
c© 2007 by Liqian Luo. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ENVIROSUITE: AN ENVIRONMENTALLY-IMMERSIVE PROGRAMMING FRAMEWORK
FOR WIRELESS SENSOR NETWORKS

BY

LIQIAN LUO

B.E., Tsinghua University, 2000
M.C.S., University of Virginia, 2004

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

Abstract

Networked, embedded sensors allow for an instrumentation of the physical world at unprecedented granu-

larities and from unimagined perspectives. The advent of a ubiquitous sensing era is evident. Yet, sensor

network techniques are still far from entering mainstream adoption due to multiple unresolved research

challenges, especially due to the high development cost of sensor network applications. Therefore, in this

dissertation, we propose to design, implement, and evaluate an environmentally-immersive programming

framework, called EnviroSuite, to reduce sensor network software development cost. The goal of our re-

search is to create reusable sensor network development support for the community and reduce the adoption

barriers for a broader category of users, ultimately leading to a transition of sensor networks from a research

concept to a general-purpose technology available for use for a wide variety of research, government, in-

dustry, and everyday purposes.

Current sensor network programming practice remains very cumbersome and inefficient for several

reasons. First, most existing programming abstractions for sensor networks are either too low-level (thus too

tedious and error-prone) or too high-level (unable to support the diversity of sensor network applications).

Second, there is no clear separation between application-level programming and system-level programming.

A significant concern is the lack of a general middleware library to isolate application developers from low-

level details. Finally, testing sensor network systems is particularly challenging. Sensor systems interact

heavily with a (non-repeatable) physical environment, making lab experiments not representative and on-

site experiments very costly. This dissertation is targeted for a comprehensive solution that addresses all the

above-mentioned problems. The EnviroSuite framework consists of (i) a new programming paradigm that

exports environment-based abstractions, (ii) critical middleware services that support the abstractions and

separate application programmers from tedious, low-level details, and (iii) testing tools geared for in-situ

experimenting, debugging, and troubleshooting.

First, we introduce a new programming paradigm, called environmentally-immersive programming

iii

(EIP), to capture the common characteristics of sensor network applications, the rich, distributed interac-

tions with the physical environment. EIP refers to an object-based programming model in which individual

objects represent physical elements in the external environment. It allows the programmer to think directly

in terms of physical objects or events of interest. We provide language primitives for programmers to easily

implement their environmental tracking and monitoring applications in EIP. A preprocessor translates such

EIP code transparently into a library of support middleware services, central to which are object manage-

ment algorithms, responsible for maintaining a unique mapping between physical and logical objects.

The major outcome of sensor networks is observations of the instrumented environment, in other words,

sensory data. Implementing an application mainly involves encoding how to generate, store, and collect

such data. EIP object abstractions provide simple means for programmers to define how observations of

the environment should be made via distributed coordination among multiple nodes, thus simplifying data

generation. Yet, the next steps, namely, data storage and collection, remain complicated and fastidious. To

isolate programmers from such concerns, we also include in the support library a set of data management

services, comprising both network protocols and storage systems to allow data to be collected either in

real-time or in a delay-tolerant manner.

The final phase in sensor network software development life-cycle is testing, typically performed in-

field, where the effects of environmental realities can be studied. However, physical events from the dy-

namic environment are normally asynchronous and non-repeatable. This lack of repeatability makes the

last phase particularly difficult and costly. Hence, it is essential to have the capability to capture and replay

sensing events, providing a basis not only for software testing, but also for realistic protocol comparison and

parameter tuning. To achieve that, EnviroSuite also provides testing and debugging facilities that enable

controllable and repeatable in-field experiments.

Finally, to demonstrate the benefits of our framework, we build multiple representative applications

upon EnviroSuite, drawn from both tracking systems such as military surveillance, and monitoring systems

such as environmental acoustic monitoring. We install these applications into off-the-shelf hardware plat-

forms and physically deploy the hardware into realistic environments. Empirical results collected from such

deployments demonstrate the efficacy of EnviroSuite.

iv

To my parents, Zhangsen and Tianxiang,

and my dear husband, Zhanlu.

v

Acknowledgments

This dissertation would not have been possible without the help, encouragement, and support of many

people.

My first and sincerest gratitude goes to my advisor, Tarek, for his patient and continued guidance,

instruction, support, and encouragement throughout the years. He has been such a role model for me – I

strive to be as diligent and dedicated for research as he has always been. My special thanks go to Professor

Jack Stankovic, for being so supportive throughout and after my graduate studies at University of Virginia.

Whenever I turn to him for help, he is always there.

I would also like to thank the other members of my dissertation committee, Professor Klara Nahrstedt

and Professor Haiyun Luo, for their invaluable comments and constructive suggestions to improve the work.

I would like to extend my gratitude to Tian He, Chengdu Huang, Qing Cao, Gang Zhou, Lin Gu, and

Xue Liu, who contributed a lot to my projects and papers. I would like to especially thank Tian He, Ting

Yan, Lin Gu, Radu Stoleru, and Sudha Krishnamurthy for the sleepless nights we have spent together during

the demo trips to Florida and Califonia.

Thanks also go to all other members and alumni of the UVa NEST group and the UIUC Cyber Physical

Computing group whom I have worked with (in chronological order): Professor Sang Son, Brian Blum,

Qiuhua Cao, Qin Chen, Yong Chen, Thao Doan, Raghu Kiran Ganti, Jin Heo, Praveen Jayachandran, Binjia

Jiao, Maifi Khan, Ajay Kulhari, Hieu Khac Le, Ying Lin, Ying Lu, Shashi Prabh, Yu-En Tsai, Pascal Vicaire,

Anthony Wood, and Ronghua Zhang.

Last but not least, I could not thank enough my parents, who have loved me, fed me, and never left me

alone. I could never adequately express my gratitude to my dear husband. The long journey of PhD study

has kept us apart for more than half of the years of our marriage (by the way, thank United and American

Airlines for the transportation support). I would not have survived it without his endless love and support.

This dissertation is dedicated to them.

vi

Table of Contents

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Programming Paradigms . 4
1.3 Support Middleware . 5
1.4 Debugging Facilities . 7
1.5 Contributions . 8
1.6 Dissertation Outline . 9

Chapter 2 Environmentally-Immersive Programming Paradigm 11
2.1 Introduction . 11
2.2 Overview of EIP . 12
2.3 EIP Syntax . 15

2.3.1 Defining the Object Context . 17
2.3.2 Defining Object Attributes . 18
2.3.3 Defining Object Methods . 18
2.3.4 Defining Static Object Instances and Global Variables 19
2.3.5 A Tracking and Monitoring Application in EIP . 20

2.4 Object Maintenance Algorithms . 22
2.4.1 Event Object Maintenance . 23
2.4.2 Region and Function Object Maintenance . 28

2.5 Implementation . 30
2.5.1 EIP Support Library (EIPLib) . 30
2.5.2 EIP Preprocessor . 32

2.6 Performance Evaluation . 34
2.6.1 Performance of Object Operations . 34
2.6.2 A Surveillance System . 40

2.7 Discussion . 43
2.8 Conclusions . 45

Chapter 3 EnviroStore: The Storage System . 46
3.1 Introduction . 46
3.2 Design . 48

3.2.1 System Model . 48

vii

3.2.2 System Design . 50
3.3 Implementation . 55

3.3.1 Local Storage Structure . 56
3.3.2 User Interface . 58

3.4 Evaluation . 59
3.4.1 Scenario 1: Single Disconnected Sensor Network 61
3.4.2 Scenario 2: Partitioned Sensor Network with Data Mules 62
3.4.3 Concluding Remarks . 67

3.5 Conclusions . 67

Chapter 4 EnviroLog: The Replay Tool . 69
4.1 Introduction . 69
4.2 Design . 72

4.2.1 Design Goals . 73
4.2.2 System Architecture . 74
4.2.3 User Interface . 74
4.2.4 Preprocessor . 76
4.2.5 Stage Controller . 79
4.2.6 Record and Replay . 80

4.3 Implementation . 84
4.3.1 Preprocessor Implementation . 85
4.3.2 Stage Controller Implementation . 85
4.3.3 Record and Replay Implementation . 87

4.4 Performance Evaluation . 88
4.4.1 Maximum Recording Period . 89
4.4.2 Throughput . 89
4.4.3 Overhead . 90
4.4.4 Replay Accuracy . 91
4.4.5 Concluding Remarks . 92

4.5 Conclusions . 92

Chapter 5 Integrated Systems . 94
5.1 Introduction . 94
5.2 Vigilnet: Energy-efficient Surveillance . 95

5.2.1 Overview of Vigilnet . 95
5.2.2 Tracking Performance Evaluation . 96
5.2.3 Evaluation of EnviroLog . 99

5.3 EnviroMic: Distributed Acoustic Monitoring . 105
5.3.1 Overview of EnviroMic . 105
5.3.2 In-door Experiments . 107
5.3.3 Preliminary Outdoor Deployment . 108

5.4 Conclusions . 111

Chapter 6 Related Work . 112
6.1 Programing Paradigms . 112
6.2 Data Storage . 113
6.3 Debugging Tools . 114
6.4 Target Tracking . 116

viii

6.5 Acoustic Applications . 117

Chapter 7 Conclusions . 118

References . 122

Author’s Biography . 130

ix

List of Tables

2.1 Keywords for basic EIP object declaration . 16
2.2 Code size and RAM usage of different services . 40
2.3 Code comparison of EIP version and nesC version . 40

3.1 Application examples . 50

4.1 EnviroLog annotation list . 75
4.2 Implementation characteristics of EnviroLog components 84

5.1 Tracking performance for varied target velocities . 97
5.2 Tracking performance of Vigilnet with EnviroSuite . 98

x

List of Figures

1.1 System Architecture of EnviroSuite . 10

2.1 One-to-one mapping between physical events and event objects 13
2.2 Relation of EIP, EIPLib & EIP preprocessor . 14
2.3 Object declaration of object VEHICLE . 15
2.4 An EIP application . 21
2.5 States of nodes around an environmental event . 24
2.6 State machine in MGMP . 26
2.7 Member balancing mechanism . 28
2.8 Translate an EIP application into a nesC application . 32
2.9 Object creation delay for varied heartbeat period and candidate period 35
2.10 Number of objects created for varied heartbeat period and candidate period 36
2.11 Maximum tolerable event velocity for varied heartbeat period and object resolution 37
2.12 Number of objects created for varied event velocity and per-hop packet loss ratio 38
2.13 Achieved object uniqueness (white) and identity (shaded) for varied crossing distance 38
2.14 Reported target tracks with crossing distance 0 . 39
2.15 Vehicle counting application results . 40
2.16 Tracked target trajectory comparison . 42
2.17 Transmitted packet number comparison . 42
2.18 Power level of each node for different times . 43

3.1 System model . 49
3.2 State transition of a sensor node in cross-partition data redistribution 55
3.3 System architecture of EnviroStore . 56
3.4 Local storage structure . 57
3.5 Examples of different types of log files . 58
3.6 User interface . 59
3.7 Basic deployment configuration . 60
3.8 Data storing rate at different time . 62
3.9 Comparison of data storing rate at different time . 63
3.10 Comparison of data storing rate at different time . 63
3.11 Comparison of total stored data of node 4 at different time 64
3.12 Distribution of total stored data after one hour . 65
3.13 Comparison of number of messages per second at different time 66
3.14 Data storing rate of the base station over time . 66
3.15 Total stored data of the base station over time . 66

xi

4.1 Main idea of EnviroLog . 73
4.2 System architecture of EnviroLog . 74
4.3 Examples of consistency checks . 79
4.4 Data distribution in different memory levels . 82
4.5 Translation steps of the preprocessor . 86
4.6 A field deployment to use the stage controller . 86
4.7 Interface of the record and replay component . 88
4.8 Interactions between the record and replay component and other components 88
4.9 Maximum recording period for different expected event interval and log item length 89
4.10 Success ratio of recording operations for different expected event rate and buffer size 90
4.11 Comparison of sending delay between normal stage and record stage 91
4.12 Difference of send time between record stage and replay stage 92

5.1 System architecture of Vigilnet . 96
5.2 System deployment of Vigilnet . 97
5.3 Tracking trajectories for one vehicle and two vehicles . 98
5.4 System deployment of Vigilnet and EnviroLog . 100
5.5 Trajectories and calculated velocities for physical and replayed targets 101
5.6 Trajectories and calculated velocities for different DOA . 102
5.7 Cumulative distribution of number of aggregate reports for different DOA 103
5.8 Cumulative distribution of voltage values before and after experiments 103
5.9 Calculated velocities for different replay speed . 104
5.10 System Architecture of EnviroMic . 106
5.11 One instance of recording a mobile acoustic object . 108
5.12 Recording voice of a moving human being . 108
5.13 Deployment in a natural forest . 109
5.14 Amount of acoustic event data over time . 110
5.15 Amount of acoustic data, in bytes, generated in different locations 110
5.16 Distribution of data migrated to nodes for load-balancing 111

xii

Chapter 1

Introduction

This work is to design, implement, and evaluate EnviroSuite, an environmentally-immersive programming

framework with support for multiple aspects of sensor network software development. We dedicate our

efforts not only to programming paradigms that expedite sensor network system design, but to middleware

services that isolate programmers from low-level details, and to debugging tools that facilitate in-situ testing

and troubleshooting. The ultimate goal is to simplify sensor network programming and reduce software

development cost.

In this chapter, we first motivate the work by recognizing difficulties in sensor network programming

(Section 1.1). We then give an overview of a comprehensive solution to aid sensor network programming

from multiple aspects (Section 1.2, 1.3, 1.4). Next, we highlight the major contributions of this dissertation

(Section 1.5). Finally, we present an architectural view of the contributions as well as outline the rest of the

dissertation (Section 1.6).

1.1 Motivation

Recent advances in low-power processing units, low-power communication, and sensor technologies have

revealed a rich design space of networked, embedded sensors. Such sensing devices will be able to monitor

a wide variety of physical conditions: light, temperature, humidity, acceleration, motion, noise, etc. In

addition to sensing, such devices can also be equipped with processing, wire/wireless communication, and

storage capabilities. Deeply embedded into the environment, such devices are able to represent the physical

world in bits, seamlessly integrating the physical world into the cyber world. Furthermore, the increased

miniaturization and reduced cost of hardware (by Moore’s Law) make it viable to use such devices to

instrument the environment at unprecedented granularities and scales. As a result, in recent years the field

of sensor networks keeps expanding and thriving, attracting tremendous interests from both the research

1

community and industry.

A major challenge in sensor network research is the extreme difficulties in application development.

Sensor networks lie in the intersection of multiple territories: distributed computing, wireless networks,

embedded and ubiquitous computing, and real-time systems. Programming of sensor networks combines

the difficulties of these existing disciplines, and is thus more challenging than any of them individually. We

enumerate the major factors that complicate development of sensor network systems as follows.

• Event-driven programming

Miniaturized sensing devices usually subject to severe constraints in power, CPU bandwidth, and

memory. At the same time, such devices have to handle high levels of concurrency originated from ra-

dio communication and high-frequency sensory sampling. Traditional ways of handling concurrency

via multiple threads give rise to large memory footprint and heavy CPU load, thus not appropriate

for sensor networks. Instead, event-driven approaches [70] are more common for systems with se-

vere memory constraints, since they do not require that memory space be reserved for each execution

thread. For this reason, many operating systems for sensor networks [40, 19, 35] adopt event-based

models to handle high levels of I/O concurrency. Such event-based models can not support block-

ing or spin loops as multi-threaded model does. Alternatively, many operations have to be done in a

phase-splitting way: a function call that requests certain action returns immediately, and an interrupt

comes back later to signal completion of the requested action. In such models, programmers have

to frequently use explicit state machines to manage control flow, making programming extremely

difficult [53, 90, 20].

• Low reliability

Sensor network applications, exposed to unpredicted and dynamic operating environments, must han-

dle a wide variety of failures [34]. For instance, hardware failures can partially or completely disable

a node. Network dynamics caused by changing of the surrounding environment or node mobility

may lead to busty traffic, link losses, and potentially network partitions. System reconfiguration such

as adding or removing nodes can also alter operation state of the network. It is a nontrivial task to

program a sensor network application to be resilient to all the possible failures.

• Collaborative operation

2

The low cost and miniaturized size of sensing devices determine that the resources available to indi-

vidual nodes are severely limited. The high-resolution deployment of sensor networks implies that

each node has only very limited sensing capabilities in terms of accuracy and range. Therefore, exe-

cuting complex tasks, such as tracking a vehicle, often requires collaboration among multiple nodes.

It is notoriously difficult to decompose the desired global behavior (e.g., tracking a vehicle) into local

behaviors of individual nodes and their collaborations [33]. Note that the alternative centralized solu-

tions, where each node serves only as dumb data collectors and complex processing of the collected

data is done at a centralized point, are not as scalable and usually waste large amount of energy in

data collection. They are thus not appropriate for most sensor network applications with severe energy

constraints [22].

• Limited runtime visibility

Another issue of concern confronting application programmers for sensor networks is the lack of large

display monitors. Whereas most of the off-the-shield monitors for personal computers or servers mea-

sure more than 20 inches in current days, typical sensing devices (e.g., Mica motes [15], Tmote [72],

and Intel Mote [45]) have very tiny display screens or even no screens. As a result, there is very

limited or no runtime visibility. Previously simple programming routines as monitoring or debugging

a running program becomes extremely hard.

• Non-repeatable environmental input

Sensor networks operate on and interact with dynamic and asynchronous events in the physical envi-

ronment, which are hard to reproduce exactly. Repeatability of such environmental events is essen-

tial for debugging or troubleshooting of sensor network systems, especially for event-driven systems

where the state of execution changes depending on the particular sequence of environmental events

received and their timing. Matters as tuning protocol parameters for particular event scenarios or

comparing performance of different protocols require controlled, repeatable experiments. However,

in the face of environment dynamics, it is a nontrivial proposition to achieve that.

These factors, as a whole, make sensor network software development costly, error-prone, and time-

consuming. As a result, current sensor network developers are limited to computer science experts with

intimate knowledge of sensor networks and excellent system skills. To open sensor network techniques to

3

the masses, we have to provide enough programming facilities. Hence, the goal of the dissertation is to

design and implement a new programming environment which (i) raises the level of programming abstrac-

tions to be more intuitive and less error-prone compared with event-driven programming, (ii) comprises a

library of middleware services to support the abstractions and to hide the details of failure handling and

collaborative computing from application programmers, and (iii) provides debugging facilities that resolve

the issues of non-repeatable input and limited runtime visibility. We call the new programming framework,

EnviroSuite.

1.2 Programming Paradigms

Traditional programming languages such as Java and C, as well as their sensor network adaptations, such

as nesC [27] and its extension galsC [12, 13], are too low-level. While allowing for more flexibility, they

tend to expose too many details to application programmers and entail large overhead in application design

and implementation. Their basic computation, communication and actuation unit is typically the sensor

node. Programmers must think in terms of single node activities and explicitly encode interactions among

nodes. For example, programmers are exposed to reading sensing data from appropriate sensor devices,

aggregating data pertaining to the same external stimulus, deciding where to send it, and communicating

with actuators if needed. If the monitored activity moves in the environment, programmers are responsible

for spatial and temporal correlation of measurements obtained about the activity across a changing set of

sensor nodes, and associating that data with event progress.

A more desirable approach would be for the programmers to encode only overall network behavior,

leaving it to the underlying system to decompose such behavior into node-level algorithms. Examples of

higher-level abstractions that address this concern include logical-node-based primitives [33], token-based

languages [73], database-centric abstractions [66, 99, 10], event-based systems [55], group-based primi-

tives [9, 95, 92, 58], state-centric approaches [56] and virtual machines [51, 11]. These paradigms offer

logical nodes, tokens, queries, events, sensor node groups, logical state, and virtual machines, respectively,

as the underlying abstractions with which the programmer operates. However, most paradigms failed to

capture the unique properties of sensor networks: their distributed interactions with the physical environ-

ment.

One of the goals of the dissertation is to develop a new programming paradigm that exposes abstractions

4

revolving directly around physical elements of the environment, as opposed to sensor network constructs

such as regions, neighborhoods, or sensor groups.

Therefore, we propose and implement one of the first high-level programming paradigms that combine

elements in the physical world tightly with programmable objects in the logical world. We call it envi-

ronmentally immersive programming (EIP) [61, 60]. EIP is an object-based programming paradigm. Its

object abstractions revolve directly around elements of the physical environment. In other words, each EIP

object represents certain element in the physical world. Dynamic object instances are created automatically

by the run-time system when the corresponding external elements are detected, and are destroyed when

these elements leave the network. A one-to-one mapping between object instances and the corresponding

environmental elements is maintained by the system. Object instances float across the network following

(geographically) the elements they represent. Objects encapsulate the aggregate state of the elements they

represent, making such state available to their methods. Object methods are executed at the location of the

corresponding physical element, which is ideal for sensing and actuation tasks. These objects (as opposed

to the individual nodes) are therefore the units that encapsulate program data, computation, communication,

sensing and actuation. The existence of the sensor network is thus made more transparent. By providing the

object abstractions, EIP successfully isolates application programmers from tedious, node-level details.

1.3 Support Middleware

To support EIP abstractions, we provide a library of middleware services. Apparently, the most critical set

of services is object management algorithms that maintain the mapping between environmental elements

and objects. They are also responsible for obtaining aggregate state and executing object code. However,

these services are not sufficient enough.

Data is the major outcome of sensor networks. Sensor network systems are centered around how to gen-

erate, store, and collect observations of the physical world. Using EIP object abstractions and the underlying

management algorithms, programmers can easily write code to define how such observations should be gen-

erated as aggregate states of interested physical elements. The next challenge is to collect such states so as

to present them to operators of the network. Therefore, another critical set of services should be data col-

lection services to isolate programmers from such concerns. The data management services we investigate

include not only multi-hop communication services to communicate data back in real-time to back-end data

5

monitoring centers (i.e., base stations), but also data storage services operating in a store-forward manner

for delay-tolerant [23, 46] applications.

Data collection has been addressed at length in sensor network literature. The assumption has tradi-

tionally been that a sensor network is connected to a base station that collects the data. This assumption is

suitable when near-real-time information availability is desirable. Tracking and event notification applica-

tions, for example, fall under this category. A significant number of applications, however, do not require

real-time information [59, 88, 25]. For example, an environmental scientist interested in studying light vari-

ations on the forest floor due to canopy closure in the Spring might deploy a sensor net and collect the data

only months later when the experiment is over1. This “fisherman’s net” model of the application allows

for significant architectural simplifications of the monitoring infrastructure. Most importantly, there is no

longer a need to maintain a base station in the field. We call the above, a disconnected network model.

Comparing with the connected network model, this disconnected model imposes a different set of chal-

lenges. Rather than focusing on multi-hop communication protocols to carry data back to base stations, in

such model, programmers are more concerned with how to leverage in-network storage (already available

on sensor nodes as flash memory) and how to opportunistically upload data if opportunities (e.g., approach-

ing of data mules) arise. Therefore, besides providing multi-hop communication services for connected

operation model for the purpose of completeness, another major goal of the dissertation is to develop data

storage and collection services that address the unique concerns of the disconnected network model.

In this dissertation, we present EnviroStore [63], a cooperative storage service for sensor network ap-

plications geared for disconnected operation. The primary concern of the service is to maximize effective

storage capacity of the network while disconnected. EnviroStore takes into account various factors that

may cause data loss. First, it employs data redistribution schemes to optimize sharing of network storage.

Observe that some nodes will record more data than others. This may be due to asymmetry in environ-

mental inputs (e.g., acoustic nodes near sound sources will fill up before those in quiet areas), or due to

data-dependent variations in compression ratio of algorithms such as run-length encoding. Data loss can be

minimized by migrating data from nodes that are full to those that are not, as well as by exploiting upload

opportunities when available. Second, EnviroStore also takes into account the rate of energy consumption

to avoid depletion-related data loss. Naturally, nodes will be unable to store data after energy is depleted.
1This is an actual study that has been performed in Trelease Woods near UIUC campus in Spring 2006

6

EnviroStore further reduces the burden of EIP programmers. Via EnviroStore, the aggregate state of

the environmental elements encapsulated in objects or the execution results of object methods can be easily

deposited in the network and collected automatically later. This is especially useful for EIP programmers to

develop applications where direct connection to base stations is not available or rather intermittent. It has to

be noted that though EnviroStore is a critical component of the EnviroSuite framework, we do not preclude

the use of EnviroStore in other programming models.

1.4 Debugging Facilities

With sufficient programming support in place, rapid design and implementation are made possible by simply

utilizing the high-level and human-intuitive abstractions and underlying middleware services. Yet, the de-

velopment process is not complete without debugging your system thoroughly. Sensor network systems are

often embedded and expected to run continuously for months or years without fatal failures. Therefore they

have to be tested more carefully than those for personal computers or servers (which are closely attended

by home users or system administrators). However, testing sensor systems is much harder than testing PC

software. As mentioned before, one of the major reasons is the non-repeatability of environmental inputs.

Quite different from controlled lab settings, physical environments introduce much higher degree of uncer-

tainty and much higher probability of failures. The limited runtime visibility of sensor network applications

further exacerbates the situation. As the number of applications developed and deployed keeps growing,

there is an increasing need for tools and services to assist with testing and troubleshooting of applications

in targeted deployment environments. Developing such tools is therefore the third goal of the dissertation.

To facilitate the debugging of event-driven systems, we design and implement a distributed service that

improves repeatability of experimental testing of sensor networks, called EnviroLog [62]. EnviroLog can

capture and reproduce distributed events on demand. It provides the abstraction of a completely repeatable

environment as observed by the sensory subsystem for the sake of experimental testing. Communication

properties remain stochastic. Hence, a separation is achieved between the effects of communication non-

determinism and the effects of environmental non-repeatability in the study of sensor network protocols.

The service is especially valuable in the study of rare, unsafe, or hard-to-reproduce events such as the

motion of tracked animals through a sensor field.

Recall that objects in EIP are logical representations of external environmental events. The repeatability

7

of such events (made possible by EnviroLog) is particularly useful in evaluating both the EIP support library

itself and applications built upon the EIP model.

1.5 Contributions

This dissertation presents our attempt to build a practical development framework centering around environ-

mentally-immersive programming, and demonstrates the efficacy of the work by several integrated systems

that are built upon EnviroSuite and are actually deployed into the physical environment. Specifically, we

advance the State-of-the-Art in the following ways:

• Environmentally-immersive programming paradigm: Different from most of the existing ones,

our newly proposed paradigm captures the unique characteristics of sensor networks, their rich, dis-

tributed interaction with the physical environment. EIP programmers directly operate on environmen-

tal elements rather than network constructs. In the history of programming languages, designers have

been struggling to raise abstraction levels from machine languages, to assembly languages, and to

high-level languages such as C++ and Java. Our paradigm further pushes programming abstractions

closer to human brains and application contexts in terms of sensor network programming.

In a broader context, the paradigm is applicable to not only sensor network systems but other event-

based systems whose main functionality is to respond to certain measured conditions. Heo et al. [38]

shows a recent effort to apply a similar idea of environmentally-immersive programming to build a

server management system to optimize energy consumption in server farms.

• Distributed in-network storage solution for disconnected operation: The prevalence of sensor

network applications adopting a disconnected operation model advocates a paradigm shift from tradi-

tional communication-centric sensor networks to storage-centric sensor networks. In-network storage

solutions are essential in storage-centric sensor networks. We present EnviroStore, a storage service

optimized for disconnected operations. It enables EIP programmers to easily deposit aggregate states

of objects in the network for future retrieval. The service is interoperable with a wide range of sensor

network applications via its generic interface.

• In-situ testing support by achieving repeatability of asynchronous events: Sensor network sys-

tems usually operate on asynchronous events originated from environmental dynamics, making de-

8

bugging and testing of such systems extremely challenging. EnviroLog achieves the repeatability of

the dynamic, asynchronous events by capturing and replaying them on demand. With EnviroLog,

transient failure scenarios resulting from specific environmental conditions become repeatable and

tractable. EnviroLog also greatly simplifies in-field experiments by removing the need to manually

regenerate physical events (such as driving a car through the field hundreds of times).

• Evaluation of proposed solutions through deployed practical systems: One important objective of

the dissertation work is to provide usable sensor network development support for the community. We

thoroughly validate the usability and practicability of the proposed methodologies through multiple

system scenarios. The techniques presented are applied to build both a large-scale surveillance system

and an acoustic monitoring application. These systems are uploaded to actual hardware platforms and

then deployed into realistic physical environments for demonstration and evaluation purposes. The

empirical results from the deployments demonstrate the efficacy of the EnviroSuite framework itself

as well as its capabilities to support the diverse set of sensor network applications.

1.6 Dissertation Outline

Figure 1.1 provides an architectural view of EnviroSuite. The EnviroSuite framework sits on top of sensor

hardware platforms and operating systems, comprising three major components: (i) the Environmentally-

Immersive Programming paradigm that supports an object-based programming model, (ii) a set of support

middleware services that isolate various low-level concerns, and (iii) a set of debugging tools that facilitate

debugging, tuning, and evaluating of real systems. In addition to that, we also provide the EnviroSuite

preprocessor that translates EIP code into native application code (e.g., nesC code) with debugging add-ons

by configuring and restructuring algorithms from the support library of middleware services.

The EIP paradigm component mainly comprises language primitives for EIP object abstractions and the

EIP support library that mainly contains the variety of object management algorithms to support the ab-

stractions at runtime. Inside the support middleware library are a multi-hop communication service, called

Multiple-Source Transport Service (MSTP) [39], for real-time applications to communicate data during run-

time, and a storage service, called EnviroStore, for delay-tolerant applications to store data in the network

and retrieve at a later point. In terms of debugging facilities, we include two tools in the EnviroSuite frame-

9

��������	
�����
���
�����
�������

�����������
���������

������������������������
���	������	
�����

�����
��������
��������

�
�
�
���

�
�
���

�
��
�
��

�

�
�

���
�!"� �

#!��� ����

���
�������
$�!����
����$�!�

�������
%���������

�����	�
����� �

�������������

&������ �����

����� �
�%�'��

(�!�		��	
'���

)�����
'���

�������$�	�

(��	���
'���

���'��

#���� �����

*�	����� ������%�

Figure 1.1: System Architecture of EnviroSuite

work: one is a replay tool called EnviroLog, and the other is a failure diagnosis and troubleshooting tool

based on machine learning techniques, called SNTS [50]. EnviroLog can capture and replay asynchronous

environmental events on demand, thus providing repeatable inputs for testing and evaluation purposes.

SNTS is a tool that performs automated failure diagnosis for sensor network systems. Note that MSTP

and SNTS are collaborative work mainly contributed by other colleagues. We do not claim them as major

contributions of this dissertation. Details on the two services can be found in [39, 50].

The EnviroSuite framework is utilized in building several integrated systems, including VigilNet, a mil-

itary surveillance system, and EnviroMic, an acoustic monitoring application.

The rest of the dissertation is organized as follows. Chapter 2 elaborates the environmental immersive

programming abstractions and the support library of distributed object management algorithms. Chapter 3

describes EnviroStore and Chapter 4 presents EnviroLog. Chapter 5 discusses several integrated systems

built upon EnviroSuite and presents evaluation results collected through field experiments. Chapter 6 sup-

plies an extensive literature survey. Chapter 7 concludes the dissertation.

10

Chapter 2

Environmentally-Immersive Programming
Paradigm

2.1 Introduction

The need to facilitate software development for sensor networks motivates new high-level abstractions for

programming-in-the-large. These abstractions must hide the details of distributed algorithms that observe

and track physical elements, capture the unique properties of sensor networks such as their distributed

interactions with a physical environment, and address the issue of scale.

Current sensor network programming practice remains very cumbersome and inefficient using low-

level languages such as nesC [27]. They usually require programmers to explicitly encode the behavior of

individual nodes and the interactions among them. Apparently, programming in such node-based languages

is too low-level, too error-prone, and results in long programs that expose too many tedious details to

application developers. To make development easier, a multitude of high-level programming paradigms and

abstractions have been proposed, including logical-node-based [33], token-based [73], database-centric [66,

99], event-based [55], group-based [95, 92], and virtual-machine-based [51] approaches. However, most of

them are inadequate to support the diversity of sensor network applications. Some are primarily inspired by

one application model, thus inapplicable to other application scenarios. Some are not as intuitive since they

fail to capture the unique characteristics of sensor network applications. Certainly, there is a need to find

new solutions that expose the right level of abstractions without sacrificing the flexibility to support a broad

set of application models.

Therefore, in this chapter, we propose a new programming paradigm called Environmentally-Immersive

Programming (EIP), whose abstractions revolve directly around elements of the environment as opposed

to sensor network constructs such as regions, neighborhoods, or sensor groups. EIP is an object-based

programming paradigm. However, it differs from other object-based systems in that its objects are rep-

resentations of elements in the external environment. The creation and deletion of object instances are

11

correspondent to the appearance and disappearance of external elements in the sensor field. The runtime

system of EIP maintains a unique mapping between object instances and the environmental elements despite

the movement of the elements. Classical objects (that do not represent any environmental elements) are also

supported.

EIP abstractions are supported by an underlying library of distributed algorithms, which are imple-

mented in nesC on TinyOS [40], an operating system designed specifically for sensor networks. We evalu-

ate the support library as well as several small applications written in EIP both on TOSSIM [52] and on a

mote-based sensor network. TOSSIM is an emulator that runs the actual nesC service code, emulating on a

PC the behavior of programs on the Mica motes [15].

The remainder of the chapter is organized as follows. Section 2.2 gives an overview of the EIP model.

Section 2.3 provides a detailed description of the exported abstractions. Section 2.4 presents the design of

the essential algorithms underlying these abstractions. Section 2.5 highlights some of the implementation

details. Section 2.6 presents and analyzes performance evaluation results. Section 2.8 concludes the chapter.

2.2 Overview of EIP

EIP lets the programmer think in terms of objects in the external environment that are relevant to the appli-

cation. An environmental object may refer to a localized entity (such as a moving vehicle) or a distributed

region of the environment (e.g., a geographic area or an area specified by some sensory signature such as

high temperature). Typically, the system must keep some state or other information about each object. This

state is maintained in variables encapsulated within the object that can be accessed using object methods.

Hence, each object is given by (i) a sensory or geographic signature that defines its boundaries or location,

(ii) a set of data variables to be collected in its vicinity, and (iii) a set of methods that can be performed in

its context. The fact that the obtainment of values stored in the encapsulated variables and the execution of

local methods may need distributed computation (such as data aggregation) is hidden from the programmer.

The programmer may also define regular objects that are not linked to objects in the environment. We call

them function objects. Environmental objects and function objects seamlessly coexist in the programmers’

world and can invoke each other’s methods using a remote object invocation mechanism. An example of

such mapping is depicted in Figure 2.1.

The example in Figure 2.1 represents a surveillance application that monitors vehicle and person move-

12

�������
����	

�����	�	��

������
����	

�����������	�
�������
�����������
����������

� �������
�����	�����	���	��	���
������	�	�����������
�������

���������������	��

�����������	�
����� !
�����������
�	��"�#��

� �������
	����������������
�������������
������	�����	�����
�����	���������������
���� �	���������	�	��

���������������	��

������

�����������	������ !"#$%�&'�%
���������������	���($����	�)�

� �������
�������	������ ����� ����	����*)+������������	������
�������������,���	����-�*./01

��������������	���

������

Figure 2.1: One-to-one mapping between physical events and event objects

ment in a hostile territory (e.g., behind enemy lines). Each tracked vehicle or person is mapped into a

dynamically instantiated object with a unique label, denoted by an object ID in EIP. Desired event attributes

such as location can be returned for the object. This application also periodically monitors the health of the

13

network by collecting information on nodes that are alive and their remaining power. The network is thus

mapped into an object that maintains aggregate health statistics. Computation, communication and actuation

can be logically attached to these objects. Examples include reporting vehicle location by vehicle objects,

turning on microphones in their vicinity for tracking purposes, or sending out alarms if system health fails

to meet an acceptable threshold.

These primitives are supported by the EIP support library (EIPLib), which contains the detailed im-

plementations of primitive algorithms (such as sensor data processing and aggregation) and some other

high-level services (such as object maintenance and inter-object communication). A preprocessor (EIP

preprocessor) is introduced to translate EIP code into nesC. The relation among EIP, EIPLib and the EIP

preprocessor is depicted in Figure 2.2.

����������	
������������������
�����������

����
������������

����	������
�����
������������
	�����������

����	������
�����
������������
	������������

���������	����	�
�	����

���� !����	�"���
�������"���

�����	����
������	#��

$��#������
 �������

Figure 2.2: Relation of EIP, EIPLib & EIP preprocessor

Programmers design and implement environmental monitoring and tracking applications using a combi-

nation of EIP and nesC. Taking such implementations as input, the EIP preprocessor configures and restruc-

tures services and protocols in EIPLib to automatically produce as output the corresponding implementa-

tions in the nesC language. The resulting code can be compiled on TinyOS and uploaded to the motes. In the

following sections, we describe in more details the abstractions of EIP, the services and protocols provided

in EIPLib to support these abstractions, and the language translation carried out by the preprocessor.

14

2.3 EIP Syntax

When a programmer develops a monitoring application using EIP, the programmer creates a virtual world

with a set of logical objects, which attempts to reflect the real world with a set of physical objects. Each

object is defined by a sensory signature such that contiguous groups of nodes that satisfy that signature will

be given a unique object ID. These object IDs constitute a global name space available to the programmer.

Various data operations can then be performed on different locales defined by the corresponding object IDs.

These operations are typically coded as methods encapsulated in the corresponding objects. Observe that

EIP is only concerned with (i) grouping together nodes that satisfy programmer-defined sensory signatures,

(ii) giving global names to those groups, (iii) executing programmer-defined data operations within each

named group, and (iv) storing programmer-defined group state in variables encapsulated within the named

objects. The correspondence between the groups and meaningful aspects of the environment is the pro-

grammer’s responsibility. For example, there is inherent uncertainty regarding whether or not a motion and

magnetic signature defined by the programmer truly signals the presence of a vehicle. EIP is concerned only

with tracking the defined signature. The uncertainty in the interpretation of the signature must be handled

at a higher-level.

Syntactically, an EIP program consists of a list of object declarations such as the one shown in Figure 2.3.

Each declaration specifies a user-defined object type, an object condition statement, declaration of object

attributes, and the object methods.

��������	
��	

�����������������
��

�������������������������

������������������	�� 	�!����������
������������"����#
��������������������$%%&�

�������&����������������������'"���������

���������	�

���������
����

���������������

�������� �����

Figure 2.3: Object declaration of object VEHICLE

The object condition statement creates a mapping between the software object and the corresponding

environmental element. For example, it can specify the sensory signature of an external tracked entity, or

15

Object Context object condition
Object Attributes object attribute

attribute value
attribute degree
attribute freshness

Object Methods object main function
object function

Table 2.1: Keywords for basic EIP object declaration

a geographic area defining a physical region. An object is created for each contiguous region where the

object condition is true. A contiguous region is one that is not partitioned. In other words, there exists a path

between any two nodes in the region that has no intermediate hops outside the region. We call this region the

object context. A null object condition specifies that this object is not a representation of an environmental

element (e.g., a pure computational object), which is called a function object, as mentioned above.

Specifications of object contexts are followed by declarations of encapsulated data to store the state

of the object. Such data typically refers to aggregates of sensory measurements or node attributes over

the object context. They can be thought of as query results over the context. The declaration specifies

the method of aggregation together with confidence and freshness parameters. Finally, as in traditional

object-based systems, an object main function specifies the name of a default constructor method to be

automatically executed when the object is created. Other methods can be defined to be executed when

called. Object methods can access the attributes of their encapsulating object and perform remote method

invocations on other objects.

Objects are instantiated either statically or dynamically. The former is useful to represent fixed environ-

mental elements such as topological features of the terrain. The latter is useful, for example, to represent

dynamically arriving targets in the environment. As described later in this chapter, special care is taken to

ensure unique representation (i.e., that a single object is instantiated to refer to a single target, even though

the target causes multiple sensor hits).

EIP keywords for basic object declarations are listed in table 2.1. More detailed discussion on EIP

object contexts, attributes, and methods is presented in the following subsections respectively, using the

object declaration example depicted in Figure 2.3.

16

2.3.1 Defining the Object Context

In EIP, the object condition statement defines the object context, which is the continuous region where the

object condition is true. The EnviroSuite framework includes a library of sensor data processing algorithms

(called the condition library) designed by domain experts for purposes of defining object contexts. These

algorithms return (possibly) filtered or otherwise processed sensor outputs (e.g., temperature()), or

identify specific boolean environmental conditions (e.g., ferrous object() or vehicle sound()),

or return node attributes (e.g., position() or voltage()). A boolean expression of such conditions

can then define the region of object context. We call it the object condition statement. For example, the

following declaration defines the condition that represents the potential presence of a vehicle:

o b j e c t c o n d i t i o n = f e r r o u s o b j e c t () && v e h i c l e s o u n d () ;

In this example, ferrous object() is a function that returns true when the magnetometer output

indicates a significant disturbance to the earth magnetic field (consistent with the passage of a large ferrous

object), and vehicle sound() indicates microphone output of energy and pitch consistent with the

sound of a passing vehicle. Implementation of such functions is described in [31].

The idea is to compile a library of such conditions to abstract the specifics of sensor processing away

from the programmer in much the same way device drivers abstract the details of device I/O away from ap-

plication code. The separation between high-level application code and low-level sensor processing comes

at the cost of increased condition library size, since many different algorithms need to be written to identify

a sufficient range of useful conditions for each sensor type. This is not unlike the proliferation of device

drivers (one for each version of every possible device) in contemporary operating system installations. The

success of device drivers as a means for separating concerns leads one to believe that the condition library

will considerably simplify application development in sensor networks. An object executes when and where

the conditions defined in its condition statement become true.

Observe that conditions can also be parameterized. For example, the condition:

o b j e c t c o n d i t i o n = a l t i t u d e () > 500 && t e m p e r a t u r e () < 3 2 ;

defines the region (i.e., object context) that satisfies freezing temperatures on top of a local hill. The case of

object condition = NULL specifies a function object not associated with an environmental element

(region or physical entity).

17

2.3.2 Defining Object Attributes

The main purpose of objects invoked in response to environmental conditions such as those mentioned

above is usually to monitor attributes of environmental events, targets or regions. These attributes are mea-

surements collected and aggregated by nodes in the object context. Specification of attributes requires

specification of (i) the sensor measurements in question, and (ii) optionally, their method of aggregation.

Aggregation is always performed over all nodes within the object context. The sensor measurements to

be aggregated could be any environmental measurements, or node attribute measurements such as remain-

ing battery power or node position, for which a measurement function exists in the condition library de-

scribed above. A library, called the aggregation method library, is supplied, which lists a set of aggre-

gation methods such as AVERAGE, MAX and RANGE on attributes. For example, to define an aggregate

attribute, targetLocation, EIP programmers can simply specify the corresponding node measure-

ment, position(), from the condition library, and the name of the appropriate aggregation method,

say AVERAGE, from the aggregation method library, in an object attribute clause, such as:

o b j e c t a t t r i b u t e t a r g e t L o c a t i o n {

a t t r i b u t e v a l u e = AVERAGE(p o s i t i o n ()) ;

}

Within the declaration of an attribute, EIP allows the programmer to specify the minimum aggregation

degree, attribute degree. The aggregate attribute is valid only when it is the aggregation result from

at least as many nodes as attribute degree. This knob allows programmers to control the confidence

in retrieved information. The feature is especially useful in reducing false alarms. Another important

property of attributes is freshness. Most monitoring applications have temporal data validity constraints.

Usually, stale information is of no use. EIP allows programmers to define attribute freshness,

which determines how often aggregate attributes are to be sampled and updated by the mechanisms that

compute them in EIPLib.

2.3.3 Defining Object Methods

Sensor network applications can have more complex functionality than merely monitoring attributes. In

general, computation, communication or actuation could be encapsulated into the definition of an object.

18

EIP tries to make full use of existing general-purpose languages, such as nesC, and their existing modules,

such as those exported by TinyOS, by separating real object method implementation from object declaration.

In object declaration, EIP programmers are required to denote the name of functions implementing in a

general language the object methods. Such functions can use the EIP communication primitives (using

keyword ES IOC and ES IOCRESULT) and read values of encapsulated aggregate attributes of the object

(using keyword ES GETATTRIBUTE). The separation of object method declaration and object method

implementation retain independence of EIP abstractions from the underlying programming language.

There are two types of object methods that can be encapsulated within an object. Those object methods

specified in object main function statements are functions which will be automatically executed

upon the creation of the corresponding object. In contrast, object methods specified in object function

statements will be executed only when they are called by other objects. Assuming programmers choose nesC

as the general language to implement object methods, the following clause specifies that the implementation

of the main object method can be found in nesC command getLocationwithin interface vehicle.

o b j e c t m a i n f u n c t i o n = v e h i c l e . g e t L o c a t i o n ;

To facilitate communication and coordination beyond the scope of one object, we introduce a RPC-

like mechanism in EIP, called the Inter-Object Call (IOC). IOC is different from traditional RPC in several

aspects. First, both the caller and the callee of IOC can be migrating across nodes as the location of the

external object changes. Such migration is transparent to programmers, who simply specify the callees

instance name (to be stated below) and never worry about which physical nodes these objects are located

on. Second, IOC is asynchronous. Callers do not block themselves to wait for results. Instead, results

declare their arrivals by interrupts. The keyword for IOC is ES IOC and ES IOCRESULT. The former is

used for executing an IOC and declaring its handler and the latter for receiving IOC result interrupts. All

object methods defined in an object can be remotely called by any other objects by using its reference. The

underlying low-level communication protocol and routing extensions to support IOC can be found in [9].

2.3.4 Defining Static Object Instances and Global Variables

The above discussion covered declaration of object types. Objects that represent fixed environmental ele-

ments, such as topological features of the terrain, can be statically instantiated. These static instances can

be used, for example, as the destinations of IOCs that invoke object methods. Object types that do not have

19

static instances will be instantiated dynamically at run-time when their object conditions become true. They

would have to send their handle to any other objects that need to communicate with them.

EIP also allows programmers to define globally shared static variables in (static) object declarations and

to access defined static variables in object method implementation by using EIP keyword, ES READ and

ES WRITE.

The next section gives a complete tracking application implemented in EIP, including code samples for

static instances and static variables.

2.3.5 A Tracking and Monitoring Application in EIP

A typical tracking and monitoring application written in EIP (and some nesC) is shown in Figure 2.4. The

main function of this application is to estimate the current location of a tracked vehicle, update the estimates

every 500 ms and report the estimated location to the base station every 500 ms. The total number of vehicles

is counted. At the same time, voltage values for individual nodes are collected every 20 minutes to obtain

system health information. This application illustrates the main abstractions supported by the framework,

as well as the programming style.

The application declares three object types VEHICLE, NETWORK HEALTH and MONITOR which refer

to a dynamically instantiated object, a geographic region object and a function object, respectively (lines

1 - 20).

For object type VEHICLE, the object condition statement (line 2) specifies its sensory signature

as ferrous object() and vehicle sound(). The object attribute statements (lines 3 - 6)

define an aggregate attribute location for which the value is the average of positions of more at least 2

nodes, updated every 500 ms. The object main function statement (line 7) states that main object

method implementation can be found in interface vehicle that includes command getLocation.

For object type NETWORK HEALTH, the object condition statement (line 9) specifies its object

context as TRUE to include all nodes in the network. The object attribute statements (lines 10 - 12)

define an attribute energyLevel as the voltage values of individual nodes with an update rate 20 min-

utes. The object main function statement (line 13) defines that main object method is command

getEnergyLevel in interface networkHealth, which obtains an array of node IDs and voltage val-

ues. Line 14 creates a static instance networkHealthInstance for object type NETWORK HEALTH so

20

1. object VEHICLE {
2. object_condition = ferrous_object()&&vehicle_sound();
3. object_attribute location {
4. attribute_value = AVERAGE(position());
5. attribute_degree = 2;
6. attribute_freshness = 500ms; }
7. object_main_function = vehicle.getLocation; }

8. object NETWORK_HEALTH {
9. object_condition = TRUE;
10. object_attribute energyLevel {
11. attribute_value = voltage();
12. attribute_freshness = 20m; }
13. object_main_function = networkHealth.getEnergyLevel; }
14. static NETWORK_HEALTH networkHealthInstance;

15. object MONITOR {
16. object_condition = NULL;
17. object_main_function = monitor.start;
18. object_function = monitor.reportLocation;
19. static int vehicleNumber = 0; }
20. static MONITOR monitorInstance;

Object Declarations

21. Triple_float_t *currentLocation;

22. command result_t vehicle.getLocation() {
23. call ES_WRITE(monitorInstance.vehicleNumber,
 monitorInstance.vehicleNumber +1);
24. return call Timer.start(TIMER_REPEAT, 500); }

25. event result_t Timer.fired() {
26. currentLocation = call ES_GETATTRIBUTE(location);
27. ES_IOC report = call monitorInstance.monitor.
 reportLocation(currentLocation);
28. return SUCCESS; }

29. ES_IOCRESULT report(bool result) {
 //deal with remote call results here
30. return; }

31. uint16_t currentEnergyLevels[MAX_NODE_NUMBER];

32. command result_t networkHealth.getEnergyLevel() {
33. return call Timer.start(TIMER_REPEAT, 1200000); }

34. event result_t Timer.fired() {
35. currentEnergyLevels = call ES_ATTRIBUTE(energyLevel);
 //deal with obtained node IDs and voltage values here
36. return SUCCESS; }

37. command result_t monitor.start() {
38. return SUCCESS; }

39. command bool monitor.reportLocation(Triple_float_t
 Location) {
 //deal with received target location here
40. return TRUE; }

object method implementation of object VEHICLE

Implementations of Object Methods

object method implementation of object NETWORK_HEALTH

object method implementation of object MONITOR

Figure 2.4: An EIP application

21

that it will be instantiated statically in system initialization and IOCs can be made through this reference.

For object type MONITOR, the object condition statement (line 16) specifies NULL as the object

context since the object is not mapped to any environmental element. The object main function

statement (line 17) specifies the command start in interface monitor as the main object method. Fi-

nally, the object function statement (line 18) defines that command reportLocation in interface

monitor can be remotely called by any other objects by using IOC and its static instance monitorIn-

stance (line 20). Line 19 defines a static variable vehicleNumberwhich is globally accessible by any

object through ES READ and ES WRITE.

In the object method implementation of object VEHICLE, it is defined that static variable vehicle-

Number is increased by one whenever a new instance of VEHICLE is created (line 23). For each instance,

every 500 ms (line 24) the current value of aggregate attribute location is fetched (line 26) and sent

to the base station by using ES IOC (line 27) to remotely call method monitor.reportLocation

located in static instance monitorInstance. In line 29, ES IOCRESULT keyword is used to receive

IOC interrupts of ES IOC report. The interrupt handler name must be the same as ES IOC which is

report and the parameters should be of the same type as the returned value of remote called method

reportLocationwhich is bool.

In the object method implementation of object NETWORK HEALTH, it is defined that every 20 m (line

33) the current values of individual voltages are collected (line 35) and analyzed (not included) to monitor

system health.

The object method implementation of object MONITOR includes the implementation of its constructor

method monitor.start (lines 37 - 38) and its exported method monitor.reportLocation (lines

39 - 40).

This application is used as a running example throughout this chapter. It is compiled and evaluated on

an actual sensor network as well as on TOSSIM.

2.4 Object Maintenance Algorithms

To support EIP abstractions, the main question is how physical state, events, and activities can be uniquely

and identically mapped into objects despite of distribution and possible mobility in the environment. This

section gives extensive answers.

22

While all EIP objects have the same declaration syntax and programming interface, underneath the com-

mon API, EIP supports three different implementations of objects, namely, event objects (created for mobile

events defined as those that dynamically change their geographical locations), region objects (mapped to

static or slowly moving regions), and function objects (not mapped to an environmental element).

To alleviate the programmers burden, the EnviroSuite preprocessor can automatically determine the best

category for each object based on the keywords used in the object condition statement. Conditions

defined in terms of volatile measurements (such as motion sensing) typically give rise to dynamic contexts

with rapidly changing node membership, which are more appropriately implemented as event objects. In

contrast, conditions defined in terms of slowly changing measurements (such as temperature) result in more

stable groups that can be implemented as region objects. Taking sensor type into account therefore allows

the preprocessor to make intelligent guesses about the most appropriate group management protocols to

use for object implementation. The programmer is allowed (although not required) to annotate the object

as event or region object, overriding the intelligent guess of the preprocessor. An incorrect annotation,

however, will result in impaired performance. Function objects are similar to region objects, except that

they do not interact with the physical environment. In the following, we describe the three different object

maintenance protocols, which determine how and when to form the object context, what group management

protocols are involved, where to execute object code, and how to compute object attributes.

2.4.1 Event Object Maintenance

Typically, event objects are created dynamically in response to environmental events that may be mobile and

usually fast moving. (A compile-time warning is generated if a static instance is declared for such objects.)

In the current implementation and in the discussion below, only localized events are supported. By a local-

ized event, we mean those with a geographically limited sensory signature, such as moving vehicles. We

call such localized events, targets. Supporting events with a large signature that move quickly is challenging

because of the high overhead. However, we do support slowly moving large-signature events as described

in region objects.

The core component of our event object implementation is the multi-target group management protocol

(MGMP). When the condition statement of an event object evaluates to true in a new contiguous region,

MGMP creates a new globally unique address, object ID, and associates it with the geographically contigu-

23

ous group of sensor nodes which sense the environmental event. The movement of the contiguous region

associated with the event results in dynamic changes to group membership. The protocol ensures that the

same object ID is maintained for the event object despite mobility and membership changes, so that it can

always be addressed via its uniquely assigned object ID. Dynamically created event objects are aware of

their ID and must explicitly send it to other objects if they want to be contacted. Observe that the internal

details of MGMP are transparent to the programmer. From the perspective of application code, the only vis-

ible effect of MGMP is the dynamic creation and deletion of object instances (in response to environmental

conditions). These instances encapsulate aggregate object attributes as defined by the programmer.

Internally, MGMP elects a leader in each object context to maintain a persistent and unique object

ID, collects raw data from group members in the context, performs aggregation functions on the leader to

compute object attributes, and coordinates computation and actuation tasks as defined in object methods.

In the following, we discuss how MGMP maintains object uniqueness (one-to-one mapping of external

events to logical objects) and object identity (immutability of the mapping function) for fast moving targets.

State Machine Representation

MGMP treats each node as a state machine. The sensor network around an environmental event might have

the state distribution shown in Figure 2.5. It should be noted that although we use circles to indicate sensing

areas, we do not assume sensing areas are circular.

Object Resolution

Sensing Range

Nulls

Event
Leader

Members

Followers

Figure 2.5: States of nodes around an environmental event

All nodes sensing an event constitute the member set. A single leader is elected by MGMP among the

member set. The leader sends periodic heartbeats to nodes within half an object resolution (default

half is two times the sensing range) away from itself to claim its leadership and to inform them of the

24

existence of the event. Note that the sensing range can be statically derived from the sensor characteristics,

and, if the event is detected by a combination of multiple sensors, the shortest one is used. Heartbeats are

disseminated through limited flooding, and later on, members communicate to the leader through reverse

paths of flooding. The period of these messages, called the heartbeat period, is one of the key parameters

of MGMP. As we show in the evaluation section, this period can be chosen automatically from a high-level

specification of the maximum abject creation latency.

All nodes that cannot sense the event themselves but know of its existence through received nearby

leader heartbeats are said to be in the follower state. All MGMP control messages are transmitted to nodes

within half object resolution away from senders. Thus, half the object resolution must be

no less than two times the sensing range, since nodes within the same sensing area must communicate with

each other to agree on a single leader. The minimal tolerable object resolution is therefore four times the

sensing range.

At any point of time, a node stays at a single state from a set of states Ss:

Ss = {Null, Follower,Member,NewCandidate, LeaderCandidate,

Leader,ResigningLeader}

To make MGMP suitable for sensor devices with limited computation and storage ability, we allow each

node except leaders to maintain only one object/object ID to reduce algorithm complexity both in time and

space. For instance, a node cannot act as member of two different objects/object IDs. Figure 2.6 depicts

the general state machine algorithm of MGMP without providing details of associated objects/object IDs.

Maintaining Object Uniqueness

Object uniqueness can be compromised in several cases. The first is at the time when a new event causes

the creation of a new object. Multiple object IDs for one event may be created since there is no agreement

on a single leader initially. To solve the problem we employ a delayed object creation mechanism, which

delays the creation of a new object by an amount called the candidate period, until we are of high confidence

that the group of nodes has elected a single leader node. In this mechanism, null nodes, when sensing

an event, transit their states to newCandidate and begin to send periodic CANDIDATE messages at the

25

New-
Candidate

Resigning-
Leader

Leader-
Candidate

LeaderMember

Follower

Null

Win in Candidate Election

 Win in
 Leader Election

leave()

Resigning Timeout

 Object Timeout

join()
 Lose in
 Leader Election

 Lose in
 Candidate Election

 Receive RESIGN
message or notice
 leader failure

Lose in Leader Competition

Join()

Leave()

Figure 2.6: State machine in MGMP

heartbeat period, containing sequence numbers and their own node ID. To prolong system lifetime, instead

of using the fixed heartbeat period, we can enhance energy balancing by using a dynamic period inversely

proportional to remainder energy of nodes. Hence, nodes with a higher energy will become candidates first

and will have a higher chance of being elected. In the case of re-transmissions, candidates with a higher

energy can back-off less, hence having a higher chance of successfully claiming leadership. The node with

the smaller sequence number or, if sequence numbers are equal, with the bigger node ID is forced to quit

from the newCandidate state and transition to state member. This procedure is called candidate elec-

tion, which finally results in only one node at the newCandidate state. After a given delay (namely, the

candidate period) this node transits to the leaderCandidate state. The candidate period is measured

in the number of periodic CANDIDATE messages sent before one newCandidate node can transit to

the leaderCandidate state. The candidate election algorithm ensures a single leaderCandidate

in the absence of message loss. Even if messages can be lost, by increasing the candidate delay, a sin-

gle leaderCandidate can be generally guaranteed since the possibility of consecutive message loss is

small. In the evaluation section, we determine a good choice for the candidate delay, such that the program-

mer need not be involved in the decision.

The next problem that compromises uniqueness occurs during leader re-election. When tracked events

move out of the current leaders sensing ranges, these leaders must handover their leadership to other nodes,

26

which is called object migration. Object migration, especially frequent object migration caused by fast

moving events, challenges the maintenance of object uniqueness. MGMP solves this problem by introducing

the follower state. Through heartbeats from leaders, follower nodes know in advance the event

objects associated with incoming events. When these nodes come to sense these events, they join the

existing objects as member instead of creating spurious objects. It was shown in [2] that this mechanism is

successful in maintaining object uniqueness as long as object velocity is below some maximum limit.

The third case that challenges object uniqueness is when multiple events of same signatures become

closer than defined object resolution, or even cross each others path. To simplify the situation, we assume

that event crossing does not coincide with event disappearance. In the previous cases without event crossing,

the delayed object creation mechanism and the introduction of the follower set ensures object unique-

ness. Here, we need only to prevent accidental object termination during event crossing, so that object

uniqueness is maintained. The leadership handoff mechanism used in MGMP prevents object termination

as long as the object is maintained by one leader node and at least one member node. Thus, the key in

maintaining object uniqueness during event crossing is to balance member nodes between merging objects

to assign at least one member for each object, which is detailed below.

To show the member balancing mechanism, Figure 2.7 depicts part of the state machine, which describes

how member nodes choose their corresponding objects. Memberx denotes member state with object ID

x. A simple way to balance Member nodes is to divide member nodes based on leader position. When a

member node receives heartbeats from multiple objects, it chooses to join the one with the nearest leader

since there is a higher possibility that this node is sensing the same event as that leader. However, such

division is not accurate since leader positions are not identical to event locations. It is also possible that a

member node is actually sensing the same event as the farther leader. For this reason, a new state called

freeMember is introduced into the state machine. The continuous reception of n continuous heartbeats

from object 2 can transit member1 to freeMember and then to member2 even if the last heartbeat

was from a closer leader (object 1). The introduction of freeMember allows wrong choices to be

corrected, thus ensuring correctness of member balancing. The member balancing mechanism prevents

object termination successfully, therefore enhancing object uniqueness in the third case.

27

Free-
Member

Member1

 Receive a
heartbeat from object 2

Notice that object 1 leader is near
than object 2 leader

Receive n heartbeats
from objects other
than object 1

Member2

Figure 2.7: Member balancing mechanism

Maintaining Object Identity

While object uniqueness refers to maintaining a single object representation for each external target, main-

taining object identity refers to keeping the correct association between external targets and their repre-

senting objects. In the case where events with same signatures are closer than one object resolution, an

extra mechanism is required to maintain identity since member balancing only ensures object uniqueness.

We make the default extra assumption that targets tend not to change direction abruptly. This assumption,

for example, allows disambiguation of crossing targets based on their path. The default assumption can be

customized by programmers if needed.

EIP keeps a record of the recent trajectory of each target (storing it within its representing object).

To reduce system overhead, instead of using position information of group members to estimate target

locations, we take leaders positions as an approximation. When transferring leadership, each leader also

transfers its maintained history of the last n−1 old leaders positions plus its own. When two events E1

and E2 cross each others path, each object leader is able to receive the heartbeat from the other. Each

object leader marks itself by the concatenation of the old object ID (O1) and the new object ID (O2) as its

temporary object ID (O1O2). The two leaders exchange their event trajectories such that each remembers

both. After separation, a disambiguation algorithm is used, based on recorded history and current locations

to chose the ID assignment most consistent the default (straight path) assumption.

2.4.2 Region and Function Object Maintenance

Region object maintenance differs from event object maintenance since region objects are associated with a

relatively fixed set of nodes. What we implement for region object maintenance is a spanning-tree based in-

28

formation collection structure described in [37]. Like event objects, the details of region object maintenance

are transparent to the programmer. The application code is only aware of the object and its encapsulated

aggregate attributes.

When a region object is initialized (statically at system deployment time or dynamically, depending on

whether a static instance is declared), a default leader node disseminates tree construction requests to the

object context with a running hop-count initialized to zero. Requests are flooded outward with hop-count

incremented at every intermediate hop. After receiving tree construction requests, nodes establish multiple

reverse paths towards the sending nodes. As a result, a multi-parent diffusion tree is constructed with the

leader residing at the root. Spanning tree construction stops when nodes are reached that do not satisfy the

region object condition statement. Such nodes become the outer boundary of the tree and serve a role similar

to followers in event objects. If these nodes ever satisfy the condition statement they become members and

recruit other followers for which the statement is not satisfied. Also, if tree leaves cease to satisfy the object

condition, they truncate themselves from the tree and become outer boundary nodes. Hence, membership

of the tree can change slowly over time. Measurements needed to compute object attributes can flow up

the tree from members towards the leader and get aggregated along intermediate hops. We do not provide

details of aggregation algorithms here, since similar mechanisms have been described in previous literature

such as directed diffusion [44] and TAG [64]. Our contribution lies in the uniform programming abstractions

presented on top of such mechanisms.

One aspect where our region object maintenance algorithm differs from previous work is that we auto-

matically migrate the root of the aggregation tree to the location that minimizes communication and aggre-

gation overhead, as well as to a higher energy node, periodically escaping energy depleted regions. This load

balancing flexibility is made possible in our programming model since we implement the program inside

the network, alleviating external bottlenecks. After each migration, a (possibly partial) tree reconstruction

is done to form a new spanning-tree rooted in the new host node.

The introduction of region objects enables EIP to support not only tracking functions, but also region

monitoring functions such as contour finding and system health monitoring, thus making EIP applicable to

a broader set of applications.

Function objects are quite similar to region objects except that there are no object contexts and object

attributes in function objects. There is no need for object context maintenance and object attribute collection

29

since function objects do not interact directly with the physical environment. The leader of a function

object always migrates to the gravity center of all other objects which have recently communicated with the

function object through IOC or global variable access.

Like in event objects, leaders in region objects and function objects are responsible for object method

execution.

2.5 Implementation

In this section, we take nesC, the most popular language in sensor network area, as the general language that

implements EIP. EIP object declarations (defined by programmers) and object methods (assumed to be writ-

ten in nesC by programmers) are to be automatically translated by the EIP preprocessor into a whole nesC

application by selecting and integrating primitive algorithms provided in EIPLib. This section describes

how we design EIPLib to simplify the work of the preprocessor and how we implement the preprocessor

with the help of EIPLib. Although the implementation details are specific to nesC, most design decisions

we make in this section are portable to other languages.

All nesC applications consist of a set of components. A component provides and uses interfaces, as

defined in the components provides and uses clauses. An interface describes the parameters of a set of

commands and events. There are two types of components: modules and configurations. Modules provide

application code, implementing one or more interfaces. Configurations connect interfaces used by compo-

nents to interfaces provided by other components. The action of connecting component interfaces is called

component wiring. It is the main mechanism for building large applications from smaller modules. Wiring

is done at compile time, and offers no run-time overhead. We use wiring extensively to connect application

components to components implemented by our language libraries.

2.5.1 EIP Support Library (EIPLib)

EIPLib contains a series of primitive algorithms to be used by the preprocessor to build comprehensive

applications in nesC, currently including: sensor data processing algorithms (condition library), aggrega-

tion algorithms (aggregate method library), object maintenance algorithms and inter-object communication

protocols. It also contains higher level services as potential consumers of primitive algorithms, includ-

ing: object context determination components, object attribute collection components and object method

30

execution components.

Each condition such as temperature() and vehicle sound() is associated with a sensor data

processing algorithm in EIPLib, which returns processed sensor outputs either as a meaningful value or a

boolean either immediately or in a phase-splitting way. However, the association and ways of accessing are

hidden in the preprocessor and programmers are only aware of available condition names and their purposes.

Also, each aggregation method such as AVERAGE is associated with an aggregation algorithm which imple-

ments the method. In the current version, object maintenance algorithms contain separate implementations

for three object categories: event objects, region objects and function objects. As stated in the beginning of

Section 2.4, the object categories are transparent to programmers and are determined by the preprocessor

based on the object condition statement. (Advanced APIs are provided for sophisticated program-

mers to override default rules.) Inter-object communication protocols provide supports for maintaining

links between dynamic objects, which is required to implement IOCs and global variable access. All these

primitive algorithms are implemented as nesC components with standard interfaces.

Object context determination components determine whether the current node should join some object

context based on object declarations. Object attribute collection components collect raw object attributes

from member nodes, apply aggregation methods to form aggregate attributes in leader nodes, and support

access to aggregate attributes. Object method execution components are responsible for executing object

methods in leader nodes whenever corresponding objects exist. These higher level components are also

implemented in the form of nesC components, yet differ from usual nesC components in many ways, in-

cluding:

• They are not pre-wired since object declarations and object method implementations are not available

until compile time. Wiring is left for the preprocessor so that primitive algorithm components may be

freely selected and wired into higher level components to construct any EIP applications defined by

programmers.

• They contain special clauses that are recognizable only by the preprocessor. In many cases, such

clauses are necessary to guide language translation. For example, the configuration of object context

determination components may include a special clause ({ ES COMPONENTS}) which indicates the

position where necessary sensor data processing components are to be listed by the preprocessor.

These clauses greatly simplify the implementation of the preprocessor by giving some hints.

31

The hierarchical structure between primitive algorithms and high level components is also critical. In

this structure, various configurations can be achieved by changing only the high level components while

other components can remain unchanged, thus reducing the complexity of the preprocessor.

2.5.2 EIP Preprocessor

The EIP preprocessor is essentially a translator that takes EIP code as input and outputs desired environmen-

tal monitoring applications in nesC, which then can be compiled by a standard nesC compiler and uploaded

to the motes. It is implemented in Perl, a language with powerful built-in support for text processing.

Current implementation contains 1533 lines.

EIP application code consists of two parts, object declarations and object method implementations. The

detailed translation of both parts is illustrated in Figure 2.8.

�����������������������������������
���	
��	�

���	���	���
����	
��	�

���
��
������
���	�	�	��

���
������	�����
���	�	�	��

���
��� �����
���	�	�	��

���������	�����
���	�	�	��

����	
�	�����
��
���	�	�	��

���
��� �����
	����� �����	��

���
��
������
������	���	��

�������

���
������	�����

���
�	��

�������

���
��� �����
���
��	��

�������

���
��� �����
	����������	��

�������

�����������
��
���	��

�������

��������	��

�������

���
��
��	������
��

�������

	��������
��

����	
��	��

�������

Figure 2.8: Translate an EIP application into a nesC application

The preprocessor analyzes object declarations line by line, making corresponding configurations and

integrations. As depicted in Figure 2.8, for object context definitions, it identifies all conditions, locates the

corresponding sensor data processing components by searching condition library, which lists all condition

names and the corresponding implementations, wires them into object context determination components.

A feature of the preprocessor is that it automatically determines the best category for each object based on

32

these conditions and integrates the corresponding object maintenance algorithms.

For object attribute definitions, besides identifying conditions and wiring corresponding components

into object attribute collection modules, the preprocessor also wires aggregation components. Additional

work includes setting attribute refreshing timers based on attribute freshness definition and val-

idating resulted aggregate attribute based on attribute degree definition. Based on object method

definitions, the preprocessor wires the implementations into object method execution components. The

preprocessor also copies global variable definitions into object method execution components and enables

remote access to global variables by implementing local read and write commands, which respond to re-

ceived remote calls. For each static object instance, the preprocessor randomly selects a node as the default

leader, which initially executes the main object function, and migrate the leader to a more power-efficient

position later.

The preprocessor also filters object method implementations for keywords, translating ES GETATTRI-

BUTE into command calls to object attribute collection components and ES IOC, ES IOCRESULT, ES -

READ and ES WRITE into command calls and event handlers of inter-object communication components.

As seen above, the EIP preprocessor successfully bridges between low-level implementations in EIPLib

and high-level abstractions exported by EIP by making several intelligent steps that are transparent to the

programmers: selecting sensor data processing algorithms; automatically identifying object categories and

applying corresponding maintenance algorithms; and automatically collecting and aggregating attributes

from multiple nodes.

Observe that, one clause in an EIP application may result in multiple changes in higher level compo-

nents, and one higher level component from EIPLib may be changed multiple times by multiple EIP clauses,

which means the preprocessor may need to change the same file in EIPLib repeatedly. Considering such

phenomenon, instead of creating corresponding new code line by line, we store the resulting changes in a

hash of hashes, so that already changed code can be further changed easily. The hash of hashes stores, for

each file and each special clause such as { ET COMPONENTS}, their corresponding nesC code. Only after

analyzing the entire EIP application, the preprocessor changes files from EIPLib based on the resulted hash

of hashes. The storage space needed by the hash of hashes may be very large. However, we consider it

acceptable since the preprocessor runs on a PC and therefore does not have severe storage constraints.

33

2.6 Performance Evaluation

This section provides a detailed quantitative analysis of EIP. We begin by evaluating the performance of a

series of micro-benchmarks on simulators, which analyze the primary features of EIP: object uniqueness

and identity maintenance, and inter-object communication support. The first set of benchmarks tests object

uniqueness and identity management during object creation, object migration and object crossing (which

is the most challenging case). The second set of benchmarks tests inter-object communication. We then

move to real platforms to evaluate the performance of a surveillance system built using the EIP framework.

Both tracking performance and monitoring performance are evaluated to demonstrate event objects and

region objects. The evaluated system is the one described in Section 2.3. Its abbreviated code is given in

Figure 2.4.

2.6.1 Performance of Object Operations

To evaluate the performance of primitive object operations, we choose TOSSIM since EIP produces real

nesC code for motes and TOSSIM can emulate the execution of the real code on the motes without the need

for deployment. The radio model simulated in TOSSIM is almost identical to the 40 Kbit RFM-based stack

on the motes. To control per-hop message loss at the packet level we added an external program component.

We focus on fast-moving objects (event objects), since their real-time maintenance offers the most challenge

to the EIP infrastructure.

In our emulated experiments, we set the sensing range to 100 feet (approximately 30 meters). Current

sensor devices such as the micropower impulse radar [5] can detect objects up to 50 meters away. Radio

range is set to 300 feet. Current sensor network products such as the Mica2 and Mica2Dot motes [15] have a

maximum outdoor radio range of 500 feet to 1000 feet under ideal conditions when sending with full power.

Sensor nodes are placed on a grid 100 feet apart.

Experiment 1 - Object Creation

EIP associates a logical object with each physical event. It is critical that such association should be done

as soon as possible to reduce the inconsistency between the physical world and the logical world exported

by EIP. In the first experiment, we measure object creation delay, defined as the difference between the time

the first node senses an external stimulus and the time an object ID is created for the corresponding object.

34

The external entity tracked, in this case, is a vehicle. The tracking code is given in Figure 2.4.

The delay of object creation is decided by both the candidate period, which indicates how many candi-

date messages must be sent before creating objects, and the heartbeat period, which determines candidate

message intervals. In the following we show the experimental data that allow these parameters to be se-

lected automatically by EIP from a high-level specification of the maximum tolerable object creation delay.

Figure 2.9 plots object creation delay versus heartbeat period for different candidate periods.

0

5

10

15

20

0.125 0.25 0.5 1 2 3 4 5 6 7 8

Heartbeat Period (sec)

O
bje

ct
 C

re
at

ion
 D

ela
y

(s
ec

)

Candidate Period=1
Candidate Period=2
Candidate Period=3
Candidate Period=4

Figure 2.9: Object creation delay for varied heartbeat period and candidate period

From Figure 2.9 we observe that object creation delay increases with the increase in both the candidate

period and the heartbeat period. The plots show only those points for which a non-zero number of objects are

created. A candidate period of 1 performs best in terms of object creation delay. However, it is undesirable

since it causes spurious objects at higher heartbeat periods as stated below.

The candidate period and the heartbeat period affect not only object creation delays but also object

uniqueness. Figure 2.10 shows the impact of the candidate period and the heartbeat period on object unique-

ness by plotting the average number of created objects. Ideally, only one object should be created per

experiment, since the only target is deployed.

Figure 2.10 shows that with shorter heartbeat periods, candidate periods 2, 3 and 4 perform similarly.

However, longer candidate periods result in a longer object creation delay, so that when the heartbeat period

exceeds a certain threshold, objects cannot be formed in time before the vehicle moves out of their sensing

ranges. Figure 2.10 shows that for candidate period 4, it is difficult to create objects after the heartbeat

period exceeds 2 seconds, while for candidate period of 2, objects can be created up to a heartbeat period

around 5 seconds. We therefore choose 2 as the default candidate period in EIP. A longer candidate period

should be chosen in the presence of message loss.

35

0

1

2

3

4

0.125 0.25 0.5 1 2 3 4 5 6 7 8

Heartbeat Period (sec)

#O
bje

ct
s

Candidate Period=1
Candidate Period=2
Candidate Period=3
Candidate Period=4

Figure 2.10: Number of objects created for varied heartbeat period and candidate period

Given the default candidate period (of 2), the object creation delay can be chosen anywhere from a

small fraction of a second to multiple seconds depending on the choice of heartbeat period, as shown in

Figure 2.9. The programmer should therefore specify a maximum tolerable value of object creation delay.

This specification stems easily from application domain knowledge. For example, in a vehicle tracking

application, a delay of 1-2 seconds between vehicle entry into the field and the creation of a corresponding

event object is quite tolerable. EIP then uses Figure 2.9 to compute the corresponding heartbeat period.

Observe that a smaller heartbeat period implies more communication, more energy consumption, and con-

sequently a shorter lifetime. Hence, a trade-off exists between system responsiveness (object creation delay)

and lifetime.

Experiment 2 - Object Migration

The core part of EIP is to uniquely and identically map physical events to logical objects. In this experiment,

we reveal how fast object migration could be performed without breaking object uniqueness and identity.

Object migration is caused by the movement of associated events. Hence, from the perspective of applica-

tions, the velocity limit of object migration is more meaningfully expressed by the maximum tolerable event

velocity. It is defined as the maximum velocity of events, which can be uniquely and identically mapped to

logical objects. Observe that for a given maximum object migration speed (in hops per second), the corre-

sponding maximum event velocity depends on the radio range (distance per hop). The data presented below

is for the range parameters mentioned in Section 2.6.

We explore several factors, which affect maximum tolerable event velocity, including heartbeat period

36

and object resolution (in multiples of sensing range). As is shown in Figure 2.11, the maximum tolerable

velocity increases when the heartbeat period decreases, since a shorter heartbeat period results in a shorter

leader re-election delay and thus a higher trackable velocity. This trend is reversed when heartbeat period

becomes short enough to cause message loss or congestion as shown in Figure 2.11 (for a half object

resolution of 2 sensing ranges) when heartbeat period falls below 0.5 s. Increasing object resolution has

positive impact on the maximum tolerable velocity since a bigger set of followers allows the vehicle to

go farther without causing new object creation. Similar results were reported in [2]. We stress, however,

that results reported in [2] were obtained from algorithm simulation in GloMoSim. In contrast, results

presented in this chapter test the performance of actual nesC code generated by our EIP preprocessor for the

application in Figure 2.4.

0

50

100

150

200

250

300

0.125 0.25 0.5 1 2 3 4 5

Heartbeat Period (sec)

M
ax

im
um

 T
ole

ra
ble

 E
ve

nt
 V

elo
cit

y
(m

ph
) Half Object Resolution=2

Half Object Resolution=3
Half Object Resolution=4

Figure 2.11: Maximum tolerable event velocity for varied heartbeat period and object resolution

Next, we evaluate how robust the object uniqueness guarantee is against message loss during object

migration. TOSSIM does not provide message loss models at the packet level. Thus, we add a simple

external program to control per-hop packet loss ratio. Figure 2.12 depicts the average number of objects

formed per run as a function of target velocity in the presence of different degrees of packet loss. As before,

the ideal number should be 1 object per run.

From Figure 2.12, we see that EnvoroSuite can completely tolerate a 10% loss ratio since we get similar

results to those with 0% loss ratio. EIP can also tolerate a loss ratio of up to 30% when event velocity

does not exceed 68 mph. Larger velocities or loss percentages, however, cause spurious objects to emerge.

Observe that at a very high event velocity, the number of formed objects decreases again, which might seem

like an anomaly. The explanation lies in that very high speed objects do not have enough time to form in the

37

0

1

2

3

4

17 34 51 68 85 102 119 136

Event Velocity (mph)

#O
bje

ct
s

0% 10%
20% 30%
40% 50%

Figure 2.12: Number of objects created for varied event velocity and per-hop packet loss ratio

first place.

Experiment 3 - Object Crossing Performance

Next, we explore the efficacy of EIP in maintaining object uniqueness and identity when two objects of

the same sensory signature (i.e., fulfill the same object condition statement) cross paths. In this

experiment, two vehicles are moving straight along crossing diagonals with the same speed of 24 mph. The

diagonals cross in the center of the field. However, these objects may not start at the same time, and hence

may not reach the crossing point together. We vary their relative start times to vary the shortest distance

reached between the two objects at the crossing point (which we call, the crossing distance). We show the

percentage of runs where object uniqueness and identity are maintained as a function of crossing distance.

As shown in Figure 2.13, object uniqueness and identity are ensured in most cases even when the two targets

cross the center point at the same time (crossing distance is 0).

0

0.2

0.4

0.6

0.8

1

0 141 283 424 566 707

Cross ing Distance (ft)

Pe
rc

en
ta

ge

Object Uniqueness
Object Identity

Figure 2.13: Achieved object uniqueness (white) and identity (shaded) for varied crossing distance

Each bar in Figure 2.13 represents the average of more than 10 runs. The tracked trajectory for one run

with crossing distance 0 is shown in Figure 2.14. After passing the center point, although object identity is

38

lost for a while, the system successfully recovers from the confused state after accumulating enough history.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
X

Y

Vehicle 1 Path
Object 1 Track
Vehicle 2 Path
Object 2 Track
Unknow n Track

Figure 2.14: Reported target tracks with crossing distance 0

The results prove the relative success of our adopted direction disambiguation algorithm. It also shows

that defensive programming is advisable. While we elevate the level of abstraction to that of objects repre-

senting environmental elements, the programmer should expect such objects to be occasionally confused.

The application code may chose to implement its own disambiguation on top of EIP object IDs.

Experiment 4 - Inter-object Communication

Programming for communication and coordination between objects becomes very simple by using IOC and

global variables. In this experiment, we evaluate a vehicle counting application, which counts the total

number of vehicles in a global variable, to analyze the performance of inter-object communication. As seen

in the code from Figure 2.4, whenever a vehicle appears, the global variable vehicleNumber is increased

by one through an ES WRITE call from the corresponding vehicle object.

In this scenario, four vehicles enter the coverage field one by one, maintaining the same speed of 35

mph and thus the same distance. The first one goes straight from (-1, 1) to (16, 1); the second from (-5, 5) to

(16, 5); the third from (-9, 9) to (16, 9); the last from (-13, 13) to (16, 13).

Figure 2.15 plots the counter values as a function of time in this application. Input represents real

numbers of vehicles. Output represents the counting results achieved by the application. Delay between the

input and output curves represent the end-to-end performance of remote object invocation. These delays

reflect the sum of object creation delay and inter-object communication delay.

39

0

1

2

3

4

0 5 10 15 20 25 30

Time (sec)
#O

bje
ct

s

Input
Output

Figure 2.15: Vehicle counting application results

Service Name Code Size (KB) RAM Usage (B)
Sensing Data Processing 10.8 18
Event Object Maintenance 25.6 75
Region and Function Object Maintenance 28.5 44
Inter-object Communication 15.0 45
Other Service (Aggregation, etc.) 25.1 90
Object Method Components 6.0 47

Table 2.2: Code size and RAM usage of different services

2.6.2 A Surveillance System

Finally, we test the complete surveillance application written in EIP, described in Section 2.3. This surveil-

lance system tracks all in-field vehicles, counts their number and monitors system health at the same time.

The EIP code of this application can be translated by the EIP preprocessor into a nesC application. Emitted

nesC code size and RAM usage of different services in the translated application is listed in Table 2.2.

Table 2.3 compares EIP code and emitted nesC code of the same application in terms of module number,

code length and size. The code size of the nesC version gives a good estimation of required programming

effort if the whole system is to be programmed directly in nesC. As is seen from Table 2.3, the code size of

the nesC version is more than ten times of that of the EIP version. Thus, the estimated programming effort

with EIP is roughly an order of magnitude less. The result reflects the efficiency of EIP compared with

node-based languages, such as nesC.

Module Number Code Length (lines) Code Size (KB)
EIP Version 3 218 5.9
nesC Version 12 3692 111.0

Table 2.3: Code comparison of EIP version and nesC version

40

Tracking Performance

In this experiment, we evaluate the efficiency of EIP in terms of tracking performance and power consump-

tion by comparing it to a simple baseline. This baseline is to plot the trajectory of a tracked target at a

base station located in (0, 0). In the EIP implementation, members, who are sensing the target, report to

the current leader their own positions every 0.5 seconds. The leader aggregates these positions and reports

the average to the base station twice per second. The baseline has a simple implementation of the same

application. Each node that senses the target sends its own position to the base station every 0.5 seconds.

The base station averages received positions twice per second. In both the EIP version and the baseline, a

minimum aggregation degree of 2 is enforced to reduce false alarms.

The actual testbed for this experiment consists 40 Mica2 motes laid out in a 10×4 grid with integer

(x, y) coordinates ranging from (0, 0) to (9, 3). The goal is to track a rectangular object, 1 square grid in

size, moving straight along the middle of the longer axis, with a speed of 0.5 grid per second. This testbed

does not take into account errors in localization and time synchronization services. To ensure enough

tracking accuracy for real applications, we require that localization errors not exceed half grid and time

synchronization errors be kept in the order of ms. Many existent techniques support such precision.

Figure 2.16 compares the target trajectory obtained by the EIP application to the one resulting from the

baseline. Some tracking error is seen because our sensor devices have no notion of proximity to the target.

As shown in Figure 2.16, the EIP version has a smaller average tracking error compared with the baseline

although it introduces a little more variability. The underlying reason is that in the baseline, position reports

from nodes may not be in order when they arrive at the base station, since they may have traversed multiple

hops, which results in more inaccuracy.

Figure 2.17 depicts the number of packets sent or forwarded by each node in a slice of the network

over the duration of the experiment (where X , Y is the coordinate of each node). Each bar in this figure

represents the average of 15 runs to ensure a statistical significance at the 0.05 level. The number of packets

is important as it is proportional to power consumption. It can be seen that the EIP version achieves its

comparable tracking performance with much less power consumption in terms of the number of transmitted

packets. Hence, our tracking algorithms are more energy-efficient.

In the baseline test, most packet transmissions occur on nodes with Y coordinates between 1 and 2

since only these nodes can forward the packets to the base station. The nodes with smaller X coordinates

41

0

1

2

3

0 1 2 3 4 5 6 7 8 9

X

Y

Baseline

0

1

2

3

0 1 2 3 4 5 6 7 8 9

X

Y
EIP

Figure 2.16: Tracked target trajectory comparison

0 1 2 3 4 5 6 7 8 9

0
1

2
3

0

10

20

30

40

50

#p
ac

ke
ts

X

Y

Baseline

0 1 2 3 4 5 6 7 8 9

0
1

2
3

0

10

20

30

40

50

#p
ac

ke
ts

X

Y

EIP

Figure 2.17: Transmitted packet number comparison

42

in the baseline send much more packets than those in the EIP version since each node sensing the target

sends packets directly to the base station located in (0, 0). Hence, a greater number of packets have to be

forwarded by nodes with smaller X coordinates. In the EIP version, position reports are aggregated locally

by leaders, amounting to much fewer packets forwarded to the base station.

Monitoring Performance

In this experiment, we utilize the NETWORK HEALTH object coded in Figure 2.4 to monitor the health of

the network by collecting information on nodes that are alive and their remaining power. Alarms will be

sent out if a big portion of the network is dead or lacks power.

We carry out this experiment on a network of 27 XSM motes [74] deployed in a grassy field. The system

performs the function of vehicle tracking as well as health monitoring. For system health monitoring,

the NETWORK HEALTH object is determined as a region object by the EIP preprocessor, thus a multi-

parent spanning tree is automatically constructed at object initialization to collect power information of

each node every 20 minutes. The system is tested for several hours. Figure 2.18 depicts the collected power

information, where the black bars represent initial voltage reported by the region object, the grey ones show

voltage reported after 20 minutes and the white ones shows voltage reported after 40 minutes. Node 0 is the

base node, which consumes the most power.

2600

2700

2800

2900

3000

3100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

node ID

vo
lta

ge
(m

V)

Figure 2.18: Power level of each node for different times

2.7 Discussion

To better define EIP, this section supplies a discussion on features and limitations of the EIP primitives.

First, EIP is not a replacement to other emerging programming paradigms such as group-based primi-

tives, database-centric abstractions, event-based systems, and virtual machines. We do not argue for a single

43

approach to the exclusion of others. The most appropriate abstractions are often a personal choice that de-

pends on subjective programmer preferences as well as application specifics. Ultimately, it is the availability

of multiple programming alternatives that induces more software development. EIP is therefore presented

and evaluated for its own merits, and not as a substitution for other high-level paradigms.

Second, EIP is not a programming language in itself. Instead, EIP extends other programming languages

with environmentally-immersive programming primitives. This extension takes two different forms. First,

the programmer is allowed to define and use variables that summarize elements of a potentially distributed

environmental state (such as the average temperature of a region or the current location of a moving target).

Second, the programmer may define code that is geographically distributed and associate the time and place

of its execution with the occurrence of certain environmental events. Both the aggregate variables and

distributed code are encapsulated within simple objects.

Third, EIP achieves expressiveness by seamlessly combining itself with an imperative language. EIP

primitives are declarative in nature. They allow programmers to describe what physical entities and which

aspects of the entities they are interested in, rather than to specify how the physical entities are detected and

tracked and how the aggregate attributes are calculated. EIP does not contain primitives for programmers

to specify what to do with the physical entities and their attributes. Therefore, EIP in itself is not capable

of specifying a wide variety of applications. But, when combined with an imperative language, say nesC,

EIP achieves much better expressiveness. For applications with complex requirements, programmers can

specify (in the imperative language) tasks and attach them to the physical entities using EIP scripts.

Fourth, EIP syntax simplifies integration of the underlying middleware P syntax simplifies integration

of the underlying middleware services. The whole purpose of EIP is to abstract the distributed aspects

of environmental interactions and computation. Behind EIP are essentially a set of middleware services

containing the distributed algorithms. Alternative to using EIP syntax, advanced programmers can embed

code into their applications and directly invoke the distributed algorithms. However, EIP scripts and the

preprocessor make integration of the middleware services much simpler.

Finally, some remarks are in order on the extensibility of EIP. Current EIP supports only certain types of

physical entities. This is not a fundamental limitation of EIP itself. Rather, it is due to the limited number of

object maintenance algorithms currently available in the underlying library. EIP can be extended to support

an even broader set of applications after more object maintenance algorithms are developed. services. The

44

whole purpose of EIP is to abstract the distributed aspects of environmental interactions and computation.

Behind EIP are essentially a set of middleware services containing the distributed algorithms. Alternative

to using EIP syntax, advanced programmers can embed code into their applications and directly invoke

the distributed algorithms. However, EIP scripts and the preprocessor make integration of the middleware

services much simpler.

Finally, some remarks are in order on the extensibility of EIP. Current EIP supports only certain types of

physical entities. This is not a fundamental limitation of EIP itself. Rather, it is due to the limited number of

object maintenance algorithms currently available in the underlying library. EIP can be extended to support

an even broader set of applications after more object maintenance algorithms are developed.

2.8 Conclusions

In this chapter, we describe an environmentally-immersive programming paradigm for application devel-

opers in sensor networks. We present the design, implementation and evaluation of the basic framework

implementing this paradigm. This basic framework successfully exports high-level abstractions, such as

objects and inter-object calls. It also implements the required low-level distributed protocols such as sens-

ing data processing, group management and inter-object communication in an underlying library EIPLib,

transparent to programmers, thus resulting in a considerable potential to reduce development costs of deeply

embedded systems. This chapter describes the first comprehensive design and implementation of EIP ab-

stractions including objects, their attributes, methods and inter-object calls. This chapter also presents the

first comprehensive evaluation of the performance of real nesC code generated by the EIP preprocessor from

EIP source files.

EIPLib contains only the middleware services that are essential in supporting EIP. In the next chapter,

we continue to present another middleware service that provides further support for EIP, a storage system

that allows EIP programmers to easily store and retrieve data when real-time connections to base stations

are not available.

45

Chapter 3

EnviroStore: The Storage System

3.1 Introduction

The basic framework presented in Chapter 2 provides support for applications under connected operation,

which assumes that a sensor network is always connected to a base station that collects the data. Therefore,

we provide mechanisms like Inter-Object Call (IOC) to allow timely data upload towards base stations. This

assumption is suitable when near-real-time information availability is desirable. Tracking and event notifi-

cation applications, for example, fall under this category. However, a significant number of applications do

not require real-time information. Examples include [59][88][25], just to name a few. They operate under

scenarios where deployment of base stations is either impossible or inconvenient. Therefore, there is no

direct connection from the deployed sensor network to base stations or the connection is rather intermittent.

This is what we call a disconnected network model.

In the disconnected operation model, real-time data upload (through IOCs between event/region objects

and function objects that sit at base stations) are either unnecessary or impossible. Instead, there is a demand

for new abstractions that utilize in-network storage (already available on sensor nodes as flash memory)

for EIP objects to deposit in the network its major outcomes, including the aggregate state of external

events encapsulated in objects, and the computation results of object methods. Later, the stored data can be

collected for post-experiment analysis.

The disconnected model does not preclude sporadic contact with a base station during network lifetime.

For example, a user may choose to visit the field periodically for maintenance purposes (e.g., to remove dirt

and debris that may occlude light sensor inputs over time). Such visits may be used for opportunistic data

upload. The user could carry a data mule device [77] that collects data wirelessly from encountered nodes

and dumps these data later to the base station (e.g., a computer in the user’s office).

A primary concern of the sensor network in this model becomes that of maximizing effective storage

46

capacity (i.e., minimizing data loss due to flash memory overflow while the network is not connected).

Observe that some nodes will record more data than others. This may be due to asymmetry in environmental

inputs (e.g., acoustic nodes near sound sources will fill up before those in quiet areas), or due to data-

dependent variations in compression ratio of algorithms such as run-length encoding. Data loss can be

minimized by migrating data from nodes that are full to those that are not, as well as by exploiting upload

opportunities when available.

In this chapter, we present EnviroStore, a cooperative storage system for sensor network applications

optimized for disconnected operation. EnviroStore employs data redistribution schemes to optimize sharing

of network storage. The amount of data that can be stored in the network is also affected by the power

consumption of nodes. Naturally, nodes will be unable to record data after energy is depleted. EnviroStore

takes into account the rate of energy consumption to avoid depletion-related data loss. Evaluation shows that

in networks with a large input data imbalance, EnviroStore can delay the onset of data loss by nearly an order

of magnitude. Note that EnviroStore is an independent service, geared to isolate low-level storage concerns

not only for applications built upon EIP but also for general sensor network applications. EnviroStore can

also be easily configured to be a simple storage system that works under connected operation model.

EnviroStore reflects a change in paradigm for sensor network operation from communication-centric to

storage-centric. Indeed, the growing size of low-power flash memory suggests that future nodes will have a

much larger storage compared to their communication bandwidth. With the increase in storage capacity, new

higher-bandwidth sensing modalities (such as multimedia) will undoubtedly be deployed that take advantage

of the extra storage space. This will further exacerbate the communication bottleneck as low-power radio

bandwidth does not grow at the same rate as low-power storage capacity. Multi-hop communication will

need to be minimized. Physical data collection via data mules will become more common, motivating data

services such as those described in this chapter.

A storage-centric paradigm for sensor networks differs significantly from that of traditional distributed

file systems. First, it has to be simple and lightweight considering the limited CPU bandwidth and memory

of sensor nodes. For example, MicaZ [15], one of the most current platforms, has only an 8MHz 8-bit

processor and a 4KB RAM. Second, directories and file names need not be maintained in the sensor network

itself. These abstractions are needed only on the collection station. Sensor nodes simply write data to

the collection station (via a delay tolerant network). They never read the data they write. The system

47

essentially abstracts away the delay-tolerant network between the data sources and the sink. Third, data

redistribution is an essential component of the system to avoid inefficiencies of partitioned storage. A good

data redistribution scheme is needed to migrate data from highly utilized to less utilized storage spaces

in order to improve overall storage utilization. Finally, sensor nodes may not necessarily be connected,

forming multiple network islands. Opportunistic data redistribution is needed not only within, but across

such islands. These concerns are addressed in EnviroStore design.

EnviroStore focuses on data balancing techniques to achieve lossless long-term information storage.

However, it does not preclude the use of other well explored techniques [24] to further prolong the storage

lifetime. For instance, lossy/lossless data compression and archiving algorithms can be easily integrated

into the system to better serve the goal of data longevity.

We implemented EnviroStore in nesC under TinyOS and evaluated system performance experimen-

tally on TOSSIM. Our evaluation results demonstrate the effectiveness of this service in improving storage

utilization in various application scenarios. Up to an order of magnitude improvement was observed in

postponing the onset of data loss.

The rest of the chapter is organized as follows. Section 3.2 presents system design. Section 3.3 presents

the details of EnviroStore implementation. Section 3.4 illustrates evaluation results. Section 3.5 concludes

the chapter.

3.2 Design

3.2.1 System Model

We consider a sensor network that is normally disconnected from the outside world. The function of this

network is to collect sensory data. These data must eventually be moved to a data sink. In our architecture,

the sink is a process that runs on a user’s PC, identified by a regular IP address and a (well-known) TCP

port. This process implements a file service that receives sensor network data and organizes them in a local

file system on the PC in accordance with some configuration set-up. The sink typically has Internet access.

Hence, data can be uploaded to it via the Internet from a remote network. Alternatively, the sink may have

an 802.15.4 interface (or an 802.15.4 mote connected to the serial port). A process reading that interface (or

serial port) relays data to the well-known port of the file service for storage.

48

Data
Sink

Sensor
Network

Data
Mule

Sensor
Node

Figure 3.1: System model

Since the sink is normally disconnected from the sensor network, data must be buffered in the sensor

network until an upload opportunity arises. Hence, a sensor network storage system is needed. We call this

storage system disruption-tolerant since it should accommodate sensor network partitions. The disruption-

tolerant storage system should, for example, be able to take advantage of data mules to share data across

partitioned network islands or offload data to the sink, as is shown in Figure 3.1. Data mules are any (trusted)

mobile devices that may come in contact with sensor network islands. For example, they might be handhelds

with an 802.15.4 interface and an 802.11 interface. Depending on the application scenario, mules may be

eventually able to contact the sink via the Internet or via the 802.15.4 interface.

In the context of sensor network applications that motivate this chapter, only two types of data mules are

relevant. The first type represents data mules that intentionally relay data between the sink and the sensor

nodes. For example, network maintenance operators who visit the network periodically may also perform

data mule functions. Barring unexpected failures, this type of mule is guaranteed to return the data to the

sink. For example, it may have Internet access such that it will send collected data to the sink via the Internet

when it encounters an access point upon return from the field.

The second type of mule is one whose mobility patterns are independent of data upload needs. For

example, consider a library-monitoring study that measures noise levels in different rooms and correlates

them with library use1. Due to the size of the rooms, not all noise sensors are connected. A librarian per-

forming their normal job functions (that are independent of data collection) can carry a data mule device.

Nodes that come in contact with the mule will then opportunistically use it for data upload or redistribu-
1This is an actual study planned at the UIUC library to test the hypothesis that optimal use does not require a noise-free

environment

49

Application Sensor Nodes Data Data Sink
Static Mobile Mules Static Mobile

GDI [67][83]
√ √

ZebraNet [59][48]
√ √

NIMS [6]
√ √

Macroscope [85]
√ √

Underwater Sensornet [88]
√ √

Smart Attire [25]
√ √

Table 3.1: Application examples

tion. Another example of independent mobility patterns is inspired by a recent experience of the authors,

where sensor nodes deployed in a forested area were repeatedly visited by raccoons. The recurrence of

these visits suggested the possibility of using members of the local wildlife as data mules. A similar ob-

servation was made when an experimental farm was considered for two concurrent telemetry experiments:

one was to collect chemical measurements from soil; the other was to track cattle in the same farm using

GPS collars. The natural opportunity to design the collar to perform data mule functions for soil sensors

suggested a deeper point; as sensors proliferate, the role of opportunistic exploitation of natural mobility in

the environment may become more important in network protocol design. Independent mobile data mules

are opportunistically exploited by EnviroStore.

The disconnected operation models described above are observed in a large set of other sensor network

applications including environmental monitoring, animal tracking, and assisted living. Table 3.1 lists some

concrete examples from the recent literature and their suitability for this system model.

3.2.2 System Design

This section presents the decisions we made during the design of EnviroStore to achieve the goals. We will

enumerate through the set of mechanisms that cooperatively utilize the storage capacity available at different

levels of the system, including in-network data balancing, cross-network data balancing, and automatic data

upload.

In-network Data Redistribution

This section focuses on storage management at the sensor node level to maximize the effective storage ca-

pacity of the networked nodes. As mentioned earlier, the distribution of the data inputs is not necessarily

50

even among sensor nodes, which calls for data redistribution to improve total storage utilization. An ideal

data redistribution scheme should accommodate all data as long as the sum of all node sensory inputs, accu-

mulated over time, is less than the sum of all node storage capacities. A simple solution is to balance storage

utilization by offloading data from nodes that are highly loaded to nodes that are not. In a perfectly balanced

system, no storage overflow occurs until the total network capacity is exceeded when all nodes reach their

flash limit simultaneously. This scenario represents optimal flash usage. Unfortunately, the solution is not

energy-efficient. A small change in storage utilization of one node (due to new input) may result in data

dissemination to every node in the network even if the source has plenty of storage to accommodate the

input. This excessive and unnecessary communication may result in early energy depletion and consequent

untimely loss of data.

From an energy saving perspective, it is therefore advantageous not to start offloading data too early. In

other words, a lazy-offload scheme is preferred. By postponing data balancing until the latest possible time

(when flash overflow is imminent), significant energy savings can be achieved. For efficiency reasons, we are

interested in algorithms that use local information only. In such algorithms, plateaux must be avoided in the

neighborhood to ensure that pathways exist for data flow. In accordance with the above two requirements, a

node i, in EnviroStore, decides to offload data only when its remaining storage size (Ri) satisfies one of the

following two conditions:

Ri = Rmin and Ri < RTH (3.1)

Ri > Rmin and Ri − Rmin < Rgradient (3.2)

where Rmin is the minimum remaining storage size within node i’s neighborhood (including i), RTH is a

configurable threshold to delay data transfer until the remaining free storage is small enough, and Rgradient

is a configurable parameter introduced to allow for a certain level of local imbalance whose gradient points

in the direction of less utilized areas in the network. The first condition indicates that the most-loaded node

does not start to transfer data until its remaining storage falls below a threshold RTH . This is to prevent

unnecessary energy consumption. RTH should be set big enough to accommodate temporary bursts of input

data. The second condition ensures that plateaux do not occur among neighbors, so that data can always

flow away from congested nodes.

51

In our system, nodes exchange periodic advertisement messages sharing free storage information, R i,

within their neighborhood. To conserve energy, such messages are sent at a low frequency (e.g., once per

minute). However, to ensure accurate knowledge of neighborhood data to within specified error bounds,

extra advertisement messages are inserted when the remaining storage size incurs big changes (of more than

R∆, the node advertisement threshold) since the last advertisement.

If one of the above offload conditions is satisfied, node i should next decide who to send data to. Ob-

viously, i should select the destination from those underloaded neighbors whose remaining storage size is

above the average remaining storage (R̄i) of the neighborhood (including node i itself). Always selecting

the neighbor with the largest remaining storage turns out to be a bad choice, because a node with the largest

R within its neighborhood may be chosen simultaneously by multiple other nodes as their distribution des-

tination. After redistribution, the node may become overloaded and must transfer some of the recently

received data back to its neighbors, causing unnecessary consumption of both bandwidth and energy. We

call this phenomenon data ping-pong. To avoid it, we apply a random function which assigns each un-

derloaded neighbor a non-zero probability (proportional to its remaining storage) of being selected as the

redistribution destination.

To further prevent data ping-pong, we should bound the amount of data transfer. Assuming that node

i selects node j as the redistribution destination, the amount of data to be transferred from i to j, denoted

by Dij , has to satisfy the following condition (not to “overdo” the transfer and reverse the direction of

imbalance):

Rj − R∆ − Dij ≥ R̄j (3.3)

Note that, R∆ is added to account for the inaccuracy in the estimation of Rj on node i, which is caused by

the low-frequency of node advertisements. The inaccuracy is bounded by R∆ (assuming no message loss)

since, as previously stated, extra advertisement messages are inserted for changes exceeding R∆. Following

the same reasoning, after the data transfer, the resulting free storage size of node i should not exceed the

neighborhood average, since it may cause data ping-pong as well. Thus, we have:

Ri + Dij ≤ R̄i (3.4)

52

Consequently:

Dij ≤ min(Rj − R̄j − R∆, R̄i − Ri) (3.5)

which is used to calculate the maximum allowable size of data transfer. The calculation is based on merely

local information obtained through the aforementioned advertisement messages. EnviroStore then fetches a

small chunk of data (i.e., a log item as defined in Section 3.3) from local storage, and, if its size is below the

maximum allowable size, reliably transfers it to the redistribution target. Data chunks are transfered until

the conditions specified by Inequality (3.1) and Inequality (3.2) are invalidated.

Besides flash overflow, an important factor that may cause data loss is depletion of node energy. When

a node runs out of energy, the data stored at the node can still be recovered by collecting the deployed

node. However, the node obviously ceases to observe the environment, losing all subsequent measurements.

To avoid such data loss, besides monitoring remaining free storage, our algorithm also keeps track of the

remaining node energy (by reading the current voltage level and converting it to energy based on battery

characteristics). A node i should not invoke or accept data redistribution (which spends extra energy to send

or receive data) unless its estimated energy lifetime is longer than its estimated storage lifetime. This leads

to:

Ωi

Ei

>
Ri

Si

(3.6)

where Ωi is the remaining energy, Ei is the initial energy, and Si is the initial storage size.

Cross-partition Data Redistribution

The in-network data redistribution scheme works well when all sensor nodes are connected into a single

network. However, in some application scenarios like the GDI deployment [83], sensor nodes are naturally

deployed into network islands that can not communicate with each other. Even for an initially connected

sensor network, practical issues like the instability of wireless channels, hardware or software failures,

or depleted batteries may separate the network into islands. In such circumstances, it becomes critical to

offload data from overloaded network partitions (in terms of storage capacity) to either data sinks (if present)

or underloaded partitions. This is accomplished via mobile data mules.

53

We consider two types of (authenticated) mules. The first always carries the data back to the base station.

A node encountering such a mule can upload all its data to it. The second type is one whose mobility patterns

are dictated by factors external to the storage system. The library example presented earlier is one such case.

Such data mules can carry data to the base station if they happen to come in contact with it. They can also

be used for data redistribution across network partitions.

To identify nodes as overloaded or underloaded for redistribution purposes, a data mule must have a

notion of a global average storage use. Accurately calculating the global average is virtually impossible,

considering that the sensor nodes in different partitions can not directly communicate. Instead, each data

mule m remembers the free storage advertised by each visited node. It uses their average R̄ as an approx-

imation of the global average. It then computes its own advertised free storage value R̄m as the weighted

sum αR̄ + (1 − α)Rm, where Rm is the storage available on the mule itself. The parameter α of the mule

is used to favor data redistribution versus upload. If α is close to 1, the mule favors redistribution to the

neighborhood regardless of the storage available on the mule itself. If α is close to zero, it emphasizes

upload, regardless of free storage available in the sensor network. While the mule remembers the R i’s of all

encountered nodes, scalability is not a big concern since (i) data mules are more powerful than sensor nodes

and (ii) keeping the storage information of one thousand nodes only takes several kilo-bytes of memory.

Mules upload to a base station whenever possible. Observe that such an upload resets Rm to its maximum

causing the mule to attract more data.

When mules have large storage or encounter the base frequently, to relieve the network storage, they

should aggressively download data from the sensor nodes. To take this factor into account, a node i uses

a weighted value RiOm (Om is the occupancy ratio of the data mule m defined as the fraction of its local

storage that is utilized) instead of its original remaining storage Ri to compare with R̄m. Obviously, the

policy makes a mule download data more aggressively from sensor nodes when its occupancy is low (either

because it has large unused storage or because it has offloaded most data to data sinks). Therefore, the

cross-partition redistribution scheme can dynamically adapt itself to the differences in the size of storage

space at mules as well as adapt itself to the visit frequency of data sinks if they exist.

Like sensor nodes, data mules also periodically advertise themselves by messages, but with a much

higher frequency (e.g., once per second). Frequent mule advertisement is necessary for overloaded nodes

to detect nearby mules as soon as possible in order to make the best use of data upload opportunities, as is

54

shown in Figure 3.2. Frequent mule advertisement is feasible in terms of energy consumption since mules

can be recharged frequently to obtain sufficient power.

At the same time, a mule should be able to detect nearby underloaded nodes to offload some of its

data. The great difference between node advertisement frequency and mule advertisement frequency makes

it much harder and slower for mules to detect nodes. To solve this problem, underloaded nodes, after

receiving a mule advertisement, respond with a node advertisement to shorten the delay. These nodes use

back-off timers (proportional to their current occupancy ratios) to suppress each other’s node advertisement

messages, as shown in Figure 3.2.

�����������	
��

����������������� �����

�����������	
��

����������������� �����

��
��������

������

����

�����������������������

� ��������!����

"��#

��"$����

���������������

������������!���������%

���%�� �����

����
��������

Figure 3.2: State transition of a sensor node in cross-partition data redistribution

3.3 Implementation

We implemented EnviroStore using nesC in TinyOS. The implementation consists of three versions of code,

encoding separately the subsystems run at sensor nodes, at data mules, and at data sinks. The overall system

architecture for sensor nodes is depicted in Figure 3.3.

Application programmers use the service interface on the motes to submit data to be logged. Before

data are written into local flash, such data are structured into the standard format of a log item, the minimum

accessible data unit in EnviroStore whose data structure is depicted in Figure 4.4. Both writing and reading

log items are functionalities supported by the local log access module. The neighborhood monitor module

is responsible for sending advertisement messages within local neighborhoods. It also maintains a neighbor

table to keep track of the storage status of each neighbor. At the same time, it is responsible for detecting

mules via the reception of mule advertisement messages. Based on the conditions described in Section 3.2.2

55

����������	
��

������������

������

�
�
�

��
�
�
�
�

�
�
�
�
�
�

�
�
���
��	��

���
�����������

���
��

����������
������
���������������

����������	

�����

�
�
�

�����������

Figure 3.3: System architecture of EnviroStore

and 3.2.2, the data redistribution model determines whether the current node should offload data to it neigh-

boring nodes or the detected mule, and, if so, it calculates the maximum amount of data transfer and signals

the data transfer module to start data transfer towards a selected neighbor or the nearby mule. The reliable

one-hop unicast module, as its name suggests, provides reliable unicast for nodes to transfer log items. To

avoid data loss during transfer, the data transfer module never deletes a log item until the reliable one-hop

unicast module acknowledges its reception.

The implementation for data mules has a similar set of modules except that the neighborhood monitor

module records all the nodes a mule has met (in other works, dynamic neighbors of the mule) rather than a

static set of neighboring nodes.

3.3.1 Local Storage Structure

The local storage space of nodes is organized into a circular buffer containing continuous log items (Fig-

ure 4.4). The head points to the next log item to be read or deleted, and tail pointer points to the next

position to write a new log item. This simple data structure proves to be very suitable for current sensor

network platforms. First, it meets all the requirements of EnviroStore since the system model suggests that

random access to the logs is not required since we are not targeted for runtime data acquisition. Second,

it consumes minimum code and data memory as this data structure organizes occupied space into a con-

tinuous data chunk, eliminating the need for any complex space management mechanisms like free space

management or defragmentation. Third, it may prolong flash lifetime by balancing write access to different

locations. Note that the endurance of the 512 KB serial flash on most current TinyOS platforms is only

10,000 erase/write cycles. The sequential write access to flash of the circular buffer structure guarantees

56

that the number of writes to different flash blocks is almost perfectly balanced with a maximum difference

of one.

As Figure 3.4 shows, each log item contains some metadata, including: (i) log name, the ID of the

corresponding environmental event that serves as the source of the log item (more detailed explanation is

give in Section 3.3.2); (ii) log type, used to denote the meaning as well as the structure of the logged data

(e.g., temperature, noise level, target position, etc.) for later interpretation at data sinks; (iii) source ID, to

indicate the node that originally generate this log item; (iv) SN and count, with the former used for ordering

log items and the latter indicating how many logs of the same type that this item contains; (v) log size, the

size of the logged data.

�

��������	
	�	��

�

��������	
	�	��

��	�����	
	�	

�	����

���

�	���

�

�	����

�

�	����

������

��������

������	��

���������������

�����������������

��	���������	
�

��	���������	����

�����������������

�	����

���

	�����	�������

������

�������	����	����

�������
��	����

�������������������

�������� ��� �������� ���

�	
 �	��

��������	
	�	 ��������

����������

�

�	

�	��

��������	
����������������

���

Figure 3.4: Local storage structure

Logically, the set of log items with the same name and type actually contains an attribute (e.g., temper-

57

ature) or a set of attributes about a certain environmental event observed at different times and by different

nodes. We call such a set a log file.

3.3.2 User Interface

EnviroStore supports two types of log files as Figure 3.5 depicts, and provides two nesC commands for

them, respectively. The first type of log file is simultaneously written by different nodes, with each node

generating a sequence of log items with continuous serial numbers. All the log items from multiple nodes

form an array of log sequences. Therefore, we call this type of log file log-array files. Log-array files are

useful for logging attributes of an environmental event that is independently monitored by multiple nodes,

for example, to obtain the temporal and spacial distribution of the temperature in Room 303 as shown in

Figure 3.5(a).

��������

�

�
�

���� �	
� ��

������ ���
���� � �

����������� �	
� ��

������ ���
���� � �

����������� �	
� ��

������ ���
���� � �

�������

���� �	
� ��

������ ���
���� � �

����������� �	
� ��

������ ���
���� � �

����������� �	
� ��

������ ���
���� � �

�������

�

���� �	
� ��

������ ���
���� � �

����������� �	
� ��

������ ���
���� � �

����������� �	
� ��

������ ���
���� � �

�������

�

�
�

(a) A log-array file

�

�

�

���� �	
� ���������

��������
������ � �

���� �	
� �������

���� �	
� ���������

��������
������ �� �

���� �	
� ���������

��������
������ � �

���� �	
�
��

�������
��������
������ �� �

���� �	
� ���������

��������
������ �� �

���� �	
� ���������

��������
������ � �

�

�

�

�

�
�

(b) A log-sequence file

Figure 3.5: Examples of different types of log files

The other type, named log-sequence files, expects one writer at a time. Multiple nodes should coordinate

with each other so that the next writer does not start before the previous one stops. Unique and continuous

serial numbers must be used. This mode is developed for compatibility with EIP object abstractions. The

58

service elects a unique leader node in the vicinity of the tracked entity and hands off leadership from node

to node as the entity moves. The leader maintains a unique ID. This ID can be used as the log name to

produce a distributed log-sequence file that stores the history of a target along its trajectory. An example is

shown in Figure 3.5(b), where EnviroSuite associated an ID (vehicle3) to a vehicle, and elected nodes 7,

3 and 1 sequentially to log the vehicle’s current state. The resulting log-sequence file, using vehicle3 as

its name, contains the trajectory of the vehicle.

Figure 3.6 lists the interface provided by EnviroStore. Users call the command log() to submit data

to be logged. To simplify its usage, we do not expose SN to users by maintaining it inside EnviroStore. SN

is initially set to 0, then automatically increases itself by one when a new log item with the same name and

type is submitted. The event logDone() gives users feedbacks on whether the submitted item has been

successfully written into flash or not.

���������	
���	�

		�������	��������	�����������	�����	�������	�����	�������	�����	�������	�������

		�����	��������	���������������	�����	�������	������	��������	���������

		�������	��������	��������
������� !��	������	�������	�����	�������	������

		�����	��������	���"������������� !��	������	�������	�����	�������	�����	��������	���������

#

Figure 3.6: User interface

The command continueLog()and the event logContinued()are used for creating log-sequence

files. One node can request one of its neighbors (denoted by nodeID) to continue to log into the same log-

sequence file by calling continueLog(), which actually sends logName, logType and current SN of

the file to the neighbor. Upon the reception of this message, the designated neighbor sets the corresponding

SN to be the received one, sends back an acknowledgement, and then continues to write into the file. When

the sender successfully receives the acknowledgement, the event logContinued() is signaled.

3.4 Evaluation

This section presents a performance evaluation of EnviroStore. EnviroStore is implemented in nesC for

TinyOS, which, after compilation, can be directly used in various hardware platforms supported by TinyOS.

Instead of using real hardware, we use TOSSIM that provides a high fidelity simulation of TinyOS applica-

tions, precisely modeling the 40Kb network at the bit level and the CPU clock at a 4MHz granularity. Note

that we did not provide a comparison between EnviroStore and other distributed storage systems due to the

59

lack of appropriate systems to compare with. Most existing storage systems [18][66][99] are designed for

connected operation, focusing more on indexing or query processing techniques to retrieve data at runtime.

A storage system that shares a similar goal of storing long-term information is DIEMSIONS [24]. However,

it utilizes lossy data compression techniques rather than data balancing (as in EnviroStore) to achieve the

goal. Moreover, it is still under development and there is no implemented version we can compare against.

Figure 3.7 depicts the basic deployment configuration used throughout the evaluation. On a 80×80 ft2

field, we deploy 36 nodes (circles labeled with node IDs) into four network partitions. Nodes in black (node

4 and 31) are data generators. They run an application that periodically creates input for EnviroStore. An

unbalanced deployment configuration is used to stress EnviroStore. In the top-left and the bottom-right

network partitions, only one node generates all the input, the others being silent. The other two partitions

do not have input to further stress the redistribution algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

Y
(ft

)

X (ft)

0 1 2

3 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

24 25 26

27 28 29

30 32

33 34 35

4

31

Figure 3.7: Basic deployment configuration

When present, a base station is placed at the position marked by ×, which is also the starting point of

data mules. The movements of the mules follow a constraint random walk model, moving 5ft every second

and turning a random angle between − π
6

and π
6

. In some scenarios, extra nodes are deployed at the two

positions marked by 4. The random walk serves our purpose well because EnviroStore has no knowledge

about mobility of mules.

The final simulations of our experiments are very heavy-weight, especially when mules are used, mainly

because of frequent channel update in TOSSIM caused by the mobility. For a network of 36 nodes, it takes

60

6-10 hours of wall-clock time on a Pentium4 1.7GHz machine with 1GM RAM to simulate 3600 seconds

of virtual time. To accelerate the evaluation, we set storage capacity of the devices to be smaller than that of

current hardware platforms. The storage of the node (S) is set to 16KB. The mules have a relatively larger

storage of 64KB. Consequently, while the absolute time when the system encounters data loss will not match

real platforms, relative performance of different algorithm will remain the same. Hence, inferences can be

made about multiplicative improvement factors over a baseline.

Unless otherwise indicated, RTH , Rgradient, and R∆ are set to be 0.95S, 0.05S, and 0.01S (S is the

total storage of a node), respectively. Recall that RTH has to be big enough to accommodate bursts of input.

We use a large percentage of the storage as RTH since the total storage size is small. Next, we investigate a

disconnected sensor network with and without partitions.

3.4.1 Scenario 1: Single Disconnected Sensor Network

In a single disconnected sensor network, the network is not partitioned. Also, neither mules nor a base

station is present. For this scenario, we use only the top-left partition shown in Figure 3.7.

To illustrate how EnviroStore maximizes storage capacity via in-network data redistribution, Figure 3.8

compares the data storage rates (i.e., the amount of data stored by EnviroStore per second) for different

input rates with and without EnviroStore. If storage is infinite on each node, the data storage rate always

equals the input data rate. However, data loss caused by insufficient local storage makes the data storage

rate drop below the input data rate. As can be seen in Figure 3.8, for all the input rates, applying EnviroStore

significantly delays data loss. For example, with an input rate of 64B/s, the first appearance of data loss is

delayed from time 256s to 1900s (i.e., more than 6 times).

Notice that for input rates lower than 96B/s, the corresponding data storage rates stay close to the input

rates until they sharply drop to zero. In contrast, for input rates higher than 96B/s, the data storage rates

decline gradually. The underlying reason is that when the input rate exceeds a node’s communication band-

width, new data arrives before the data redistribution algorithm converges to a balanced state. When the data

generator (node 4) completely consumes its local storage, EnviroStore redistributes at the communication

rate, which is below the input rate, yet above zero.

To investigate the effects of RTH on the data storage rate and energy consumption, we fix the input rate

to be 64B/s and use different values of RTH (0.9S, 0.5S, and 0.1S). Using a smaller RTH does not have

61

 0

 32

 64

 96

 128

 160

 192

 0 600 1200 1800 2400 3000 3600

Da
ta

 s
to

rin
g

ra
te

 (B
/s

)

Time (s)

Input rate - 32B/s
Input rate - 64B/s
Input rate - 96B/s

Input rate - 128B/s
Input rate - 160B/s

(a) Without EnviroStore

 0

 32

 64

 96

 128

 160

 192

 0 600 1200 1800 2400 3000 3600

Da
ta

 s
to

rin
g

ra
te

 (B
/s

)

Time (s)

Input rate - 32B/s
Input rate - 64B/s
Input rate - 96B/s

Input rate - 128B/s
Input rate - 160B/s

(b) With EnviroStore

Figure 3.8: Data storing rate at different time

an appreciable impact on the data storing rate. However, as expected, it does affect energy consumption, as

shown in Figure 3.9 which plots the number of data messages sent per second for different values of RTH .

As can be seen, setting RTH to 0.5S postpones extensive data transfer from 180s (0.9S) to 540s. Using

0.1S as RTH further postpones it to 1200s. If the application input happens to stop at 1200s, setting RTH

to 0.1S, comparing to 0.9S, yields significant energy savings due to lazy offload.

3.4.2 Scenario 2: Partitioned Sensor Network with Data Mules

In order to analyze the effects of cross-partition redistribution, we deploy four network partitions consisting

of 36 nodes as shown in Figure 3.7, as well as one mobile data mule. The input rates at node 4 and node 31

are set to be 64B/s and 32B/s, respectively. This setting provides the four partitions with three levels of input

rates: 64B/s for the top-left one, 32B/s for the bottom-right one and 0B/s for the others. Great differences

62

 0

 5

 10

 15

 20

 25

 30

 35

 0 300 600 900 1200 1500 1800 2100 2400

Nu
m

be
r o

f d
at

a
m

es
sa

ge
s

(/s
)

Time (s)

RTH - 0.9S
RTH - 0.5S
RTH - 0.1S

Figure 3.9: Comparison of data storing rate at different time

in input rates stress the distribution algorithm.

Figure 3.10 presents the data storing rate of different configurations. Ideally, the data storage rate should

always equal to the input rate (96B/s). For the current configuration, without EnviroStore, the data storage

rate drops from 96B/s to 32B/s after 256s when node 4’s storage is exhausted, and to 0 after 512s when

node 31’s storage is exhausted. After applying in-network redistribution (without mules), data loss does not

occur until after about 1900s. If we further invoke cross-partition redistribution by introducing a mule, the

data storage rate stays at 96B/s until after 2400s. Overall, applying EnviroStore delays data loss by a factor

larger than 8.

 0

 32

 64

 96

 0 600 1200 1800 2400 3000 3600

Da
ta

 s
to

rin
g

ra
te

 (B
/s

)

Time (s)

Without EnviroStore
Without mules

With 1 mule
With 2 mules

Ideal

Figure 3.10: Comparison of data storing rate at different time

By carrying data from overloaded network partitions to underloaded partitions, the data mule delays the

time that the storage of the most-loaded partition (the top-left one) gets exhausted. Figure 3.11 demonstrates

63

this effect by showing the total stored data at node 4 over time. Obviously, in-network redistribution (without

mules) reduces the storage consumption speed at node 4. Cross-partition redistribution (with a mule) further

slows down the storage depletion.

 0

 2048

 4096

 6144

 8192

 10240

 12288

 14336

 16384

 18432

 0 600 1200 1800 2400 3000 3600

To
ta

l s
to

re
d

da
ta

 (B
)

Time (s)

Without EnviroStore
Without mule

With mule

Figure 3.11: Comparison of total stored data of node 4 at different time

Figure 3.12 illustrates the distribution of total stored data among different nodes after 3600s of virtual

time for deployment configurations without and with the mule. Obviously, the mule successfully moves

data from overloaded network partitions to underloaded partitions and achieves a more balanced storage

occupancy.

We also explore the energy overhead (in terms of messages) of redistributing data to maximize effective

storage. The number of advertisement messages and data messages sent per unit time by the sensor nodes

for both configurations with and without the mule are plotted in Figure 3.13. As shown, the total number of

messages sent per second for the whole network is always below 36, in other words, below 1 per node, which

is acceptable for sensor networks. For the configuration without a mule, after around 1900s, the number

of data messages per second drops to 5 abruptly and the number of advertisement messages decreases as

well. This is when the top-left network partition gets exhausted and stops accepting input as well as data

redistribution, which is consistent with what we observe in Figure 3.10. We do not see such a sudden drop

in the configuration with the mule because (i) prior to time 2400s the top-left partition is not full, and (ii)

after time 2400s the mule is still actively communicating with the nodes to do cross-network redistribution.

Finally, we add a base station, marked by ×, and two extra nodes, marked by 4, in Figure 3.7). They

ensure connectivity between the sensor nodes and the base station. Figure 3.14 shows the data storage rate of

the base station over time. Recall that we allow certain storage imbalance between nodes by using Rgradient

64

0

4096

8192

12288

16384

Total stored data (B)

(a) Without mule

0

4096

8192

12288

16384

Total stored data (B)

(b) With mule

Figure 3.12: Distribution of total stored data after one hour

of 0.05S. Therefore, the data storage rate of the base station stays zero for a certain duration, then increases

gradually.

In the next experiment, we remove the two nodes marked by 4 in Figure 3.7 to disconnect the network

partitions from the base station and add one or two data mules to see how they help with data upload.

Figure 3.15 depicts the amount of accumulated data at the base station over time. Having more mules

increases the rate of uploading data to the base station, as shown in Figure 3.15.

Adding extra mules obviously increases upload rate if comparing the curve of two mules with the curve

of one mule. However, the observed upload rate is still low. We are expecting much higher upload rate in

65

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 600 1200 1800 2400 3000 3600 4200

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Cooperative Recording Only
Load Balance (betamax = 4)
Load Balance (betamax = 3)
Load Balance (betamax = 2)

Figure 3.13: Comparison of number of messages per second at different time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 600 1200 1800 2400 3000 3600

Da
ta

 s
to

rin
g

ra
te

 (B
/s

)

Time (s)

Figure 3.14: Data storing rate of the base station over time

 0

 2048

 4096

 6144

 8192

 10240

 0 600 1200 1800 2400 3000 3600

To
ta

l s
to

re
d

da
ta

 (B
)

Time (s)

1 mule
2 mules

Figure 3.15: Total stored data of the base station over time

66

reality since (i) current hardware platforms usually have higher bandwidth (e.g., 250Kbps radios on MicaZ

motes) than the simulated radio (40Kbps), (ii) to communicate with base stations, mules should be able to

use an alternative high-bandwidth radio different from the one it uses to talk with sensor nodes, and (iii)

using more mules also help increasing the upload rate.

3.4.3 Concluding Remarks

The evaluation results above demonstrate the effectiveness of EnviroStore in various application scenarios.

Many environmental monitoring applications deploy single disconnected sensor networks to collect data.

Nodes are collected after the experiment to download data from nonvolatile storage to do complex off-line

analysis. For this category of deployments, EnviroStore is able to significantly reduce data loss by fully

leverage network storage capacity as shown in Figure 3.8.

For other applications where the sensor network is naturally partitioned into several islands, EnviroS-

tore can further maximize network storage by opportunistically offloading data from overloaded network

partitions to underloaded ones via data mules. For our experiment configurations, introducing one mule

postpones data loss onset by over 25%.

For the third category of applications whose deployments contain a base station connected to the nodes,

EnviroStore can automate data upload towards without relying on multi-hop routing algorithms as is proved

by Figure 3.14. If mules are deployed, the data uploading even does not require direct paths between sensor

nodes and sinks, as Figure 3.15 shows.

In summary, the evaluation results demonstrate that EnviroStore is applicable to a wide set of application

scenarios. It effectively maximizes the network storage capacity through in-network and cross-partition data

redistribution.

3.5 Conclusions

In this chapter, we present EnviroStore, a cooperative storage system that maximizes network storage ca-

pacity in the presence of disconnected operation in wireless sensor networks using in-network and cross-

partition data redistribution mechanisms. Our evaluation study validates that EnviroStore can (i) effectively

utilize the network storage capacity of disconnected sensor networks to accommodate the most sensory

data, and (ii) opportunistically offload data from overloaded network partitions to underloaded partitions via

67

mules.

Using EnviroStore, EIP programmers can easily store the aggregate states of objects in the network for

later retrieval for disconnected application scenarios. EnviroStore is also applicable to other programming

models due to its generic interfaces. The system model based upon which we design EnviroStore is flexible

enough to allow a wide set of applications to take the best advantage of EnviroStore.

68

Chapter 4

EnviroLog: The Replay Tool

4.1 Introduction

With the aid of intuitive programming abstractions and support middleware services of the EnviroSuite

framework, programmers can design and implement environmental tracking and monitoring applications

of sensor network in a more cost-efficient way. However, the developed applications are not ready for

deployment yet. As sensor network systems are usually embedded and expected to work continuously for

months or years, thorough testing and evaluation are absolutely necessary. Embedded devices usually have

very limited or even no display, which makes sensor network debugging a more than challenging task.

What further aggravates the situation is the fact that final system testing and evaluation have to be done

under realistic environments, for sensor systems interact intensively with the external environment that is

hard to simulate. For instance, to statistically measure the performance of a tracking system, targets of

interests such as vehicles have to go through the field hundreds of times. To reduce such in-field testing

cost, we present in this chapter a testing tool that aids in-field debugging and trouble-shooting by enabling

repeatability of the external environment, called EnviroLog.

As demonstrated later, EnviroLog is quite useful in testing and evaluating environmental tracking and

monitoring applications developed using EnviroSuite. However, most event-driven systems, not limited to

those developed using EnviroSuite, should benefit from EnviroLog.

More broadly, with the increase in maturity of sensor networks research and with recent solutions to sev-

eral practical systems and deployment problems, sensor network applications are entering the real world.

Representative experiences of such evolution are documented in recent literature such as military surveil-

lance [37, 80], habitat monitoring [67, 59], and environmental monitoring [98, 6], just to name a few. Quite

different from controlled lab settings, physical environments introduce a high degree of uncertainty that

makes it hard to conduct reproducible experiments. Consequently it is hard for researchers to obtain statis-

69

tically consistent empirical results. With the growing number of applications developed and deployed, there

is an increasing need for tools and services to assist with system evaluation and debugging, as well as with

performance tuning of applications in outdoor environments.

To address this issue, we propose EnviroLog, a tool to improve repeatability of experimental testing of

distributed event-driven sensor network applications. Unlike time-driven applications, such as periodic sam-

pling of environmental conditions, the state of event-driven systems can change depending on the particular

sequence of events received and their timing. Matters such as tuning protocol parameters for particular event

scenarios or comparing performance of different protocols typically require the same distributed event traces

to be replayed (e.g., to ensure a common basis for comparison). To address this requirement, we provide

an event recording and replay service that can capture and reproduce distributed events on demand. The

service provides the abstraction of a completely repeatable environment as observed by the sensory subsys-

tem for the sake of experimental testing. The service is especially valuable in the study of rare, unsafe, or

hard-to-reproduce events such as the motion of tracked animals through a sensor field.

Our service is geared for the final stages of testing, typically performed in-field, where the effects of en-

vironmental realities can be studied. Early testing can use simulators that may be good for initial debugging

since they allow fully controlled and repeatable experiments to be conducted. However, simulators are noto-

riously inaccurate when it comes to sensor network applications, since: (i) certain practical issues (e.g., the

distribution of radio irregularity) are not adequately captured in most available simulators, resulting in large

discrepancies between simulation results and empirical measurements, and (ii) simulators do not faithfully

mimic environmental event signatures which affects the performance of sensor network applications. The

problem is especially severe in event-driven architectures, where application behavior is more sensitive to

the sequence, timing, and parameters of events received.

In addition to improving the repeatability of field testing, our service significantly reduces experimenta-

tion cost. In the absence of a recording and replay service, the investigators would have to either physically

reproduce or passively wait for environmental events of interest, which entails additional costs. For ex-

ample, the authors of [37] have developed a surveillance system that tracks persons and vehicles in the

field. The need for walking or driving through the field hundreds of times while tuning an array of protocol

parameters has proved to be a major practical impediment imposing a significant limitation on the rate at

which experiments could be conducted in practice. EnviroLog, the asynchronous event recording and replay

70

service described in this chapter, provides a comprehensive solution to this problem.

Most sensor platforms employ flash memory for persistent storage. For example, Mica, Mica2, Mica2-

Dot [41, 42] and XSM [74, 21] hardware platforms incorporate 128 KB internal flash for code storage and

512 KB external flash for other usage. EnviroLog logs environmental events into such persistent storage

devices. Later on, in replay mode, EnviroLog replaces environmental inputs with retrieved logs and re-

issues the logged events in their original time sequence as asynchronous inputs. In addition to environmental

events, EnviroLog can also log system runtime status for future analysis by recording selected variable

values at runtime as specified by the programmer using simple annotations.

EnviroLog has two unique features. First, EnviroLog can operate at any layer of an application. In other

words, events recorded and replayed by EnviroLog are not limited to direct reflection of environmental

events such as raw sensory readings. They can be any system-level events. This characteristic of EnviroLog

enables the debugging or tuning of any specific layer using controlled and repeatable inputs from lower lay-

ers in an event-driven system. Second, EnviroLog provided a very friendly user interface. Users only need

to add simple annotations before events or variables to be logged. Applications with EnviroLog annotations

can be compiled either into production code that ignores all EnviroLog annotations or into development

code that allows on-demand recording and replay.

The potential uses of EnviroLog include (i) in-field debugging and performance tuning of specific pa-

rameters of an application, (ii) collecting statistical results from a large number of repeated experiments, and

(iii) generating traces for mixed simulation environments that accept experimental measurements as inputs.

EnviroLog subjects to certain limitations in terms of scope of applicability. First, communication prop-

erties remain stochastic when EnviroLog is used to merely capture the logical effects of sensor subsystems at

individual nodes. In such case, system output during replay is expected to be different from during recording

due to dynamics in communication conditions. This limitation is actually beneficial in certain sense since it

achieves the separation of the effects of communication non-determinism and the effects of environmental

non-repeatability in the study of sensor network protocols. Second, a critical assumption of EnviroLog is

that the lower layers of the application (i.e., the layers below EnviroLog) always create the same set of

events for the same environment. This assumption does not hold in all applications. For example, certain

applications are integrated with power management schemes which may turn off nodes to save energy. If

the sleep schedule of a specific node changes between recording and replay, the set of logical events should

71

change as well even for the same environment. It may occur that data to be replayed does not exist since the

node was asleep during the recording stage. EnviroLog is not applicable to such systems.

The remainder of the chapter is organized as follows. Section 4.2 describes the design goals and sys-

tem architecture for EnviroLog. Section 4.3 describes the implementation details. Section 4.4 evaluates

EnviroLog, using XSM platforms, through a series of in-field experiments based on several sample applica-

tions provided by TinyOS [40] and a surveillance system [37] built upon TinyOS. Section 4.5 concludes the

chapter.

4.2 Design

The major goal of EnviroLog is to enable experimental repeatability by recording and replaying environ-

mental inputs. From a program’s view, such inputs are essentially data streams that are transformed by each

module of the program until they reach the modules at the topmost layer and become outputs. If we log

the data stream generated by a module during the occurrence of an environmental event, and regenerate the

same data stream later, from the perspective of the modules that consume the data, the environmental event

is repeating itself.

EnviroLog makes the assumption that data is transferred from one module to another module only

through function calls and their parameters. This assumption conforms to the event-driven sensor acquisition

convention of TinyOS, where sensory data is usually obtained through asynchronous events (defined as

a type of function calls in TinyOS) with parameters containing the data. Based on this assumption, the

desired data stream generated by a module can be recorded by logging all its issued function calls and their

parameters. That founds the main idea that EnviroLog is built upon.

Users of EnviroLog, through user interfaces, designate the modules that provide the data stream. These

modules are called log modules. The modules that directly or indirectly consume the logged data stream

are called target modules. As depicted in Figure 4.1, during the record stage, EnviroLog logs all function

calls issued by the log modules into persistent storage devices such as a flash. During the replay stage, log

modules are disabled. Instead, EnviroLog issues the previously recorded function calls at the right time and

in the right sequence as recorded. Based on this main idea, the following subsections discuss the design of

EnviroLog in more detail.

72

������

��	
�

��
�

������

�	�
���

������

�	�
���

������

�������

��

��	��
�����

������ ����	�

��	
�

��
�

������

�	�
���

������

�	�
���

������

��	��
�����

������

�������

��

Figure 4.1: Main idea of EnviroLog

4.2.1 Design Goals

The design goals of EnviroLog are:

• Effectiveness: Effectiveness of EnviroLog is measured by its ability to perform: (i) accurate event

record and event replay, and (ii) reliable runtime status record and retrieve.

• Efficiency: In sensor platforms, resource constraints (on both CPU and memory) are significant which

makes it critical to use resources efficiently. EnviroLog is designed with efficiency in mind so that it

can be applied to complex applications that consume a significant fraction of available resources.

• Simplicity: As a tool aimed to simplify the life of sensor network programmers, EnviroLog must be

easy to use. In other words, simple user interfaces should be provided. Experiences tell us that simple

tools tend to gain more popularity and persist longer while more complex tools sometimes run into

usability barriers and become deserted.

• Flexibility: There are always tradeoffs between performance and overhead. Since EnviroLog can-

not achieve optimal performance and minimum overhead at the same time, it should allow users to

flexibly select their specific performance requirements (e.g., high logging throughput) at the expense

of incurring a corresponding overhead. EnviroLog should also be flexible enough to allow users to

record and replay any application behavior not limited to direct inputs of environmental events.

The above design goals provide guidelines throughout the design and implementation of EnviroLog.

73

4.2.2 System Architecture

Figure 4.2 illustrates the architecture of EnviroLog. Users indicate the set of events and variables to be

recorded by inserting special annotations, called EnviroLog annotations, into applications. EnviroLog an-

notations are essentially the user interface of EnviroLog. Annotated applications are then processed by a

preprocessor that translates EnviroLog annotations into real code, and, based on the annotations, integrates

only the necessary modules from a code repository into the applications. The preprocessor and the code

repository constitute EnviroLog services. As a result of the processing, application code is given the abil-

ity to record and replay specified events and to record and retrieve specified variable values that represent

runtime status.

���������	
������

���	����
�����

�����	

����������

������	���	

������

����	
��������������

��������

��

�����������
	����	���������	����������

�����������
	����	���������	
������	������������

Figure 4.2: System architecture of EnviroLog

4.2.3 User Interface

Our design goal of simplicity calls for an easy user interface through which users are able to express the

desired functionality of EnviroLog in a simple and intuitive manner.

The user specifies two main issues: asynchronous environmental event record and replay, and runtime

status record and retrieve. The user interface design for the latter is easier since runtime status can be

interpreted as values of variables at runtime. Such variables are simply annotated for logging. The former

one is more complicated. As stated in the beginning of this section, EnviroLog supports environmental event

record and replay by logging and regenerating data streams originating from environmental events. Since

these data streams are transferred between modules through function calls and their parameters in most

embedded systems such as TinyOS, we can log the behavior of a module by recording all issued function

74

Table 4.1: EnviroLog annotation list
Purpose Annotation Usage Functionality
For event
record and
replay

/*LOG MODULE*/ Insert the annotation in the begin-
ning of the implementation of a
module

To record all function
calls issued in the mod-
ule for future replay

/*LOG FUNCTION*/ Insert the annotation before a
clause that makes a function call

To record the function
call for future replay

For sys-
tem status
record and
retrieve

/*LOG VARIABLE:
variable name*/

Insert the annotation with speci-
fied variable name at a position
within scope of the variable

To record current value
of the variable for future
retrieve

calls. Therefore, the only action an EnviroLog user is required to take is to specify a set of data-providing

modules whose output data streams (issued function calls) are to be logged. The preprocessor takes the

responsibility of enumerating function calls within the annotated modules and using APIs to log and replay

each of them. To be more flexible, instead of specifying entire modules, advanced users are allowed to

specify the exact function calls to be logged within a module.

Different from most services that usually provide function call APIs, EnviroLog provides EnviroLog

annotations as the user interface. Table 4.1 lists the basic set of EnviroLog annotations.

The special characteristics of this user interface are:

1) EnviroLog annotations are simple to use. Users only need to insert annotations before function

calls without worrying about details such as how these function calls are recorded, what data structures are

used, and how and when to re-execute them when replaying. The preprocessor takes the responsibility to

automatically generate code and integrate modules from the code depository to handle these details.

2) EnviroLog annotations take the form of comments that are ignored by the regular language com-

piler. This allows users to freely switch between original applications without EnviroLog integrated and

EnviroLog-augmented applications. Annotated applications, when directly compiled, generate executables

that do not include EnviroLog support. Alternatively, if they are processed by the EnviroLog preprocessor

before compiling, the resulting executables are able to record and replay/retrieve the specified set of function

calls and variable values based on user annotations.

To log environmental events, one option is to log the inputs of sensor drivers. However, users may

focus on the evaluation and tuning of a specific layer higher than the layer of sensor drivers, thus requiring

repeatable inputs to this layer. To fulfill such requirements, EnviroLog allows users to use EnviroLog

75

annotations at any layer to enable repeatable input to that specific layer without interference from lower

layers.

Though EnviroLog is geared for recording and replaying events of interest, it is also possible to choose

whether to record the radio channel conditions using the user interface. If function calls to send messages

or to cause the sending of messages are logged, the channel conditions are not captured and might be dif-

ferent between record and replay, depending mostly on the environment. Alternatively, if the programmers

choose to log function calls that handle the reception of messages, the delivery of messages and their se-

quence should be the same between record and replay, no matter how the radio conditions change in reality.

However, repeating the channel conditions is not always desired since in most experimental scenarios it is

valuable to investigate how variances in channel conditions affect system behavior given the same sensory

inputs.

4.2.4 Preprocessor

The simple user interface is supported by the preprocessor, which takes applications with EnviroLog an-

notations as input and outputs applications with EnviroLog code incorporated. The functionality of the

preprocessor includes:

• Enumerating function calls and variables to be logged and assigning unique IDs, called log IDs, to

them;

• Translating EnviroLog annotations into code that performs three functions. It defines the data struc-

tures for function parameters. It uses APIs provided by the record and replay module to record log

IDs together with function parameters or variable values at the record stage. Finally, it re-executes at

the replay stage the function calls upon the reception of logs from the record and replay module;

• Selecting necessary modules from the code repository and integrating them into applications.

robustness, logged data must be consistent with the current application during replay. Replaying data

to the wrong application is not meaningful. A simple approach to ensure consistency is to use an ID,

called the application family ID (or application ID for short) to denote the application tuned or the class

of applications compared. The ID is logged as metadata at the record stage and is verified before replay.

This ID is either specified by the application programmer who has the knowledge of which applications

76

belong in the same family, or, if not specified, automatically created by the preprocessor by hashing the set

of logged function calls into an application ID. The former solution allows for more flexibility while leaving

the responsibility of ensuring consistency to the programmer. In the latter case, the same ID is generated as

long as users don’t change the set of function calls to be logged. This approach ensures consistency between

logs and applications, making application IDs transparent to users since they are automatically handled by

the preprocessor. Note that, both solutions enable repeatable environmental input to different application

versions. Both the log modules and the target modules can be different between record and replay stage as

long as data interfaces (in other words, the set of logged function calls) between them are the same.

Another challenge is to ensure complete and consistent replay, which means that:

• System outputs should be exactly the same during the record stage and replay stage, as long as target

modules are not changed.

• Changes to target modules for purposes such as performance tuning should not affect data streams

output by log modules. If the target modules can affect the behavior of log modules, EnviroLog design

may be unrealizable. For example, if power management services can dynamically select a subset of

nodes and turn them off, a situation can arise where a node is turned off during the record stage but

turned on during the replay. It is obviously impossible to decide on the correct value to be replayed

since none was recorded. Another example is when a different (e.g., faster) sensor sampling rate is

set by target modules during replay. Since data was recorded at a different rate, the information to be

replayed is not available in the log. Both of the aforementioned cases are hard to accommodate, and

are therefore not allowed.

With the prior guarantee that the two special cases above don’t exist in a given application, the prepro-

cessor can provide some consistency checks. To enable these checks, in addition to the set of log modules

(L), users are required to specify the set of modules (I) that directly interact with the environment (e.g.,

senor drivers) and the set of modules (O) that provide system outputs (e.g., modules reporting final deci-

sions to base stations). If one module u issues one or more function calls to another module v, we denote

this relationship as u → v. To formalize the initial check procedure, we further define that i represents

system inputs, o represents system outputs and M represents the set of all application modules. Based on

user inputs (L, I , O) and definitions (i, o, M), the preprocessor abstracts the application into a directed

77

graph G = (V,E), where:

V = {u | u ∈ M} ∪ {i} ∪ {o}

E = {(u, v) | (u, v ∈ M ∧ u → v) ∨ (u = i ∧ v ∈ I)

∨(u ∈ O ∧ v = o)}

(4.1)

Given the set of log modules (L) specified by the user and the calling graph G, the consistency check is

done first by removing all edges that originate from vertices representing these log modules from the graph,

which forms a new graph G′ = (V ′, E′), where:

V ′ = V

E′ = E − {(u, v) | u ∈ L}
(4.2)

If G′ doesn’t contain a directed path from i to o, the log module set is guaranteed to provide complete and

consistent replay; otherwise, it may not be true.

Figure 4.3 gives an example to show more concretely the consistency check algorithm. Assume the

application contains four modules, M1 through M4. Module M1 directly consumes environmental inputs

and issues function calls to M2 and M3. Both M2 and M3 further issue function calls to M4. Finally,

M4 produces system outputs. The preprocessor builds the calling graph between application modules, adds

output o and input i as virtual modules, connects input i to modules that directly consume environmental

inputs (M1), and connects modules producing system outputs (M4) to output o. The result is the directed

graph shown on the left rectangle of Figure 4.3. According to the algorithm, for each logged module, we

then remove its outgoing edges from the graph. If the resulted graph doesn’t contain any directed path from

input i to output o, complete and consistent replay is guaranteed. As shown in the middle rectangle, logging

of M1 or logging of M2 and M3 ensures complete and consistent replay since no path exists from input i

to output o. However, if only M2 is logged, as shown in the right rectangle, a directed path traversing M1,

M3 and M4 exists between input i and output o, which fails in the consistency check and warns against a

potentially incomplete or inconsistent replay.

Note that passing the initial checks is a sufficient, but not necessary condition for a complete and con-

sistent replay guarantee, since not all function calls are issued due to environmental events. Thus, a directed

path from i to o does not necessarily indicate that system outputs will indeed be affected by environmental

78

�����������	

��	���

��	���

��

����

��

��	���

��	���

��

����

��

��	���

��	���

��

����

��

��	���

��	���

��

����

��

	��� ����

Figure 4.3: Examples of consistency checks

inputs.

4.2.5 Stage Controller

EnviroLog needs runtime facilities to control (during execution) when to record environmental events or

system status and when to replay events as well as to retrieve recorded system status. For this purpose, we

provide the stage controller to interact with users during runtime, employing a client/server architecture.

The server node, connected to a PC, receives commands from users through a command-line interface

or GUI and disseminates them to client nodes. Upon the reception of commands, client nodes execute

corresponding code for commands immediately or at a requested future time.

Each command must include a command name and a stage name. Command names include start, stop,

pause and continue. Stage names can be record, replay or retrieve. The time period between the start of a

stage and the stop of that stage is called a run. Other optional parameters in a command include a replay

speed for the replay stage to request that logged events be replayed n times faster or slower than their

original rate. For a retrieve stage, variable names and/or node IDs can be specified to denote the name of a

variable whose recorded values and timestamps in the specified node are to be retrieved. Any stage can also

specify a run ID to select the logs for the particular run the command will operate on.

To provide accurate replay for applications involving multiple nodes, one critical factor is that they have

to be synchronized. In other words, these nodes have to execute the same command at the same time.

If the same command is always delivered to all nodes at the same time, we can simply program nodes

to execute the command right after its reception without worrying about synchronization. However, the

79

assumption doesn’t hold for multi-hop applications or single-hop applications with lossy links. We solve

the problem by proposing two-phase command execution, which makes use of time synchronization and

system-wide broadcast. When issuing commands, users are required to provide a future time as a command

parameter, which specifies when the command is to be executed. Then, in the first phase, the command

and synchronization beacons originated from the server node are propagated across the entire network to

synchronize clocks of client nodes as well as to broadcast the command. When the specified future time

comes, client nodes enter the second phase simultaneously to execute the command. Two-phase command

execution is costly because of its time synchronization service and repeated system-wide broadcast. To be

flexible, advanced users are allowed to configure the stage controller into its lightweight single-hop version

as well as a version with two-phase command execution support.

Researchers on time synchronization [14] for current hardware platforms have observed a significant

variance in clock frequency due to the instability of the used crystals. Although mechanisms like linear

regression are able to compensate for clock drifts in the short term (e.g., within 30 seconds), periodic re-

synchronization through messages is inevitable for long-term experiments to keep the error to the microsec-

ond range. As a result, long experiments tend to introduce more inaccuracy if using two-phase command

execution. In such a case, an alternative solution would be to keep the time synchronization service on

throughout the two phases assuming that re-synchronization messages do not alter the behavior of the ap-

plications.

4.2.6 Record and Replay

The record and replay service is the core component of EnviroLog. It responds to stage control commands

to switch between different stages, logs data into flash during recording, reads from flash the logged func-

tion calls to re-issue them in their original time sequence during replay, and reads from flash the logged

variable values during status retrieving. Besides maintaining logs of function calls and variable values, it

also maintains metadata such as application ID, run ID, and run length during recording, which are to be

verified when replaying. The service also supports the replay of events at a speed different from recorded

one, which can be used to emulate extremely fast or slow targets that are hard to generate physically.

80

Queue-based File System

If metadata and logs of one run are viewed as one file, we can easily design the service based on existing

file systems such as Matchbox [26] and ELF [17]. To be comprehensive, these file systems usually support

various file operations such as open, close, read, write, and append, consuming a lot of code as well as data

memory. Our design goal of efficiency calls for a simpler solution. Hence, we propose a queue-based file

system, where files are organized into one queue. At any point in time, only the file at the tail of the queue is

writable and new data is always appended to this file. Only the file at the head of the queue can be deleted.

It differs from typical file systems in that (i) each file occupies a continuous storage space, and (ii) the gap

between two successive files is always smaller than one page. The queue-based file system brings about

several benefits:

• It realizes the special characteristics of the logging behavior in EnviroLog: logs are sequentially

written into flash, and oldest logs are usually most undesired.

• It exhibits low resource consumption. This file system only supports a minimum set of operations

(file creation, sequential write, sequential read, file deletion) that is necessary in EnviroLog. The

queue-based design eliminates the need for complicated storage space management such as free page

maintenance and flash defragmentation. Hence, it consumes minimum code and data memory.

• It prolongs lifetime of flash memory by balancing writes to different pages. Each flash page has a

write limit of about 10,000 times. In the queue-based file system, the sequential write access to flash

pages ensures that the number of writes to different pages differs at most by 1.

Distribution of Data Structures

Although the ultimate storage space for logs is flash, during runtime, multiple memory levels are employed

to improve efficiency and reliability. Figure 4.4 depicts the distribution of data structures in RAM, internal

EEPROM and external flash.

Because flash access is relatively slow (e.g., for flash AT45DB041B used in MICA motes, erasing a

page takes up to 8ms and writing a page takes up to 14ms), the service employs a buffer in RAM, called

log buffer, to temporarily store logs before committing them into flash. Log items constructed for function

calls or variable values to be recorded are queued in this log buffer. Each log item consists of a log ID,

81

�

��������	
	�	��

�

��������	
	�	��

��	�����	
	�	

�	����

���

�	���

�

�	����

�

�	����

������

��������

������	��

���������������

�����������������

��	���������	
�

��	���������	����

�����������������

�	����

���

	�����	�������

������

�������	����	����

�������
��	����

�������������������

�������� ��� �������� ���

�	
 �	��

��������	
	�	 ��������

����������

�

�	

�	��

��������	
����������������

���

Figure 4.4: Data distribution in different memory levels

a log type (event or status), a timestamp, log content (parameters of function calls or values of vari-

ables) and content length. We note that buffering can not only increase throughput of flash access, but also

accommodate temporary data bursts typical in event detection or tracking applications. Another benefit of

buffering is to support potential data compression. Many log items can be compressed before being written

into flash to conserve space, including those containing the same content but different timestamps and those

containing timestamps with fixed differences.

All log items of a run constitute a file, which is usually stored in flash. Access to a file is usually

sequential, either reading from the beginning to the end or writing from the beginning to the end. Besides

files, the metadata of files (file metadata for short) and the metadata of the queue (flash metadata for short)

also require permanent storage. Different from access to files, access to metadata is much more frequent,

82

that is why we store such data into the internal EEPROM of MICA motes which is smaller (4KB) but with a

longer endurance (100,000 write/erase cycles) compared with the flash memory (512KB, 10,000 write/erase

cycles). For other sensor devices without EEPROM, EnviroLog can be adapted to reserve several pages in

flash for metadata storage. These pages are expected to be worn out earlier than other pages, which makes

the usable flash size smaller.

Workflow of Different Stages

This section explains the execution flow of the record and replay service during different stages in more

detail.

At the beginning of a record stage, upon the reception of a start record command, the service

reacts by: (i) remembering the current time as the reference time, (ii) loading flash metadata into RAM, and

(iii) constructing the metadata of a new file. During the record stage, whenever the application requests to

record a function or a variable value, the service constructs a corresponding log item and enqueues it into the

log buffer. The log item contains a relative timestamp, which is calculated by subtracting the reference time

from the current time. If more than half of the buffer is filled up, all log items in the buffer are transferred

into flash, which empties the buffer completely. An alternative choice would be to write everything in the

buffer into flash whenever a new log item arrives. We decide on the former option, since higher throughput

is observed for bigger block sizes in flash access (experiments on LogData component provided by TinyOS

show that flash write speed is 12.99KB/s for a block size of 16B and 42.37KB/s for a block size of 128B).

Finally, upon the reception of a stop record command, the service updates flash metadata and file

metadata and commits them into EEPROM.

At the beginning of a replay stage, when a start replay command is received, the service takes

several initial steps: (i) it loads into RAM the metadata of the corresponding file, whose run ID matches the

one indicated in the command; (ii) to ensure data consistency, before replaying, it further verifies the appli-

cation ID contained in file metadata against the one indicated by the user or produced by the preprocessor;

(iii) it loads log items from flash to fill up the log buffer. After initialization, the service marks the current

time as the reference time and starts to replay logged events. During replay, the service automatically loads

data from flash to fill up the buffer whenever the buffer is half-empty. The service discards all status

log items and replays event log items one by one. It dequeues the first event log item from the buffer,

83

Table 4.2: Implementation characteristics of EnviroLog components
Component Language Code length (lines) Data memory (bytes)
Preprocessor Perl 873
Stage controller nesC 604 single-hop:46, multi-hop:137
Record and replay nesC 758 54+buffer size

sets a timer based on the timestamp contained in the item, and upon the expiration of the timer, issues the

corresponding function call. Then it proceeds with the next log item. The expiration time Texpiration is

calculated as follows:

Texpiration =
Treference + Ttimestamp − Tcurrent

Sreplay

(4.3)

where Treference, Ttimestamp, and Tcurrent represent the reference time, the timestamp, and the current time

respectively, and Sreplay represents replay speed. As discussed before, Sreplay is one of the parameters of

start replay commands to speed up or slow down replay. Another way to calculate the expiration

time is to take the difference between the timestamps of two successive events and divide it by Sreplay.

It is deserted because it makes time accuracy of the latter event always depend on the former one, and

consequently accumulates errors over time. The replay stage ends when the entire file is processed or a

stop replay command is received.

During the retrieve stage, the service simply discards all event log items. For status log items,

it extracts the variable values and sends them to the stage controller, which then displays the data for end

users.

4.3 Implementation

In this section, we describe an implementation of EnviroLog, which has been fully tested on Mica2 and

XSM hardware platforms. This implementation is expected to work on Mica and Mica2Dot as well. The

common features of hardware platforms that this version of EnviroLog operates on are (i) 4KB EEPROM

inside the micro-controller and (ii) 512KB external data flash. EnviroLog is implemented on TinyOS 1.x,

a popular operating system for the aforementioned hardware platforms. Table 4.2 lists the implementation

characteristics of different components in EnviroLog.

84

4.3.1 Preprocessor Implementation

The preprocessor is essentially a translator that takes a TinyOS application annotated with EnviroLog an-

notations as input and outputs its corresponding version with the EnviroLog service integrated. Figure 4.5

depicts the main steps of this translation:

• Step 1: For modules annotated by /*LOG MODULE*/, the preprocessor enumerates all function calls

issued by these modules and annotates them by /*LOG FUNCTION*/.

• Step 2: The preprocessor scans the entire application to search for all function calls that are annotated

by /*LOG FUNCTION*/. A unique log ID is assigned to address each of them. The clause that

issues an annotated function call is replaced by a segment of code that (i) issues the function call

only when the application is not at the replay or retrieve stage, and (ii) records the call’s log ID and

parameters during the record stage using APIs of the record and replay service.

• Step 3: The preprocessor also creates event handlers to handle replay requests from the record and

replay service. For each replay request, it generates code to extract parameters and execute the corre-

sponding function call.

• Step 4: after scanning the entire application, the preprocessor enumerates EnviroLog annotations in

the form of /*LOG VARIABLE: variable name*/. The preprocessor assigns unique log IDs

to them, and translates each of them into a segment of code that records the variable value and its log

ID using APIs of the record and replay service.

The preprocessor then automatically wires necessary components (e.g., the record and replay service)

into the resulting application to complete the integration of EnviroLog.

4.3.2 Stage Controller Implementation

Figure 4.6 depicts the field deployment of a system to use the stage controller. End users type-in stage

control commands through the PC. The server node, which is connected to the PC through a serial cable,

forwards the commands to the field. The client nodes in the field propagate the commands throughout the

field, and execute them immediately or in a two-phase manner.

85

����������	�
����	��
����
�
�����
	�	�
��

����������	�
����	������
�
������������	����	��

�������������

���������� !�����
�����"#��	�
���$

������%�&!�'�(��
�����������	���

���	���)�	���*�+
��������
�,��(
���������"#��	�
���$�-���.$
����������
��(
���������"#��	�
���$
�������
����
�!����������,�	����
"��$�-���.$
����"�#�	(�-���.$
/

����	����#�	�	�
&��
�����&����01�����0)#��	23�	��
�!�4�
�������
�	��	4�#��	5�	�����	�*�+
�����	���)�
�!�*�+
����������
�!��
"��(
�����������"#��	�
���$�-���.$
����111
��/
/

���	���)�	���*�+
����������
��(
�������
����
�!���������#��
"�
����������	�$
����-���.$
����"�#�	(�-���.$
/

2

6

7

8

Figure 4.5: Translation steps of the preprocessor

�����������

�������	�

��������	�

��

Figure 4.6: A field deployment to use the stage controller

We implement a simple Java tool on the PC to interact with end users. This tool has several func-

tionalities such as: (i) encoding stage control commands into messages, (ii) injecting the messages into the

server node through the serial port, (iii) receiving messages from the serial port, and (iv) displaying retrieved

variable values to end users during the receive stage. The server node, running the TOSBase application

provided by TinyOS, forwards messages between the PC and client nodes. The client nodes run the system

with EnviroLog integrated, which includes a stage controller component.

The implementation of the single-hop version of the stage controller is simple. Commands are im-

mediately executed upon reception and execution results, if any, are sent back to the server node through

one-hop unicast. The multi-hop version that supports two-phase command execution needs more function-

ality. First, it contains a time synchronization service modified from multi-hop FTSP [68]. Multi-hop FTSP

86

utilizes periodic flooding of synchronization beacons to perform continuous re-synchronization. We modify

it to stop the periodic beacons at the end of the first phase; otherwise, these beacons may interfere with

the system and change its behavior. Second, to conserve energy, commands are piggybacked onto periodic

synchronization beacons. Client nodes remember the command when they receive the first synchronization

beacon. The periodic nature of synchronization beacons also makes the dissemination of commands robust

to sporadic message losses. Third, the service incorporates a simple routing algorithm to collect execution

results from client nodes. The routing service we implement is similar to directed diffusion [44]. Although

the primary purpose of synchronization beacons is to synchronize clocks of client nodes, they also serve as

interest beacons for client nodes to set up reverse paths to the server node. Later on, execution results can

be sent back to the PC along those paths. Note that, the modified Multi-hop FTSP and the simple routing

service become parts of the EnviroLog service only if users configure the stage controller as a multi-hop

one before the application gets processed by the preprocessor. They are only invoked during the two-phase

command execution and, therefore, are independent of any time synchronization or routing service used by

user applications.

4.3.3 Record and Replay Implementation

The record and replay service provides a set of APIs to interact with application components and other

EnviroLog components. It is implemented in one big component named RecordAndReplayC. Figure

4.7 illustrates the RecordAndReplay interface provided by the RecordAndReplayC component and

Figure 4.8 depicts the interactions between this component and other components in the system. Application

components (already processed by the preprocessor) call the command record to log function calls as well

as variable values. During the replay stage, the record and replay component signals the event replay to

request application components to execute the corresponding function calls. Another event retrieve is

signaled to transfer retrieved variable values to the stage controller component, which then communicates

the data back to the server node and, finally, to the PC. The stage controller component interacts with

the record and replay component by issuing the command executeCommand to execute stage control

commands from end users.

The record and replay component relies on several TinyOS modules: clock,timer,EEPROM access,

and flash access. The clock component is used for the purpose of timestamp calculation. The timer

87

�

�

������	
����
���������	���

��
��	��������������
����������������������������������
 	�!�
�������������������� "#

���$�����������������	�����������������
 	�!�
�������������������� "#

���$�������������������$�����������������
 	�!�
�������������������� "#

��
��	�������������%�
���&��	������������	��������������	����
 	�!��	�	������"#

'

(

)

Figure 4.7: Interface of the record and replay component

���������	
��	�

��
�������������

���������������

�	�� �	���

�� � �

��������

��� ���� ��

���

Figure 4.8: Interactions between the record and replay component and other components

component is utilized during replay to issue logged function calls in their original time sequence. Flash

access and EEPROM access components are employed to read/write logged data and metadata.

4.4 Performance Evaluation

To evaluate the effectiveness and efficiency of the recording and replay service provided by EnviroLog,

we integrate EnviroLog into several sample applications delivered with TinyOS, upload them onto XSM

motes, and carry out a series of empirical experiments. The XSM platform is an extended version of Mica2

motes, featuring improved peripheral circuitry, improved antenna and new types of sensors. The purpose

of these microbenchmark experiments is to characterize the performance of EnviroLog by illustrating its

maximum recording period, throughput, overhead, and replay accuracy. We also carry out more complex

machrobenchmark experiments on a practical surveillance system called Vigilnet [37], which is to be pre-

sented in Chapter 5.

In this section, we pick several sample applications provided by TinyOS and run a series of microbench-

marks to show how EnviroLog performs in terms of maximum recording period, throughput, overhead, and

replay accuracy. These results, collected from simple applications, provide insights into the relevant ba-

sic aspects of EnviroLog’s expected performance. Larger, more realistic applications are investigated later

(Chapter 5), highlighting higher-level performance aspects.

88

4.4.1 Maximum Recording Period

Due to limited storage space, EnviroLog cannot continuously record an infinite number of events. The term

maximum recording period describes how long EnviroLog is able to continuously record. Maximum record-

ing period RPmax depends on three factors: flash size Sflash, expected event interval E{eventInterval}

and expected log item length E{logItemLength}. The expected event interval indicates the average length

of the time intervals between successive events. The expected log item length indicates the expected flash

space a recorded event occupies. The maximum recording period is calculated as follows:

RPmax =
SflashE{eventInterval}

E{logItemLength} (4.4)

Setting the flash size to be 512KB, Figure 4.9 depicts the maximum recording period for different expected

event intervals and log item lengths. Typical raw sensing data, if generated at 10Hz, can be recorded for

about 90 minutes, which is usually long enough for purposes of debugging or tuning sensor drivers.

0

10000

20000

30000

40000

50000

60000

70000

10 100 1000
Expected event interval (ms)

M
ax

im
um

 re
co

rd
in

g
pe

rio
d

(s
) Expected log item length-8B

Expected log item length-16B
Expected log item length-24B
Expected log item length-32B

Figure 4.9: Maximum recording period for different expected event interval and log item length

4.4.2 Throughput

The throughput of EnviroLog (i.e., how fast EnviroLog is able to record) is evaluated based on the Blink

application. Blink sets a periodic timer and toggles the red led when the timer fires. EnviroLog is used

to record the toggling of the red led. The log item length equals the length of the log item header (7 bytes)

since the toggling event contains no parameters. To make the scenario more realistic, the occurrences of

toggling events are modeled as a Poisson process by making the time intervals between successive events

89

exponentially distributed with the density function

f (x) = λe−λx (4.5)

where λ is the expected event interval.

To increase throughput, EnviroLog buffers events in memory before committing them to flash. We

repeatedly change the expected event interval and buffer size, compile and download changed Blink onto

a XSM mote and measure the success ratio of recording operations. Figure 4.10 illustrates the experimental

results. Each point in this figure is the average of at least 10 runs to achieve a high confidence level. As

shown in Figure 4.10, a higher success ratio is observed for lower event rates and bigger buffers. For events

at 10Hz, a 128-byte buffer is enough to ensure a 100% success ratio.

0.85

0.9

0.95

1

10 20 40 80 160 320
E(Event Interval) (ms)

Su
cc

es
s

Ra
tio

 buffer-16B
buffer-32B
buffer-64B
buffer-128B
buffer-256B

buffer-512B
buffer-1024B

Figure 4.10: Success ratio of recording operations for different expected event rate and buffer size

4.4.3 Overhead

EnviroLog introduces a certain overhead, which may affect the runtime behavior of the original application.

It must be verified that EnviroLog does not change the behavior of the original application dramatically dur-

ing recording; otherwise, the replay of recorded behavior (which is dramatically different from the original

behavior) becomes meaningless.

We try to quantify the overhead and its effect through an example application CntToLedsAndRfm.

The application maintains a counter on a 4Hz timer and sends out the value of the counter by broadcast

90

on each increment. The execution of the command that outputs the value of the counter by messages is

recorded and replayed by EnviroLog. We change the message format to contain the send time of the

current message and the sendDone time of the previous message in addition to the value of the counter, so

that the time period to send a complete message, defined as sending delay, can be calculated by overhearing

these messages. The modified CntToLedsAndRfm application is run on one XSM mote. Another XSM

mote works as the server node of the stage controller to control the stage as well as overhear messages.

This experiment compares the sending delay during a normal stage with the one during a record stage

to quantify the overhead of recording operations. Figure 4.11 depicts the cumulative distribution function

of sending delay for 1000 messages during the normal stage and 1000 messages during the record stage. A

longer sending delay is observed during the record stage compared with the normal stage, which indicates

the overhead of recording operations. However, the effect of the overhead is trivial and acceptable. It is

observed that the 95% confidence interval of the sending delay during the recording stage drifts only 0.4ms

from the one during the normal stage.

0

0.2

0.4

0.6

0.8

1

10 20 30 40
Sending Delay (ms)

Pe
rc

en
ta

ge

normal stage
record stage

Figure 4.11: Comparison of sending delay between normal stage and record stage

4.4.4 Replay Accuracy

In this experiment, we use the same modified version of CntToLedsAndRfm as in the previous experi-

ment. We first log about 100 commands by EnviroLog and overhear the messages to remember their send

time. The remembered send time is actually the time when each logged command is executed. Then, we

replay those commands 20 times. We calculate the difference between the average send time during the re-

play stage and the original send time during the record stage and depict its cumulative distribution in Figure

4.12. The results reflect how accurate the replay service is. As Figure 4.12 shows, the average error is less

91

than 1ms.

0

0.2

0.4

0.6

0.8

1

-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.10.2 0.3 0.4
Difference of Event Arrival Time (ms)

Pe
rc

en
ta

ge

Figure 4.12: Difference of send time between record stage and replay stage

4.4.5 Concluding Remarks

Results from the series of microbenchmarks above validate the effectiveness of EnviroLog. EnviroLog

is able to record and replay high frequency events if assigned a big enough buffer (e.g., recording 10Hz

events with a 128-byte buffer in the Blink application). Its recording operations bring little overhead (e.g.,

adding only 0.4ms delay in the CntToLedsAndRfm application). It also replays events accurately (e.g.,

the average difference between timestamps of recorded events and replayed events is less than 1ms).

4.5 Conclusions

With the increasing popularity of wireless sensor networks, an increasing number of realistic applications

employing large systems of sensor devices emerge. Although the initial development and debugging of

these applications can be aided by simulators, in-field tests still have to be conducted at a later stage due to

typical discrepancies between simulation results and empirical measurements. In this chapter, we present

the design, implementation and evaluation of EnviroLog, an asynchronous event record and replay service

that improves repeatability of environmental events for in-field testing of distributed event-driven applica-

tions. The friendly user interface of EnviroLog allows users to integrate and utilize the service merely by

inserting annotations into their applications and learning a few operation commands. Based on several sam-

ple applications of TinyOS, we validate the effectiveness of event recording and replay. In a later chapter

(Chapter 5), we will demonstrate the usefulness of EnviroLog in various aspects of in-field tests such as

92

performance tuning without physically generating events, runtime status collection without extra hardware,

and virtual velocity simulation.

The potential uses of such service are not limited to what we have discussed. EnviroLog can be further

extended to perform remote replay (recording events in environment A while replaying them remotely in

environment B), and off-site replay (recording events on sensor devices while replaying them in simulators),

which are on our agenda for future work on EnviroLog.

93

Chapter 5

Integrated Systems

5.1 Introduction

To demonstrate the efficacy of EnviroSuite, we apply it to multiple application scenarios, including both

target tracking and environmental monitoring, to evaluate different subsystems of the framework. This

chapter presents empirical results collected during the in-filed deployments of these applications.

In previous chapters, we carry out experiments on either simulators or small table-top testbeds. Such ex-

periments are more repeatable and controllable to achieve fine measurements of the performance. However,

the inconsistency between simulators (isotropic radio range, isotropic sensing range, and faked environmen-

tal events), indoor testbeds (faked radio range, and faked environmental events), and outdoor deployments

(non-isotropic radio range, non-isotropic sensing range, and real environmental events) demands us to move

to in-field experiments under physical environments. Therefore, this chapter supplies a more realistic and

extensive exploration of the performance of EnviroSuite.

However, we did not include an experimental comparison between EnviroSuite and other high-level

sensor network programming frameworks. This is, in part, due to the difficulty in porting application code

across the different systems. If applications are re-implemented (as opposed to ported), it is hard to separate

the effects of application-level implementation decisions from the inherent strengths and weaknesses of the

underlying programming frameworks when interpreting performance comparison results.

The rest of the chapter presents the two applications built upon EnviroSuite and empirical results col-

lected during the in-field deployments. Section 5.2 presents Vigilnet as an example of target tracking appli-

cations, and Section 5.3 presents EnviroMic as an example of environmental monitoring applications.

94

5.2 Vigilnet: Energy-efficient Surveillance

We applied EnviroSuite to build an energy-efficient surveillance system, called Vigilnet [37][36], subse-

quently transitioned to the Defense Intelligence Agency (DIA). The primary goal of the system is to detect,

classify and track one or multiple moving targets, which can be either cars, persons or persons carrying a

ferrous object (suggestive of a weapon). We utilize Vigilnet for two purposes:

First, Vigilnet serves as an evaluation platform for the core library of EnviroSuite: object management

algorithms. Vigilnet utilizes event objects to track various targets. The event objects communicate the

estimated target locations to function objects hosted by base stations, where complex time and temporal

correlation algorithms are run to filter out false alarms. Therefore, the tracking performance of Vigilnet can

indirectly reflect the effectiveness of EnviroSuite to maintain a unique mapping between physical targets

and logical objects.

Second, we use Vigilnet as a demonstration platform to showcase the potential uses of EnviroLog in

practice. Results collected from in-field experiments of Vigilnet demonstrate how EnviroLog effectively

and accurately replays events on demand. By enabling low-cost performance tuning and evaluation, runtime

status collection, and virtual velocity simulation, EnviroLog greatly simplifies the in-field testing of Vigilnet.

5.2.1 Overview of Vigilnet

Vigilnet is implemented on top of TinyOS. Figure 5.1 shows the layered architecture of Vigilnet. Compo-

nents colored in dark grey are middleware services adapted from EnviroSuite.

Time synchronization (Time Sync), localization (Localization), and communication (MAC, Robust Dif-

fusion Tree, Asymmetric Detection, and Report Engine) services constitute the lower-level components

that are the basis for implementing higher-level services. Power management (Radio-Base Wakeup, Sentry

Service, Power Mgmt, and Tripwire Mgmt), target classification (Sensor Drivers, Frequency-filter, Contin-

uous Calibrator, Classification, and False Alarm Filtering Engine) and tracking (Group Mgmt, Tracking,

and Velocity Regression) comprise main higher-level services. Target classification detects and classifies

three types of targets with the help of collaborative group management provided by EnviroSuite. Tracking

components are responsible for estimating target positions and calculating target velocities.

Overall the system consists of 21,457 lines of source code, among which 2,884 are contributed by

EnviroSuite. The executable binary of Vigilnet occupies 85,926 bytes of code memory and 3,154 bytes of

95

����������	
����

��������
����

������
����

����
��	�
����

�������������	 ������	� ����
�����
������	�
�	��	� �������
�������	

���

��	� ��	�!����	

������!����	
�����

�	��	

"��#�

��	���	�

�	���

��$��

�������

��	���	�

%���

��	��� 	�

��&#��

����#���	
��

���������

������	

�����'(���

)��#�

��*#	��
����� ��	��	#�#�
����&�����

+��
����

��� �	���
���$��

Figure 5.1: System architecture of Vigilnet

data memory, which can easily fit into XSMs equipped with 4KB data memory and 128KB code memory.

Vigilnet has been transited to the DIA for use in special operations (SOCOM).

The hardware used to test Vigilnet are XSM motes, which extends the Mica2 platforms by improved

peripheral circuitry, new types of sensors and better enclosures. Three types of sensors are utilized in

Vigilnet: magnetic sensors to detect moving ferrous objects, acoustic sensors to detect noise of vehicles,

and passive infra-red motion sensors to detect any moving objects including persons.

5.2.2 Tracking Performance Evaluation

As Vigilnet utilized the object management algorithms of EnviroSuite to keep track of targets, the efficiency

of such algorithms greatly affects the tracking performance of Vigilnet. In this section, we present em-

pirical results on tracking performance of Vigilnet as an indirect measurement of performance of object

management algorithms.

Methodology

In December 2004, in the process of technology transition to DIA, we deployed 200 XSM motes running

the Vigilnet system on sandy and grassy roads with a 3-way intersection and collected performance data in

field tests. The primary goal of the field test is to evaluate system ability to detect, classify and track one or

96

Figure 5.2: System deployment of Vigilnet

Table 5.1: Tracking performance for varied target velocities
Target velocity Tracking performance

5 mph successful
10 mph successful
20 mph successful
30 mph successful
35 mph partially successful

multiple moving targets, which can be either SUVs, persons or persons carrying a ferrous object (suggestive

of a weapon). Figure 5.2 depicts the deployment of the system. Nodes are approximately deployed in a grid

10 meters apart, covering one 300-meter road and one 200-meter road. Each rectangular dot represents one

XSM mote in the field. Several base stations were deployed. Some nodes are missing in the GUI because

they are turned off to emulate failures.

Evaluation Results

Table 5.1 shows the tracking performance of Vigilnet. As is seen, the Vigilnet system tracks targets up to

35mph. Note that, the success of tracking is an end-user metric measured by the accuracy of position and

velocity calculations, which depends on several factors besides EnviroSuite object management protocols.

A track is said to be successful only when the final calculated velocity is within a 20% error. Due to the

limited length of the field and the fixed report rate (once every 3 seconds), velocity calculation does not

perform well when the velocity reaches 35mph. However, the tracking performance of EnviroSuite itself is

actually better than the reported results for the integrated system.

Table 5.2 shows in more details the tracking performance of the Vigilnet system. As is seen, tracking

errors are between 5.5 meters and 7.5 meters. These results were collected with 20% of the nodes randomly

97

Table 5.2: Tracking performance of Vigilnet with EnviroSuite
Target type Avg. tracking error Std. dev. of tracking errors Actual vel. Calculated vel.

walking person 6.19 meter 3.28 meter 3±1 mph 2.9 mph
running person 6.67 meter 3.89 meter 7±1 mph 6.9 mph

vehicle 7.06 meter 3.98 meter 10±1 mph 10.5 mph
vehicle 5.91 meter 3.02 meter 20±1 mph 23.5 mph

two 1 5.58 meter 4.76 meter 10±1 mph 9.2 mph
vehicles 2 6.33 meter 3.52 meter 10±1 mph 9.9 mph

0

100

200

0 100 200 300
X (meter)

Y
(m

et
er

)

0

100

200

0 100 200 300
X (meter)

Y
(m

et
er

)

Figure 5.3: Tracking trajectories for one vehicle and two vehicles

turned off to emulate failures. In all listed targets whose velocities vary from 3mph to 20mph, the maximum

error of velocity calculation is less than 10%, which reflects the good tracking performance supplied by

EnviroSuite.

To give a more concrete view of the tracking performance of EnviroSuite, Figure 5.3 shows the tracking

trajectories for the following scenarios: (i) one vehicle drives across the field from left to right; (ii) two

vehicles keep a distance of about 50 meters before they separate (the first one goes from left to right and

turns right at the intersection and the second one goes from left to right). In the one-vehicle-tracking case,

the rugged trajectory in the center of the horizontal road shows explicitly that existing node failures do affect

tracking accuracy. The two-vehicle-tracking case proves the ability of EnviroSuite to track multiple targets

with the same sensory signatures as long as they keep a distance (50 meters) that is more than half an object

resolution (set to 30 meters in the system). This was deemed sufficient by the client for operational use.

Concluding Remarks

Collected results show that the maximum trackable speed of EnviroSuite under this specific deployment is

near 35 mph. Given our 10-meter-apart grid deployment and 20% node failures, tracking errors are still as

98

small as about 6 meters and the maximum error in velocity calculation doesn’t exceed 10%. These results

from physically deployed systems validate that EnviroSuite is practical, effective, and efficient on current

hardware with limited communication and sensing capabilities.

5.2.3 Evaluation of EnviroLog

We show the various functionalities of EnviroLog by using the recording and replay service to tune and

evaluate performance of Vigilnet, to collect its runtime status and to replay targets with virtually increased

or decreased velocities.

In this section, we first introduce the experimental methodology, including hardware, software and

deployment scenarios. Then, we show the effectiveness of EnviroLog by recording and replaying different

types of targets. Finally, we show how EnviroLog aids in-field tests of Vigilnet in various ways, including

performance tuning and evaluation, runtime status collection, and virtual velocity simulation.

Methodology

As stated before, Vigilnet is targeted to detect, classify and track various events of interest in real-time

through in-network processing. It takes environmental targets as inputs, applies multiple levels of processing

before outputting results to end users. The lowest layer is sensor drivers which sample raw data from sensors

and, if any target of interest is detected, signal detection results to higher layers. The layer above sensor

drivers is object management algorithms from EnviroSuite that dynamically organize nodes in the vicinity

of targets into local objects, and send the aggregate states (such as target position estimates) of these objects

to function objects located at base stations. The highest layer is located in base nodes, where aggregate

reports are further processed to extract properties such as target velocities. The highest layer outputs target

types (vehicles or persons), trajectories and velocities to a GUI which displays results to end users.

An obvious use of EnviroLog in this system would be to debug sensor drivers, to tune their sensor

data processing parameters (e.g., various filters), or to compare their different versions by recording and

replaying raw sensing data on individual nodes. However, what is more interesting is to see how EnviroLog

aids the in-field tests of higher layers that involve coordination among multiple nodes in a multi-hop wireless

network. Towards that end, we insert EnviroLog between the sensor driver layer and the group management

layer, record outputs of sensor drivers rather than raw sensing data, and focus on the behavior of layers

99

higher than the sensor drivers.

Vigilnet employs three types of sensors: magnetic, acoustic and motion sensors. Their drivers interact

with higher layers by signaling instances of the following event:

event r e s u l t t d e t e c t e d (T a r g e t C o n f i d e n c e c o n f i d e n c e s) ;

where TargetConfidence is an array of integers, each representing the possibility of a certain target

type.

To integrate EnviroLog into the system, we simply insert /*LOG FUNCTION*/ before each clause

that signals the event, and process the code using the preprocessor before compiling the system. To collect

empirical data, we download the system onto 37 XSMs. We deploy the XSMs approximately 5 meters

apart on both sides of a driveway, as shown in Figure 5.4. The triangle marks the position of the base node

connected to a laptop.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

X (meter)

Y
(m

et
er

)

Figure 5.4: System deployment of Vigilnet and EnviroLog

Effectiveness

To evaluate the effectiveness of recording and replay, we first set the system to be at record stage, and

physically generate targets by jogging or driving through the driveway. The trajectories and calculated

velocities for the jogging person and the vehicle are shown separately in Figure 5.5(a) and 5.5(d). Later on,

we switch the system to its replay stage to virtually replay the jogging person and the vehicle. Figure 5.5(b)

100

and 5.5(c) shows two different replays of the person, while Figure 5.5(e) and 5.5(f) shows two replays of

the vehicle.

person (velocity-4.80mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

replayed person (velocity-4.80mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

replayed person (velocity-4.70mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

vehicle (velocity-4.98mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

replayed vehicle (velocity-4.67mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

replayed vehicle (velocity-4.54mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

Figure 5.5: Trajectories and calculated velocities for physical and replayed targets

As is seen for both the person and the vehicle, the trajectories of real targets and replayed ones are

very close, and the differences of their calculated velocities are below 0.5mph. This observation verifies

the effectiveness of EnviroLog. However, outputs are not exactly the same, which is expected considering

the variability in layers above sensor drivers. For example, communication delays may change due to

randomness in the MAC layer especially when multiple neighboring nodes request to send simultaneously.

This also explains why replay of the person is more accurate than that of the vehicle. A person is usually

detected by only one node while vehicles can be detected by multiple nodes simultaneously, which causes

those nodes to send detection reports to leaders simultaneously. The possibility that these detection reports

are always received by the leader in the same order during different runs is very low, which leads to the

minor differences among observed target trajectories.

101

Potential Uses - Performance Tuning and Evaluation

A big portion of wireless sensor network applications are outdoor applications that detect targets or monitor

environments. It is difficult to evaluate such applications by simulators, which either can’t simulate envi-

ronmental inputs or can’t realistically simulate them. The environments are much more complex than what

simulators can model. Even the modeling of the magnetic field near a vehicle is extremely challenging due

to the uneven and unknown distribution of metals inside the vehicle. The lack of realistic sensing models

makes in-field testing a necessary step before the real deployment of most applications involving target de-

tection or environmental monitoring. EnviroLog makes in-field tuning and evaluation much easier as shown

by the following experiments.

In Vigilnet, the group management layer used to group nodes that detect the same target has a tunable

parameter called DOA (degree of aggregation). It is used to eliminate sporadic false positives in target

detection. Group leaders do not report the detection of a target to the base station until the number of nearby

nodes that detect the target reaches DOA. Higher DOA filters out more false positives, thus reducing the

number of reports from leaders. However, too high DOA results in false negatives. To find out the proper

DOA, we have to drive the vehicle or walk through the field multiple times while tuning this parameter.

EnviroLog provides an alternative way to tune DOA with less overhead. We drive a vehicle or walk once

to record the environmental inputs, and then replay them multiple times with different DOA values. Figure

5.6 shows target trajectories for different DOA settings. As is seen, a higher DOA results in fewer trajectory

points, thus more inaccurate calculated velocities. When DOA reaches 4, the calculated velocity (10.96mph)

is far away from the ground truth (5±1mph).

replayed vehicle (velocity-5.37mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

(a) DOA = 2

replayed vehicle (velocity-5.37mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

(b) DOA = 3

replayed vehicle (velocity:10.96mph)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
X (meter)

Y
(m

et
er

)

(c) DOA = 4

Figure 5.6: Trajectories and calculated velocities for different DOA

We also use EnviroLog to log and retrieve the number of aggregate reports during runtime. Figure

102

5.7 depicts the cumulative distribution of the number of aggregate reports for different DOA values. As

expected, a higher DOA leads to fewer aggregate reports. These results suggest that DOA values of 1, 2 and

3 are acceptable settings, though a higher value that leads to less communication overhead is more preferred.

0

10

20

30

40

0.8 0.85 0.9 0.95 1
Cumulative fraction of nodes

Nu
m

be
r o

f a
gg

r.
re

po
rts

DOA-1
DOA-2
DOA-3
DOA-4

Figure 5.7: Cumulative distribution of number of aggregate reports for different DOA

Potential Uses - Runtime Status Collection

During development and testing, batteries are often depleted due to frequent experiments. One drawback of

XSM motes is that batteries can not be measured or replaced without opening the package by unscrewing

4 screws. Vigilnet usually operates at the scale of hundreds of XSMs, which makes it extremely painful

to check whether each node has a high-enough voltage. Runtime status recording and retrieve supported

by EnviroLog provides a simple solution for this problem. Voltage values of nodes can be logged and

retrieved after each in-field test to find out those with low voltage, whose batteries then can be replaced

before next test. Figure 5.8 shows the cumulative distribution of voltage values before and after the whole

set of macrobenchmarks, which are collected through EnviroLog.

0

0.2

0.4

0.6

0.8

1

2300 2500 2700 2900
Voltage(mV)

Cu
m

ul
at

ive
 fr

ac
tio

n
of

 n
od

es

Before
After

Figure 5.8: Cumulative distribution of voltage values before and after experiments

103

Potential Uses - Virtual Velocity Simulation

EnviroLog allows users to speed up or slow down the replay of events by setting a replay speed greater or

less than 1. Note that changing replay speed is not always meaningful. For example, if sensor drivers pull

data at a fixed rate and raw sensing data is logged, replaying at a different speed actually violates the logic of

sensor drivers. In Vigilnet, EnviroLog records and replays the outputs of sensor drivers, which are detection

events signaled by sensor drivers to higher layers. Replaying them at a higher speed can virtually simulate

environmental targets with higher velocities. This experiment replays recorded events using different replay

speeds to validate the effectiveness of virtual velocity simulation. Figure 5.9 depicts the calculated velocities

for different replay speeds and targets. When the replay speed doesn’t exceed 4×, calculated velocities for

both the person and the vehicle are close to the ground truth. Higher replay speeds lead to intolerable errors

in velocity calculation.

0

20

40

60

80

100

1× 2× 4× 8× 16×
Replay speed

Ca
cu

la
te

d
ta

rg
et

 v
el

oc
ity

(m

ph
)

replayed vehicle
replayed person

ground truth

Figure 5.9: Calculated velocities for different replay speed

Concluding Remarks

Results above validate the effectiveness of EnviroLog and demonstrate its great potentials in facilitating

in-field experiments. EnviroLog has various uses for in-field tests of large-scale systems, including perfor-

mance tuning and evaluation, and runtime status collection. EnviroLog can replay events at different replay

speed, which can be used to virtually simulate targets moving at different velocities.

104

5.3 EnviroMic: Distributed Acoustic Monitoring

EnviroMic presents the first implementation of an audio sensor network for recording, storing, and retrieving

environmental acoustic traces geared for a prolonged interval of disconnected operation. The purpose is to

monitor acoustic events, record sound clips, and collect them for future analysis. It can be used, for example,

by avian ecologists to record traces of bird vocalizations in forests to learn about their mating behavior.

Networked deployment of large numbers of low-cost, low-range sensors adds new challenges and op-

portunities in acoustic recording service design. The main challenges in the design and implementation

of EnviroMic are enumerated below. First, the omni-directional nature of acoustic sensing introduces data

redundancy when multiple nodes collectively sense the same acoustic source. Therefore, it is imperative to

ensure that EnviroMic limits redundant recording such that storage is used more efficiently. Second, since

current sensor platforms are severely constrained in CPU bandwidth, they are unable to perform other activ-

ities (such as radio communication) concurrently with high frequency sampling. Therefore, it is important

to coordinate the recording and other tasks such that they do not interfere. Finally, the high data volume

generated by an acoustic source, coupled with the potentially uneven spatial distributions of such sources,

may cause some nodes to overflow while others still have available storage space. Hence, EnviroMic must

balance recorded data across nodes to eliminate storage hot-spots and to make use of storage capacity that

is not in direct vicinity of the frequent sound sources.

To address these challenges, we design and implement EnviroMic based upon the EnviroSuite frame-

work. We utilize event objects to track environmental targets that let out noise (e.g., cars or birds). Such

noise is recorded and stored in the network using EnviroStore, and retrieved at the end of deployment

for later analysis. A prototype of EnviroMic is built upon MicaZ motes equipped with MTS300 sensor

boards [16]. Based on the prototype implementation, we evaluate EnviroMic using both an indoor testbed

and an outdoor deployment in a forest. Results collected from these experiments demonstrate the efficacy of

EnviroSuite in conserving storage resources, preserving the continuity of recordings, and balancing network

load.

5.3.1 Overview of EnviroMic

The target application of EnviroMic is long-term acoustic monitoring, which involves high-frequency sam-

pling and high-volume data storage. The primary concern of the system is to maximize the effective storage

105

capacity of a sensor network, which is maximizing the amount of data a scientist can collect about the

environment in a single experiment. It is assumed that the network generally remains disconnected from

the outside world during the experiment. Hence, there is need for improving storage capacity. With that

design goal in mind, EnviroMic employs mechanisms to reduce storage redundancy and improve balancing

of data storage in the network, when energy permits. Below, we briefly introduce the system architecture of

EnviroMic and highlight the main EnviroMic subsystems as depicted in Figure 5.10.

���������	
����
��������

�
�
��

�
�

�
��

�
�

�
��

��
�
�

�
�
�
�

���������
�����������

������������ ���

������������� ���

���������	
����
���������

������������������

���� ���������
������� ���

����������
�

���������� ������

��� ������ ���� ! ������
��

�
�

�
�
 �

�
�
 �
�
�

 �
��

�
 �

"
�

��
�

�
#�

�

Figure 5.10: System Architecture of EnviroMic

To reduce storage redundancy, EnviroMic employs object management algorithms from EnviroSuite.

Event objects are instantiated whenever new acoustic events are detected. We further implement a task

management service to rotate the task of recording such events among nodes near the perceived source

(for load balancing purposes). We call this whole subsystem the cooperative recording subsystem. The

cooperative recording subsystem offers two main advantages over uncoordinated local sampling (in which

each sensor independently records local acoustic data). First, redundancy is reduced allowing more data

to be collected. Second, recording that is perceived to belong to the same continuous acoustic event is

coalesced into the same file.

The recorded data is stored via EnviroStore using the log-sequence file interface, attempting to create

a single file for each continuous acoustic event. The file is distributed and consists of different chunks

residing on different sensors that recorded parts of the event. To improve storage balancing in the network,

EnviroStore automatically transfer data from heavy-loaded areas to light-loaded areas when energy permits.

EnviroMic also leverages the data retrieval subsystem of EnviroStore to extract data from the network.

However, it is not an objective of EnviroMic to guarantee unique file-to-event mapping. It merely does its

106

best in event-file association to reduce redundancy and facilitate indexing of sound clips. This provides the

basis for more sophisticated algorithms (executed on powerful base stations after collecting all the data) to

extract higher-level information.

We implemented EnviroMic on MicaZ motes running TinyOS. We chose MicaZs since they are good

representatives of a large class of off-the-shelf hardware platforms with various sensing and storage capabil-

ities. Though MicaZs are severely constrained in storage capacity and may not be the most appropriate for

our specific application, the challenges we experienced in building EnviroMic are not specific to MicaZs,

but are in fact general to the large class. The implementation consists of 12 nesC modules, and 10,282 lines

of nesC code. The system occupies 61.5KB of code memory and 2.8KB of data memory on MicaZ.

We evaluate EnviroMic using both an indoor testbed and an outdoor deployment in a forest. The acoustic

sampling frequency is set to be 2.730kHz throughout the experiments. The indoor testbed consists of 48

MicaZ motes placed as a 8×6 grid with unit grid length 2ft. We use this testbed together with controlled

acoustic events described below to achieve repeatability in our experiments so we could perform valid

comparisons and empirically determine the effects of certain system parameters. To further understand

the performance issues of EnviroMic in realistic environments, we conducted experiments using 36 MicaZ

motes in a nearby forest.

5.3.2 In-door Experiments

Efficiency of the cooperative recording subsystem comprises two related properties. First, we want the

acoustic event recording to be complete (i.e., no recording gaps). Second, we want to reduce recording

redundancy. Our design and implementation of seamless task assignment ensures that recorded data redun-

dancy is almost eliminated.

Figure 5.11 plots the recording periods of the nodes, as well as the acoustic event duration of one

instance of our experiments in which task period is 1.0s. Note that not all nodes performed a recording task

due to the cooperative task assignment. Recordings happened at different nodes seamlessly. Also note the

recording miss at the very beginning when the acoustic target enters the network and nodes are still in the

leader election phase.

To better appreciate the efficacy of our cooperative recording subsystem, in Figure 5.12 we present an

experiment of recording human voice. In this experiment, a person read out a sentence while moving across

107

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 0 2 4 6 8 10

No
de

 ID

Time (s)

Task Period
Event Duration

Figure 5.11: One instance of recording a mobile acoustic object

 0

 128

 256

 0 1 2 3 4 5 6 7

Se
ns

or
 R

ea
di

ng

Time (s)

(a) Recorded by a single mote

 0

 128

 256

 0 1 2 3 4 5 6 7

Se
ns

or
 R

ea
di

ng

Time (s)

(b) Recorded by EnviroMic

Figure 5.12: Recording voice of a moving human being

the 7×4 grid of motes at a constant speed of one grid length per second. An extra mote was held by the

person during the experiment to record a reference “ground truth”. Figure 5.12(a) plots the sensor readings

of the mote held by the person, while Figure 5.12(b) plots the sensor readings of all the EnviroMic nodes

that performed recording tasks, stitched together based on their timestamps. The visual similarity of the two

figures is obvious.

5.3.3 Preliminary Outdoor Deployment

To understand the efficacy and limitations of our current design and implementation of EnviroMic in more

realistic environments, we deployed a EnviroMic system that consists of 36 MicaZ motes in a forest (Fig-

ure 5.13). On the west side of the forest is a road where vehicles pass by during the day. The experiment

108

(a) A bird-eye view of the deployment (b) A mote installed on a tree

Figure 5.13: Deployment in a natural forest

was conducted on a day in April 2006. The motes, enclosed in plastic containers, are attached to the trunks

of the trees. The deployment area is approximately 105ft×105ft. We were not able to deploy the motes as a

grid (to facilitate post-processing of recorded data) because the trees in the forest are in irregular positions.

We therefore had to reconstruct the map (Figure 5.13(a)) manually. After the motes were installed, a person

holding a mobile device walked around the network to activate the EnviroMic application in each mote.

This is to avoid acoustic disturbance caused by installing motes in the containers and attaching them to the

trees. We collected data recorded by the motes during a period of 3 hours.

The first set of data of interest is how acoustic events are temporally distributed. Figure 5.14 plots the

amount of acoustic data collected by all the sensors at different times. The numbers on the y-axis represent

the total amount of recording (in seconds) done by all nodes within one-minute intervals. They are plotted

versus time. There are two spikes in the figure. The first spike (11:30-11:40), as we found out later, was

caused by people from another department in our university doing an experiment in the forest. The second

spike (12:15-12:45) contains some very long events (up to 73 seconds) that, we conjecture, were caused by

the motion of heavy agrarian equipment on a neighboring road.

Next, we look at the geographic distribution of the events. From the data stored in the motes, we

reconstructed the information on how much acoustic data was generated from which sensors throughout

the experimentation period. Mapping node IDs to geographic locations, we plotted a contour graph of total

volume of acoustic events (in seconds) shown in Figure 5.15. We can see that there are two high data volume

regions. The one on the left side is caused by vehicles passing on the road to the west of the forest. The

other region that is rich in acoustic events in the figure roughly matches a trail in the forest.

Since we can not repeat the events, we are unable to compare the performance of EnviroMic with

109

 0

 20

 40

 60

 80

 100

10:45 11:15 11:45 12:15 12:45 13:15 13:45

Re
co

rd
ed

 D
at

a
(s

/m
in

ut
e)

Time

Figure 5.14: Amount of acoustic event data over time

���

����

����

����

	���

Figure 5.15: Amount of acoustic data, in bytes, generated in different locations

baselines as we did in the indoor experiments. However, it is still interesting to see how data recorded

in those acoustically-rich regions migrated to other nodes. We therefore picked the node that recorded

the highest volume of data, and plotted the amount of data migrated from that node to other nodes in the

network in Figure 5.16. The node that recorded the most data is at coordinate (4, 2) in the rough grid of

our deployment. As can be seen in the figure, the node migrated a lot of data to its immediate neighbors,

which further migrated some of those data to their neighbors, and so on. This demonstrates the ability of

EnviroMic to gracefully handle acoustic event hot-spots.

110

123456
1

2
34

5
6

0

10

20

30

40

50

60

Am
ou

nt
 o

f D
at

a
Tr

an
sf

er
re

d
fro

m
 N

od
e

(4
, 2

) (
KB

)

X

Y

Figure 5.16: Distribution of data migrated to nodes for load-balancing

5.4 Conclusions

The ultimate purpose of the EnviroSuite framework is to provide usable development support to the sensor

network community. Therefore, practicability of the framework has to be thoroughly validated. In this

chapter, we extensively test and evaluate the work through two practical, integrated systems: Vigilnet and

EnviroMic.

First, we presented our successful experience in building a large surveillance system, Vigilnet, upon the

object management services provided by EnviroSuite. Experimental results from outdoor deployments of

Vigilnet validated the efficacy of event object management in realistic environments. We also experimented

with how to utilize EnviroLog to aid in-field testing of Vigilnet. The collected results fully demonstrated the

effectiveness of this recording and replay tool as well as its great potentials to enable and simplify a series of

testing routines, including performance tuning and evaluation, runtime status collection, and virtual velocity

simulation.

We also presented EnviroMic, a novel distributed acoustic monitoring, storage, and trace retrieval sys-

tem. EnviroMic employs a cooperative recording scheme (adapted from the object management algorithms)

and a distributed balanced storage mechanism (i.e., EnviroStore) to address unique challenges arising from

high-frequency acoustic sampling and high-volume sensory data storage. Evaluation results drawn from

both indoor and outdoor deployments demonstrate the efficacy of our design.

111

Chapter 6

Related Work

6.1 Programing Paradigms

EnviroSuite opens a new category of distributed programming paradigms. EIP differentiates itself from

traditional paradigms such as CORBA [89], Microsoft’s COM [71], and remote procedure calls [8] by

combining within its programming abstractions objects and events in the physical world.

Several communication and programming models have been proposed for sensor networks in recent

years. These include node-based languages, virtual machines, database-centric abstractions, event-based

models, and group-based primitives. EnviroSuite is different in that its abstractions are not centered about

computational constructs such as queries or sensor groups. Instead, these abstractions are centered around

elements of the physical environment.

Node-based languages such as nesC [27] and galsC [12][13] are too low-level since they typically take

the sensor node as basic computation, communication and actuation unit. To address this issue, higher-level

languages that export logical nodes [33] were proposed to abstract away from physical sensors. EnviroSuite

successfully raises the abstraction level to logical objects mapped from physical elements, thus expedite the

procedure of design and programming compared with node-based languages.

Virtual machines such as Mate [51] and SensorWare [11] allow large sensor networks to be repro-

grammable frequently by writing application scripts, replicating them through the network and execut-

ing them automatically. However, they usually concentrate on issues related to code replication and auto-

execution rather than raising programming abstraction levels. For example, to reduce energy cost of code

replication, Mate even provides an instruction-like language to shorten code length, which actually puts

extra burden on programmers shoulders.

Database-centric abstractions such as TinyDB [64][65][66] and Cougar [99] view sensor networks as

databases that allow users to express requirements as queries, and to distribute and execute these queries.

112

Comparatively, our work, instead of providing a specific data collection and aggregation model, attempts to

support a wider range of applications by encapsulating not only computation and communication units but

also actuation units into its programming abstractions.

Event-based models such as [55] are similar with database-centric abstractions except that they view

the sensor field as an active entity that automatically push data streams to users when defined events are

triggered instead of a passive database which only responds upon queries.

Group-based primitives such as Hood [95] and Abstract Regions [92], provide neighbor discovery and

neighborhood data sharing mechanisms. Compared with EnviroSuite, these abstractions are passive. In

contrast, EnviroSuite abstractions are active objects that encapsulate local code and aggregate state, as well

as share data across neighborhoods or regions.

Another group-based paradigm, State-centric programming [56], described a programming abstraction

mostly related to our work. However, it is implemented and evaluated only on Pieces simulator built in Java

and Matlab, which can not simulate some critical features of wireless communication including message

collision. In contrast, our work includes a detailed implementation in nesC on TinyOS, an operating system

for real sensor network devices, and provides comprehensive evaluation results both in TOSSIM and real

sensor devices. Furthermore, the underlying group management protocol [58] differs in its mechanisms for

object classification and identity management.

Finally, we should mention that a criticism of current high-level programming languages has been that

they are too application specific. Hence, intermediate-level languages such as [73] were proposed as a step

towards macroprogramming. EnviroSuite attempts to cater to a general application pool by diversifying the

supported object types.

6.2 Data Storage

Most storage services were usually designed for individual nodes, such as ELF [17], Matchbox [26], Mi-

croHash [100], and Capsule [69]. Several distributed storage services have also been designed [18][24][84].

One example is TSAR [18], which features a two-tier storage and indexing architecture: local storage at

the sensor nodes and distributed indexing at the proxies. TSAR is different from our design in that storage

is not a cooperative activity among nodes. DIMENSIONS [24] is another system that is designed to store

long-term information by constructing summaries at different spatial resolutions using various compression

113

techniques. TinyDB [64][65][66] and related projects [10][99] organize sensor networks and their collected

data as a distributed database and focus on query processing techniques to acquire data from such databases.

All these services assume connected operation and real-time data acquisition. Geared for disconnected op-

eration, EnviroStore has a completely different focus. Namely, it investigates cooperation between different

tiers (sensor nodes, data mules [78], and basestations) to maximize storage capacity.

One key challenge of our distributed storage service is load balancing. Load balancing has been used for

other purposes in sensor networks, including maximizing system lifetime by balancing energy consumption

of different nodes [54], and improving fairness by balancing MAC layer accesses [97]. Load balancing in

EnviroStore is similar to the former, where the available storage space is similar to the remaining battery

for each node. However, previous energy load-balancing algorithms can not be directly used for EnviroMic

because when applied to storage, we have the additional control knob of exchanging data between nodes.

More broadly, load-balancing comprises many algorithms that are studied in different application con-

texts. Representative applications include load-balancing in web servers [96][102], P2P networks [82][49],

wireless LANs [7], and distributed operations systems [14]. These applications commonly involve many

nodes, which can range from web servers to P2P clients, each with a finite resource capacity. The particular

resource may be bandwidth, computing power, or storage space. When more resources than desired are

consumed, a node tries to reduce its resource consumption by transferring some load to its peers. While this

general description also applies to EnviroStore, EnviroStore is considerably different. First, EnviroStore has

the extra constraint of limited energy, which leads to new insights such as lazy offload. Second, because of

the resource limitations of individual nodes, no single node is able to coordinate with all the other nodes.

Load balancing in EnviroStore must be completely distributed, dependent only on local information. Third,

EnviroStore has the additional challenge of redistributing data between entities that are disconnected.

6.3 Debugging Tools

In recent years, sensor network researchers have proposed several tools and middleware that aid the debug-

ging and evaluation of sensor network applications. Generally, they can be divided into four categories:

simulators, emulators, test-beds and services. The section compares EnviroLog with related work in each

of these categories.

Simulators are popular tools in debugging and evaluation of sensor network applications since they

114

don’t usually require the deployment of sensor hardware. NS-2 [1], GloMoSim [101] and TOSSIM [52] are

good examples. NS-2 is a discrete event simulator supporting various networking protocols over wired and

wireless networks. GloMoSim focuses more on mobile, wireless networks. It allows comparison of multiple

protocols at a given layer. TOSSIM is a simulator especially designed for TinyOS applications, which

provides scalable simulations of sensor network software. Current simulators, however, do not adequately

capture the real behavior of sensor networks. This is due to the difficulty in modeling practical imperfections

such as radio irregularity as well as due to the lack of good models of environmental inputs. The ability of

EnviroLog to record environmental events can presumably be utilized to improve these tools by importing

recorded event data to simulate environmental inputs.

Another category of debugging and performance evaluation tools in sensor networks is emulators that

mimic sensor devices either in software or hardware. AVR JTAG ICE [4], a real time in-circuit emulator,

is a good representative of hardware emulators. It uses the JTAG interface to enable a user to do real-

time emulation of the microcontroller of sensor devices. A drawback of such in-circuit emulators is that

they have to be physically connected to emulated devices, which causes logistical difficulties in conducting

experiments especially for large-scale applications covering a wide field. Atemu [75] is a software emulator

for AVR-processor-based systems that emulates AVR processors as well as other peripheral devices on the

MICA2 platform. Like TOSSIM, Atemu also simulates wireless communication. Such software emulators

do not introduce the logistical difficulties exhibited in hardware emulators, but they are usually less realistic

in reproducing network behavior.

The final stages of debugging and performance tuning typically use actual testbeds to evaluate sensor

network applications. For example, Motelab [94] is a public testbed using MICA2 platforms, which allows

users to upload executables and receive execution results via the Internet. Kansei [86] is another testbed.

It employs XSM, MICA2, and Stargate platforms. EmStar [28] is a combination of emulators and testbeds

for Linux-based sensor network applications, which runs applications using either a modeled radio channel

or the channel of real nodes. EmTOS [29] extends EmStar to run TinyOS applications by compiling them

into EmStar binaries. These testbeds ease the development and evaluation a lot without requiring full-scale

deployment. However, they do not focus on repeatability of environmental inputs like EnviroLog does.

We categorize all other software facilitating field tests of sensor network applications as services. Envi-

roLog belongs to this category. Monitoring tools such as Message Center [87] aid field tests by capturing

115

messages in the air, filtering and displaying them to users. Closest to EnviroLog is TOSHILT [47], a middle-

ware for hardware-in-the-loop testing. TOSHILT defines emulated stimuli to replace the real environmental

events, so that applications can be evaluated repeatedly before the final deployment. Since TOSHILT uses

synthetic and parametric event profiles, the detail of accuracy is less than what can be captured by Envi-

roLog. In addition, TOSHILT doesn’t provide abstractions similar to EnviroLog annotations to ease the

integration of the middleware into user applications. All these difference make EnviroLog unique. In the

following, EnviroLog is described in more detail.

6.4 Target Tracking

Target tracking has received special attention in recent ad hoc and sensor networks literature. Many prior

approaches (e.g., in the ubiquitous computing and communication domains) focused on tracking cooperative

targets. Cooperative targets are those that allow themselves to be tracked typically by exporting a unique

identifier to the infrastructure (such as a cell-phone number). Examples of cooperative targets include cell

phones, RFID tags [81] and smart badges [91]. Since such devices are preconfigured with a unique identity,

the tracking problem is generally reduced to that of locating the uniquely identified device and performing

hand-offs if needed (e.g., in cellular phones). In contrast, we focus on tracking non-cooperative targets such

as enemy vehicles that do not broadcast self-identifying information. The presence and identity of such

targets can only be inferred from sensory signatures, as opposed to direct communication with the target.

Tracking non-cooperative targets is more challenging due to the difficulty in associating sensory signatures

with the corresponding targets (e.g., all tanks look the same to our unsophisticated motes). The presence of

target mobility further complicates the tracking problem.

One of the first research efforts on group management for non-cooperative target tracking has been con-

ducted by researchers at PARC [57][58]. Their group management method dynamically organizes sensors

into collaborative groups, each of which tracks a single target. Typical tracking problems such as multi-

target tracking and tracking crossing targets are solved elegantly in a distributed way. Other approaches to

target tracking include [3] which presents a particle filtering style algorithm for tracking using a network of

binary sensors which only detect whether the object is moving towards or away from the sensor. A scalable

distributed algorithm for computing and maintaining multi-target identity information in described in [79].

In [103] a tree-based approach is proposed to facilitate sensor node collaboration in tracking a mobile target.

116

We have investigated the tracking problem in several of our publications. Similar to [57], in [9] we

present a set of group management algorithms which form sensor groups at the locations of environmental

events of interest and attach logical identities to the groups. Based on [9], EnviroTrack [2] proposes an envi-

ronmental computing paradigm which facilitates tracking application development. EnviroSuite [61] further

extends the paradigm to support a broader set of applications that are not limited to target tracking. Geared

for tracking of fast-moving targets with low communication cost on available hardware platforms that have

limited sensing and communication abilities, we proposed several group management optimizations in [60]

for EnviroSuite. Such optimizations may be applicable to other systems such as [58] as well.

6.5 Acoustic Applications

Sensor network applications have used acoustic sensors for different purposes, including localization [80],

surveillance [32], communication [88], and geophysical monitoring [93]. Interestingly, none of these appli-

cations let users retrieve raw acoustic sensor samplings: they either use filtered samplings for application

needs [32], or use acoustic signals for purposes other than recording [80]. Comparatively, in EnviroMic,

we store raw sampling results in a cooperative manner into local storage (flash memory), and retrieve them

later upon user request. The way we handle data remotely echoes data-mule [78], which also uses a store-

and-fetch model.

For acoustic systems, challenges arise to handle the high data volume generated by high frequency

sampling of acoustic sensors. To tackle the problem, EnviroMic mainly focus on reducing data redundancy.

Obviously, other techniques including in-network filters [30] and data compression algorithms [76] can be

easily integrated into EnviroMic to further reduce the data volume to be stored in network.

Also, EnviroMic has a great potential to be applied in applications which previously did not use acoustic

sensors. For example, in animal monitoring [67][59] EnviroMic may characterize the behavior of animals

from perspectives totally different from previous approaches using temperature or GPS sensors: acoustic

data are much richer in nature and provide direct reflections of animal behavior. Furthermore, data retrieved

by EnviroMic can be correlated with data from other sensors to reveal hidden behavior patterns that may not

be possible to obtain without using acoustic sensors. The authors of [43] implemented an acoustic sensor

network application that monitors cane toads. However, they assume the existence of more storage-rich

devices for real-time data uploading.

117

Chapter 7

Conclusions

It is envisioned that sensor network technology is to bring about the next society-transforming change since

the Internet, leading to a new computing, sensing and actuation infrastructure that is deeply embedded into

our environment, represents the environment in bits, and ultimately interconnects human beings and the

surrounding physical world.

As initial steps towards this goal, this dissertation focuses on creating usable development support for

the community. The goal is to simplify programming and reduce development cost. We proposed and

designed one of the first high-level programming paradigms in sensor networks. We also implemented and

empirically evaluated a library of middleware services to support the programming paradigm. As a whole,

our efforts constitute a comprehensive programming framework that enables rapid development of sensor

network applications.

Inside the framework, we included object-based abstractions (EIP) and language primitives to simplify

design and implementation of sensor network systems. Our abstractions capture the unique feature of sen-

sor systems, their rich interactions with the physical environment, by seamlessly combining objects in the

logical world with physical elements in the external environment. Programming of sensor network systems

that monitor and track physical activities is thus made much more intuitive and less time-consuming.

We provided a library of middleware services to support the abstractions during runtime. Central to

the library are a set of object management protocols that maintain the unique mapping between logical and

physical objects. Using both simulations and experiments on real hardware platforms, we demonstrated

the effectiveness of such protocols. These object management services define new, simple ways to locally

collect aggregate states of environmental elements.

A secondary set of middleware services manage and retrieve the collected data. Rather than focusing

on how to retrieve data in real-time via multi-hop communication, we concentrated our effort on data stor-

age and retrieval services for delay-tolerant sensor networks. Simulation results show that the cooperative

118

storage service we developed achieved orders of magnitude improvement in terms of prolonging lifetime of

in-network storage.

The EIP abstractions and the support library simplify the design and implementation phases of sensor

network application development. Before finally deploying the applications, programmers have to conduct

the last phase, which is to extensively test the applications under realistic environments to fine-tune and

verify their performance. Therefore, we also investigated testing and debugging solutions in order to reduce

the cost of in-field experiments. The recording and replay tool we developed resolved the problem of non-

repeatability of asynchronous events originated from the dynamically changing environment. A thorough

measurement of overhead and performance of the replay service validates its ability to achieve repeatability

with fairly low overhead.

In this dissertation, we put special emphasis on practicability of the developed framework. We provided

not only fine-grained measurements of the overhead and performance of individual protocols and services

via simulations and small testbed experiments, but also extensive in-field evaluation of several integrated

systems built upon the framework. Empirical results collected from realistic deployments of such systems

validate the efficacy of our framework in building practical systems.

This dissertation extensively explored the problem of programming for a single, isolated sensor network.

Along with the same line, we are still in search for innovative solutions and techniques to address the

programming issues in sensor networks that are globally interconnected.

Increased miniaturization and reduced cost of hardware (by Moore’s law) will soon lead to the prolif-

eration of embedded sensing devices (e.g., motes, RFIDs, cell-phones, cameras, GPS in cars, etc.). There

are growing interests in globally interconnecting such devices so that relevant information sources can be

combined to improve the quality of decision making. With the addition of myriads of new sensing devices

to the network, the total bandwidth of data production can grow unboundedly. In contrast, the human capac-

ity for data consumption does not evolve as quickly. Neither our cognitive abilities (to consume input) nor

our population changes fast enough to match the increase in net data production offered by the explosion

of new embedded sensing devices. In order to avoid the human bottleneck, Computing devices will have

to become more autonomous with progressively less human mediation. These trends herald the emergence

of omnipresent, autonomous, globally connected networks of embedded sensing devices with their own

meanings of interaction with the physical environment.

119

An explosion of applications built upon such globally interconnected sensor networks, expanding way

beyond current temperature collecting and tank tracking systems, is expected to occur soon. There are

multiple application directions to be explored:

- In the medical domain, the retirement of the baby boom generation will place an enormous burden

on the current healthcare system. Interconnected smart homes, as one important application of sensor

networks, will help the generation live more independently, which makes the working generation

more productive as to sustain the US economy.

- In the Internet domain, the increasing complexity of computing and the associated infrastructure, mid-

dleware, and applications will soon reach a level beyond human ability to control and manage. There

is an increasing need for (performance) sensors and means to automate collection and processing of

information to regulate themselves to deliver high-quality service, to collaboratively diagnose and

cure temporary failures for 24/7, and to lessen the increasing demands for skilled administrators.

- In the business world, globalization of the economy gives rise to huge international companies with

globally distributed warehouses. RFID-based sensor networks can certainly be applied to ease the

complex inventory control.

The emergence of globally connected sensor networks and the explosion of application directions offer

a variety new challenges to address the deficiencies of current solutions.

Our framework addressed the programming of a single network of homogeneous sensor devices. Yet,

there is little support for writing applications that extend beyond a single sensor network patch, employ

heterogeneous hardware platforms, and operate within multiple autonomous domains. In the future, we

are interested in addressing this issue by designing and developing a programming framework and network

architecture that allows developers to easily implement large-scale systems operating on multiple sensor

network patches interconnected via the Internet. This architecture should seamlessly integrate low-level

abstractions (e.g., for domain experts to develop sophisticated signal processing and data fusion algorithms)

and high-level abstractions (e.g., for application developers to quickly implement decision and control sys-

tems that use high-level information such as the outputs of data fusion). The same architecture should

support diverse applications from smart homes to autonomic server management, and to many others.

120

Due to the vast number of sensors deployed, most sensor systems will be left unattended for prolonged

periods. Failures in hardware or software might not expose themselves until events of interest occur, which

may severely harm system performance (imaging a system that failed to detect a severe heart attack or

failed to send alarms for defected power stations or damaged power lines). Online validation is of great

importance for such systems. Test cases containing external inputs and expected outputs should be fed

into the system so that they can be executed on demand or periodically to validate whether the system is

performing appropriately. We plan to continue our initial effort in EnviroLog to generate repeatable external

inputs as well as develop general ways for diverse sensor network systems to express validation procedures.

Advances in hardware miniaturization and wireless techniques will soon make the vision of seamlessly

embedded, omnipresent, self-organized, globally connected networks of embedded sensing devices become

reality. It is our aspiration that our current and future research may contribute to expedite the realization of

the vision and benefit the lives of millions.

121

References

[1] The network simulator - ns-2, 2006. http://www.isi.edu/nsnam/ns/.

[2] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He, L. Luo, S. Son, R. Stoleru,
J. Stankovic, and A. Wood. Envirotrack: Towards an environmental computing paradigm for dis-
tributed sensor networks. In ICDCS ’04: Proceedings of the International Conference on Distributed
Computing Systems, 2004.

[3] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus. Tracking a moving object
with a binary sensor network. In SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 150–161, New York, NY, USA, 2003. ACM Press.

[4] Atmel Corporation. Mature avr jtag ice.
http://www.atmel.com/dyn/products/tools card.asp?tool id=2737.

[5] S. G. Azevedo and T. E. McEwan. Micropower impulse radar. Science and Technology Review, 1996.

[6] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme, W. J. Kaiser, M. Hansen, G. J.
Pottie, M. Srivastava, and D. Estrin. Call and response: experiments in sampling the environment.
In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 25–38, New York, NY, USA, 2004. ACM Press.

[7] G. Bejerano and S.-J. Han. Cell breathing techniques for balancing the access point load in wireless
lans. In Infocom ’06: Proceedings of the 25th Conference on Computer Communications, 2006.

[8] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Trans. Comput. Syst.,
2(1):39–59, 1984.

[9] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and J. Stankovic. An entity maintenance
and connection service for sensor networks. In MobiSys ’03: Proceedings of the 1st international
conference on Mobile systems, applications and services, pages 201–214, New York, NY, USA, 2003.
ACM Press.

[10] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In MDM ’01: Proceedings of
the Second International Conference on Mobile Data Management, pages 3–14, London, UK, 2001.
Springer-Verlag.

[11] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation of a framework for efficient
and programmable sensor networks. In MobiSys ’03: Proceedings of the 1st international conference
on Mobile systems, applications and services, pages 187–200, New York, NY, USA, 2003. ACM
Press.

122

[12] E. Cheong, J. Liebman, J. Liu, and F. Zhao. Tinygals: a programming model for event-driven em-
bedded systems. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing, pages
698–704, New York, NY, USA, 2003. ACM Press.

[13] E. Cheong and J. Liu. galsc: A language for event-driven embedded systems. In DATE ’05: Pro-
ceedings of the conference on Design, Automation and Test in Europe, pages 1050–1055, Washington,
DC, USA, 2005. IEEE Computer Society.

[14] M. Correa, A. Zorzo, and R. Scheer. Operating system multilevel load balancing. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing, pages 1467–1471, New York, NY,
USA, 2006. ACM Press.

[15] Crossbow. Mica motes, 2007. http://www.xbow.com.

[16] Crossbow Technology Inc. MTS300 Multi Sensor Board, 2006. http://www.xbow.com.

[17] H. Dai, M. Neufeld, and R. Han. Elf: an efficient log-structured flash file system for micro sensor
nodes. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 176–187, New York, NY, USA, 2004. ACM Press.

[18] P. Desnoyers, D. Ganesan, and P. Shenoy. Tsar: a two tier sensor storage architecture using interval
skip graphs. In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 39–50, New York, NY, USA, 2005. ACM Press.

[19] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating system for tiny
networked sensors. In LCN ’04: Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks (LCN’04), pages 455–462, Washington, DC, USA, 2004. IEEE Computer
Society.

[20] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: simplifying event-driven programming
of memory-constrained embedded systems. In SenSys ’06: Proceedings of the 4th international
conference on Embedded networked sensor systems, pages 29–42, New York, NY, USA, 2006. ACM
Press.

[21] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless sensor network
platform for detecting rare, random, and ephemeral events. In IPSN ’05: Proceedings of the Fourth
International Conference on Information Processing in Sensor Networks, 2005.

[22] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: scalable coordina-
tion in sensor networks. In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, pages 263–270, New York, NY, USA, 1999. ACM
Press.

[23] K. Fall. A delay-tolerant network architecture for challenged internets. In SIGCOMM ’03: Proceed-
ings of the 2003 conference on Applications, technologies, architectures, and protocols for computer
communications, pages 27–34, New York, NY, USA, 2003. ACM Press.

[24] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An evaluation of multi-
resolution storage for sensor networks. In SenSys ’03: Proceedings of the 1st international conference
on Embedded networked sensor systems, pages 89–102, 2003.

123

[25] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, and J. A. Stankovic. Satire: a software architecture for
smart attire. In MobiSys 2006: Proceedings of the 4th international conference on Mobile systems,
applications and services, pages 110–123, 2006.

[26] D. Gay. Matchbox: A simple filing system for motes, 2003.
http://www.tinyos.net/tinyos-1.x/doc/matchbox.pdf.

[27] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language: A holistic
approach to networked embedded systems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 1–11, New York, NY, USA,
2003. ACM Press.

[28] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D. Estrin. Emstar: a software
environment for developing and deploying wireless sensor networks. In Proceedings of the 2004
USENIX Technical Conference, June 2004.

[29] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and T. Schoellhammer. A
system for simulation, emulation, and deployment of heterogeneous sensor networks. In Proceedings
of the Second ACM Conference on Embedded Networked Sensor Systems (SenSys’04), November
2004.

[30] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler, J. Judy, and D. Estrin. Capturing high-
frequency phenomena using a bandwidth-limited sensor network. In SenSys ’06: Proceedings of the
4th ACM Conference on Embedded Networked Sensor Systems, November 2006.

[31] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J. A. Stankovic, T. Abdelzaher,
and B. H. Krogh. Lightweight detection and classification for wireless sensor networks in realistic en-
vironments. In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 205–217, New York, NY, USA, 2005. ACM Press.

[32] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J. A. Stankovic, T. Abdelzaher,
and B. H. Krogh. Lightweight detection and classification for wireless sensor networks in realistic en-
vironments. In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked
sensor systems, 2005.

[33] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor networks using
kairos. In DCoSS, 2005.

[34] R. Gummadi, N. Kothari, T. Millstein, and R. Govindan. Declarative failure recovery for sensor
networks. In AOSD ’07: Proceedings of the 6th international conference on Aspect-oriented software
development, pages 173–184, New York, NY, USA, 2007. ACM Press.

[35] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dynamic operating system for
sensor nodes. In MobiSys ’05: Proceedings of the 3rd international conference on Mobile systems,
applications, and services, pages 163–176, New York, NY, USA, 2005. ACM Press.

[36] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P. Vicaire, J. A.
Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet: An integrated sensor network system for
energy-efficient surveillance. ACM Trans. Sen. Netw., 2(1):1–38, 2006.

124

[37] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui,
and B. Krogh. Energy-efficient surveillance system using wireless sensor networks. In MobiSys ’04:
Proceedings of the 2nd international conference on Mobile systems, applications, and services, pages
270–283, New York, NY, USA, 2004. ACM Press.

[38] J. Heo, D. Henriksson, and T. Abdelzaher. Autonomous energy optimization in multi-tier server
farms. In In submission, 2007.

[39] J. Heo, L. Luo, T. Abdelzaher, and A. Kulhari. Mstp: A multiple-source transport layer abstraction
for sensor networks. In In submission, 2007.

[40] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions
for networked sensors. In ASPLOS-IX: Proceedings of the ninth international conference on Archi-
tectural support for programming languages and operating systems, pages 93–104, New York, NY,
USA, 2000. ACM Press.

[41] J. L. Hill and D. E. Culler. Mica: A wireless platform for deeply embedded networks. IEEE Micro,
22(6):12–24, 2002.

[42] M. Horton, D. Culler, K. PIster, J. Hill, R. Szewczyk, and A. Woo. Mica: The commercialization of
microsensor motes. Sensors, 19(4):40–48, April 2002.

[43] W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Taylor. The design and evaluation of a
hybrid sensor network for cane-toad monitoring. In IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor networks, page 71, 2005.

[44] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust communi-
cation paradigm for sensor networks. In MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages 56–67, New York, NY, USA, 2000. ACM
Press.

[45] Intel. Intel mote, 2007. http://www.intel.com/research/exploratory/motes.htm.

[46] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In SIGCOMM ’04: Proceed-
ings of the 2004 conference on Applications, technologies, architectures, and protocols for computer
communications, pages 145–158, New York, NY, USA, 2004. ACM Press.

[47] D. Jia, B. H. Krogh, J. Cole, and P. Dolan. Toshilt: Middleware for hardware-in-the-loop testing of
wireless sensor networks, 2006. http://www.ece.cmu.edu/w̃ebk/sensor networks.

[48] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-efficient computing
for wildlife tracking: design tradeoffs and early experiences with zebranet. SIGOPS Oper. Syst. Rev.,
36(5):96–107, 2002.

[49] K. Kenthapadi and G. S. Manku. Decentralized algorithms using both local and random probes
for p2p load balancing. In SPAA ’05: Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 135–144, New York, NY, USA, 2005. ACM Press.

[50] M. M. H. Khan, L. Luo, C. Huang, and T. Abdelzaher. Snts: Sensor network troubleshooting suite. In
DCOSS ’07: Proceedings of the 2005 International Conference on Distributed Computing in Sensor
Systems, June 2007.

125

[51] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In ASPLOS-X: Proceed-
ings of the 10th International Conference on Architectural Support for Programming Languages and
Operating Systems, 2002.

[52] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable simulation of entire tinyos
applications. In SenSys ’03: Proceedings of the 1st international conference on Embedded networked
sensor systems, pages 126–137, New York, NY, USA, 2003. ACM Press.

[53] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and D. Culler. The
emergence of networking abstractions and techniques in tinyos. In NSDI ’04: Proceedings of the
First USENIX/ACM Symposium on Networked Systems Design and Implementation, March 2004.

[54] Q. Li, J. Aslam, and D. Rus. Online power-aware routing in wireless ad-hoc networks. In Mobicom,
2001.

[55] S. Li, Y. Lin, S. H. Son, J. Stankovic, and Y. Wei. Event detection services using data service
middleware in distributed sensor networks. Telecommunication Systems, Special Issue on Information
Processing in Sensor Networks, 26(2-4), 2004.

[56] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric programming for sensor-actuator network
systems. Pervasive Computing, IEEE, 2(4):50–62, 2003.

[57] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. Distributed state representation for tracking problems
in sensor networks. In IPSN ’04: Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks, pages 234–242, April 2004.

[58] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed group management for track initiaition and
maintenance in target localization applications. In IPSN ’03: Proceedings of the 2nd International
Workshop on Information Processing in Sensor Networks, April 2003.

[59] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Implementing software on resource-constrained
mobile sensors: experiences with impala and zebranet. In MobiSYS ’04: Proceedings of the 2nd
international conference on Mobile systems, applications, and services, pages 256–269, New York,
NY, USA, 2004. ACM Press.

[60] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic. Design and comparison of lightweight group
management strategies in envirosuite. In DCOSS ’05: Proceedings of the 2005 International Confer-
ence on Distributed Computing in Sensor Systems, July 2005.

[61] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic. Envirosuite: An environmentally immersive
programming framework for sensor networks. Trans. on Embedded Computing Sys., 5(3):543–576,
2006.

[62] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic. Achieving repeatability of
asynchronous events in wireless sensor networks with envirolog. In Infocom ’06: Proceedings of the
25th Annual IEEE Conference on Computer Communications, April 2006.

[63] L. Luo, C. Huang, T. F. Abdelzaher, and J. A. Stankovic. Envirostore: A cooperative storage system
for disconnected operation in sensor networks. In Infocom ’07: Proceedings of the 26th Annual IEEE
Conference on Computer Communications, May 2007.

126

[64] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[65] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional query pro-
cessor for sensor networks. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 491–502, New York, NY, USA, 2003. ACM Press.

[66] S. R. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tinydb: An acquisitional query processing
system for sensor networks. ACM Transactions on Database Systems, 30(1), March 2005.

[67] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for
habitat monitoring. In WSNA ’02: Proceedings of the 1st ACM international workshop on Wireless
sensor networks and applications, pages 88–97, New York, NY, USA, 2002. ACM Press.

[68] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchronization protocol. In
SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems,
pages 39–49, New York, NY, USA, 2004. ACM Press.

[69] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule: An energy-optimized object storage
system for memory-constrained sensor devices. In SenSys ’06: Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems, November 2006.

[70] M. Melkonian. Get by without an rtos. Embedded Systems Programming, September 2000.

[71] Microsoft. Ole2 programmers reference, 1994.

[72] Moteiv. Tmote, 2007. http://www.moteiv.com.

[73] R. Newton, Arvind, and M. Welsh. Building up to macroprogramming: An intermediate language for
sensor networks. In IPSN ’05: Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks, 2005.

[74] Ohio State University. Xsm motes, 2007. http://www.cast.cse.ohio-state.edu/exscal.

[75] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir. Atemu: A fine-grained sensor
network simulator. In SECON ’04: the First IEEE Communications Society Conference on Sensor
and Ad Hoc Communications and Networks, October 2004.

[76] C. M. Sadler and M. Martonosi. Data compression algorithms for energy-constrained devices in
delay tolerant networks. In SenSys ’06: Proceedings of the Fourth ACM Conference on Embedded
Networked Sensor Systems, November 2006.

[77] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a three-tier architecture for sparse
sensor networks. In SNPA, May 2003.

[78] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a three-tier architecture for
sparse sensor networks. In IEEE Workshop on Sensor Network Protocols and Applications (SNPA),
2003.

[79] J. Shin, L. Guibas, and F. Zhao. A distributed algorithm for managing multi-target identities in
wireless ad-hoc sensor networks. In IPSN ’03: Proceedings of the 2nd International Workshop on
Information Processing in Sensor Networks, April 2003.

127

[80] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, and K. Frampton.
Sensor network-based countersniper system. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 1–12, New York, NY, USA, 2004. ACM
Press.

[81] H. Stockman. Communication by means of reflected power. pages 1196–1204, October 1948.

[82] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica. Load balancing in dynamic
structured peer-to-peer systems. Perform. Eval., 63(3):217–240, 2006.

[83] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An analysis of a large scale
habitat monitoring application. In SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 214–226, New York, NY, USA, 2004. ACM Press.

[84] S. Tilak and N. B.Abu-Ghazaleh. Collaborative storage management in sensor networks. In Interna-
tional Journal on Ad Hoc and Ubiquitous Computing, Vol 1, Nos. 1/2, 2005.

[85] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buon-
adonna, D. Gay, and W. Hong. A macroscope in the redwoods. In SenSys ’05: Proceedings of the
3rd international conference on Embedded networked sensor systems, pages 51–63, New York, NY,
USA, 2005. ACM Press.

[86] O. S. University. Kansei: Sensor Testbed for At-Scale Experiments, Feb 2005.

[87] Vanderbilt University. Message Center. http://www.isis.vanderbilt.edu/projects/nest/msgctr.html.

[88] I. Vasilescu, K. Kotay, D. Rus, P. Corke, and M. Dunbabin. Data collection, storage, and retrieval
with an underwater sensor network. In SenSys ’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, 2005.

[89] S. Vinoski. Corba: Integrating diverse applications within distributed heterogeneous environments.
IEEE Communications Magazine, 32(2):46–55, February 1997.

[90] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea for high-concurrency servers.
2003.

[91] R. Want, A. Hopper, V. Falco, and J. Gibbons. The active badge location system. ACM Trans. Inf.
Syst., 10(1):91–102, 1992.

[92] M. Welsh and G. Mainland. Programming sensor networks using abstract regions. In NSDI ’04: Pro-
ceedings of the First USENIX/ACM Symposium on Networked Systems Design and Implementation,
March 2004.

[93] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and yield in a volcano
monitoring sensor network. In OSDI ’06: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, November 2006.

[94] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A wireless sensor network testbed. In
Proceedings of the Fourth International Conference on Information Processing in Sensor Networks
(IPSN’05), Special Track on Platform Tools and Design Methods for Network Embedded Sensors
(SPOTS), April 2005.

128

[95] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood abstraction for sensor
networks. In MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pages 99–110, New York, NY, USA, 2004. ACM Press.

[96] J. L. Wolf and P. S. Yu. Load balancing for clustered web farms. SIGMETRICS Perform. Eval. Rev.,
28(4):11–13, 2001.

[97] A. Woo and D. E. Culler. A transmission control scheme for media access in sensor networks. In
MOBICOM, 2001.

[98] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin. A wire-
less sensor network for structural monitoring. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 13–24, New York, NY, USA, 2004. ACM
Press.

[99] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks.
SIGMOD Rec., 31(3):9–18, 2002.

[100] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A. Najjar. Microhash: An effi-
cient index structure for flash-based sensor devices. In FAST ’05: Proceedings of the 4th USENIX
Conference on File and Storage Technologies, December 2005.

[101] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel simulation of large-scale
wireless networks. In PADS ’98: Proceedings of the twelfth workshop on Parallel and distributed
simulation, pages 154–161, Washington, DC, USA, 1998. IEEE Computer Society.

[102] Q. Zhang and W. Sun. Workload-aware load balancing for clustered web servers. IEEE Trans.
Parallel Distrib. Syst., 16(3):219–233, 2005. Member-Alma Riska and Member-Evgenia Smirni and
Senior Member-Gianfranco Ciardo.

[103] W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile target tracking in sensor networks.
In Infocom ’04: Proceedings of the 23rd Conference of the IEEE Communications Society, March
2004.

129

Author’s Biography

Liqian Luo was born and grew up in Zhejiang province, China. In 1996, she left for Beijing and entered

the Department of Computer Science and Technology at Tsinghua University. She received her Bachelor’s

degree from Tsinghua University in 2000. Two years later, she joined the University of Virginia where

she was advised by Professor Tarek Abdelzaher. She received the degree of Master of Computer Science

from the University of Virginia in 2004. She continued her Ph.D. study at the University of Illinois at

Urbana-Champaign from 2005 to 2007.

Liqian’s primary research interests are in the areas of sensor networks, distributed embedded systems,

wireless/mobile communication, and ubiquitous computing. She is the developer of EnviroSuite, a sensor

networks programming language that implements Environmentally-Immersive Programming. She is also

one of the primary developers of VigilNet, an integrated sensor network system for surveillance applications

that was later classified and transitioned to the Defense Intelligence Agency (DIA). She is a Vodafone

Graduate Fellow and the recipient of the UIUC Distinguished Networking and Systems Student Award.

130

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Motivation
	Programming Paradigms
	Support Middleware
	Debugging Facilities
	Contributions
	Dissertation Outline

	Chapter 2 Environmentally-Immersive Programming Paradigm
	Introduction
	Overview of EIP
	EIP Syntax
	Defining the Object Context
	Defining Object Attributes
	Defining Object Methods
	Defining Static Object Instances and Global Variables
	A Tracking and Monitoring Application in EIP

	Object Maintenance Algorithms
	Event Object Maintenance
	Region and Function Object Maintenance

	Implementation
	EIP Support Library (EIPLib)
	EIP Preprocessor

	Performance Evaluation
	Performance of Object Operations
	A Surveillance System

	Discussion
	Conclusions

	Chapter 3 EnviroStore: The Storage System
	Introduction
	Design
	System Model
	System Design

	Implementation
	Local Storage Structure
	User Interface

	Evaluation
	Scenario 1: Single Disconnected Sensor Network
	Scenario 2: Partitioned Sensor Network with Data Mules
	Concluding Remarks

	Conclusions

	Chapter 4 EnviroLog: The Replay Tool
	Introduction
	Design
	Design Goals
	System Architecture
	User Interface
	Preprocessor
	Stage Controller
	Record and Replay

	Implementation
	Preprocessor Implementation
	Stage Controller Implementation
	Record and Replay Implementation

	Performance Evaluation
	Maximum Recording Period
	Throughput
	Overhead
	Replay Accuracy
	Concluding Remarks

	Conclusions

	Chapter 5 Integrated Systems
	Introduction
	Vigilnet: Energy-efficient Surveillance
	Overview of Vigilnet
	Tracking Performance Evaluation
	Evaluation of EnviroLog

	EnviroMic: Distributed Acoustic Monitoring
	Overview of EnviroMic
	In-door Experiments
	Preliminary Outdoor Deployment

	Conclusions

	Chapter 6 Related Work
	Programing Paradigms
	Data Storage
	Debugging Tools
	Target Tracking
	Acoustic Applications

	Chapter 7 Conclusions
	References
	Author's Biography

