefined order of evaluation, and that the executability of their defi-
nition. We provide a more complete definition of Scheme, offering definitions of
define-syntax, quasiquote. unquote, and unquote-splicing. Our eval, un-
like the definition in [15], also supports the environment parameter mentioned
in R5RS. We did not feel that a model of undefined order of evaluation was
necessary, in light of [15]. Adding undefined order of evaluation to our definition
would be fairly straight-forward if desired, however. It could be implemented
by creating new continuations for each Value for which the order of opera-
tion is unspecified, e.g., in the case of function application, where the order of
argument evaluation is not specified, a new continuation could be formed for
each argument. After evaluation, the Value’s could be collected and bound to
the parameter names as appropriate. Multiple return values (only appropriate
within the context of call-with-values) are transparently handled in our defi-
nition, vals being a particular Value type. As mentioned earlier, we do not feel
modification of continuations is necessary to support dynamic-wind, because an
implementation completely written in Scheme exists in [6]. We also feel our def-
inition is more true to the spirit of the semantics of Scheme, wherein code and
data have a unified representation, rather than only using a list structure in the
presence of quote, cons, list, etc. (as in [15]).



29

5 Future Work and Conclusions

Eventually, we intend to provide complete support for macros, with let-syntax

and letrec-syntax, as well as support for macros involving improper lists and
vectors. We also intend to provide full support for the entire Scheme standard
library (excepting input, due to the nature of the Maude implementation).

We have presented a nearly complete, formal definition of R5RS Scheme. The
complete source and an online trial of our definition can be found at [16]. Un-
like earlier formal, executable definitions, we provide definitions for quasiquote,
unquote, unquote-splicing, and define-syntax (with portions of its associ-
ated pattern language).

References

1. G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer

Science, 96(1):217–248, 1992.
2. P. Borovansky, C. Kirchner, H. Kirchner, P. Moreau, and C. Ringeissen. An

Overview of ELAN. In Proceedings of the International Workshop on Rewriting

Logic and its Applications, volume 15 of Electronic Notes in Theoretical Computer

Science, 1998.
3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-

sada. Maude: Specification and Programming in Rewriting Logic. Theoretical

Computer Science, 285:187–243, 2002.
4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and

C. Talcott. Maude manual (version 2.3). SRI International, January 2007,
http://maude.cs.uiuc.edu, 2007.

5. M. d’Amorim and G. Rosu. An Equational Specification for the Scheme Language.
Journal of Universal Computer Science, 11(7):1327–1348, 2005.

6. R. K. Dybvig. The Scheme Programming Language. MIT Press, third edition,
2003.

7. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal Analysis of Java Programs
in JavaFAN. In Proceedings of Computer-aided Verification, volume 3114 of Lecture

Notes in Computer Science, pages 501 – 505, 2004.
8. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. Introducing

OBJ. In Software Engineering with OBJ: Algebraic Specification in Action. 2000.
9. M. Hills and G. Roşu. KOOL: An Application of Rewriting Logic to Language Pro-

totyping and Analysis. In Proceedings of the International Conference on Rewriting

Techniques and Applications, Lecture Notes in Computer Science, 2007. To appear.
10. M. Hills and G. Roşu. On Formal Analysis of OO Languages using Rewriting

Logic: Designing for Performance. In Proceedings of the International Conference

on Formal Methods for Open Object-Based Distributed Systems, volume 4468 of
Lecture Notes in Computer Science, pages 107–121, 2007.

11. G. Kahn. Natural Semantics. In 4th Annual Symposium on Theoretical Aspects of

Computer Sciences, Lecture Notes in Computer Science, pages 22–39, 1987.
12. R. Kelsey, W. Clinger, and J. R. (eds.). Revised5 Report on the Algorithmic

Language Scheme. Higher-Order and Symbolic Computation, 11(1), 1998.
13. C. Kirchner, P. Moreau, and A. Reilles. Formal Validation of Pattern Matching

Code. In Proceedings of Principles and Practice of Declarative Programming, pages
187–197. ACM Press, 2005.



30

14. N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic: Roadmap and Bibliography.
Theoretical Computer Science, 285:121–154, 2002.

15. J. Matthews and R. B. Findler. An Operational Semantics for R5RS Scheme.
In Proceedings of Workshop on Scheme and Functional Programming, September
2005.

16. P. Meredith, M. Hills, and G. Roşu. K-Scheme website.
17. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.

Theoretical Computer Science, 96(1):73–155, 1992.
18. J. Meseguer and G. Roşu. Rewriting Logic Semantics: From Language Specifica-

tions to Formal Analysis Tools . In Proceedings of International Joint Conference

on Automated Reasoning, volume 3097 of Lecture Notes in Artificial Intelligence,
pages 1–44, 2004.

19. J. Meseguer and G. Roşu. The Rewriting Logic Semantics Project. In Proceedings

of Structural Operational Semantics, volume 156 of Electronic Notes in Theoretical

Computer Science, pages 27–56, 2006.
20. J. Meseguer and G. Roşu. The Rewriting Logic Semantics Project. Theoretical

Computer Science, 373(3):213–237, 2007.
21. P. D. Mosses. Modular Structural Operational Semantics. Journal of Logic and

Algebraic Programming, 60–61:195–228, 2004.
22. G. D. Plotkin. Lecture notes DAIMI FN-19: A Structural Approach to Operational

Semantics. Department of Computer Science, University of Aarhus. 1981.
23. G. Roşu. K: a Rewrite-based Framework for Modular Language Design, Semantics,

Analysis and Implementation, 2005 and 2006. Version 1: UIUCDCS-R-2005-2672
and Version 2: UIUCDCS-R-2006-2802.

24. T. Şerbănuţă and G. Roşu. Computationally Equivalent Elimination of Conditions
- Extended Abstract. In Proceedings of Rewriting Techniques and Applications,
volume 4098 of Lecture Notes in Computer Science, pages 19–34. Springer, 2006.

25. T. Şerbănuţă, G. Roşu, and J. Meseguer. A Rewriting Logic Approach to Op-
erational Semantics – Extended Abstract. In Structural Operational Semantics,
Electronic Notes in Theoretical Computer Science, 2007.

26. T. Şerbănuţă, R. Sasse, M. A. Turki, and G. Roşu. Mprolog website.
27. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling Lan-

guage Definitions: the ASF+SDF Compiler. ACM Transactions on Programming

Languages and Systems, 24(4):334–368, 2002.
28. E. Visser. Program Transf. with Stratego/XT: Rules, Strategies, Tools, and Sys-

tems. In Domain-Specific Program Generation, pages 216–238, 2003.
29. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Infor-

mation and Computation, 115(1):38–94, 1994.


