
c© 2007 by Hanna Joy Neradt. All rights reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NULL-SPACE METHODS FOR NUMERICAL SOLUTIONS
OF DIFFERENTIAL EQUATIONS

BY

HANNA JOY NERADT

B.A., Trinity Christian College, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

Abstract

A linear differential operator often has a nontrivial null space. One consequence
for such an operator, L, is that solutions of equations of the form Lu = f are
never unique if the null space contains more than the zero element: adding any
nontrivial null function to any particular solution yields another solution. Out of
the infinite set of functions satisfying the differential equation, the conventional
way to select a desired solution is to require the solution (or its derivatives)
to take on prescribed values at specified points, typically on the boundary of
the domain over which the equation is defined. For some applications, however,
it may be inconvenient or inappropriate to specify such boundary conditions.
For certain problems in materials science, for example, it is more natural to
specify the null-space component of the solution directly rather than indirectly
via (often unknown) boundary conditions.

One particular example is atomic scale simulation of stress in metals. When
calculations are made on a tiny scale, the edges of the metal, which would pro-
vide a boundary for the problem, are practically an infinite distance away. In
this case, the conventional method is difficult to apply, even if it were compu-
tationally feasible. Instead, a natural alternative is to specify the null-space
component to single out a particular solution.

In this thesis, we will develop numerical methods for computing approximate
solutions to linear differential equations subject to explicit specification of the
null-space component. For this purpose we will develop discretized approxima-
tions to the null spaces of relevant differential operators as well as numerical
solution procedures that take advantage of such an explicit representation. To
the best of our knowledge, this explicit null-space approach and our implemen-
tation of it are new.

This thesis details the problem we seek to solve, discusses options for finding
null bases, explains the explicit null bases we have found, and demonstrates a
solution technique for solving the problem referenced above using a null space
method.

iii

To:

• Brian–thanks for trusting God would provide for me to finish this work

• Mom and Dad Vander Zee–thanks for the many prayers on my behalf

• Mom and Dad Neradt, my “other” parents–thanks for accepting me into
your family

• my siblings–you each hold a special place in my heart

iv

Acknowledgements

This research was supported by the endowment for the Fulton Watson Copp
Chair in Computer Science held by my advisor. Further funding was provided
by the University of Illinois at Urbana-Champaign through a Scholarship for
Under-Represented Groups in Engineering and through an Illiac Scholarship.

The author would like to thank Professor Michael Heath for his guidance,
insights, and encouragement throughout the course of this research. Further,
the author acknowledges Yahweh, the God of the Israelites, revealed through
Jesus Christ, my Savior, as the author of all knowledge and understanding.

v

Table of Contents

List of Figures . viii

1 Introduction and Motivation 1

2 Linear Spaces . 4
2.1 Function Spaces . 4
2.2 Subspaces and Bases . 5
2.3 Linear Operators . 7
2.4 Orthogonality and Projectors . 8

3 Linear Systems . 11
3.1 Compatibility and Deficiency . 11
3.2 Solutions of Deficient Systems . 15

4 Null-Space Approach . 17
4.1 Overview of Problem Formulation 17
4.2 Examples in 1-D . 18
4.3 Relationship to Conventional Methods 20

5 Discretizations . 23
5.1 Finite Difference Methods . 25
5.2 Galerkin Methods . 31
5.3 Collocation Methods . 35
5.4 Discrete Null Bases . 40

6 Computing Null-Space Bases 44
6.1 General Case . 45
6.2 Explicit Bases . 46

6.2.1 Finite Difference 2-D Laplacian 47
6.2.2 Finite Difference 2-D Curl 60
6.2.3 Finite Difference 3-D Curl 68
6.2.4 Bilinear Finite Element 3-D Curl 79

6.3 Computational Results . 83
6.4 Improving Conditioning . 93

6.4.1 Column Pair Orthogonalization 94
6.4.2 Threshold QR Factorization 95

7 Solving the Linear System . 104
7.1 Problem Characteristics . 104
7.2 Direct Methods . 105
7.3 Iterative Methods . 105
7.4 Preconditioned Iterative Methods 106
7.5 Other Perspectives . 108

7.5.1 Optimization Formulations 108
7.5.2 Decoupled Problems . 109

7.6 Comparison Study . 110

vi

8 Applications . 115
8.1 Poisson Equation in Electromagnetics 115
8.2 Curl Equation in Materials Science 118

9 Conclusions and Future Work 131

A Derivations and Computations 133
A.1 Null-Space Portion of 3-D Curl Problem 133
A.2 Number of Operations for Turnback Method 133
A.3 Proof That Alternate Form of Linear System Is Full Rank 134
A.4 Accuracy After Orthogonalization 135

References . 137

Author’s Biography . 141

vii

List of Figures

5.1 Exact and finite difference solutions to 1-D Poisson example . . . 29
5.2 Error in finite difference approximation for 2-D Poisson example 31
5.3 Exact and Galerkin method solutions to 1-D Poisson example . . 34
5.4 Error in Galerkin fin. el. approximation for 2-D Poisson example 35
5.5 Exact and collocation method solutions to 1-D Poisson example . 39
5.6 Error in collocation approximation for 2-D Poisson example . . . 39
5.7 Error in collocation approximation for second 2-D Poisson example 40
5.8 Difference between a specific null function and null vector 41

6.1 Null grids for n = 5. 49
6.2 Finite difference stencils for 3-D curl 71
6.3 Graphical depiction of first condition on null space vectors 72
6.4 Graphical depiction of second condition on null space vectors . . 72
6.5 Graphical depiction of third condition on null space vectors . . . 73
6.6 Condition numbers for finite difference 2-D Laplacian null bases . 86
6.7 Density of finite difference 2-D Laplacian null bases 87
6.8 Accuracy of finite difference 2-D Laplacian null bases 87
6.9 Condition numbers for finite difference 2-D curl null bases 88
6.10 Density of finite difference 2-D curl null bases 88
6.11 Accuracy of finite difference 2-D curl null bases 89
6.12 Condition numbers for finite difference 3-D curl null bases 89
6.13 Density of finite difference 3-D curl null bases 90
6.14 Accuracy of finite difference 3-D curl null bases 90
6.15 Condition numbers for finite element 3-D curl null bases 91
6.16 Density of finite element 3-D curl null bases 91
6.17 Accuracy of finite element 3-D curl null bases 92
6.18 Results of condition number improver for 2-D Laplacian 95
6.19 Results of condition number improver for 2-D Laplacian: sparsity 96
6.20 Results of condition number improver for 2-D Laplacian: accuracy 96
6.21 Threshold QR results for 3-D curl explicit basis (n = 5) 97
6.22 Threshold QR results for 3-D curl explicit basis (n = 5) 98
6.23 Threshold QR results for 3-D curl explicit basis (n = 10) 98
6.24 Threshold QR results for 3-D curl explicit basis (n = 10) 99
6.25 Threshold QR results for west0381 matrix 100
6.26 Threshold QR results for west0381 matrix 100
6.27 Threshold QR results for nos7 matrix 101
6.28 Threshold QR results for nos7 matrix 101
6.29 Threshold QR results for fs 183 6 matrix 102
6.30 Threshold QR results for fs 183 6 matrix 102

7.1 Convergence curves for GMRES with no preconditioner 106
7.2 Eigenvalues of complete system for n = 15 107
7.3 Convergence curves for GMRES with ILU preconditioner 107
7.4 Convergence counts for GMRES applied to fin. diff. 2-D Poisson 111

viii

7.5 Number of nonzeros in matrices for finite difference 2-D Poisson . 112
7.6 Convergence counts for GMRES applied to fin. el. 3-D curl . . . 113
7.7 Number of nonzeros in matrices for finite element 3-D curl 113
7.8 Convergence counts for CG applied to fin. diff. 2-D Poisson . . . 114

8.1 Specific solution to ∆u = −f . 116
8.2 β = st(1− s)(1− t) and corresponding Poisson solution 116
8.3 β = 0 and corresponding Poisson solution 117
8.4 β = −st(1− s)(1− t) and corresponding Poisson solution 117
8.5 β = (s2 + t2)/4 and corresponding Poisson solution 117
8.6 Curl example, u1 . 119
8.7 Curl example, u2 . 119
8.8 Curl example, u3 . 120
8.9 Curl example, cross-section of u3 120
8.10 Error in approximate solutions for linear curl problem 121
8.11 Error in approximate solutions for nonlinear curl problem 122
8.12 Stress of zero stress everywhere, dislocation example 124
8.13 up data of zero stress everywhere, dislocation example 125
8.14 σ11 layer for single dislocation example 127
8.15 σ13 layer for single dislocation example 128
8.16 Expected solution layer for single dislocation example 128
8.17 Approx. solutions along center line for single dislocation example 129
8.18 Error in σ13 approximations for single dislocation example 129

ix

1 Introduction and
Motivation

A linear differential operator often has a nontrivial null space. One consequence
for such an operator, L, is that solutions of equations of the form Lu = f are
never unique if the null space contains more than the zero element: adding any
nontrivial null function to any particular solution yields another solution. Out of
the infinite set of functions satisfying the differential equation, the conventional
way to select a desired solution is to require the solution (or its derivatives)
to take on prescribed values at specified points, typically on the boundary of
the domain over which the equation is defined. For some applications, however,
it may be inconvenient or inappropriate to specify such boundary conditions.
For certain problems in materials science, for example, it is more natural to
specify the null-space component of the solution directly rather than indirectly
via (often unknown) boundary conditions.

One particular example is atomic scale simulation of stress in metals [2].
When calculations are made on a tiny scale, the edges of the metal, which
would provide a boundary for the problem, are practically an infinite distance
away. In this case, the conventional method is difficult to apply, even if it
were computationally feasible. Instead, a natural alternative is to specify the
null-space component to single out a particular solution. This application is
the motivation for our research into computationally viable null-space meth-
ods. In this thesis, we will develop numerical methods for computing approx-
imate solutions to linear differential equations subject to explicit specification
of the null-space component. This null-space approach is generally applicable
to differential equations without boundary specifications and to problems with
boundaries at infinity, such as the problem described above, the Poisson equa-
tion in electrostatics, and Maxwell’s equations in electromagnetics. While the
methods are not yet robust for large-scale simulations, we lay a foundation for
these methods, we begin to address the issues that arise in this new approach to
solving differential equations, and we demonstrate the accuracy of this approach
by solving several example and real-life problems. For simplicity, the specific
problems we consider are discretized uniformly and have the same number of
nodes in each dimension.

To the best of our knowledge, this explicit null-space approach and our
implementation of it are new.

This thesis details the problem we seek to solve, discusses options for finding
null bases, explains the explicit null bases we have found, and demonstrates a

1

solution technique for solving the motivating problem referenced above.
Chapters 2-3 give background information on linear spaces and linear sys-

tems, including the somewhat novel notation we developed for this research that
will be used throughout the thesis. We explain the general approach we take
to solving differential equations with null-space specifications in Chapter 4 and
provide an overview of discretization options in Chapter 5. Together, these two
chapters give the nuts and bolts of the null-space approach, including a proof
that this technique produces a linear system with a unique solution. They pro-
vide the groundwork for our research in proving the validity of this approach
and in explaining problem formulations. Chapter 5 includes convergence results
for some two-dimensional problems.

In Chapter 6 we deal with the subproblem of finding a discrete basis for the
null space, specifically when the discrete operator is sparse. We review previous
research on the topic, explain and validate explicit, discrete approximations to
null spaces of some relevant differential operators, and present heuristics for
improving conditioning of discrete bases without sacrificing much sparsity. We
put special emphasis on this subproblem because the task of finding a null-space
basis may dominate the overall computational complexity of null-space methods
and because little research has been done addressing the trade-off between spar-
sity and good conditioning. Our explicit bases easily satisfy the sparsity and
computational speed desired for null-space methods, but some of the bases are
ill-conditioned. In order to address the ill-conditioning, we developed heuristics
that sacrifice some sparsity for improved conditioning. The end of the chapter
includes various data about our explicit bases and other general methods for
finding a null-space basis, as well as information about the performance of our
conditioning heuristics for several matrices.

In Chapter 7, we discuss techniques for solving the discrete linear system,
giving several approaches to solving the system and reviewing preconditioning
options. We also provide computational results for some example problems.
Specific applications are presented in Chapter 8, and we summarize our work
and explain possible continuations and extensions of this research in Chapter 9.

Throughout the text, we use shortened versions of phrases to save space and
avoid wordiness. The most common short-hand phrases are defined here.

• null basis: a basis for a null space

• null function: a function in the null space of a continuous operator

• null vector: a vector in the null space of a discrete operator

• problem of size n: problem with a uniformly discretized domain, having
n nodes in each spatial dimension

We also include here a list of symbols we often use and the object each
represents.

2

• D, differential operator

• D, discretized differential operator

• u, solution function

• u, discretized solution

• v, null function

• φ, basis function

3

2 Linear Spaces

In this chapter we review background material and establish terminology and
notation that will be needed later. Most of what we say here is applicable to
linear spaces in general, but we couch much of the discussion in terms of function
spaces, since that will be our main application. Our applications will require
only the real scalar field R, but essentially the same development is equally valid
with the complex scalar field, C. Many topics in this chapter are discussed more
thoroughly in [35, ch. 4].

2.1 Function Spaces

This thesis is concerned with numerical approximations associated with dis-
cretizations of linear differential operators. Differential operators operate on
functions, so the natural habitats in which to study them are function spaces.
The set of all real-valued functions defined on some domain Ω in d-dimensional
Euclidean space Rd, with addition and scalar multiplication defined pointwise
(i.e., (f + g)(t) = f(t)+ g(t) and (αf)(t) = αf(t) for t ∈ Ω), form a linear space
or vector space satisfying the usual properties of vector addition and scalar
multiplication. The zero vector for such a space is the constant function that is
identically zero on the domain Ω.

Perhaps the most familiar example of such a function space, though we may
not often think of it that way, is to take Ω = {1, 2, . . . , n} for some positive
integer n, in which case the resulting linear space is simply Rn, where for x ∈
Rn we normally use component notation xi instead of function notation x(i),
i = 1, . . . , n. Similarly, the linear space obtained by taking Ω to be integer
lattice points (or scalar multiples thereof) in R2 can be identified with Rn×n,
etc. Such discrete domains Ω are the natural home for difference operators
rather than differential operators, as the latter operate on smooth functions of
continuous variables. Difference operators will nevertheless be of interest to us
as approximations to differential operators.

Since derivatives of a function are properly defined only at interior points
of its domain, the domain Ω for a differential equation must have nonempty
interior. Though the results we will develop apply to any such domain with
reasonably regular boundary, for illustrative purposes we will typically take Ω
to be the unit interval (0, 1) ⊆ R, the unit square (0, 1) × (0, 1) ⊆ R2, or the
unit cube (0, 1) × (0, 1) × (0, 1) ⊆ R3, depending on the desired dimension. In

4

any case, we will denote the boundary of Ω by ∂Ω.
To yield a useful structure, the functions defined on Ω must also possess

some degree of regularity. The functions must be suitably smooth in order for
a given differential operator to be applicable, but for reasons that will become
apparent later, we will take our fundamental linear space to be L2(Ω), the space
of all real-valued, square-integrable functions defined on some domain Ω, which
we take to be an open set in Rd with a piecewise smooth boundary.

One reason for focusing on L2(Ω) is that we can define the inner product for
any functions f, g ∈ L2(Ω) as the integral of their pointwise product,

〈f, g〉 =
∫

Ω

fg, (2.1)

and in turn define the norm of any function f ∈ L2(Ω) by

‖f‖ = 〈f, f〉1/2 =
(∫

Ω

f2

)1/2

. (2.2)

So equipped, L2(Ω) is both an inner product space and a normed linear space.
Further, for the Lebesgue integral it can be shown that every Cauchy sequence
in L2(Ω) converges, so L2(Ω) is in fact both a Hilbert space (i.e., a complete
inner product space) and a Banach space (i.e., a complete normed linear space).

2.2 Subspaces and Bases

We will frequently be interested in finite linear combinations of functions, say
{vi}ni=1 ⊆ F(Ω), where F(Ω) is a function space defined on a domain Ω, so
we adopt the following matrix-like notation to describe such combinations com-
pactly. (While this notation is uncommon in our experience, similar notation,
likewise associated with functions as columns of matrices, appears in [5, 18,
50, 53].) Thinking of the functions as column vectors (even when the cardinal-
ity of Ω is not finite or even countable), we write the corresponding matrix as
V = [v1 v2 · · · vn], and for x ∈ Rn we define the product V x ∈ F(Ω) by

V x =
n∑

i=1

xivi, (2.3)

i.e., the linear combination of columns (functions) of V determined by the n
scalar entries of the vector x. More generally, if X ∈ Rn×k is an n× k matrix,
then

V X =
[∑n

i=1 xi,1vi · · ·
∑n

i=1 xi,kvi

]
(2.4)

is a matrix, each of whose k columns is a function in F(Ω). Note that this
agrees with conventional matrix notation when Ω is finite; when Ω is infinite,
we can informally think of the row dimension of the corresponding matrix as

5

being infinite. Henceforth, we will identify a finite set of functions {vi}ni=1 with
the matrix V composed of those functions.

A set of functions is said to be linearly dependent if it contains a finite subset
V such that V x = 0 for some x 6= 0, i.e., a nontrivial finite linear combination
of the functions vanishes identically on Ω, and otherwise is said to be linearly
independent. For example, the monomials vi(t) = ti−1, i = 1, . . . are linearly
independent on (0, 1). The subset

span(V) = {V x : x ∈ Rn} ⊆ F(Ω) (2.5)

of all linear combinations of a set of functions V is itself a linear space, called
the span of V . For example, the monomials vi(t) = ti−1, i = 1, . . . , n, span the
linear space Pn−1 ⊆ L2(0, 1) of polynomials on (0, 1) of degree at most n − 1.
Such a subset that is itself a linear space is called a subspace of the larger linear
space containing it. As another example, the set of all functions in L2(Ω) that
vanish on a given fixed subset of Ω̄, such as ∂Ω, form a subspace of L2(Ω);
successively larger subsets would yield successively smaller such subspaces.

Note that a subspace may or may not be closed, i.e., it may or may not
contain all of its limit points. For example, for any finite set of functions
V ⊆ L2(Ω), span(V) is a closed subspace, but the subspace C(Ω) of all con-
tinuous real-valued functions on Ω is not closed, since the limit (in L2(Ω)) of a
sequence of continuous functions is not necessarily continuous. Indeed, L2(Ω)
contains a hierarchy of successively smaller subspaces composed of successively
smoother functions (continuous, Lipschitz continuous, differentiable, continu-
ously differentiable, twice-differentiable, etc.) that are dense in L2(Ω), but none
is closed.

A basis for a function space F(Ω) is a set of linearly independent functions
V such that span(V) = F(Ω). Assuming the Axiom of Choice, every linear
space has a basis, but that basis need not be finite. For example, L2(0, 1) is not
spanned by any finite set of functions, nor is the subspace P of polynomials on
(0, 1) of arbitrary degree. In general, there are many different bases for a given
linear space. For example, there are numerous useful bases for Pn−1, including
the monomials, the Lagrange polynomials (sometimes called fundamental poly-
nomials), Legendre polynomials, etc. But it can be shown that every basis for
a given linear space contains the same number of vectors. Thus, we can unam-
biguously define the dimension of a linear space to be the number of vectors
contained in any basis for it. For example, the space Pn−1 has dimension n,
whereas L2(0, 1) is infinite dimensional. For computational purposes, we will
be concerned primarily with finite-dimensional subspaces of infinite-dimensional
spaces such as L2.

6

2.3 Linear Operators

A linear transformation from linear space U to linear space V is a mapping
T :U → V such that for any s, t ∈ U and α, β ∈ R,

T (αs+ βt) = αT (s) + βT (t). (2.6)

For example, if V = [v1 v2 · · · vn] is a set of vectors in a linear space V,
then the mapping T : Rn → V defined for x ∈ Rn by T (x) = V x is a linear
transformation, which by slight abuse of notation we also denote by V . When
V = U , a linear transformation is often called a linear operator on U , especially
when U is a function space, such as L2. For example, differentiation and indef-
inite integration are linear operators on appropriate subspaces of L2. Another
important special case is when V = R, in which case a linear transformation
is called a linear functional. For example, if U is an inner product space and
v ∈ U , then the mapping f :U → R defined for u ∈ U by f(u) = 〈u, v〉 is a linear
functional.

The set L(U ,V) of all linear transformations from linear space U to linear
space V forms a linear space under pointwise addition and scalar multiplication.
If U and V are normed linear spaces, then a linear transformation T :U → V is
said to be bounded if sup‖s‖=1 ‖T (s)‖ <∞. The set B(U ,V) of all such bounded
linear transformations forms a normed linear space itself, with norm defined for
T ∈ B(U ,V) by ‖T‖ = sup‖s‖=1 ‖T (s)‖. Further, B(U ,V) is complete if V is. In
particular, B(U ,R), the Banach space of all bounded linear functionals on U , is
called the dual or conjugate space of U , denoted by U∗. If U is a Hilbert space
and f ∈ U∗, then by the Riesz Representation Theorem there is a unique v ∈ U
such that f(u) = 〈u, v〉 for any u ∈ U , and hence we can identify U∗ with U .
L2(Ω) is self-dual, for example, as every linear functional in L∗2(Ω) corresponds
to integration against a unique function in L2(Ω).

For T ∈ B(U ,V), its adjoint T ∗:V∗ → U∗ is defined for f ∈ V∗ and u ∈ U
by

[T ∗(f)](u) = f(T (u)), (2.7)

i.e., if f is a linear functional on V, then T ∗(f) is a linear functional on U whose
value for u ∈ U is given by f(T (u)). It is fairly easy to show that T ∗ ∈ B(V∗,U∗)
and ‖T ∗‖ = ‖T‖. If U and V are finite dimensional, so that T is represented by
a matrix, then T ∗ is represented by its transpose (or conjugate transpose in the
complex case). The adjoint obeys the familiar properties of transposition, such
as (ST)∗ = T ∗S∗, where T ∈ B(U ,V) and S ∈ B(V,W).

If U and V are Hilbert spaces, and hence identified with U∗ and V∗, respec-
tively, then from (2.7) we see that the adjoint T ∗:V → U is characterized by
the relationship

〈u, T ∗(v)〉 = 〈T (u), v〉, (2.8)

7

which must hold for all u ∈ U , v ∈ V. For example, if V = [v1 v2 · · · vn]
is a set of functions in L2(Ω), then as we have seen, a linear transformation
V : Rn → L2(Ω) is defined for x ∈ Rn by V x =

∑n
i=1 xivi. For any x ∈ Rn and

f ∈ L2(Ω), we have

〈V x, f〉 =
∫

Ω

(V x)(f) =
∫

Ω

(n∑
i=1

xivi

)
f

=
n∑

i=1

xi

∫
Ω

vif =
n∑

i=1

〈vi, f〉xi = 〈x,V ∗f〉, (2.9)

and hence for f ∈ L2(Ω) the value of the adjoint V ∗:L2(Ω)→ Rn is given by

V ∗f =

 〈v1, f〉...
〈vn, f〉

 ∈ Rn. (2.10)

More generally, if F = [f1 f2 · · · fk] is a set of functions in L2(Ω), then

V ∗F =

 〈v1, f1〉 · · · 〈v1, fk〉
...

. . .
...

〈vn, f1〉 · · · 〈vn, fk〉

 ∈ Rn×k. (2.11)

In particular, the Gram matrix

V ∗V =

 〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉

 ∈ Rn×n (2.12)

is symmetric, and furthermore it is nonsingular (in fact, positive definite) if,
and only if, the set of functions V is linearly independent. The importance of
the Gram matrix will soon become apparent.

2.4 Orthogonality and Projectors

Two vectors u1 and u2 in an inner product space U are said to be orthogonal
if 〈u1, u2〉 = 0. A (not necessarily finite) set of vectors {ui} is said to be
orthonormal if

〈ui, uj〉 = 0, i 6= j,

〈ui, uj〉 = 1, i = j,

i.e., the vectors are pairwise orthogonal and each has norm 1. In particular, a
finite set of functions V = [v1 v2 · · · vn] ⊆ L2(Ω) is orthonormal if V ∗V =
I, the n × n identity matrix. A set of orthonormal functions is necessarily
independent, since V x = 0 ⇒ V ∗V x = Ix = x = 0. For any set S ⊆ U , its

8

orthogonal complement

S⊥ = {u ∈ U : 〈u, v〉 = 0 ∀ v ∈ S} (2.13)

is the subspace composed of all vectors in U that are orthogonal to every vector
in S.

A linear operator P ∈ B(U ,U) is said to be a projector if it is idempotent,
i.e., P 2 = P . Such a projector takes any vector u ∈ U into a subspace of
U , but leaves any vector already in that subspace unchanged. For example,
polynomial interpolation at a given set of points 0 ≤ t1 < t2 < · · · < tn ≤ 1 is
a projector on L2(0, 1) that maps any function f ∈ L2(0, 1) to the polynomial
P (f) ∈ Pn−1 ⊆ L2(0, 1) given by

[P (f)](t) =
n∑

i=1

∏
j 6=i

t− tj
ti − tj

 f(ti). (2.14)

A projector P that is also self-adjoint, i.e., P ∗ = P , is said to be an orthog-
onal projector, in the sense that for any u ∈ U ,

〈u−P (u), P (u)〉 = 〈P (u−P (u)), u〉 = 〈P (u)−P 2(u), u〉 = 〈P (u)−P (u), u〉 = 0.
(2.15)

One of the most important uses of orthogonal projectors is to compute the
best approximation to a given vector by a vector from some subspace. For
example, consider the subspace of L2(Ω) spanned by a linearly independent set
of functions V = [v1 v2 · · · vn]. As we have seen, a linear transformation
V : Rn → L2(Ω) is defined for x ∈ Rn by V x =

∑n
i=1 xivi, and the value of the

adjoint V ∗:L2(Ω)→ Rn is given for f ∈ L2(Ω) by

V ∗f =

 〈v1, f〉...
〈vn, f〉

 . (2.16)

Owing to the linear independence of the functions vi, the n × n Gram matrix
V ∗V is nonsingular, and thus the operator P :L2(Ω) → L2(Ω) given for f ∈
L2(Ω) by

P (f) = V (V ∗V)−1V ∗f (2.17)

is well defined. It is easily seen that P 2 = P = P ∗, i.e., P is idempotent and
self-adjoint, so P is an orthogonal projector onto span(V). To confirm that
P (f) indeed gives the best approximation to f from span(V) with respect to
the norm of the induced inner product, we minimize the function

φ(x) = 1
2
‖f − V x‖2 = 1

2

∫
Ω

(
f −

n∑
j=1

xjvj

)2

(2.18)

9

by setting each component of its gradient to zero, i.e., for i = 1, . . . , n,

0 =
∂φ

∂xi
=

∫
Ω

(
f −

∑n
j=1 xjvj

)
(−vi) = −

∫
Ω
vif +

∑n
j=1 xj

∫
Ω
vivj

= −〈vi, f〉+
∑n

j=1 xj〈vi, vj〉, (2.19)

so that x is the solution to the equation V ∗V x = V ∗f , or x = (V ∗V)−1V ∗f ,
and hence P (f) = V (V ∗V)−1V ∗f = V x is the best approximation, as claimed.
Note that if the functions in V were orthonormal, then we would have V ∗V = I,
and the orthogonal projector would simply be given by P = V V ∗.

Now suppose that V is a subset of a subspace of dimensionm > n spanned by
a set of linearly independent functions U = [u1 u2 · · · um] ⊆ L2(Ω). Then
each function in V can be expressed as a linear combination vj =

∑m
i=1 wijui,

j = 1, . . . , n, or in matrix notation V = UW , where W is an m×n matrix with
entries wij . Expressed in terms of the functions in U , the orthogonal projector
onto span(V) becomes

P = UW (W ∗U∗UW)−1W ∗U∗. (2.20)

10

3 Linear Systems

Discretization of linear differential equations with nontrivial null spaces, as we
will discuss in greater detail below, leads to rank deficient systems of linear
algebraic equations, so we begin with a general discussion of the latter.

3.1 Compatibility and Deficiency

The definitions and explanations at the beginning of this section are well-known
in linear algebra contexts and are discussed in comprehensive texts such as [29,
35]. We include them here for completeness.

Consider a general system of linear algebraic equations

Ax = b, (3.1)

where A ∈ Rm×p and b ∈ Rm are known, and x ∈ Rp is to be determined. We
allow arbitrary values for m and p, so the system (3.1) may be overdetermined
(m > p), underdetermined (m < p), or square (m = p). For now, we assume
that k = rank(A) is known; rank determination is often problematic in practice,
but it can be clear cut in some applications, based on structural considerations,
for example. We necessarily have k ≤ min{m, p}, but we allow the possibility
that k < min{m, p}, i.e., A may not have full row rank or full column rank.

If b ∈ span(A), then the system (3.1) is said to be compatible, in which case
at least one solution exists. If A has full row rank (k = m), then span(A) = Rm,
so that compatibility is guaranteed for any b. If k < m, on the other hand, then
compatibility depends on the particular value for b.

If the system (3.1) is incompatible, i.e., b /∈ span(A), then there is no solution
in the conventional sense, but the notion of solution can be usefully extended by
treating (3.1) as a least squares problem, i.e., we seek a vector x that minimizes
the residual ‖b −Ax‖2. Such a least squares solution always exists, since the
function φ(y) = ‖b − y‖2 is continuous and coercive on Rm, and hence has
a minimum on the closed, unbounded set span(A), i.e., there is a vector y ∈
span(A) closest to b in the 2-norm. For compatible systems, least squares and
conventional solutions coincide.

If A has a nontrivial null space, then the system (3.1) is said to be deficient,
in which case no solution can be unique, since for any (conventional or least
squares) solution x, x + z is also a solution (in the same sense), where z is

11

any nonzero null vector. If A does not have full column rank (k < p), then
the system (3.1) is necessarily deficient, and this is always the case if (3.1) is
underdetermined (m < p). If m ≥ p, on the other hand, then (3.1) may or may
not be deficient.

We will analyze the compatibility and deficiency of (3.1) in greater detail
using the singular value decomposition (SVD)

A = UΣV T , (3.2)

where U is an m×m orthogonal matrix, V is an p× p orthogonal matrix, and
Σ is an m× p diagonal matrix with nonnegative diagonal entries σi, ordered so
that σi−1 ≥ σi, i = 2, . . . ,min{m, p}. Since A has rank k, we can write (3.2) in
the partitioned form

A = [U1 U2]
[
Σ1 O

O O

]
[V1 V2]T = U1Σ1V

T
1 , (3.3)

where U1 is m×k, Σ1 is k×k and nonsingular, and V1 is p×k. The columns of
U1 form an orthonormal basis for span(A) = {Ax : x ∈ Rp}, and the columns
of U2 form an orthonormal basis for its orthogonal complement, span(A)⊥.
Similarly, the columns of V2 form an orthonormal basis for the null space of A,
N(A) = {z ∈ Rp : Az = 0}, and the columns of V1 form an orthonormal basis
for its orthogonal complement, N(A)⊥.

To help in analyzing (3.1), we define the vector c ∈ Rm by

c = UT b = [U1 U2]T b =
[

UT
1

UT
2

]
b =

[
UT

1 b

UT
2 b

]
=
[

c1

c2

]
(3.4)

and the vector y ∈ Rp by

y = V T x = [V1 V2]T x =
[

V T
1

V T
2

]
x =

[
V T

1 x

V T
2 x

]
=
[

y1

y2

]
, (3.5)

where c1,y1 ∈ Rk. Using (3.2)-(3.5), the system (3.1) becomes

UΣV T x = b, (3.6)

ΣV T x = UT b, (3.7)

Σy = c, (3.8)

(3.9)[
Σ1 O

O O

] [
y1

y2

]
=

[
c1

c2

]
, (3.10)

(3.11)[
Σ1y1

0

]
=

[
c1

c2

]
. (3.12)

From (3.12), we see that (3.1) is compatible, so that a solution exists in the

12

conventional sense, only if
c2 = UT

2 b = 0, (3.13)

which means that the right-hand side b must be orthogonal to span(A)⊥ =
N(AT). This compatibility condition comes as no surprise: by definition, the
system (3.1) has a solution in the conventional sense if, and only if, b ∈ span(A),
and hence b cannot have a nonzero component in span(A)⊥ if such a solution
is to exist.

In any case, a solution (conventional if compatible, least squares otherwise)
to (3.1) is given by

x = V y = [V1 V2]
[

y1

y2

]
= V1y1 + V2y2, (3.14)

where y1 = Σ−1
1 c1 and y2 can be chosen arbitrarily. Again, this result agrees

with expectations, as the number of free parameters, namely the p− k compo-
nents of y2, reflects the dimension of N(A), and a solution cannot be unique
unless k = p.

From (3.14) we see that we can single out any particular solution of a deficient
system by choosing y2 appropriately. For example, a null-space component of
zero (y2 = 0) yields the (unique) solution x having minimum 2-norm. More
generally, if the desired null-space component of the solution is d, i.e., V2y2 =
d, then we choose y2 = V T

2 d. Combining the latter prescription with the
determination of y1, we obtain the (p+ k)× p system[

Σ1 O

O V2

] [
y1

y2

]
=
[

c1

d

]
(3.15)

for y, which in turn determines x = V y via (3.5). The system (3.15) can
be related to the original system (3.1) by using (3.4) and (3.5) to obtain the
equivalent (p+ k)× p system[

Σ1 O

O V2

]
V x =

[
Σ1V

T
1

V2V
T
2

]
x =

[
UT

1 b

d

]
, (3.16)

and then premultiplying the upper block row of (3.16) by U1 to arrive at the
(m+ p)× p system [

U1Σ1V
T
1

V2V
T
2

]
x =

[
A

V2V
T
2

]
x =

[
b

d

]
. (3.17)

The matrix V2V
T
2 is symmetric and idempotent, and hence it is an orthogonal

projector onto N(A). Thus, the upper block row of (3.17) ensures that the
solution x satisfies the original system (3.1), and the lower block row of (3.17)
ensures that x has the desired null-space component. Premultiplying the lower

13

row of (3.17) by V T
2 yields the smaller (m+ p− k)× p system[

A

V T
2

]
x =

[
b

V T
2 d

]
, (3.18)

which is easily shown to have full column rank, and hence it determines the
desired solution x uniquely. Moreover, if the original system (3.1) is compatible,
then the system (3.18) is also compatible.

An extremely simple yet instructive example is the m× p system[
Ik O

O O

]
x =

[
b1

b2

]
= b,

where Ik denotes the identity matrix of dimension k. For this example, we have

U2 =
[

O

Im−k

]
and V2 =

[
O

Ip−k

]
.

Thus, the compatibility condition is

c2 = UT
2 b = [O Im−k]

[
b1

b2

]
= b2 = 0,

and the orthogonal projector onto N(A) is

V2V
T
2 =

[
O O

O Ip−k

]
.

Therefore, for any compatible instance of this example and any desired choice

d =
[
0

d2

]
for the null-space component of the solution, the system (3.17) becomes

[
A

V2V
T
2

]
x =


Ik O

O O

O O

O In−k

x =


b1

0

0

d2

 =
[

b

d

]
,

and the smaller system (3.18) becomes

[
A

V T
2

]
x =

 Ik O

O O

O In−k

x =

 b1

0

d2

 =
[

b

V T
2 d

]
,

and in either case the solution is given by

x =
[

b1

d2

]
.

14

3.2 Solutions of Deficient Systems

Motivated by discretizations of differential operators, we will be concerned pri-
marily with systems that are deficient (but usually compatible), and we will
exploit the resulting nonuniqueness of solutions to determine a specific solution
satisfying additional desired conditions. We next list some useful criteria for
singling out a particular solution for an m×p system Ax = b of rank k < p and
discuss the mathematical or physical rationale for making a particular choice.
The various discretization methodologies alluded to will be discussed in greater
detail in Chapter 5.

Specified null-space component. We saw in Section 3.1 that specifying
the null-space component of the solution provides a completely general way
to single out any particular solution for a deficient linear system, and it is a
very natural way to do so in certain contexts. To give a simple example, for
a differential operator that annihilates all constant functions, we might require
the discretized solution to have a desired mean, which fixes that one degree
of freedom (there will still be others, of course, if p − k > 1). This approach
requires an explicit basis for N(A), which can be computed using the SVD
as in Section 3.1, or somewhat less expensively using QR factorization with
column pivoting, but these approaches may be computationally infeasible for
large sparse problems. Fortunately, alternative methods are available that ex-
ploit and preserve sparsity—to the extent possible—in computing a null basis.
Although the resulting basis may not be orthonormal, it can still be used to
specify the null-space component of the solution to the linear system, as we will
demonstrate later.

Partially specified solution. Another way to remove degrees of freedom
from a deficient system is to specify a selected portion of the solution values di-
rectly, which is done in conventional practice by imposing boundary conditions.
While relevant boundary conditions arise naturally in many contexts, it is not
always obvious how to prescribe consistent boundary conditions to achieve a
desired objective, nor is it always desirable to do so. Our main goal is to ex-
plore alternatives to the usual specification of boundary conditions, so we will
not dwell on this approach, but it is important to understand that this is merely
one of several viable options, and it is not always the best in all situations.

Minimum-norm solution. In many contexts, such as data fitting, a com-
monly used criterion for selecting a specific solution for a deficient system is to
choose the solution having minimum norm. For both theoretical and practical
reasons, the norm chosen is usually the 2-norm, in which case the minimum-
norm solution is always unique. This criterion is of interest on physical grounds,
as minimizing the norm of the solution often corresponds to minimizing the en-

15

ergy or power of the solution in appropriate contexts. Several methods are
available for computing the minimum-norm solution, including the pseudoin-
verse, the SVD, and QR factorization, but again none of these is attractive for
large sparse systems. As we saw in Section 3.1, however, specifying a null-space
component of zero yields the minimum-norm solution, so this criterion is a spe-
cial case of specifying the null-space component and can use the same type of
sparse null basis already cited there.

Basic solution. Another approach that is often used, for example in data-
fitting problems, is to choose a basic solution, which by definition has at most
k nonzero components. The motivation for this criterion is to retain only those
components of the solution that are well determined by the data, and to suppress
those that are not. In polynomial data-fitting, for example, the low-degree terms
may be well determined, but higher-degree terms may not be well resolved by
the data and hence are dropped. A common way of computing a basic solution
in this context is to use QR factorization with column pivoting to identify the
most independent components. In our context, this approach could be used, for
example, to filter out specific modes or frequencies in a spectral discretization.
Observe, however, that a basic solution is still not unique, in general, since
there are many choices for which k components should be nonzero, so additional
constraints may still be needed.

Other constraints. A variety of other constraints can be useful in certain
contexts. For example, instead of specifying solution components directly,
as already discussed, one could specify relationships among solution compo-
nents, analogous to imposing Neumann or Robin boundary conditions instead
of Dirichlet boundary conditions. In physical problems where conservation of
mass or energy is important, one might want a solution having prescribed norm.
For the 2-norm, this is a quadratic rather than linear constraint, however, which
significantly complicates the computation. More specialized constraints may be
relevant for particular differential operators. For example, requiring the solution
to be solenoidal (i.e., divergence-free) removes ambiguity in seeking a function
having given curl.

Combinations of criteria. Some of the criteria we have discussed reduce but
do not entirely eliminate the freedom in determining a solution, leaving open
the possibility of using multiple criteria in combination to specify a solution
uniquely.

16

4 Null-Space Approach

In this thesis we present methods for solving differential equations using a spec-
ified null-space component to single out a particular solution, as described in
Section 3.2, and develop various aspects of the solution process necessary to
make this approach viable computationally. This approach to posing and solv-
ing differential equations was suggested for a specific application by Acharya
in [2] and, to the best of our knowledge, has not been discussed elsewhere in
the literature. In this chapter we describe the general null-space approach in
the continuous realm, which is the basis for all our discrete methods. We pro-
vide examples with one-dimensional functions and discuss how the null-space
approach relates to conventional methods.

4.1 Overview of Problem Formulation

Our goal is to solve linear differential equations in cases where the differential
operator has a nontrivial null space. Let Ω be the domain on which the problem
is defined, and let D be our differential operator. Given α ∈ C0(Ω) (continuous
functions over our domain), we wish to solve the equation

Du = α, (4.1)

i.e., we wish to find a function u ∈ Ck(Ω) such that the differential operator D
maps u to α, where k > 0 is the order of D.

By assumption, D has a nontrivial null space, N(D), and hence the solution
to (4.1) cannot be unique. We will select one solution u from the infinite family
of solutions by requiring the null space component of u to be either (1) the
projection of some given function β onto N(D) or (2) an explicit null space
component specified by a given vector γ. For (1), we require that Pu = Pβ,
where P is the orthogonal projector onto N(D) in the usual inner product on
L2(Ω) as described in Chapter 2. Thus, we wish to solve the augmented problem[D

P

]
u =

[
α

Pβ

]
, (4.2)

whose solution u is now unique. For (2), we require that Pu = V γ, where
P is the orthogonal projector onto N(D) as above and V contains the set of
basis functions for N(D) (or a finite-dimensional approximation to it if N(D)

17

is infinite-dimensional) used to form P. Here, we wish to solve the augmented
problem [D

P

]
u =

[
α

V γ

]
, (4.3)

whose solution u is now unique. Each particular application will dictate the
form of the null-space constraint. In most of our examples, we use a constraint
of the first kind and solve Equation (4.4), which is valid as explained below.

We need not use the full projector P = V (V ∗V)−1V ∗ in either case above,
as the solution to [D

V ∗

]
u =

[
α

V ∗β

]
(4.4)

necessarily satisfies (4.2), and the solution to[D
V ∗

]
u =

[
α

V ∗V γ

]
(4.5)

necessarily satisfies (4.3). In fact, Equations (4.2) and (4.4) are equivalent, as
the following lemma shows. Similarly, Equations (4.3) and (4.5) are equivalent.

Lemma 1 For any matrix V of linearly independent functions and
P = V (V ∗V)−1V ∗, Pu = Pβ if and only if V ∗u = V ∗β.

Proof: Suppose V ∗u = V ∗β. Then V (V ∗V)−1V ∗u = V (V ∗V)−1V ∗β, by
applying the same process to both sides of the equation. Thus, Pu = Pβ.

Now suppose Pu = Pβ. First we recall that by definition a linear com-
bination of linearly independent functions equal to zero implies that all the
coefficients are zero. Thus, V x = V y implies that V (x−y) = 0, which implies
x = y. Therefore V (V ∗V)−1V ∗u = V (V ∗V)−1V ∗β implies (V ∗V)−1V ∗u =
(V ∗V)−1V ∗β. Next, we multiply both sides by the nonsingular matrix V ∗V

and we find V ∗u = V ∗β, as desired. �

In some simple cases, such as the examples of Section 4.2 below, our prob-
lem can be solved analytically. In general, we will solve the problem in an
approximate sense using one of several discretization techniques described in
Chapter 5.

4.2 Examples in 1-D

To illustrate the null space method in the continuous realm, we present an
example using the first derivative operator in one dimension. We define our
operator, domain, and right-hand-side function α as follows:

D =
d

dt
,

Ω = (0, 1),

α = 3.

18

This is not an unusual problem to solve. Written as we would see it in a calculus
textbook, this problem is u′(t) = 3. The solution is familiar: u(t) = 3t+c, where
c is any real number. The arbitrary constant c indicates the non-uniqueness of
our solution. We need more information in order to single out a unique solution.
The usual method for selecting a unique solution would be to specify its value
on one of the boundaries of our domain. Using our null-space method, we
instead specify a function β to be projected onto the null space, and we force
the projection of our solution onto the null space to be the same. That is, we
set

V ∗u = V ∗β, (4.6)

as in (4.4), where V contains functions that form a basis for the null space of
the first derivative operator. The null space for this simple problem is the space
of constant functions, and a basis for this space is the function v(t) = 1. It
follows that V = [1] and V ∗f =

∫ 1

0
1 · f dt, the mean value of f on (0, 1).

Suppose β = 1. Equation (4.6) then becomes∫ 1

0

1 · (3t+ c) dt =
∫ 1

0

1 · 1 dt.

Solving, we find

3
2
t2 + ct|10 = t|10,

3
2

+ c = 1,

c = −1
2
.

Thus, our solution is u(t) = 3t − 1
2 . This answer is correct because it satisfies

both the differential equation (u′(t) = 3) and the null-space constraint (the
mean value of u, which is what we obtain by projecting a function onto the
constant functions, is the same as the mean value of β.)

Our second example involves the second derivative operator in one dimen-
sion. The second derivative operator is similar to the first derivative, but it has
a null space of dimension two. We define our operator, domain, right-hand-side
function α, and function β (to be projected onto the null space) as follows:

D =
d2

dt2
,

Ω = (0, 1),

α = 3,

β = t.

From calculus, Du = 3 tells us that u(t) = 3
2 t

2+ct+d, where d and c are any
real numbers. Next, we find V and apply V ∗ to u(t) and β. The null space of
the second derivative operator includes all constant and linear functions. One

19

basis, which we use here, is {1, t}. Equation (4.6) now gives two additional
constraints, [∫ 1

0
1 · (3t2/2 + ct+ d) dt∫ 1

0
t · (3t2/2 + ct+ d) dt

]
=
[∫ 1

0
1 · t dt∫ 1

0
t · t dt

]
.

Simplifying, we obtain [
c/2 + d

c/3 + d/2

]
=
[

0
−1/24

]
,

or [
1/2 1
1/3 1/2

] [
c

d

]
=
[

0
−1/24

]
.

Solving this system of equations, we find c = −1/2 and d = 1/4, giving a final
solution of 3t2/2− t/2 + 1/4.

The choice of basis for the null space does not affect the final solution. (If u
is a solution to (4.4), then V ∗u = V ∗β, which implies Pu = Pβ, which in turn
implies W ∗u = W ∗β for any null basis W by Lemma 1.) To illustrate this, we
will solve the same example problem using a set of orthogonal basis functions
{1, t− 1/2} as a null basis. (These are orthogonal on (0, 1) with respect to the
weight function 1.) The system of equations then becomes[∫ 1

0
1 · (3t2/2 + ct+ d) dt∫ 1

0
(t− 1/2) · (3t2/2 + ct+ d) dt

]
=

[∫ 1

0
1 · t dt∫ 1

0
(t− 1/2) · t dt

]
,[

c/2 + d

c/12 + 0

]
=

[
0

−1/24

]
,[

1/2 1
1/12 0

] [
c

d

]
=

[
0

−1/24

]
,

which looks a little different than the system above but has the same solution,
namely, c = −1/2, and d = 1/4.

The above examples exploit knowledge of the null space and of an analytic
solution to our equations. They solve the problem without discretizing in any
way. For a more complicated operator we may not be able to find an analytic
solution; furthermore, the null space may be infinite-dimensional. In these more
general cases, discretization is necessary. Chapter 5 expounds on discretization
techniques.

4.3 Relationship to Conventional Methods

The null-space approach to solving differential equations is useful in situations
where boundary conditions are not available or not specified. For such problems,
it is not possible to compare the null-space approach to conventional approaches
because conventional methods require boundary conditions. We can, however,
choose some example problems that typically have specified boundary conditions
to give an idea of how choosing a β function relates to specifying boundary

20

conditions.
In one dimension, for problems using the first derivative operator, in selecting

a null space constraint function, we specify the average value of the function
over the domain. In choosing a null space function for the second derivative
operator in one dimension, we specify the average value and the value of the
first moment of the solution. These facts are demonstrated by the following
examples.

First, we consider

D =
d

dt
,

Ω = (0, 1),

α = 0.

The analytical solution to this problem without specified boundary conditions
is u(t) = k, where k is any constant. With the boundary condition u(0) = c

applied to our problem, the solution is u(t) = c. With the null-space condition,
Pu = Pβ applied to our problem, the solution is u(t) = b, where

b =
∫ 1

0

β dt.

(The null space solution is found as demonstrated above in Section 4.2.) It
follows that specifying a boundary condition for this problem of u(0) = b isolates
the same solution as a null-space constraint function β with an average value of
b over the domain.

Similarly, for the problem

D =
d

dt
,

Ω = (0, 1),

α = a,

the solutions are the same for null constraint function β with average value b
and the boundary value u(0) = b− a

2 .
And, for the problem

D =
d

dt
,

Ω = (0, 1),

α = a1t+ a0,

the solutions are the same for null constraint function β with average value b
and the boundary value u(0) = b− a1/6− a0/2. This process can be continued
for polynomials of higher degree and for other functions as well. Comparisons
are more difficult with more complicated differential operators.

21

Next, consider the problem

D =
d2

dt2
,

Ω = (0, 1),

α = 0.

Here, let

b0 =
∫ 1

0

β dt,

and

b1 =
∫ 1

0

βt dt.

The solutions are the same for null constraint function β and the boundary
conditions u(0) = 4b0 − 6b1 and u′(0) = 12b1 − 6b0.

In all of these examples, we do not specify a specific β but relate boundary
conditions to properties of the β function. This is an important observation
because it indicates the nature of the relationship between boundary conditions
and the β function. Given a β function as a null-space constraint, we can solve
the problem and then from the solution glean Dirichlet boundary values that
would give the same solution to the PDE. Given boundary conditions, we can
solve the problem and from the solutions we can glean some characteristics of the
β function, but we cannot isolate one particular function. In the first example
above, β could be b, 2at+ b− a for any real a, or infinitely many other possible
functions, as long as the average value over the interval (0, 1) is b. Knowing a
specific value for β is an ill-posed problem because many different functions can
have the same projection onto the null space of a given differential operator.

It is difficult to give examples as we did above in two or more dimensions
(because of infinite-dimensional null spaces), but comparing the null-space con-
straint to boundary conditions has limited motivation anyway since we expect
null-space methods to be most useful where conventional methods do not apply.
The general intuition behind the null-space approach is that when we constrain
our solution to have the same null-space component as some other function
we choose, we specify something about the shape and position of our solution.
We will show how the choice of null function affects the solution values for the
electrostatic potential of the exponential density function in Chapter 8.

22

5 Discretizations

Differential operators operate on smooth functions belonging to an infinite-
dimensional function space. Solving a differential equation in that infinite-
dimensional function space, however, may be difficult or impossible. Numerical
discretization techniques replace the given problem by a finite-dimensional one
whose solution in some sense approximates the true solution of the differential
equation. There are two basic approaches to such discretization: (1) sample the
solution function at a finite number of points in its domain, or (2) represent
the solution as a linear combination of a finite set of basis functions. In either
case, the accuracy of the resulting approximate solution can usually be made
arbitrarily good at the cost of additional computational expense. The various
methods available differ in how the sample points or basis functions are cho-
sen and in what sense the resulting computed solution approximates the true
solution.

No matter which discretization method we use, the result of discretizing a
differential equation using the null-space approach is a linear system of the form[

D

ẐT

]
x =

[
a

b

]
, (5.1)

with D an m×p matrix with m ≤ p, a an m×1 vector, Ẑ an p×k matrix with
k = p− rank(D), b a k × 1 vector, and our solution x a p× 1 vector. The first
set of equations, Dx = a, is what a discretization without boundary conditions
or any other constraints would produce. The second set of equations comes
from the null-space constraint. Together they form an augmented system with
a matrix of dimension (m+ k)× p. In many cases k = p−m, yielding a square
matrix. In other cases, when D does not have full row rank, the augmented
matrix will be overdetermined in shape. As proved in the following lemmas
and theorem, the matrix of equation (5.1) has full column rank in all cases of
discrete sampling and linear combination approximations, therefore providing
a unique solution in the square case and a unique least squares solution in the
overdetermined case.

Lemma 2 Given a p×m matrix B with rank(B) = m and a symmetric positive
definite, p× p matrix C, the matrix product

BT CB

23

is positive definite and thus nonsingular.

Proof: Let x ∈ Rm be a nonzero vector. Since B has full column rank,
Bx 6= 0. Let y = Bx. Then,

yT Cy > 0

by positive definiteness of C. It follows that

xT BT CBx > 0

for all nonzero x, implying that BT CB is positive definite. �

Lemma 3 Given an m×p matrix A, with m ≤ p and rank(A) = k with k < p,
B a basis for the null space of A, and a symmetric, positive definite, p × p

matrix C,

L =
[

A

BT C

]
has rank p (i.e., full column rank).

Proof: The matrix B is a basis for N(A), so it is p × (p − k). Matrix L,
therefore, is (m + p − k) × p. By rank(A) = k and m ≤ p, we know k ≤ m,
which implies m+ p− k ≥ p. Since L is square or overdetermined in shape, it
suffices to show that the null space of L is trivial.

Let x be a vector in the null space of L, that is,

Lx = 0.

This implies
Ax = 0,

and that x can be written as a linear combination of null vectors of A,

x = By, (5.2)

for some vector y. Lx = 0 further implies that

BT Cx = 0.

Substituting for x using (5.2), we obtain

BT CBy = 0,

which implies y = 0 because BT CB is nonsingular by Lemma 2. This, in turn,
implies that x = 0 by (5.2). The only vector in the null space of L, then, is the
zero vector. Therefore L has a trivial null space and full column rank. �

Theorem 1 The linear system (5.1), derived from the null-space approach for

24

solving differential equations, has full column rank for discrete sampling and
linear combination approximations.

Proof: As further explained in the following sections, in the case of a discrete
solution, such as that obtained by a finite difference approximation with u ≈ û =
x, ẐT = ZT , and in the case of an approximation of u as a linear combination
of basis functions, u ≈ û = Φx, ẐT = ZT Φ∗Φ. We consider these cases
separately.

Case 1: ẐT = ZT

Suppose the m × p matrix D has rank k. Then Z has p − k linearly inde-
pendent columns, each orthogonal to the rows of D. Thus, D and ZT have
mutually orthogonal row spaces, and

rank
([

D

ẐT

])
= k + (p− k) = p.

Case 2: ẐT = ZT Φ∗Φ. By construction of the problem, Φ contains linearly
independent functions, so Φ∗Φ is symmetric and positive definite. Thus, the
problem matrix has full column rank by Lemma 3.

�

5.1 Finite Difference Methods

Finite difference methods sample the solution function on a discrete mesh of
points distributed throughout the problem domain. The continuous solution
function is replaced by a p-dimensional vector whose entries represent sample
values of the solution function at the mesh points, and the differential operator
is replaced by a finite-difference quotient, resulting in a system of algebraic
equations to be solved for the approximate solution at each of the mesh points.
As the resolution of the mesh is refined, the approximate solution values at the
mesh points converge, under suitable conditions, to the corresponding values of
the true solution of the original continuous problem.

We illustrate the finite difference approach first for Poisson’s equation in one
dimension, say on the interval (0, 1):

∆u = u′′ = α, (5.3)

where α: (0, 1)→ R is known and u: (0, 1)→ R is the unknown solution function
to be determined. Let t ∈ Rn be a vector whose entries represent a discrete
mesh of points in (0, 1), with

ti = (i− 1)h, i = 1, . . . , n, (5.4)

where h = 1/(n− 1). Using the second-order, centered finite difference approx-

25

imation to the second derivative,

u′′(ti) ≈
u(ti+1)− 2u(ti) + u(ti−1)

h2
, (5.5)

we obtain a system of algebraic equations of the form

Dû =
1
h2



1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

.
...

0 · · · 0 1 −2 1 0
0 · · · 0 0 1 −2 1





û1

û2
...

ûn−1

ûn

 =



a2

a3
...

an−2

an−1

 = a, (5.6)

where ûi approximates u(ti), i = 1, . . . , n, and ai = α(ti), i = 2, . . . , n − 1.
Observe that the (n − 2) × n system (5.6) is underdetermined, owing to the
fact that the centered finite difference stencil (5.5) cannot be applied at the
end points of the interval. Thus, D has a nontrivial null space, and hence the
system (5.6) cannot have a unique solution, because for any solution û, û + v

is also a solution, where v ∈ N(D). In particular, rank(D) = n − 2, and the
two-dimensional null space N(D) is spanned by the columns of the n×2 matrix

Z =


1 1
1 2
1 3
...

...
1 n

 , (5.7)

corresponding exactly to the two-dimensional null space of the second-derivative
operator in one dimension, which annihilates all constant and linear functions.

Conventionally, a particular solution to (5.6) is singled out by imposing
boundary conditions at the end points, which in this context means specifying
the first and last entries of u. Thus, we solve the n× n augmented systemD

eT
1

eT
n

 û =

 a

γ1

γ2

 , (5.8)

where γ1 and γ2 are the desired values for û1 and ûn. This square, nonsingular
linear system has a unique solution û that satisfies the boundary conditions
as well as (5.6). Equivalently, since û1 and ûn are fully determined by the
boundary conditions, they can be taken to the right-hand-side of equation (5.6),
effectively removing the first and last columns of matrix D and resulting in an
(n− 2)× (n− 2) system to be solved for û2, . . . , ûn−1.

Rather than imposing boundary conditions, we could instead specify the
desired null-space component of the solution explicitly. Formulation of the dis-
cretized system proceeds in the same way as the formulation of the continuous

26

problem described in Chapter 4. The orthogonal projector onto N(D) is given
by the n× n symmetric idempotent matrix

P = Z(ZT Z)−1ZT . (5.9)

To force the solution to (5.6) to have a prescribed projection onto N(D), we
therefore solve the (2n−2)×n overdetermined but compatible augmented system[

D

P

]
û =

[
a

Zγ

]
, (5.10)

where γ ∈ R2. But the condition P û = Zγ is necessarily satisfied if ZT û =
ZT Zγ, and hence it can be replaced by the latter condition, yielding the n×n,
nonsingular augmented system[

D

ZT

]
û =

[
a

ZT Zγ

]
, (5.11)

whose solution û satisfies (5.6) and also has the desired null-space component
prescribed by γ. Note that if the basis for N(D) is orthonormal, i.e., ZT Z = I,
then the augmented system (5.11) simplifies to[

D

ZT

]
û =

[
a

γ

]
. (5.12)

The null-space constraint is sometimes given in terms of a function β rather
than as null space components. In this case, (5.10) becomes[

D

P

]
û =

[
a

Pc

]
, (5.13)

where c ∈ Rn is a discretization of β, with ci = β(ti). This second condition,
in turn, is necessarily satisfied if ZT û = ZT c providing us another n × n,
nonsingular augmented system,[

D

ZT

]
û =

[
a

ZT c

]
, (5.14)

which is useful when β is specified rather than values for γ. This correlates to
our general problem (5.1) with ẐT = ZT and b = ZT c.

As a specific example, we solve Poisson’s equation in one dimension with
α = 3 and β = t on the interval (0, 1). That is,

D = d2

dt2 ,

Ω = (0, 1),
α = 3,
β = t.

(5.15)

27

For comparison, we solved the same problem analytically in Section 4.2; the
exact solution is u(t) = 3t2/2− t/2+1/4. We will solve the problem with three
mesh points, yielding an initial problem matrix with only one row:

Dû = [4 −8 4]

 û1

û2

û3

 = [3] = a.

Our null basis is spanned by

Z =

 1 1
1 2
1 3

 ,
and our discretized β, which is necessary for the right-hand side, is

c =

 0
1/2
1

 .
Putting the pieces together according to equation (5.14), we obtain the complete
system [

D

ZT

]
û =

 4 −8 4
1 1 1
1 2 3


 û1

û2

û3

 =

 3
3/2
4

 =
[

a

ZT c

]
,

which has solution û = [1/8 1/4 9/8]T . This solution vector does not match
the exact solution u(t) = 3t2/2− t/2+1/4 at the mesh points. In fact, the error
is  1/8

1/4
9/8

−
 1/4

3/8
5/4

 =

−1/8
−1/8
−1/8

 .
The solution and the finite difference approximation are graphed in Figure (5.1).
A larger value of n would yield a better approximate answer.

We next consider Poisson’s equation in two dimensions, say on the unit
square (0, 1)× (0, 1):

∆u = uss + utt = α(s, t), (5.16)

where α and u are now real-valued functions of two variables. Using t as defined
in (5.4), we introduce an n × n mesh of points (ti, tj), i, j = 1, . . . n, where for
simplicity we use the same mesh spacing h in both dimensions. Applying the
second-order, centered finite difference quotient (5.5) to approximate the second
partial derivatives with respect to s and t at each of the (n− 2)2 interior mesh
points, we obtain an (n− 2)2 × n2 block-tridiagonal system of equations of the
form

28

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
3t2/2 − t/2 + 1/4

y

t

exact solution
finite difference approximation

Figure 5.1: Exact and finite difference solutions to 1-D Poisson example

Dû =
1
h2



D1 D2 D1 O O · · · O

O D1 D2 D1 O · · · O
...

.
...

O · · · O D1 D2 D1 O

O · · · O O D1 D2 D1





û1

û2
...

ûn2−1

ûn2

 = a, (5.17)

where the nonzero (n− 2)× n blocks are given by

D1 =


0 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
...

.
...

0 · · · 0 0 1 0 0
0 · · · 0 0 0 1 0

 (5.18)

and

D2 =



1 −4 1 0 0 · · · 0
0 1 −4 1 0 · · · 0
...

.
...

0 · · · 0 1 −4 1 0
0 · · · 0 0 1 −4 1

 , (5.19)

ûi+(j−1)n approximates u(ti, tj) at a given mesh point, and the entries of a ∈
R(n−2)2 are evaluated at the (n− 2)2 corresponding interior mesh points.

Again, the (n − 2)2 × n2 system (5.17) is underdetermined and therefore
has a nontrivial null space and cannot have a unique solution. In particular,
rank(D) = (n − 2)2, so N(D) is of dimension n2 − (n − 2)2 = 4(n − 1). Con-
ventionally, a particular solution to (5.17) is singled out by imposing boundary
conditions at the 4(n− 1) mesh points on the boundary, effectively resulting in

29

a square, nonsingular system of dimension (n−2)2 to solve for the approximate
solution values at the (n− 2)2 interior mesh points.

Alternatively, given an n2 × 4(n− 1) matrix Z whose columns form a basis
for N(D), we could specify the null space component of the solution to (5.17)
explicitly, as we have seen before. A new twist arises here, however: the null
space of the Laplacian operator ∆ in two dimensions is infinite dimensional,
in that, as can easily be confirmed by differentiation, the Laplacian annihilates
not only constant and bilinear functions, but more general polynomials in s

and t, such as a + bs + ct + dst + e(s2 − t2), where a, b, c, d, e are arbitrary
constants, as well as products such as sin(λs) exp(λt) or sin(λs) sinh(λt), where
λ is an arbitrary constant, and indeed any harmonic function, of which there
is an infinite variety (see [10, 20, 54], for example, for more information on
harmonic functions). Thus, the 4(n − 1)-dimensional subspace spanned by the
columns of the matrix Z provides only an approximation to the true null space
of the Laplacian. In any case, we can still use Z to specify the desired null-
space component of the solution to (5.17), which itself provides only a discrete
approximation to the true solution of (5.16).

It is instructive to compare the situation just described for the null-space
approach to the conventional approach of imposing boundary conditions. Note
that the choice of boundary data for the continuous problem (5.16) involves an
infinite number of degrees of freedom, since boundary values must be specified
on the continuum of all boundary points, but the discrete problem (5.17) allows
only 4(n − 1) degrees of freedom, since boundary values are specified only at
4(n− 1) mesh points on the boundary. Thus, the conventional boundary value
approach has no more “expressive power” than the null-space approach, and
both enjoy correspondingly improved accuracy as the mesh is refined.

To demonstrate the convergence of the null-space approach approximations
to the exact solution as the mesh is refined, we solve the 2-D Poisson problem
with

D = ∆ = ∂2

∂s2 + ∂2

∂t2 ,

Ω = (0, 1)× (0, 1),
α = 12s2t2 + 2t4,
β = s2t4,

(5.20)

for several values of n. Since our choice of null-space function β satisfies the
equation, we know that it is the exact solution to the problem. That is, u = β.
We solved the problem in MATLAB using the null() function to obtain a null
basis, and we use the maximum norm over the nodal values as a measure of
error. Figure 5.2 shows the error in the finite difference approximations as n
increases based on data for n = 5, 15, 25, and 35. The dashed lines in the plot
show linear and quadratic convergence curves. From the graph, it is clear that
this method demonstrates quadratic convergence in n. The total number of
nodes in the problem is n2, however, so the method exhibits linear convergence
in the total number of nodes.

30

10
0

10
1

10
210

−5

10
−4

10
−3

10
−2

n

er
ro

r

<−− 1/n

<−− 1/n2

number of nodes in each dimension

Finite difference approximation of 2−D Poisson

Figure 5.2: Error in finite difference approximation for 2-D Poisson example

5.2 Galerkin Methods

Galerkin methods approximate the solution of a differential equation by a linear
combination of a finite set of linearly independent basis functions—often called
trial functions in this context—defined on the problem domain. The computa-
tional problem, then, is to determine the coefficients of that linear combination.
The trial functions chosen may have local support, as in finite element methods,
or global support, as in spectral methods. In either case, most of the trial func-
tions are usually chosen so that they vanish on the boundary of the problem
domain Ω (we will refer to these as the homogeneous basis functions).

The coefficients of the linear combination of trial functions approximating
the solution are determined by forcing it to satisfy the differential equation in
an averaged sense. The linear combination is substituted into the differential
equation, and the resulting residual is forced to be orthogonal to each of a second
set of functions, called test functions, which results in a system of equations to
be solved for the coefficients of the linear combination of trial functions. In the
Galerkin approach, the test functions are chosen to be the homogeneous trial
functions, and the remaining, inhomogeneous trial functions are used to satisfy
whatever boundary conditions may apply.

The smoothness requirements on the trial functions can often be reduced
through integration by parts (or applying the Divergence Theorem in higher
dimensions), which may also accrue other advantages, such as symmetry. Al-
though the resulting approximate solution may lack the differentiability of the
true solution, nevertheless it can still approximate the true solution arbitrarily
closely as the number of basis functions increases.

We illustrate the Galerkin method first for the Poisson problem (5.3) in one
dimension on the interval (0, 1). We approximate the solution to (5.3) by a

31

linear combination of a set trial functions Φ = [φ1 φ2 · · · φn] ⊆ L2(0, 1),
so that

u ≈ Φx, (5.21)

where x ∈ Rn is to be determined. We will take the set of test functions to be
the homogeneous trial functions, which we denote by Φ0, and require that (5.3)
be satisfied in the weak sense,

Φ∗
0u
′′ = Φ∗

0α. (5.22)

Integrating the left side of (5.22) by parts and using the homogeneity of the test
functions, we obtain

(−Φ′
0)
∗u′ = Φ∗

0α. (5.23)

Differentiating the approximation (5.21) and substituting into (5.23), we obtain
the m× n system of linear equations

Dx = a (5.24)

where D = [(−Φ′
0)
∗Φ′], a = Φ∗

0α , and where m (≤ n) is the number of
homogeneous trial functions.

Again, we have arrived at an underdetermined linear system with a nontriv-
ial null space and thus a nonunique solution. While the matrix D and the vector
a will vary from problem to problem depending on the differential operator, all
lead to an underdetermined linear system (by rank, if not by shape). Con-
ventionally, a specific solution is singled out by imposing boundary conditions,
which in this context involves the inhomogeneous trial functions. Alternatively,
we could specify the null-space component of the solution. Note, however, that
the approximate solution is now a continuous function rather than a discrete
vector, and the null space of the discretized operator is similarly a function space
rather than a discrete vector space. Hence, we need to project the approximate
solution onto a subspace of functions, as in Section 2.4.

Let Z be an n × k matrix whose columns form a basis for N(D), the null
space of D (i.e., DZ = 0). We expect that the discretized operator D will
inherit a nontrivial null space (i.e., k ≥ 1) from the continuous operator D. For
j = 1, ..., k we define null functions vj ∈ C1(Ω) by

vj(t) =
n∑

i=1

zij φi(t). (5.25)

The entire set of null functions is V = ΦZ. Section 5.4 provides a proof that
these functions are indeed in N(D). We know that the null functions are linearly
independent because Φ contains linearly independent functions and Z is a null
basis, which implies it has linearly independent rows.

32

It follows that V ∗ = ZT Φ∗. The second set of equations from (4.4) becomes

ZT Φ∗u = ZT Φ∗β,

and substituting û for u, we obtain

ZT Φ∗Φx = ZT Φ∗β. (5.26)

The complete problem thus becomes[
D

ZT Φ∗Φ

]
x =

[
a

ZT Φ∗β

]
, (5.27)

which matches the form (5.1) with ẐT = ZT Φ∗Φ and b = ZT Φ∗β.
We now illustrate the Galerkin method by solving the Poisson equation in

one dimension. We will use the differential operator, α, β, and Ω given in
Equation (5.15). For basis functions, we introduce mesh points at 0, 1/2, and 1
and define the piecewise linear “hat” functions on (0, 1) by

φ1(t) =

{
1− 2t, 0 ≤ t ≤ 1/2

0, 1/2 < t ≤ 1
,

φ2(t) =

{
2t, 0 ≤ t ≤ 1/2

2− 2t, 1/2 < t ≤ 1
,

φ3(t) =

{
0, 0 ≤ t ≤ 1/2

2t− 1, 1/2 < t ≤ 1
.

Technically, these basis functions are not in C1(0, 1), since they are not differ-
entiable at the mesh points, but they and their piecewise constant derivatives,

φ′1(t) =

{
−2, 0 ≤ t ≤ 1/2
0, 1/2 < t ≤ 1

,

φ′2(t) =

{
2, 0 ≤ t ≤ 1/2
−2, 1/2 < t ≤ 1

,

φ′3(t) =

{
0, 0 ≤ t ≤ 1/2
2, 1/2 < t ≤ 1

,

are integrable, so there is no formal impediment to their use for our purposes.
Only one of our trial functions is homogenous, namely φ2(t), so Φ0 = [φ2].

Substituting into (5.24) and evaluating the simple integrals analytically, we
obtain

Dx = [−2 4 −2]x = [3/2] = a.

Since the row sums of D are zero, one null vector of the matrix is given by
[1 1 1]T ; a second null vector is given by [1 2 3]T . Thus from (5.25) we
have v1(t) = φ1(t)+φ2(t)+φ3(t) ≡ 1, and v2(t) = φ1(t)+2·φ2(t)+3·φ3(t) ≡ t+1,

33

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
3t2/2 − t/2 + 1/4

t

y

exact solution
Galerkin approximation

Figure 5.3: Exact and Galerkin method solutions to 1-D Poisson example

which certainly lie in N(D). Evaluating the integrals in (5.26) analytically, we
obtain

ZT (Φ∗Φ) =
[

1 1 1
1 2 3

] 1/6 1/12 0
1/12 1/3 1/12

0 1/12 1/6

 =
[

1/4 1/2 1/4
1/3 1 2/3

]

for the lower submatrix on the left and

ZT (Φ∗β) =
[

1 1 1
1 2 3

] 1/24
1/4
5/24

 =
[

1/2
7/6

]

for the lower vector on the right. Altogether, our system is

[
D

ZT Φ∗Φ

]
x =

 2 −4 2
1/4 1/2 1/4
1/3 1 2/3

x =

 3/2
1/2
7/6

 =
[

a

ZT Φ∗β

]
,

which has unique solution

x = [3/16 5/16 19/16]T = [0.1875 0.3125 1.1875]T .

Using this solution vector as coefficients in (5.21), we obtain the continuous
solution û = 1/16 · (3φ1 + 5φ2 + 19φ3), as shown in Figure 5.3.

Next, we demonstrate the Galerkin method for a 2-D Poisson example,
specifically the problem given in Equation (5.20), which has the solution
u(s, t) = s2t4. We uniformly discretize the unit square with n grid points
in each dimension, producing (n− 1)2 squares (elements) over the domain. As
basis functions, we use piecewise “tent” functions, one for each intersection (grid

34

10
0

10
1

10
210

−4

10
−3

10
−2

10
−1

10
0

Finite element approximation of 2−D Poisson

er
ro

r <−− 1/n

<−− 1/n2

number of nodes in each dimension

Figure 5.4: Error in Galerkin fin. el. approximation for 2-D Poisson example

point) on the grid. Each of these basis functions has a value of one at its cor-
responding grid point and is zero elsewhere; they are piecewise defined over the
elements of the domain and can be formed as the products of piecewise “hat”
functions defined on the line. As an example, let ψ1(t) be the linear function
such that ψ1(a) = 1 and ψ1(b) = 0 and let ψ2(t) be the linear function such that
ψ2(a) = 0 and ψ2(b) = 1. Then, on the two-dimensional domain (a, b)× (a, b),
the pieces of basis functions would be φij(t) = ψi(t)ψj(t). These are standard
bilinear finite elements.

As in the previous finite difference example, we plot the error in the Galerkin
finite element approximation for various values of n, as shown in Figure 5.4. The
Galerkin method shows quadratic convergence in n and linear convergence in
the number of nodes.

5.3 Collocation Methods

Collocation methods represent the solution function as a linear combination of
a finite set of basis functions defined on the problem domain,

u ≈ û = Φx (5.28)

as in Galerkin methods above. The collocation approach similarly yields a
system of equations to be solved for the coefficients of the linear combination
though in this case, the system is formed by forcing the residual of the differential
equation to be zero at each of a finite set of mesh points (called collocation points
in this context). With this constraint, our solution function exactly satisfies the
differential equation at a certain number of points but may not match the exact
solution value at any of those points, nor the differential equation between those

35

points. Accuracy of the solution is related to the number of basis functions used
and the corresponding number of collocation points.

The linear system of equations is formed by substituting the approximate
solution (5.28) into the differential equation and evaluating it at each collocation
point, producing a linear system with dimension [number of collocation points]
by [number of basis functions]. The number of collocation points on the domain
is chosen to match the number of basis functions (providing the same number of
equations as unknowns), and the positions of the collocation points are generally
chosen to include the boundary of the domain. With the conventional approach,
the collocation points on the boundary are constrained to satisfy the boundary
conditions. In the context of null-space methods, however, boundary conditions
are unspecified, and we use only interior collocation points to form our system,
yielding a linear system with dimension [number of interior collocation points]
by [number of basis functions], which is underdetermined by construction.

The null vectors and null space constraint follow the same way here as they
do in the Galerkin approach. Null functions are defined as linear combinations
of null vectors of the problem matrix and basis functions. The complete problem
form is the same as that given in Equation 5.27:[

D

ZT Φ∗Φ

]
x =

[
a

ZT Φ∗β

]
, (5.29)

where Φ contains the basis functions of the linear combination approximation
(i.e., from (5.28).)

We now demonstrate a collocation method on a 1-D Poisson equation,
namely Equation (5.15). Rather than using the piecewise linear basis func-
tions from the Galerkin example above, which will all be annihilated in our
equation, we use the first three monomials as our basis functions, 1, t, and t2.

We take the one interior collocation point to be the point t = 1/2. Our
equations will have the form

d2

dt2
û = 3,

d2

dt2

(∑
i

xiφi

)
= 3,∑

i

xiφ
′′
i = 3. (5.30)

Taking the second derivative of our basis functions, we have

φ′′1 = 0,

φ′′2 = 0,

φ′′3 = 2.

Putting these equations into (5.30) above and evaluating the result at t = 1/2,

36

we have our initial system,

Dx = [0 0 2]

x1

x2

x3

 = [3] = a.

A null basis for this problem matrix is

Z =

 1 0
0 1
0 0

 .
These null vectors correspond to null functions v1 = 1·φ1 = 1 and v2 = 1·φ2 = t,
which are clearly in the null space of the Laplacian operator. Evaluating the
integrals in (5.27) analytically, we obtain

ZT (Φ∗Φ) =
[

1 0 0
0 1 0

] 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 =
[

1 1/2 1/3
1/2 1/3 1/4

]

for the lower submatrix on the left and

ZT (Φ∗β) =
[

1 0 0
0 1 0

] 1/2
1/3
1/4

 =
[

1/2
1/3

]

for the lower vector on the right. Altogether, our system is

[
D

ZT Φ∗Φ

]
x =

 0 0 2
1 1/2 1/3

1/2 1/3 1/4

x =

 3
1/2
1/3

 =
[

a

ZT Φ∗β

]
,

which has unique solution x = [1/4 − 1/2 3/2]T . Using the values from
the solution vector as coefficients in (5.28), we obtain the approximate solution
û(t) = (1/4) · φ1 − (1/2) · φ2 + (3/2) · φ3 = 1/4 − t/2 + 3t2/2 = u(t). The
collocation method with the monomial basis functions gives the exact answer
for this simple problem.

For both this method and the Galerkin method, the choice of basis functions
for our solution approximation can affect the accuracy of the solution. For
example, if we repeat the same example with basis functions 1, sin(t) and cos(t),
our calculation proceeds as follows. First, our second derivatives are

φ′′1 = 0,

φ′′2 = − sin(t),

φ′′3 = − cos(t).

Putting these equations into (5.30) above and evaluating the result at t = 1/2,

37

we have our initial system, to four digits of accuracy,

Dx = [0 −0.4794 −0.8776]

x1

x2

x3

 = [3] = a.

A null basis for this problem matrix is

Z =

 1 0
0 2.086
0 −1.139

 .
Evaluating the integrals in (5.27), we obtain

ZT (Φ∗Φ) =
[

1.000 0 0
0 2.086 −1.139

] 1.000 0.4597 0.8415
0.4597 0.2727 0.3540
0.8415 0.3540 0.7273


=

[
1 0.4597 0.8415

4.657× 10−4 0.1656 −0.08995

]
for the lower submatrix on the left and

ZT (Φ∗β) =
[

1.000 0 0
0 2.086 −1.139

] 0.5000
0.3012
0.3818

 =
[

0.5000
0.1934

]

for the lower vector on the right. Altogether, our system is

[
D

ZT Φ∗Φ

]
x =

 0 −0.4794 −0.8776
1 0.4597 0.8415

4.657× 10−4 0.1656 −0.08995

x

=

 3.0000
0.5000
0.1934

 =
[

a

ZT Φ∗β

]
,

which has unique solution x = [2.650 − 0.1755 − 2.460]T . Using the values
from the solution vector as coefficients in (5.28), we obtain the approximate
solution û(t) = 2.650− 0.1755 sin(t)− 2.460 cos(t). This approximation and the
exact solution are graphed in Figure 5.5.

Next, we turn to the two-dimensional example given in Equation (5.20). We
will use polynomial basis functions, specifically, the products of monomial basis
functions in each variable. We describe convergence in terms of the number of
basis functions in each dimension. For example, if the number of basis functions
(nb) in a dimension is 2, the total number of basis functions is 22 = 4, and the
basis functions are 1 · 1 = 1, s · 1 = s, 1 · t = t, and s · t = st. Figure 5.6 plots
the error in the collocation approximation for various values of nb. The error
is calculated as the infinity norm of the absolute difference between the actual

38

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
3t2−t/2+1/4

t

y

exact solution
collocation approximation

Figure 5.5: Exact and collocation method solutions to 1-D Poisson example

2 2.5 3 3.5 4 4.5 5
10

−15

10
−10

10
−5

10
0

Collocation approximation of 2−D Poisson

number of basis functions per dimension

er
ro

r

<−− 1/nb
<−− 1/nb2
<−− 1/nb3

Figure 5.6: Error in collocation approximation for 2-D Poisson example

39

10
0.4

10
0.6

10
0.810

−8

10
−6

10
−4

10
−2

10
0

Collocation approximation of 2−D Poisson

er
ro

r

number of basis functions per dimension

<−−1/nb3

<−− 1/nb4

1/nb9 −−>

Figure 5.7: Error in collocation approximation for second 2-D Poisson example

and the approximate solution values at uniformly distributed mesh points over
the domain, with 15 grid points in each dimension. When the function s2t4 is
added to the set of basis functions, the solution can be represented exactly, and
the error is essentially zero.

It is difficult to estimate convergence for the collocation method from the
error graph given by the two-dimensional example given above. The following
example uses the same differential operator but has a solution that cannot be
exactly represented by polynomial basis functions. Let

D = ∆ = ∂2

∂s2 + ∂2

∂t2 ,

Ω = (0, 1)× (0, 1),
α = (4s2 + 4t2) exp(s2 − t2),
β = exp(s2 − t2).

(5.31)

The solution here is sin(s2 + t), and the error graph, with error calculated as we
described above, is given in Figure 5.7. These approximations used uniformly-
spaced points throughout the domain. The dashed lines represent convergence
curves of O(h3), O(h4), and O(h9), where h = 1/nb. This graph has a non-
smooth convergence curve, but it clearly does better than quadratic convergence
in the number of basis functions per dimension and seems to follow roughly
the O(h9) convergence curve. Collocation approximations may converge to the
solution at different rates depending on the basis functions and on the spacing
of the collocation points.

5.4 Discrete Null Bases

Along with discrete operators come discrete null bases. We now turn to the
question of how the null spaces represented by discrete null bases derived from

40

10
0

10
1

10
210

−15

10
−10

10
−5

10
0

k

er
ro

r

Continuous function approximation to discrete null vector

Figure 5.8: Difference between a specific null function and null vector

discretized differential operators relate to the null spaces of the corresponding
continuous operators. Related work linking continuous and discrete variational
forms is presented by Bochev and Lehoucq in [7]. We have not answered the
question in full for null spaces, but we do have part of the answer for a Galerkin
discretization of the Laplacian operator.

A harmonic function is by definition in the null space of the Laplacian op-
erator, and any function of the form α sin(λs) sinh(λt) is a harmonic function
for any real values of α and λ. One way to relate continuous and discrete null
spaces is to show that continuous null functions have corresponding null vec-
tors. We have found such a correspondence for a harmonic function of the form
given above with α = 2√

3 sinh(2kπ
3 (n−1))

and λ = 2kπ
3 (n − 1), where k = 3i − 2

for any positive integer i. A specific null vector, with zero values throughout
the domain except for at the nodes on one edge, where the nodal values cycle
through 0, 1 and −1, correlates closely with the values of this function,

2√
3 sinh(2kπ

3 (n− 1))
sin(

2kπ
3

(n− 1)s) · sinh(
2kπ
3

(n− 1)t), (5.32)

at the grid points of a uniform n × n discretization. And, as the value of k
increases, the null vector and the discrete values of the null function converge,
as shown in Figure 5.8 for the case n = 5. The error in the plot is calculated
as the max norm of the difference between the null vector and the vector of
discrete values of the continous null function at the grid points. A similar null
vector approximates Function (5.32) when k = 3i − 1 for any positive integer
i, and null vectors with the opposite orientation approximate another slightly
varied version of the function.

Ideally, we would relate every null vector and null function to a corresponding
element in the continous or discrete space, respectively. This would confirm

41

there are no spurious discrete null vectors and allow us calculate some measure
of error between our discrete null space and the continous one. (A measure of
error might be found using approximation theory [41], but we did not pursue
that.) We have not been able to equate other specific null functions and null
vectors (relating the continous to the discrete), but under a mild condition, we
can relate discrete null vectors to continuous null functions (relating the discrete
to the continous). Specifically, we prove that all the discrete null vectors of the
matrix formed by a linear, two-dimensional, hat function discretization of the
Laplacian on an uniformly-spaced n × n grid correspond to continuous null
functions of the Laplacian operator. The following theorem shows that if the
span of the basis functions used in the discrete approximation is a superset
of the span of the Laplacian of those functions (a natural condition for many
types of basis functions), then the linear combinations of null vectors and basis
functions are null functions of the continuous operator.

Theorem 2 For the continuous problem DΦx = 0, let Φ = [φ1 · · · φn] be
a set of functions spanning the approximate solution space such that

span(Φ) ⊇ span(DΦ),

and let D be the matrix with entries dij = 〈Dφj , φi〉. Then Dx = 0 implies
DΦx = 0.

Proof: Let x be any nonzero vector in the null space of D,

Dx = 0.

Then x is orthogonal to each row of D:

x1〈Dφ1, φi〉+ x2〈Dφ2, φi〉+ · · ·+ xn〈Dφn, φi〉 = 0, i = 1, . . . , n,

which by properties of inner products can be rewritten as

〈x1Dφ1 + x2Dφ2 + · · ·+ xnDφn, φi〉 = 0, i = 1, . . . , n.

Since D is a linear operator, this simplifies to

〈DΦx, φi〉 = 0, i = 1, . . . , n.

Assuming DΦx 6= 0, then

span([DΦx Φ]) ⊃ span(Φ),

by DΦx orthogonal to φi for i = 1, . . . , n. But, from the assumptions above,

span(Φ) ⊇ span(DΦ),

42

implying
DΦx ∈ span(Φ)

for any x. This is a contradiction, so it follows that DΦx = 0. �

43

6 Computing Null-Space
Bases

Solving a discretized partial differential equation using the null-space method,
as described in Chapter 4, requires a discrete null basis. There are two ways
to approach this task. One approach is to find a null basis for the continuous
operator and discretize it in the same way that we discretize the operator. A
second approach is to find a basis for the null space of the discretized operator.

The first option may appear preferable at first. Finding a null basis for
the continuous operator only once and then reusing it for several problems,
discretizing the null basis in various ways according to the solution technique,
seems preferable to finding a null basis specific to a particular discretization.
In one dimension, finding a continuous null basis is often possible and simple.
In those cases, a continuous null space may well be the better choice. For
problems in more dimensions, however, differential operators often have infinite-
dimensional null spaces. For such operators, finding a continuous null space to
use for a discretized problem poses two difficulties. First, finding a basis of
an infinite-dimensional space is nontrivial, though it is possible in some cases,
as [21] demonstrates. Second, once a null basis is found, we face the task of
choosing which null space functions to discretize. The discrete approximation
must have a finite-dimensional null space by construction as a discrete problem,
and as it is impossible to represent the entire infinite-dimensional space with a
finite set of functions, we must select a subset of these continuous functions to
discretize. The best method for choosing that subset is unclear, and additionally,
in exploring this option we found that some linearly independent continuous
functions may be nearly linearly dependent when discretized, which adds to the
complexity of discretizing the infinite-dimensional space.

The second option, finding a null basis for the discretized operator, is the
approach we use in our work. We not only wish to find a null basis, we also prefer
a basis that has good numerical and computational properties. Specifically, we
hope to find a sparse, well-conditioned null basis. In this chapter we first discuss
in Section 6.1 how to find null bases of general matrices. Then in Section 6.2
we explain four important special cases for which we have found explicit null
bases. Section 6.3 gives results related to computing and using null bases, and
in Section 6.4 we consider issues concerning the conditioning of these null bases.

44

6.1 General Case

The task of finding the null basis of a matrix occurs in many contexts, and
several options are available to us. For example, we could compute the singu-
lar value decomposition (SVD) of a matrix and take the right singular vectors
corresponding to zero singular values as our null basis. In the case of an m× p
underdetermined matrix, only m singular values exist and the p −m singular
vectors not corresponding to any singular values are used for the null basis in
addition to any singular vectors corresponding to zero singular values. (This de-
composition is the method used by the MATLAB function null().) We could
also generate a full QR factorization of the transpose of our matrix and take
the right-most vectors of the matrix Q as our null basis. Both of these options
provide a well-conditioned null basis, but the result is usually dense. A dense
basis hinders our goals of keeping the solution time and storage requirements
small, so these two methods are useful for small problems and for comparative
purposes but are not good candidates for solving large systems unless compu-
tational resources are not a limiting factor.

Much attention has been given to the problem of finding a sparse null basis,
and as it has been shown to be NP-hard to find the sparsest null basis [14],
many heuristics have been developed to find “suitably” sparse null bases. The
turnback algorithm for finding sparse null bases developed over several years
([30, 34, 52]), culminating in a paper by Berry, Heath, Kaneko, Lawo, Plem-
mons, and Ward in 1985 [6]. The turnback algorithm begins by passing through
the matrix to find columns that are linearly dependent on previous columns
using a QR factorization, without saving the matrix Q. Next, it searches for
a dependent set of columns, starting with a column marked in the first pass
and adding previous columns one at a time, expanding the search set backward
toward the first column until a dependency is found between columns in the
search set. A null vector is determined from the dependent set using a small
QR factorization updated and expanded when a vector is added to the search
space. The method capitalizes on the idea that dependencies are often local
within a matrix. The algorithm ensures that the set of null vectors is indepen-
dent by constraining which columns may be added to the search for a dependent
set; if a vector a was the last one added to a dependent set, it may not be used
again. This does not create problems with the algorithm finding a complete set
of null vectors because the vectors with which a formed a dependent set span
a.

In 1987, Gilbert and Heath [24] proposed and compared variations on the
turnback method, offering options for preordering the matrix columns and pro-
viding better heuristics for finding dependent sets with few columns, leading to
sparser null bases. The new heuristics do not search for dependencies using col-
umn order only, but they also consider the number of nonzero rows, and in some
cases combinatorial matching algorithms play a role. Their results have been

45

the basis for much of our work in finding null bases. In the same year, another
algorithm based on matching was published by Coleman and Pothen [15]. Cole-
man and Pothen focus on matching algorithms and the structure of the matrix,
assuming no numeric cancellation. Their results closely paralleled the results of
an algorithm in Gilbert and Heath’s paper. Subsequently, Pothen [43] developed
a faster method that produces sparser bases, but it is specific to the problem of
finding null bases of equilibrium matrices. Plemmons and White [42] addressed
parallel algorithms for the same problem in 1990. In 1993, Stern and Vavasis [49]
proposed a method for finding sparse null bases using nested dissection.

Of the three approaches listed above, turnback, graph matching algorithms,
and nested dissection, we have worked with the turnback method and its vari-
ations, primarily because an implementation was available to us. The code
was written for research purposes, not as production code, but it gives useful
comparisons for smaller problems, and it gave a good starting point for find-
ing explicit bases. Presumably any of the methods listed above could provide a
useful sparse null basis even for larger problems, given a proper implementation.

While the turnback method and its variations are effective for general ma-
trices, we believe we can improve on the algorithm for some specific problems.
In particular, in some problems we can exploit symmetry to derive two, four, or
even eight null vectors from a single null vector without additional calculation.
Similarly, Ye and Hall [59] manipulated the basic turnback to create a more
symmetric basis. In practice, this idea enables us to find sparser null bases
than the turnback algorithm finds. Since this improvement is specific to certain
discretizations and problem domains, we have not automated the process, but
its effects are evident in the explicit bases we have found for various operators.
(See Section 6.2.)

Other work relevant to sparse null bases includes papers by Hoffman and
McCormick [32], Adler et al. [3], McCormick [37], Chang and McCormick [11,
12], and Gondzio [25] which propose methods for making a sparse matrix sparser
and a paper by Brualdi, Friedland, and Pothen [9] presenting a polynomial time
algorithm to test if a set of elementary vectors is a null basis. The more recent
work of Chang and McCormick is based on matching algorithms and looks
for linear combinations of vectors that are sparser than the original vectors,
resulting in a matrix with the same span as the original matrix but with fewer
nonzero entries. Experimentation with this method has shown their algorithm
to be ineffective for our problems, though the paper shows the method to be
useful for many linear programming problems.

6.2 Explicit Bases

In general, we will use one of the methods explained above to find a null basis for
the discretized differential equation we wish to solve. In four important special
cases, however, we will exhibit an explicit null basis for the discrete operator. In

46

each of these cases, we need not apply a general method for finding a null basis
as described above. Rather, we can form the null basis without even forming
the problem matrix. In this section we explain the discretization of the operator
and formation of explicit null vectors in each special case. In three cases, we
additionally prove that the null vectors we describe form a null basis for the
specific discrete operator.

6.2.1 Finite Difference 2-D Laplacian

First, we consider solving Poisson’s equation in two dimensions. Our domain is
the unit square, and we discretize the Laplacian operator with centered finite
differences, using a five-point stencil and uniform grid spacing in both dimen-
sions. As boundary conditions are unspecified, we use only stencils that are
completely contained within our grid and discard any others. This method pro-
duces an underdetermined, rectangular matrix. We give formulas for explicitly
producing a null basis for any matrix so formed from an n × n discretization
and prove that it is indeed a null basis. We assume throughout that n ≥ 3.

First, we present the formulas for null vectors.
Entries of our null vectors will be taken from the three-sum triangle. The

three-sum triangle, T , is a lower triangular matrix such that each entry on
or below the diagonal is found by summing the values to the immediate west,
north, and northwest of it. The table initially has 1’s in the leftmost column.
For each entry in a given row i and column j,

T (i, j) =


0 i < j

1 j = 1
T (i− 1, j) + T (i− 1, j − 1) + T (i, j − 1) otherwise

. (6.1)

The diagonal entries of this matrix are also known as the large Schroeder num-
bers [40, 48]. A portion of the three-sum triangle is shown in (6.2) below, where
blank entries represent 0 values.

1
1 2
1 4 6
1 6 16 22
1 8 30 68 90
1 10 48 146 304 394
1 12 70 264 714 1412 1806


(6.2)

For purposes of the following proof, it is useful to think of null vectors in
terms of their numerical values on the finite difference grid. We refer to the null
vector grids as null grids, and we present the explicit formula in terms of values
on the grid.

We have four types of null grids, un
k , vn

k , wn
k , and zn

k , where n is the size of

47

the problem (an n×n discretization) and k specifies a particular null grid of the
set. The null grids are described in terms of values on the finite-difference grid,
so they are additionally indexed by rows and columns. For example, un

k (i, j)
(for 1 ≤ i ≤ n and 1 ≤ j ≤ n) corresponds to the value of un

k at the point
((i− 1)h, (j − 1)h), where h = 1/(n− 1).

For arbitrary n, then, we form null grids using 1 ≤ k < n in each of these
formulas:

un
k (i, j)=

8>>>><>>>>:
1, i = k, j = 1

(−1)j−1 T (k + j − i− 1, k − i− j + 2),

1 ≤ i ≤ k − 1, 2 ≤ j ≤ k − i + 1

0, elsewhere

(6.3)

vn
k (i, j)=

8>>>><>>>>:
1, i = 1, j = n− k + 1

(−1)i−1 T (k − n + j + i− 2, k − n− i + j + 1),

2 ≤ i ≤ j + k − n, n− k + 2 ≤ j ≤ n

0, elsewhere

(6.4)

wn
k (i, j)=

8>>>><>>>>:
1, i = n, j = k

(−1)n−i T (k − i− j + n, i− j + k − n + 1),

n− k + j ≤ i ≤ n− 1, 1 ≤ j ≤ k − 1

0, elsewhere

(6.5)

zn
k (i, j)=

8>>>><>>>>:
1, i = n− k + 1, j = n

(−1)n−j T (k + i− j − 1, k + i + j − 2n),

n− k + 2 ≤ i ≤ n, 2n− k − i + 1 ≤ j ≤ n− 1

0, elsewhere

(6.6)

Formulas (6.3)-(6.6) hide the simplicity of the null grids and their relation-
ships to each other. The four formulas represent grids that are exactly the same
except for the corner from which they originate, i.e., they are rotationally sym-
metric. For null grids originating from the same corner, when k is increased by
1, the new null grid is just a shift of the nonzero values of the previous null grid
with one row of nonzeros added, filled in with the numbers from the appropriate
anti-diagonal of (6.2). The skew diagonals used for the null grids (every other
one) are highlighted in red in (6.2).

For example, Figure 6.1 displays the null grids for n = 5, in order from left
to right, u, v, w z, and top to bottom, k = 1, 2, 3, 4.

Now that we have presented the null grids, we prove in a series of theorems
and lemmas that they are indeed null vectors and that they form all or most of
a null basis. First, we note that the finite difference stencils for an n × n grid
are of the form

(n− 1)2



. . .
...

...
...

. . .

· · · 0 1 0 · · ·
· · · 1 −4 1 · · ·
· · · 0 1 0 · · ·
. . .

...
...

...
. . .

 ,

48

26664
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
26664

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
26664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

37775
26664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

37775
26664

0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
26664

0 0 0 1 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
26664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−1 0 0 0 0
0 1 0 0 0

37775
26664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

37775
26664

0 −4 1 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
26664

0 0 1 0 0
0 0 0 −1 −4
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

37775
26664

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

−4 −1 0 0 0
0 0 1 0 0

37775
26664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 1 −4 0

37775
26664

0 −16 8 −1 0
0 −4 1 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0

37775
26664

0 1 0 0 0
0 0 −1 −4 −16
0 0 0 1 8
0 0 0 0 −1
0 0 0 0 0

37775
26664

0 0 0 0 0
−1 0 0 0 0

8 1 0 0 0
−16 −4 −1 0 0

0 0 0 1 0

37775
26664

0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 1 −4 0
0 −1 8 −16 0

37775

Figure 6.1: Null grids for n = 5.

where all entries represented by dots are zero. In order to have a null grid g,
then, we need

(n− 1)2(1 · g(i− 1, j)+1 · g(i, j− 1)− 4 · g(i, j)+1 · g(i, j+1)+1 · (i+1, j)) = 0

for all 2 ≤ i, j ≤ n − 1. It is clear that the constant (n − 1)2 can be removed
from the equation above and we omit it in our proofs. We refer to each equation
formed from a finite difference stencil as a constraint and the part remaining on
the left-hand side after we remove the scalar as a weighted sum.

Theorem 3 un
k is a null grid for the specified problem of size n for all n ≥ 3

and 1 ≤ k < n.

Proof: The proof proceeds by induction on n.
Base cases: u3

1,u
3
2. For the problem with n = 3, we have one finite difference

stencil,  0 1 0
1 −4 1
0 1 0

 . (6.7)

In order to have a null grid, we must satisfy the constraint u(2, 1) + u(1, 2) +
−4u(2, 2) + u(3, 2) + u(2, 3) = 0.
The base case grids, u3

1 and u3
2, are shown below with the pertinent values

highlighted in blue.

u3
1 =

 1 0 0
0 0 0
0 0 0

 u3
2 =

 0 −1 0
1 0 0
0 0 0


For u3

1, we have 0 + 0− 4 · 0 + 0 + 0 = 0, so the condition is satisfied. For u3
2,

we have 1− 1− 4 · 0 + 0 + 0 = 0. Again, we have a null grid.

49

Induction hypothesis: Assume un
k is a null grid for 1 ≤ k < n. We will show

that un+1
k is a null grid for 1 ≤ k < n+ 1.

Step 1: First we show un+1
k is a null grid for 1 ≤ k < n. By the induction

hypothesis, we know that un
k is a null grid and thus

un
k (i, j − 1) + un

k (i− 1, j)− 4un
k (i, j) + un

k (i+ 1, j) + un
k (i, j + 1) = 0

for 2 ≤ i, j ≤ n − 1. By inspection, since n does not appear in formula (6.3),
un+1

k has exactly the same nonzero positions and values as un
k and

un+1
k (i, j− 1)+un+1

k (i− 1, j)− 4un+1
k (i, j)+un+1

k (i+1, j)+un+1
k (i, j+1) = 0

for 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ n − 1. Thus, un+1
k satisfies all the constraints

that are duplicates of those on the n× n grid.
Since we are now working on the (n+1)×(n+1) grid, we must also show that

constraints associated with the finite difference stencils with centers along the
gridlines with i = n and j = n are satisfied. As we now show, these conditions
are all met because the grid values associated with the stencils are all 0.

First, suppose we have a stencil centered at (n, j) with 2 ≤ j ≤ n. For
k < n, from the limits of the variables for (6.3), we see that the maximum row
with a nonzero value is row n− 2 except when j = 1. Thus un+1

k (n, j) = 0 and
un+1

k (n+ 1, j) = 0 for all j, and un+1
k (n− 1, j) = 0 for j ≥ 2, which implies

un+1
k (n, j−1)+un+1

k (n−1, j)−4un+1
k (n, j)+un+1

k (n+1, j)+un+1
k (n, j+1) = 0

for 2 ≤ j ≤ n, satisfying the constraints of all the finite difference stencils
centered at i = n.
Similarly, the maximum column of un+1

k (i, n) with a nonzero value is n− 1 and
is obtained only when i = 1. In general the maximum column with a nonzero
value is n − 2. Thus un+1

k (i, n) = 0 and un+1
k (i, n + 1) = 0 for all i, and

un+1
k (i, n+ 1) = 0 for i ≥ 2. It follows that

un+1
k (i, n−1)+un+1

k (i−1, n)−4un+1
k (i, n)+un+1

k (i+1, n)+un+1
k (i, n+1) = 0

for 2 ≤ i ≤ n, satisfying the constraints centered at j = n. Putting these pieces
together, then, all of the null constraints are satisfied, and un+1

k is confirmed to
be a null grid for 1 ≤ k < n.

Step 2: To complete the proof, we must show that un+1
n is a null grid. From

(6.3) we see that un+1
n (i, j) = un+1

n−1(i−1, j) for 1 ≤ j ≤ n+1 and 2 ≤ i ≤ n+1.
That is, most of un+1

n is a shift of un+1
n−1. As the finite difference stencils are

the same across the domain, and since we know from Step 1 that un+1
n−1 is a null

grid, un+1
n meets the requirements for a null grid for all of the finite difference

stencils centered from 3 ≤ i ≤ n and 2 ≤ j ≤ n. We need to confirm, then, only
that the stencils centered along the row i = 2 also have a weighted sum of zero.

50

The weighted sum looks like this (where 2 ≤ j ≤ n):

S = un+1
n (1, j) + un+1

n (2, j − 1)− 4un+1
n (2, j) + un+1

n (2, j + 1) + un+1
n (3, j).

Substituting according to (6.3) we find

S = (−1)j(T (n+ j − 2, n− j + 1)− T (n+ j − 4, n− j + 1)

−4T (n+ j − 3, n− j)− T (n+ j − 2, n− j − 1) + T (n+ j − 4, n− j − 1)).

Now suppose for ease of notation that

T (n+ j − 4, n− j − 1) = a,

T (n+ j − 4, n− j) = b,

T (n+ j − 4, n− j + 1) = c,

T (n+ j − 3, n− j − 1) = d,

T (n+ j − 2, n− j − 1) = f,

for some values a, b, c, d, and f . We do not want to define values outside of the
table so we limit n+ j − 4 ≥ 1 and n− j − 1 ≥ 1, which implies 2 ≤ j ≤ n− 2.
We will address the outliers later. By the construction of T ,

T (n+ j − 3, n− j) = a+ b+ d,

T (n+ j − 3, n− j + 1) = a+ 2b+ c+ d,

T (n+ j − 2, n− j) = a+ b+ 2d+ f,

T (n+ j − 2, n− j + 1) = 3a+ 4b+ c+ 4d+ f.

Here again, we must check validity of indices. The reciprocally-defined portion
of T (which we use in the derivation above) requires the first index to be greater
than or equal to the second. Checking indices, we find that j ≥ 2 guarantees
that this requirement is met in all four cases. Writing the above, which is an
arbitrary 3× 3 block of T , in matrix form, we have a b c

d a+ b+ d a+ 2b+ c+ d

f a+ b+ 2d+ f 3a+ 4b+ c+ 4d+ f

 .
Substituting the pertinent values into the equation for S above,

S = (−1)j(3a+ 4b+ c+ 4d+ f − c− 4 · (a+ b+ d)− f + a),

S = (−1)j(3a− 4a+ a+ 4b− 4b+ c− c+ 4d− 4d+ f − f),

S = 0.

In general, then, we have shown that the stencils along the grid line i = 2

51

have a weighted sum of zero, but a few remaining stencils at the right and left
of the grid need special attention. For the finite difference stencil centered at
(2, 2), un+1

n (2, 1) is defined to be zero; it is not given in terms of T . In this
case, however, the pertinent value of T is also zero, so the weighted sum for
the stencil is equal to that derived above, namely 0. Now we address the cases
left out above by the limits on j. For the null grid centered at (2, n), we have
nonzeros at (1, n) and (2, n− 1). The weighted sum becomes

(−1)n+1(T (2n− 2, 1)− T (2n− 4, 1)) = (−1)n+1(1− 1) = 0.

For the null grid centered at (2, n−1), we have nonzeros at (1, n−1), (2, n−2),
and (2, n− 1). Here the weighted sum becomes

(−1)n+1(−T (2n− 3, 2) + 4T (2n− 4, 1) + T (2n− 5, 2)). (6.8)

Using a method similar to that above, assuming T (2n− 5, 2) = c and knowing
that T (i, 1) = 1, expression (6.8) simplifies to

(−1)n+1(−(c+ 4) + 4 · 1 + c) = (−1)n+1(0) = 0.

Thus, all the constraints are met and un+1
n is confirmed to be a null grid. This,

together with Step 1, proves that given our induction hypothesis, un+1
k is a null

grid for 1 ≤ k < n + 1. By induction, then, un
k is a null grid for all n ≥ 3 and

1 ≤ k < n. �

Theorem 4 vn
k , wn

k , zn
k are null grids for the specified problem of size n for

all n ≥ 3 and 1 ≤ k < n.

Proof: True by rotational symmetry of the null grids and the constraints. �

Lemma 4 The grid of n2 1’s is a null grid for the specified problem of size n
for n ≥ 3.

Proof: For each finite difference stencil, the weighted sum will be

1 · 1 + 1 · 1− 4 · 1 + 1 · 1 + 1 · 1 = 0. �

At this point, we transition from thinking about null grids to null vectors.
While we still refer to un

k , vn
k , wn

k , and zn
k , we now consider them as vectors that

form columns of a matrix. We show that the matrix formed by concatenating
null vectors is a basis for the null space. The null vectors are added to the matrix
in the order that they are shown in the example following formulas (6.3)-(6.6),
that is, un

1 , vn
1 , wn

1 , zn
1 , un

2 , vn
2 , ..., and they are generally added in groups of four

corresponding to k values. The order of the columns is important to the proof
because we show that in this formation there is an embedded upper triangular

52

matrix in the larger matrix. The rows that form the embedded triangular matrix
are identified with respect to the order of the columns.

First, we prove that the matrix of the first 4(n − 2) vectors contains an
embedded upper triangular matrix with nonzero diagonal entries.

Lemma 5 For all n ≥ 3, B = [un
1 vn

1 wn
1 zn

1 · · · un
n−2 vn

n−2 wn
n−2 zn

n−2]
contains an embedded upper triangular matrix with nonzero diagonal entries.

Proof (by induction): Base case: n = 3. Supposing nodes are numbered left
to right, top to bottom,

B = [u3
1 v3

1 w3
1 z3

1] =



1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1


.

By inspection, B has an imbedded identity matrix, which is upper triangular
and has nonzero diagonal entries. The nonzero values are in the rows corre-
sponding to the grid points (1, 1), (1, n), (n, 1), and (n, n).

Induction hypothesis: Assume

B = [un
1 vn

1 wn
1 zn

1 · · · un
n−2 vn

n−2 wn
n−2 zn

n−2]

has an embedded upper triangular matrix with nonzero diagonal entries. Sup-
pose the nodes are numbered according to some mapping f such that pi,j =
f(i, j), where i and j are grid indices and pi,j is the row (i.e., vector index)
corresponding to the (i, j)th grid location. Also, let

B̂ = [B un+1
n−1v

n+1
n−1 wn+1

n−1 zn+1
n−1],

that is,

B̂ = [un+1
1 vn+1

1 wn+1
1 zn+1

1 · · · un+1
n−2 vn+1

n−2 wn+1
n−2 zn+1

n−2 un+1
n−1v

n+1
n−1 wn+1

n−1 zn+1
n−1].

Explanation: We will show that a certain set of rows of B̂ forms an embedded
upper triangular matrix. Each node in the finite difference grid corresponds to
a row in B̂, and each null grid/null vector corresponds to a column in B̂. We
already know the order of the columns. For each column, then, we will select
a row pi,j that is nonzero in the (i, j)th grid location for the associated column
and zero in the (i, j)th grid location for all previous columns. While the proof
follows by induction, the final order of the rows chosen follows the pattern shown

53

below for n = 6. The nodes correspond to rows and the numbers correspond to
the order in which the rows are selected for the embedded matrix. The corner
nodes are used for the first four rows (starting from the top left-hand corner
and circling counter-clockwise), and we spiral inward from there.

1 → 5 · · 8 ← 4
↓ ↓

· 9 → 13 16 ← 12 ·
↓ ↓

· · 17 20 · ·

· · 18 19 · ·
↑ ↑

· 10 → 14 15 ← 11 ·
↑ ↑

2 → 6 · · 7 ← 3



.

Claim 1: First, we will show that the embedded matrix remains intact (i.e.,
the same rows can be used) from B to the first 4(n − 2) columns of B̂, even
though we are increasing to a grid of size n+ 1. Later we will consider the four
additional null grids of B̂, un

n−1,v
n
n−1,w

n
n−1,z

n
n−1.

Without loss of generality, we consider the column that is the null vector un
m.

We know by the induction hypothesis that there is a row of B, pa,b for some
values of a and b, such that un

m(a, b) 6= 0 and vectors to the left of un
m are zero at

the gridpoint (a, b). That means un
k (a, b) = vn

k (a, b) = wn
k (a, b) = zn

k (a, b) = 0
for k < m. We now show that the same holds for B̂ and un+1

m .
First, we consider the un+1

k grids. All of the un+1
k grids have nonzeros in

exactly the same locations as the un
k grids, so by construction and the hypotheses

above, un+1
m (a, b) 6= 0 and un+1

k (a, b) = 0 for k < m.
Now we consider the wn+1

k null grids. It is clear from (6.5) that wn+1
k (i, j) =

wn
k (i− 1, j). In other words,

wn
k (i− 1, j) = 0⇒ wn+1

k (i, j) = 0.

We also know from (6.3) and constraints on (i, j) (a position where un
k is nonzero;

i < n) that
wn

k (i, j) = 0⇒ wn
k (i− 1, j) = 0.

Thus,
wn

k (a, b) = 0⇒ wn+1
k (a, b) = 0,

and we will not introduce any new nonzero positions into row pa,b when we shift
to the (n+ 1)× (n+ 1) grid.

Similarly,
vn+1

k (i, j) = vn
k (i, j − 1),

54

and for i > 1,
vn

k (i, j) = 0⇒ vn
k (i, j − 1) = 0.

Thus for a > 1,
vn

k (a, b) = 0⇒ vn+1
k (a, b) = 0.

The premise is true by the hypotheses above, so for a > 1, vn+1
k (a, b) = 0. For

the case where a = 1,

vn
k−1(1, b) = 0⇒ vn+1

k (1, b) = 0.

We know that vn
k−1(a, b) is a previous value in this row, so its value must be

zero, implying vn+1
k (a, b) = 0.

The nonzero entries in the zn+1
k vectors do not overlap with those in the

un+1
k vectors. Any row that is nonzero for some grid location in un+1

k will be
zero in all of the zn+1

k columns.
Thus we conclude that row pa,b of B̂ is zero to the left of column un

m.
This argument, while the letters will be different depending on the first column
chosen, holds for all columns of B. This completes the proof of Claim 1.

Claim 2: Now we consider the four right-most vectors of B̂ (those associated
with k = n− 1) and show that rows can be selected to complete the embedded
upper triangular matrix with nonzero diagonal entries.

Case 1: Assume n is even. In this case, it can be shown that the rows
f(n

2 ,
n
2), f(n

2 ,
n
2 + 2), f(n

2 + 2, n
2), f(n

2 + 2, n
2 + 2), associated with the columns

un+1
n−1, vn+1

n−1, wn+1
n−1, and zn+1

n−1, respectively, are nonzero in their associated
columns and zero for all previous columns. We will demonstrate this for column
un+1

n−1 and row pn
2 , n

2
. The same can be shown for the other rows using similar

arguments.
First, we show un+1

n−1 is nonzero in the given row. From (6.3) we know that

un+1
n−1(

n

2
,
n

2
) = ±T (n− 2, 1) = ±1 6= 0.

Now we must show that all previous vectors are zero in this row. We do this
based on the variable limits for nonzeros in formulas (6.3)-(6.6), the values of i
and j (both equal to n/2 here), and the knowledge that vectors to the left of
this one in B̂ are formed with k < n − 1. By showing that the limits do not
allow nonzero values in the given row for these vectors, we prove that the values
must be zero.

First, we consider un+1
k . For a nonzero value with i = n

2 , we would need

j ≤ k − n

2
+ 1,

n

2
≤ k − n

2
+ 1, (substituting in the value for j)

n ≤ k + 1,

n− 1 ≤ k.

55

For a nonzero value in vn+1
k with j = n

2 , we would need

i ≤ n

2
+ k − (n+ 1),

n

2
≤ n

2
+ k − n− 1,

n+ 1 ≤ k.

For wn+1
k with j = n

2 , we would need

i ≥ n+ 1− k +
n

2
,

n

2
≥ 3n

2
− k + 1,

−n ≥ −k + 1,

n+ 1 ≤ k.

Finally, for a nonzero in zn+1
k when i = n

2 , we would need

2n+ 2− k − n

2
+ 1 ≤ n

2
,

n+ 3 ≤ k.

As mentioned above, previous vectors in B̂ are associated with values of k
less than n− 1. It follows that no vector to the left of this in the matrix has a
nonzero in row pn

2 , n
2
, and this confirms it is a valid row to extend the embedded

upper triangular matrix.
Similarly, it can be shown that the other specified rows, f(n

2 ,
n
2 + 2), f(n

2 +
2, n

2), f(n
2 + 2, n

2 + 2), are nonzero in the vn+1
n−1, wn+1

n−1, and zn+1
n−1 null vectors,

respectively, and are zero for all previous vectors.
Case 2: Assume n is odd. Here the rows to select for the embedded matrix

are f(n−1
2 , n+1

2), f(n−1
2 , n−1

2 + 2), f(n+1
2 + 2, n+1

2), and f(n+1
2 + 2, n−1

2 + 2).
Again, we consider the first additional row (pn−1

2 , n+1
2

) and show that it has a
nonzero entry in column un+1

n−1 and is zero in all previous columns. From (6.3)
we see that

un+1
n−1(

n−1
2 , n+1

2) = ±T (n− 1, 1) = ±1 6= 0.

As in case 1, we use the formulas (6.3)-(6.6) and the variable limits to consider
the value of k necessary to have a nonzero value in row pn−1

2 , n+1
2

in the null
vectors un+1

k ,vn+1
k ,wn+1

k ,zn+1
k , where k < n− 1. Substituting the values as in

Case 1, we find that for a nonzero in un+1
k , we would need

n+ 1
2

≤ k − n− 1
2

+ 1,

n ≤ k + 1,

n− 1 ≤ k.

56

For vn+1
k , we would need

n− 1
2

≤ n+ 1
2

+ k − n− 1,

n ≤ k.

For wn+1
k , we would need

n− 1
2

≥ 3n+ 1
2

− k + 1,

n+ 2 ≤ k.

For zn+1
k , we would need

2n+ 2− k − n− 1
2

+ 1 ≤ n+ 1
2

,

n+ 2 ≤ k.

It is clear from these bounds that we will not have nonzeros in row pn−1
2 , n+1

2

for null vectors associated with k < n − 1. Thus, this row is appropriate to
add to our embedded matrix. Similarly, the other specified rows, (n−1

2 , n−1
2 +

2), (n+1
2 + 2, n+1

2), (n+1
2 + 2, n−1

2 + 2), can be shown to fit the necessary criteria
to extend the embedded matrix.

Thus, whether n is odd or even, we can choose a subset of rows of B̂ such
that the selected rows form an upper triangular matrix with nonzero diagonal
entries. �

Lemma 6 The dimension of the null space for a problem of size n is 4(n− 1).

Proof: An n × n problem has n2 unknown function values and (n − 2)2 con-
straints. The problem matrix, then, has dimension n2 × (n− 2)2, which gives

n2 − (n− 2)2 = n2 − (n2 − 4n+ 4) = 4n− 4 = 4(n− 1)

degrees of freedom by the matrix shape. The minimum dimension of the null
space, then, is 4(n − 1). The original problem matrix is composed of five-
point finite-difference-stencil constraints. By inspection, the matrix is upper
triangular with a nonzero diagonal. Thus the matrix has full row rank, forcing
the maximum size of the null-space basis to be 4(n− 1).

We conclude that the dimension of the null space is exactly 4(n− 1). �

Theorem 5 For even n, Z = [un
1 vn

1 wn
1 zn

1 · · · un
n−1 vn

n−1 wn
n−1 zn

n−1] is a
null basis for our problem.

Proof: Z = [B un
n−1 vn

n−1 wn
n−1 zn

n−1], where B is as defined in the state-
ment of Lemma 2. By Lemma 2, B has an embedded upper triangular matrix,
and thus we have an embedded matrix for the first 4(n − 2) vectors of Z. We

57

consider the right-most four vectors of Z, and show, using an argument similar
to that in Lemma 2, that Z also has an embedded upper triangular matrix.

In order to prove that Z has an embedded upper triangular matrix, then,
we must show that each of the last four columns has an associated row in which
the column has a nonzero value and all previous columns have a zero value. It
can be shown that the following rows satisfy those criteria: f(n

2 ,
n
2), f(n

2 ,
n
2 +

1), f(n
2 + 1, n

2), and f(n
2 + 1, n

2 + 1).
As in Lemma 2, we will prove that the first row above satisfies the necessary

criteria. We omit the proofs for the other rows, as the proofs are all very similar.
We consider the row pn

2 , n
2
. un

n−1(
n
2 ,

n
2) = ±T (n − 2, 1) = ±1 6= 0; thus, the

nonzero criterion is met. Now we must show that no previous vector is nonzero
in this row. We will do this by using formulas (6.3)-(6.6) and their variable
limits to consider the value of k necessary to have a nonzero value in row pn

2 , n
2

for the null vectors un+1
k , vn+1

k , wn+1
k , zn+1

k . Substituting i = n
2 and j = n

2 , we
find that for a nonzero in un

k , we would need

n

2
≤ k − n

2
+ 1,

n− 1 ≤ k.

For a nonzero in vn
k we would need

n

2
≤ n

2
+ k − n,

n ≤ k.

For wn
k we would need

n

2
≥ 3n

2
− k,

n ≤ k.

For zn
k we would need

2n− k − n

2
+ 1 ≤ n

2
,

n+ 1 ≤ k.

For vectors to the left of un
n−1, k < n − 1. Based on the limits above, then,

no previous vector has a nonzero in row pn
2 , n

2
, and it fits into our embedded

matrix.
The proof follows in a similar manner for the other specified rows.
Thus, Z has an embedded upper triangular matrix, and therefore it has full

column rank. The number of columns (and thus the rank) is 4(n − 1). We
know from Theorem 1 that all of the vectors in the matrix are null vectors. By
Lemma 3, the null-space basis is size 4(n−1). We have a matrix with the correct
number of linearly independent null vectors. Thus we have a basis. �

58

Theorem 6 For odd n, Z = [B un
n−1 vn

n−1 wn
n−1 [1, ..., 1]T] is a null basis for

our problem.

Proof: By Lemma 2, B has an embedded upper triangular matrix. Therefore
it has full column rank. We consider the right-most four vectors of Z and show,
using an argument similar to that of Lemma 2 and Theorem 3, that the last four
vectors are independent of the vectors of B and that they are also independent
of each other.

Let S be the set of rows f(n−1
2 , n+1

2), f(n+1
2 , n+3

2), f(n+1
2 , n−1

2), f(n+1
2 , n+1

2).
First, we will show, using row pn−1

2 , n+1
2

, that un
n−1 is independent of the columns

of B.
un

n−1(
n−1

2 , n+1
2) = ±T (n− 1, 1) = ±1 6= 0.

Thus, un
n−1 has a nonzero value in this row. If no vector of B is nonzero in this

row, we have shown linear independence for this case. Similarly to Lemma 2
and Theorem 2, we find that for various vectors to have nonzero values,

n− 1 ≤ k

for un
k and vn

k , and
n+ 1 ≤ k

for wn
k and zn

k . All the null vectors of B are formed with k ≤ n − 2, so they
are all zero in this row and thus linearly independent of un

n−1.
Now we consider the column vn

n−1 and row pn+1
2 , n+3

2
.

vn
n−1(

n+1
2 , n+3

2) = ±T (n− 1, 1) = ±1 6= 0.

As above, we will show that no vector of B is nonzero in this row. Following
the same procedure as previously, we find that for a nonzero value,

n+ 1 ≤ k

for un
k and wn

k , and
n− 1 ≤ k

for vn
k and zn

k . Again, we have no nonzeros in this row where k < n − 1, and
the vectors of B are linearly independent of vn

n−1.
Similarly, for column wn

n−1 and row pn+1
2 , n−1

2
,

wn
n−1(

n+1
2 , n−1

2) = ±T (n− 1, 1) = ±1 6= 0,

and for a nonzero value in this row

n− 1 ≤ k

59

for un
k and wn

k , and
n+ 1 ≤ k

for vn
k and zn

k . We have no nonzeros in this row where k < n− 1, so the vectors
of B are linearly independent of wn

n−1.
Finally, for the vector of 1’s and row pn+1

2 , n+1
2

, [1 · · · 1]T has value 1 in
position (n+1

2 , n+1
2), which is nonzero, and for a nonzero value elsewhere in this

row,
n ≤ k

for all of un
k , vn

k , wn
k , and zn

k . Since k < n− 1 for vectors of B, the vectors of
B are linearly independent of [1 · · · 1]T .

We have shown that each of the four right-most vectors of Z is independent
of the vectors in B. Now we must show that these four vectors are independent
of each other. Consider the submatrix formed by the specified rows and these
four columns: 

1 −1 0 1
0 1 0 1
−1 0 1 1

0 0 0 1

 .
This matrix is the same for all odd values of n up to a factor of −1 applied to
each of the first three columns. That factor does not affect linear dependencies.
The submatrix does not have an embedded upper triangular matrix, but using
Gaussian elimination, we obtain an LU factorization with a U factor of

−1 0 0 1
0 −1 0 1
0 0 1 3
0 0 0 1

 ,
which demonstrates the linear independence of these four vectors.

Thus, we have a set of 4(n − 1) linearly independent null vectors ([1 · · · 1]T

is a null vector by Lemma 1), and therefore we have a basis for our null space.
�

6.2.2 Finite Difference 2-D Curl

Next, we consider the curl operator in two dimensions.
For a function y : R2 → R2,

y(t1, t2) =
[
y1(t1, t2)
y2(t1, t2)

]
,

we define the curl as
curly =

∂y2
∂t1
− ∂y1
∂t2

.

60

We wish to solve the curl problem

curly = b,

where b : R2 → R is known, using the null-space method. A null function for
the curl operator has two scalar component functions, each of which will be
represented in discretized form in seeking an approximate solution.

Given a finite-difference discretization of the curl operator on the unit square
in two dimensions, with n nodes in each dimension, the curl operator matrix is
of dimension n2 × 2n2. This allows for two grids: one for y1(t1, t2) and one for
y2(t1, t2). Given no boundary conditions, we cannot evaluate or approximate the
finite-difference stencils that extend beyond the boundary of our domain. When
we omit those stencils from our matrix, the resulting matrix A has dimension
(n − 1)2 × 2n2. Since A is underdetermined in shape, we know that its null
space must be of dimension at least n2 + 2n− 1.

Based on the structure of A, we will show how to form a null basis of A

explicitly, beginning with a formula for null vectors and following with a proof
that we indeed have a null basis. For purposes of the following formulas for null
vectors, it is useful to think of null vectors in terms of their numeric values on
the finite difference grid. Since the input is a 2-D vector function, we consider
the values on two finite-difference grids. We refer to the null vector grids as null
grids, and we present the explicit formulas for null vectors in terms of values on
such grids. Null vectors will be denoted as

um,k =
[

vm,k

wm,k

]
,

and each of v and w will be described as a grid. The m, k subscripts are used to
specify particular null vectors. The vm,k and wm,k null grids are described in
terms of values on the finite-difference grid so they will additionally be indexed
by rows and columns (e.g., vm,k(i, j)) where 1 ≤ i ≤ n indicates the row and
1 ≤ j ≤ n indicates the column of the grid point on the unit square, (0, 1)×(0, 1),
and its boundary. Specifically, vm,k(i, j) corresponds to the value of vm,k at the
point ((i− 1)h, 1− (j − 1)h), where h = 1/(n− 1). The (1, 1) grid point (e.g.,
vm,k(1, 1)) corresponds to the top, left entry of the grid. Where possible, we
will reserve the use of m and k for null vector subscripts and the use of i and j
for grid positions.

There are four types of null vectors. For reasons that will become clear later,
we label them out of order here, beginning with type 4 null grids. Type 4 null
grids are labeled with 1 ≤ k ≤ n and 2 ≤ m ≤ n and are defined as

vm,k(i, k) = 1, 1 ≤ i ≤ m− 1,

wm,k(m, j) = −1, 1 ≤ j ≤ k.

61

(This is a total of n · (n− 1) = n2−n null vectors.) Each of these null grids has
a vertical component in v of 1’s and a horizontal component in w of −1’s.

While the mathematical use of adding these two components together is
nonexistent, we do see a nice pattern in these null vectors when we add v and
w together. The nonzero components of the sum are L-shaped, i.e., they mark
corners in the grid. For example, here are the components for u3,3 with n = 5:

v3,3 =


0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , w3,3 =


0 0 0 0 0
0 0 0 0 0
−1 −1 −1 0 0

0 0 0 0 0
0 0 0 0 0

 .

Combining the two we see the L pattern:

v3,3 + w3,3 =


0 0 1 0 0
0 0 1 0 0
−1 −1 −1 0 0

0 0 0 0 0
0 0 0 0 0

 .

Again, with u2,4 for n = 5, first the complete null vector:

v2,4 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , w2,4 =


0 0 0 0 0
−1 −1 −1 −1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

and then the sum of the two components, displaying the pattern noted above:

v2,4 + w2,4 =


0 0 0 1 0
−1 −1 −1 −1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Next, for type 2 null grids, m = n+ 1 and 1 ≤ k ≤ n− 1 (total of n− 1 null
vectors):

vn+1,k(i, k) = 1, 1 ≤ i ≤ n.

Each of these null grids has a column of ones in the v component and is zero

62

everywhere in the w component. For example, u6,2 for n = 5:

v6,2 =


0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

 , w6,2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Now, for type 3, m = 1 and 1 ≤ k ≤ n (for n additional null vectors):

w1,k(1, k) = 1.

A null grid of this type has zeros everywhere in the v component and exactly
one value of 1 in the w component along the top row of the grid. Here, as an
example, is u1,3 (with n = 5):

v1,3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , w1,3 =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

And for type 1 null grids, k = n + 1 and 1 ≤ m ≤ n (for n additional null
vectors):

vm,n+1(m,n) = 1.

These null grids have a zero w component and exactly one value of 1 in the
right column of the v component. An example of this is u5,6 (for n = 5):

v5,6 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , w5,6 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Next we will demonstrate that all of these claimed null vectors are actual
null vectors. We denote the finite-difference stencils our curl operator creates
on our problem grid as gm,k, where

gm,k =
[

cm,k

dm,k

]
.

We have (n−1)2 = n2−2n+1 stencils interior to our domain. They are defined
for 2 ≤ m ≤ n and 1 ≤ k ≤ n− 1, with

cm,k(m− 1, k) = −4,

cm,k(m, k) = 4,

63

dm,k(m, k) = −4,

dm,k(m, k + 1) = 4.

Lemma 7 All of the vectors described above are null vectors.

Proof: We must show that each null vector gives a weighted sum of zero
for each finite-difference stencil. We will consider types of null vectors in the
opposite order in which they were presented above, beginning with type 1. Each
of these null vectors has exactly one nonzero value, which occurs at vm,n+1(m,n)
for any value of m. This will give a nonzero value for the weighted sum if and
only if there is a nonzero value in cm,k(m,n) for any finite-difference stencil.
But it is clear from the definition of the finite-difference stencils above (since
k ≤ n − 1) that the right-most nonzero values in the grid cm,k occur in the
(n − 1)st column. Thus, all of the vectors of type 1 are confirmed as null
vectors.

Similarly, the vectors of type 3 will produce a nonzero weighted sum if and
only if there is a nonzero value in dm,k(1, k) for any finite-difference stencil. The
valid stencils, however, are defined for m ≥ 2, so all the vectors of type 3 are
confirmed as null vectors.

The null vectors of type 2 have a zero w component, so as for type 3 above,
we concentrate on the c part of the stencils and how they sum with the v

component of our vectors. Each vector v here has one grid column filled with
1’s, and 0’s elsewhere. Without loss of generality, we select a specific null vector
of this type. That is, we select un+1,p for some p between 1 and n − 1. The
finite-difference stencils with nonzeros overlapping the nonzeros in our vector
are those with k = p. All others have zero components in the pth grid column
and will by construction have a weighted sum of zero. For stencils gm,p we have
cm,p(m − 1, p) = −4 and cm,p(m, p) = 4. The weighted sum of our null vector
with these stencils will be

vn+1,p(m− 1, p) · cm,p(m− 1, p) + vn+1,p(m, p) · cm,p(m, p)

= 1 · (−4) + 1 · 4 = −4 + 4 = 0.

This follows for all values of m from 2 to n (which is where the finite-difference
stencils are defined), and for each p from 1 to n− 1. Thus, the vectors of type
2 are indeed null vectors.

Last, we consider the most general type of null vectors above, type 4. With-
out loss of generality, we select a specific vector uq,p (m = q and k = p) within
the bounds defined for vectors of type 4. We will show that the vector uq,p

satisfies all the finite-difference stencil constraints. With this type of vector,
we have several stencils that overlap with the nonzeros in our vector. First, we
consider stencils gm,p with m < q. With these stencils, we have overlap in the
c and v components. In each case, we have the same situation as we had above

64

for null vectors of type 2 because by definition, all of the values of vq,p are 1 for
m < q. For any m < q, then,

vq,p(m−1, p)·cm,p(m−1, p)+vq,p(m, p)·cm,p(m, p) = 1·(−4)+1·4 = −4+4 = 0.

Next, we consider gq,k with k < p. Here we have overlap in the d and w

components. In each case here we find (for any k, p)

wq,p(q, k)·dq,k(q, k)+wq,p(q, k+1)·dq,k(q, k+1) = −1·(−4)+(−1)·4 = 4−4 = 0,

because by definition, all of the values of wq,k are −1 for k ≤ p.
The last finite-difference stencil that overlaps with our null vector is gq,p.

This overlaps with components in both grids. The weighted sum here is

vq,p(q − 1, p) · cq,p(q − 1, p) + vq,p(q, p) · cq,p(q, p) +

wq,p(q, k) · dq,p(q, k) + wq,p(q, k + 1) · dq,p(q, k + 1) =

1 · (−4) + 0 · 4 + (−1) · (−4) + 0 · 4 =

−4 + 4 = 0.

Thus, uq,p has a weighted sum of zero when considered with all finite-difference
stencils. This argument holds for any q, p within designated bounds, and in all
cases um,k as a type 4 vector is a valid null vector. �

Now that we have proved that all of the vectors defined above are null
vectors, we will show that they are linearly independent. That, together with a
proof that the rows of A are independent will give us the final result we desire
of showing that these vectors provide a null basis for the curl operator defined
above.

First, we define some useful submatrices. Let B1 be the matrix of null
vectors of type 1, that is,

B1 = [u1,n+1 u2,n+1 · · · un,n+1].

Let B2 be the matrix of null vectors of type 2, that is,

B2 = [un+1,1 un+1,2 · · · un+1,n+1].

Let B3 be the matrix of null vectors of type 3, that is,

B3 = [u1,1 u1,2 · · · u1,n].

Let B4 be the matrix of null vectors of type 4, that is,

B4 = [u2,1 u2,2 · · · u2,nu3,1 u3,2 · · · u3,n · · ·un,n].

65

Lemma 8 For any n, B = [B1 B2 B3 B4] contains an embedded upper tri-
angular matrix.

Proof: The matrix B is of dimension 2n2×n2+2n−1. To show the existence
of an embedded upper triangular matrix, we will show that each column of the
matrix has a nonzero value in a matrix row that is zero in each previous matrix
column. The rows correspond to grid positions in our double grid; we will refer
to the matrix rows in terms of those grid positions, using v(i, j) and w(i, j) as
above.

First, we consider B1. By the definition of these null vectors, we know that
the matrix has one nonzero in each column. The nonzeros occur in the matrix
rows corresponding to grid positions v(1, n) to v(n, n). By the fact that each
column has only one nonzero, each matrix row with a nonzero value is zero in
that row in all other columns.

Next, we consider the combination of B1 and B2. We know from above that
only the matrix rows v(m,n) for 1 ≤ m ≤ n have nonzero values in B1; all the
others rows of B1 are entirely zero. All of the rows selected from B1 as part of
the embedded matrix are from the right-most grid column, column n, of the grid
v. The rows we select from B2 to add to our embedded matrix argument are
those corresponding to grid positions v(1, k) for 1 ≤ k ≤ n−1. Since k ≤ n−1,
these do not conflict with the rows we already selected. Each null vector in B2

has nonzero values in an entire grid column of the null grid v. The positions we
select for the embedded matrix rows each come from a different grid column.
By definition of the null vectors in B2, they do not overlap with each other;
each has zeros everywhere in the grid v except the one in which it has 1’s. Thus,
the selected matrix rows (v(1, k)) have nonzeros in exactly one column of B2

(the matrix column corresponding to un+1,k) and zeros in every other column
of B1 and B2. It follows that we have an embedded upper triangular matrix in
the combined matrix [B1 B2].

Now we append the third matrix to the previous two and consider the matrix
[B1 B2 B3]. The matrix B3 has nonzero values along the top grid row of the
the w grid. Similarly to the null vectors that compose B1, these null vectors
have exactly one nonzero value. The matrix rows previously selected from B1

and B2 and those corresponding to grid positions w(1, k) for 1 ≤ k ≤ n give us
an embedded matrix here. Null vectors of B1 and B2 have nonzeros only in the
v grid. These additional matrix rows are zero in B1 and B2 and everywhere in
B3 except one matrix column each.

Finally, we put our entire matrix together, and consider the matrix B as a
whole. The order of columns within the first three matrices does not matter,
but the order of columns within B4 is important to our argument. We order the
matrix columns so that they correspond to null vectors um,k, beginning with
u2,1 and incrementing first by grid columns (k values), then by grid rows (m

66

values). The order will be as B4 is defined above:

u2,1 u2,2 · · · u2,n u3,1 u3,2 · · · u3,n u4,1 · · ·un,n.

Taken in order, each of these null vectors has a nonzero value in the matrix row
corresponding to grid position w(m, k). All previously considered null vectors
are zero in that row/grid position. Without loss of generality, consider the
matrix column of B4 corresponding to the null vector uq,p with 2 ≤ q ≤ n

and 1 ≤ p ≤ n. By definition, this null vector has nonzero values in grid
positions v(1, p),v(2, p) · · · ,v(q − 1, p) and w(q, 1),w(q, 2), · · · ,w(q, p). Only
null vectors with m ≤ q or k ≤ p are to the left of this in B4. These null vectors
cannot have a nonzero value in wq,p by definition. All the vectors in B1 and
B2 are zero everywhere on the w grid, and the B3 vectors have nonzeros only
where m = 1, which does not conflict here because q > 1. Thus, the matrix
column of B4 corresponding to null vector uq,p has the first nonzero value in
the row corresponding to the grid position w(q, p). The w(q, p) matrix rows,
then, complete the set of rows necessary to describe the embedded matrix in
our matrix B. �

Lemma 9 The rows of A are linearly independent.

Proof: The rows of A are formed by finite difference stencils described earlier in
this paper. By inspection, while the matrix is rectangular, its form is upper tri-
angular with nonzero diagonal entries. Thus, the rows are linearly independent.
�

Lemma 10 The null space of A is of dimension n2 + 2n− 1

Proof: Since the rows of A are linearly independent by Lemma 9, we know the
dimension of the null space is based solely on the underdetermined shape of
A. It follows that the dimension of the null space is the difference between the
number of columns of A, 2n2, and the number of rows of A, (n − 1)2. Thus,
the dimension of the null space is

2n2 − (n− 1)2 = 2n2 − (n2 − 2n+ 1)

= 2n2 − n2 + 2n− 1

= n2 + 2n− 1.

�

Theorem 7 B is a null basis for A

Proof: From Lemma 7, we know the columns of B are null vectors, and by
Lemma 8, we know that B has an embedded upper triangular matrix, which
proves that the columns are linearly independent. Counting the columns of B,

67

we have n from B1, n−1 from B2, n from B3, and (n−1)·n from B4. Summing
these, we have a total of

n+ n− 1 + n+ n(n− 1) = n2 − n+ 3n− 1 = n2 + 2n− 1

independent null vectors. Lemma 10 states that the null space is of dimension
n2 +2n−1, and B provides us with that many independent null vectors. Thus,
B is a basis for the null space of A. �

6.2.3 Finite Difference 3-D Curl

Now we advance to three dimensional domains, again considering the curl op-
erator. For a function y : R3 → R3,

y(t1, t2, t3) =

 y1(t1, t2, t3)y2(t1, t2, t3)
y3(t1, t2, t3)

 ,
we define the curl as

curly =

 ∂y3/∂t2 − ∂y2/∂t3∂y1/∂t3 − ∂y3/∂t1
∂y2/∂t1 − ∂y1/∂t2

 .
We wish to solve the curl problem

curly = α,

where α : R3 → R3 is known, using the null-space method. A null function for
the curl operator has three scalar component functions, each of which will be
represented in discretized form in seeking an approximate solution.

Given a finite-difference discretization of the curl operator on the unit cube
in three dimensions, with n nodes in each dimension, the curl operator matrix
is of dimension 3n3 × 3n3. This allows for three grids: one for y1(t1, t2, t3), one
for y2(t1, t2, t3), and one for y3(t1, t2, t3). Given no boundary conditions, we
cannot evaluate or approximate the finite-difference stencils that extend beyond
the boundary of our domain. When we omit those stencils from the original
matrix, the resulting matrix has dimension 3(n − 1)3 × 3n3. Let the matrix
A be the discrete form of the curl operator without boundary specifications as
just described. Since A is underdetermined in shape, we know that its null
space must be of dimension at least 9n2− 9n+3. In practice, the matrix is also
underdetermined numerically, giving a null space of dimension n3+3n2+3n−3.

Based on the structure of A, we will show how to form a null basis of A

explicitly, beginning with a formula for null vectors and following with a proof
that we indeed have a null basis. For purposes of the following formulas for null
vectors, it is useful to think of null vectors in terms of their numeric values on

68

the finite difference grid. Since the input is a 3-D vector function, we consider
the values on three finite-difference grids. We refer to the null vector grids as
null grids, and we present the explicit formulas for null vectors in terms of values
on such grids. Null vectors will be denoted as

um,p,q =

 vm,p,q

wm,p,q

zm,p,q

 ,
and each of v, w, z will be described as a grid. The m, p, q subscripts are used
to specify particular null vectors. The vm,p,q, wm,p,q, and zm,p,q null grids are
described in terms of values on the finite-difference grid so they will additionally
be indexed by rows and columns and layers (e.g., vm,p,q(i, j, k)) where 1 ≤ i ≤ n
indicates the row and 1 ≤ j ≤ n indicates the column and 1 ≤ k ≤ n indicates
the layer of the grid point on the unit cube, (0, 1) × (0, 1) × (0, 1), and its
boundary. Specifically, vm,p,q(i, j, k) corresponds to the value of vm,p,q at the
point ((i − 1)h, (j − 1)h, (k − 1)h), where h = 1/(n − 1). The (1, 1, 1) grid
point (e.g., vm,p,q(1, 1, 1)) corresponds to the lower, left, front entry of the grid.
Where possible, we will reserve the use of m, p, and q for null vector subscripts
and i, j, and k for grid positions.

There are two types of null vectors, which we refer to as single-point null
vectors and six-point null vectors. The single-point null vectors have only one
nonzero value, and correspond to the derivative not evaluated for each of the
three functions, as we will see later. The single-point null vectors with a nonzero
value in the v grid are defined for 1 ≤ p ≤ n and 1 ≤ q ≤ n as

vn+1,p,q(n, p, q) = 1

and for 1 ≤ m ≤ n− 1 as

vm,n+1,n+1(m,n, n) = 1.

Similarly, the single-point null vectors in w are defined for 1 ≤ m ≤ n and
1 ≤ q ≤ n as

wm,n+1,q(m,n, q) = 1

and for 1 ≤ p ≤ n− 1 as

wn+1,p,n+1(n, p, n) = 1.

Finally, the single-point null vectors in z are defined for 1 ≤ m ≤ n and 1 ≤
p ≤ n as

zm,p,n+1(m, p, n) = 1

69

and for 1 ≤ q ≤ n− 1 as

zn+1,n+1,q(n, n, q) = 1.

The six-point null vectors have a maximum of six nonzero values. They are
defined for 1 ≤ m ≤ n, 1 ≤ p ≤ n, and 1 ≤ q ≤ n as

vm,p,q(m, p, q) = 1

vm,p,q(m− 1, p, q) = −1, m > 1

wm,p,q(m, p, q) = 1

wm,p,q(m, p− 1, q) = −1, p > 1

zm,p,q(m, p, q) = 1

zm,p,q(m, p, q − 1) = −1, q > 1

Next we will demonstrate that these claimed null vectors are actual null
vectors. We denote the finite-difference stencils that the curl operator creates
on our problem grid as gm,p,q, where

gm,p,q =

 cm,p,q

dm,p,q

fm,p,q

 .
We have 3(n − 1)3 = 3n3 − 9n2 + 9n − 3 stencils interior to our domain, with
(n− 1)3 of each of three types of stencils. The stencils are defined for 1 ≤ m ≤
n− 1, 1 ≤ p ≤ n− 1, and 1 ≤ q ≤ n− 1.

The first type of stencils (g1) have values

dm,p,q(m, p, q) = h,

dm,p,q(m, p, q + 1) = −h,

fm,p,q(m, p, q) = −h,

fm,p,q(m, p+ 1, q) = h.

All of the finite-difference stencils have a factor of h. We are looking for zero
sums of linear combinations with these stencils; the h factor will not have an
effect on the sum, so for clarity we omit the h in further discussion. The g1

stencils, then, have values

dm,p,q(m, p, q) = 1,

dm,p,q(m, p, q + 1) = −1,

fm,p,q(m, p, q) = −1,

fm,p,q(m, p+ 1, q) = 1,

70

1

-1

-1

1

1

-1

-1

-1

1

1

1

-1

g1 stencil

g2 stencil

g3 stencil

Figure 6.2: Finite difference stencils for 3-D curl

the second type of stencils (g2) have values

cm,p,q(m, p, q) = −1,

cm,p,q(m, p, q + 1) = 1,

fm,p,q(m, p, q) = 1,

fm,p,q(m+ 1, p, q) = −1,

and the third type of stencils (g3) have values

cm,p,q(m, p, q) = 1,

cm,p,q(m, p+ 1, q) = −1,

dm,p,q(m, p, q) = −1,

dm,p,q(m+ 1, p, q) = 1.

Figure 6.2 depicts these stencils graphically, where the point (m, p, q) is at
the intersection of axes, the t1 direction is along the horizontal axis, the t2

direction is along the angled axis that points into the page, and the t3 direction
is along the vertical axis. The graph portions are from c, d, and f respectively
from left to right, and the length of each axis represents the distance of h.

We denote the set of grid points corresponding to the (i, j, k), (i + 1, j, k),
(i, j + 1, k), and (i, j, k + 1) points in all of the c, d, and f functions (total
of 12 grid points) as a mini grid at (i, j, k). Mini grids are well-defined for
1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, and 1 ≤ k ≤ n− 1.

Lemma 11 A vector is a null vector for the discrete curl operator described
above if and only if the following three conditions are satisfied:

71

δ

δ + γ - ω γ

ω

Figure 6.3: Graphical depiction of first condition on null space vectors

δ

δ + γ - ω γ ω

Figure 6.4: Graphical depiction of second condition on null space vectors

• On each mini grid, the vector values can be described in terms of δ, γ, and
ω such that

wm,p,q(i, j, k) = δ + γ − ω,

wm,p,q(i, j, k + 1) = δ,

zm,p,q(i, j, k) = γ,

zm,p,q(i, j + 1, k) = ω,

as shown in Figure 6.3.

• On each mini grid, the vector values can be described in terms of δ, γ, and
ω such that

vm,p,q(i, j, k) = δ + γ − ω,

vm,p,q(i, j, k + 1) = δ,

zm,p,q(i, j, k) = γ,

zm,p,q(i+ 1, j, k) = ω,

as shown in Figure 6.4.

• On each mini grid, the vector values can be described in terms of δ, γ, and
ω such that

vm,p,q(i, j, k) = δ + γ − ω,

vm,p,q(i, j + 1, k) = δ,

wm,p,q(i, j, k) = γ,

wm,p,q(i+ 1, j, k) = ω,

72

δ

δ + γ - ω γ ω

Figure 6.5: Graphical depiction of third condition on null space vectors

as shown in Figure 6.5.

Proof: A null vector must produce a sum of zero when taken as a linear
combination with the finite difference stencils of all three types. It suffices
to show that a null vector satisfying the forms above satisfies the zero sum
constraint for the three stencils on one mini grid because the finite difference
stencils are the same for every mini grid.

Assume we have a vector u = [v w z]T that satisfies the conditions above.
To show it is a null vector, we demonstrate that it satisfies each of the three
constraints given by the finite-difference stencils, beginning with the first. Since
u satisfies the first condition above, the linear combination given by the first
constraint (centered at (i, j, k)) simplifies to

d(i, j, k) · w(i, j, k) + d(i, j, k + 1) · w(i, j, k + 1)+

f(i, j, k) · z(i, j, k) + f(i, j + 1, k) · z(i, j + 1, k) =

1 · (δ + γ − ω)− 1 · δ − 1 · γ + 1 · ω =

(δ − δ) + (γ − γ) + (−ω + ω) = 0.

Thus, the g1 constraint is satisfied. Next we consider the second finite-difference
constraint and use the fact that our vector u meets the requirements of the
second condition above. Here the linear combination is

c(i, j, k) · v(i, j, k) + c(i, j, k + 1) · v(i, j, k + 1)+

f(i, j, k) · z(i, j, k) + f(i+ 1, j, k) · z(i+ 1, j, k) =

−1 · (δ + γ − ω) + 1 · δ + 1 · γ − 1 · ω =

(−δ + δ) + (−γ + γ) + (ω − ω) = 0,

again simplifying to zero as desired. Similarly, the third constraint is met be-
cause u satisfies the third condition above:

c(i, j, k) · v(i, j, k) + c(i, j + 1, k) · v(i, j + 1, k)+

d(i, j, k) · w(i, j, k) + d(i+ 1, j, k) · w(i+ 1, j, k) =

1 · (δ + γ − ω)− 1 · δ − 1 · γ + 1 · ω =

(δ − δ) + (γ − γ) + (−ω + ω) = 0.

73

Thus, u is a null vector if it satisfies the conditions above.
Now, assuming u is a null vector, we will show it must satisfy the conditions

above. Since u is a null vector, it gives a zero sum for every linear combination
with the finite difference stencils. Using the g1 stencil, we know

w(i, j, k)−w(i, j, k + 1)− z(i, j, k) + z(i, j + 1, k) = 0

for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, and 1 ≤ k ≤ n− 1. For ease of notation, let

w(i, j, k) = x1,

w(i, j, k + 1) = x2,

z(i, j, k) = x3,

z(i, j + 1, k) = x4.

Rewriting the equation, x1 − x2 − x3 + x4 = 0. We know a solution to this
equation, namely, x1 = x2 = x3 = x4 = 0, but that is not the only solution.
If we combine our variables into a vector x = [x1 x2 x3 x4]T , a bit of linear
algebra shows that a null basis for this sub-problem is

1 1 −1
1 0 0
0 1 0
0 0 1

 .
We can add any vector in the null space to our specific solution to obtain another
solution. In addition, any vector solving this problem can be written in terms
of the specific solution and a linear combination of the null basis vectors. That
is, any solution is of the form

x1

x2

x3

x4

 =


0
0
0
0

+ δ


1
1
0
0

+ γ


1
0
1
0

+ ω


−1

0
0
1

 =


δ + γ − ω

δ

γ

ω

 .
Similarly, from the g2 and g3 stencils, we find that the second and third

conditions above must hold. �

Lemma 12 The six-point vectors described above are null vectors.

Proof: Each six-point vector has nonzero values on ten mini grids. Specif-
ically, um,p,q has nonzero values on the mini grids at (m, p, q), (m − 1, p, q),
(m, p − 1, q), (m, p, q − 1), (m − 1, p − 1, q), (m − 1, p, q − 1), (m, p − 1, q − 1),
(m − 2, p, q), (m, p − 2, q), (m, p, q − 2). throughout the domain. On seven of
these mini grids the nonzero values of the six-point vector occur at grid points
with nonzero values of the finite-difference stencil on the mini grid. We now

74

show that the three conditions of Lemma 11 are met for each of these seven
mini grids by giving values for δ, γ, and ω in each case.

• Mini grid at (m, p, q)

1. γ = 1, δ = ω = 0

2. γ = 1, δ = ω = 0

3. γ = 1, δ = ω = 0

• Mini grid at (m− 1, p, q)

1. δ = γ = ω = 0

2. ω = 1, δ = γ = 0

3. ω = 1, δ = γ = 0

• Mini grid at (m, p− 1, q)

1. ω = 1, δ = γ = 0

2. δ = γ = ω = 0

3. δ = 1, γ = −1, ω = 0

• Mini grid at (m, p, q − 1)

1. δ = 1, γ = −1, ω = 0

2. δ = 1, γ = −1, ω = 0

3. δ = γ = ω = 0

• Mini grid at (m− 1, p− 1, q)

1. δ = γ = ω = 0

2. δ = γ = ω = 0

3. δ = ω = −1, γ = 0

• Mini grid at (m− 1, p, q − 1)

1. δ = γ = ω = 0

2. δ = ω = −1, γ = 0

3. δ = γ = ω = 0

• Mini grid at (m, p− 1, q − 1)

1. δ = ω = −1, γ = 0

2. δ = γ = ω = 0

3. δ = γ = ω = 0

On every other mini grid, the conditions are met with γ = δ = ω = 0. Thus,
by Lemma 11, the six-point vectors are null vectors. �

75

Lemma 13 The single-point vectors described above are null vectors.

Proof: In every case, by construction, the single-point null vectors have one
nonzero value at a point on the complete grid where all finite-difference stencils
are zero. Thus, every finite-difference constraint will yield a zero sum value. �

Let matrix B of dimension 3n3 × (n3 + 3n2 + 3n− 5) consist of columns of
all of the one-point null vectors and all of the six-point null vectors except for
un,n,n−1 and un,n,n.

Lemma 14 Matrix B has linearly independent columns.

Proof: One way to prove linear independence of columns is to demonstrate
that A has an embedded upper triangular matrix. In our context, each grid
point corresponds to a row of the matrix, so it suffices to give an ordering of
null vectors such that the (i + 1)st vector has a nonzero value at a grid point
where vectors 1, 2, . . . , i are zero. As we add vectors, grid points that have a
nonzero in any previous vectors will be called “busy,” while grid points that
have a value of zero for all previous vectors will be called “free.”

The single-point vectors are ordered first. Each has a unique position of one
nonzero value, so we know they are linearly independent. Thus the nodes on
the right face and the top, back edge of c, the nodes on the back face and the
top, right edge of d, and the nodes on the top face and the back, right edge of
f become busy.

Next, we add the six-point vectors um,p,q for 1 ≤ m ≤ n− 1, 1 ≤ p ≤ n− 1,
and 1 ≤ q ≤ n− 1, starting with u1,1,1 and incrementing m, p, and q in order.
That is, first we add u1,1,1, which has a nonzero at the previously free grid
point d(1, 1, 1). Next, we add u2,1,1, which has a nonzero at the previously
free grid point d(2, 1, 1), and so on, incrementing the m values up to n − 1,
then incrementing the p value and repeating, i.e., the order is u1,1,1, u2,1,1, . . .,
un−1,1,1, u1,2,1, . . ., un−1,2,1, u1,3,1, This ordering is important because
it leaves the d(m, p, q) grid position free until the um,p,q six-point vector is
encountered as we proceed from left to right through the columns of B. After
adding (n− 1)3 six-point vectors, the grid points with 1 ≤ m ≤ n− 1, 1 ≤ p ≤
n− 1, and 1 ≤ q ≤ n− 1, are busy in all three grids, c, d, and f .

We have yet to order the six-point vectors with center nodes on the right,
back, and top faces of our domain. We begin ordering that set by adding the
um,n,q six-point vectors with 1 ≤ m ≤ n−1, and 1 ≤ q ≤ n−1, which cover the
free nodes f(m,n, q), and the um,n,n six-point vectors for 1 ≤ m ≤ n−1, which
cover free nodes d(m,n − 1, n). Similarly, we add the um,p,n six-point vectors
for 1 ≤ m ≤ n− 1 and 1 ≤ p ≤ n− 1, busying the free nodes c(m, p, n). Then
we add the un,p,n vectors with 1 ≤ p ≤ n − 1. These claim the f(n, p, n − 1)
nodes. Next in order are the un,p,q six-point vectors with 1 ≤ p ≤ n − 1 and
1 ≤ q ≤ n− 1. These cover the free nodes d(n, p, q).

76

At this point, all the nodes in every grid are busy. We have shown that an
embedded upper triangular matrix exists amongst these first n3 + 3n2 + 2n− 3
column vectors, and thus have proved that they are linearly independent. For
the last set of null vectors, the un,n,q six-point vectors for 1 ≤ q ≤ n − 2, we
use a proof by contradiction to show they are independent.

Let the null vectors considered so far be columns of the matrix B̂. We begin
with the null vector x = un,n,1. Suppose x is in the span of B̂, i.e., adding x

to the set of null vectors results in a linearly dependent set. Then,

B̂y = x

for some vector y.
By inspection, at most two null vectors have a nonzero value at each grid

point, allowing us to back-substitute easily. First, we note that the vector
values of y corresponding to the null vectors un+1,n+1,1, un,n+1,1, un+1,n,1

must be equal to 1. (These are one-point null vectors.) Similarly, the elements
of y corresponding to the null vectors un−1,n,1 and un,n−1,1 (six-point null
vectors) must have the value −1. And so the nonzero values of x are attainable.
In addition, however, every additional value must be zero. Continuing the
back-substitution for the grid values of c, we first find that the values of y

corresponding to the null vectors um,n,1 and um,n−1,1 (1 ≤ m ≤ n− 1) must be
−1. Then, looking at the nodes of d, the values of y corresponding to the null
vectors un−1,p,1 must be −1. Following this pattern through the f grid and
back again, we find we cannot zero out the values at grid points c(n − 1, n, k)
and d(n, n − 1, k) for 2 ≤ k ≤ n − 1. Thus, we have a contradiction and x is
independent of the previous null vectors.

This process can be repeated sequentially for null vectors un,n,q for 2 ≤ q ≤
n−2. At each step, the nonzero values of the linear combination are c(n−1, n, k)
and d(n, n− 1, k) for q + 1 ≤ k ≤ n− 1. Thus, the complete set of columns of
B is linearly independent. �

Lemma 15 At least 2n3 − 2n2 − 3n− 1 rows of A are linearly independent.

Proof: One way to prove linear independence of rows is to demonstrate
that A has an embedded upper triangular matrix with the correct number of
columns. In our context, each grid point corresponds to a column of the matrix,
so it suffices to give an ordering of finite-difference stencils (corresponding to
rows in A) such that the (i + 1)st stencil has a nonzero value at a grid point
where stencils 1, 2, . . . , i are zero. We next explain such an ordering that shows
several rows (2(n− 1)3 + (n− 1)2 + (n− 1) · (n− 2)) to be independent. Later
we show the last (n− 2)2 rows are independent using a proof by contradiction.
For reference, the finite difference stencils are displayed in Figure 6.2.

To begin, we order all the g1 stencils. Any consistent ordering in each of the
three variables will show an embedded matrix structure. We will order them in

77

increasing order according to the first variable, then the second variable, and
then the third variable. That is, the ordering is g1

1,1,1, g1
2,1,1, . . . , g1

n−1,1,1, g1
1,2,1,

. . . g1
n−1,2,1, g1

1,3,1, . . . , g1
1,1,2, With this ordering, each stencil g1

i,j,k covers
the grid position d(i, j, k + 1) for the first time.

Next are all the g2 stencils, which we order the same way as the g1 sten-
cils. Each g2

i,j,k stencil covers the grid position c(i, j, k + 1) for the first time.
Together, the g1 and g2 stencils provide us with 2(n− 1)3 linearly independent
rows.

Now we add the g3
i,n−1,k stencils for 1 ≤ i ≤ n− 1 and 1 ≤ k ≤ n− 1. These

are added in any order and each covers the previously uncovered c(i, n, k) grid
position. After those, we add the g3

n−1,j,k stencils for 1 ≤ j ≤ n − 2 and 1 ≤
k ≤ n− 1. These are also added in any order and each covers the d(n, j, k) grid
position for the first time. We now have every grid point covered that can be by
the finite difference stencils, and we have shown 2(n−1)3+(n−1)2+(n−1)·(n−2)
vectors to be linearly independent.

The g3
1,j,k stencils (for 1 ≤ j ≤ n − 2 and 1 ≤ k ≤ n − 2) can also be

added to the set without creating a dependency between rows, as we now show
by contradiction. We add these vectors in order of descending indices, first
in k, then in j. The order is g3

1,n−2,n−2, g3
1,n−2,n−3, g3

1,n−2,n−4, . . ., g3
1,n−2,1,

g3
1,n−3,n−1,

Suppose the stencil g3
1,p,q (1 ≤ p, q ≤ n − 2) is dependent on other rows

in the set, that is, the rows created by the g1
i,j,k (1 ≤ i, j, k ≤ n − 1), g2

i,j,k

(1 ≤ i, j, k ≤ n − 1), g3
i,n−1,k (1 ≤ i, k ≤ n − 1), g3

n−1,j,k (1 ≤ j ≤ n − 2,
1 ≤ k ≤ n − 1), and g3

1,j,k (j > p, 1 ≤ k ≤ n − 2 and j = p, k > q) stencils.
Then, for some values of γe,

g3
1,p,q =

(n−1)3∑
e=1

γeg
1
i,j,k +

2(n−1)3∑
e=(n−1)3+1

γeg
2
i,j,k +

2(n−1)3+(n−1)2∑
e=2(n−1)3+1

γeg
3
i,n−1,k

+
2(n−1)3+(n−1)2+(n−1)(n−2)∑

e=2(n−1)3+(n−1)2+1

γeg
3
n−1,j,k

+
2(n−1)3+(n−1)(2n−3)+(n−2)(n−2−p)+(n−2−q)∑

e=2(n−1)3+(n−1)(2n−3)+1

γeg
3
1,j,k.

This equality holds at each grid point. Since g3
1,p,q has a value of 1 at c(1, p, q), γe

corresponding to g2
1,p,q must also equal 1 because g2

1,p,q is the only other stencil
in our set with a nonzero at that grid point. Then, since the coefficient of g2

1,p,q

is equal to 1, the coefficient of g2
2,p,q must be 1 to give a linear combination

of 0 at the grid point c(2, p, q). Similarly, all the coefficients of g2
i,p,q must be

1 for all 1 ≤ i ≤ n − 1. But, since the coefficient of g2
n−1,p,q is 1, the linear

combination at grid point c(n, p, q) is equal to 1 while the value of g3
1,p,q is 0 at

c(n, p, q). Thus, the equality above does not hold and we have a contradiction.
It follows that g3

1,p,q is linearly independent from other rows in the set.

78

Adding this last set of g3 stencils, we have 2(n−1)3 +(n−1)2 +(n−1)(n−
2) + (n− 2)2 = 2n3 − 2n2 − 3n− 1 independent rows. �

Lemma 16 The null space of A is of dimension at most n3 + 3n2 + 3n− 5.

Proof: Matrix A has dimension 3(n− 1)3 × 3n3, so by shape the null space
has dimension at least

3n3−3(n−1)3 = 3n3−3(n3−3n2+3n−1) = 3n3−3n3+9n2−9n+3 = 9n2−9n+3.

The maximum dimension of N(A) occurs when the fewest rows of A are in-
dependent. From Lemma 15, we know that 2n3 − 2n2 − 3n − 1 rows are inde-
pendent, leaving the possibility that 3n3 − 2n3 − 2n2 − 3n − 1 = (n − 2)3 are
dependent. The maximum dimension of N(A), then, is 9n2−9n+3+(n−2)3 =
9n2 − 9n+ 3 + n3 − 6n2 + 12n− 8 = n3 + 3n2 + 3n− 5. �

Theorem 8 Matrix B is a null basis for A

Proof: By Lemma 12 and Lemma 13 all the vectors in B are null vectors
of A. By Lemma 15, all of the columns are linearly independent. Counting
the number of columns, we have 3(n2 + n − 1) = 3n2 + 3n − 3 columns of
single-point null vectors and n3 − 2 columns of six-point null vectors for a total
of n3 + 3n2 + 3n − 5 columns. The maximum dimension of the null basis is
n3+3n2+3n−5 by Lemma 16. Therefore, since B is a matrix of n3+3n2+3n−5
independent null vectors of A, B is a null basis for A. �

6.2.4 Bilinear Finite Element 3-D Curl

Here we consider the same operator as the previous section, but we use a
Galerkin finite-element discretization with bilinear basis functions. For a func-
tion y : R3 → R3,

y(t1, t2, t3) =

 y1(t1, t2, t3)y2(t1, t2, t3)
y3(t1, t2, t3)

 ,
we define the curl as

curly =

 ∂y3/∂t2 − ∂y2/∂t3∂y1/∂t3 − ∂y3/∂t1
∂y2/∂t1 − ∂y1/∂t2

 .
We wish to solve the curl problem

curly = α,

where α : R3 → R3 is known, using the null-space method. A null function for
the curl operator has three scalar component functions, each of which will be
represented in discretized form in seeking an approximate solution.

79

Given a Galerkin finite-element discretization of the curl operator on the
unit cube in three dimensions, with n uniformly-spaced nodes in each dimen-
sion, the curl operator matrix is of dimension 3n3 × 3n3. This allows for three
linear combination approximations: y1(t1, t2, t3) = Φx1, y2(t1, t2, t3) = Φx2,
and y3(t1, t2, t3) = Φx3. Without boundary conditions, we cannot evaluate or
constrain the basis functions that are nonzero on the boundary of our domain.
When we omit those constraints from the original matrix, the resulting matrix
has dimension 3(n − 2)3 × 3n3. Let the matrix A be the discrete form of the
curl operator without boundary specifications as just described. Since A is un-
derdetermined in shape, we know that its null space must be of dimension at
least 6n2 − 12n+ 24. In practice, the matrix has less than full row rank, giving
a null space of dimension n3 + 6n2 + 12n− 40.

We will show how to form a null basis of A explicitly by giving formulas
for three types of null vectors and identifying which combination of those is
a linearly independent set for a uniform discretization with n nodes in each
direction. For understanding the following formulas for null vectors, it is useful
to think of null vectors in terms of their numeric values on the grid created by
discretization. The null vector gives coefficients for a 3-D vector function, and
we describe the null vector values for the three solution functions on separate
grids. We refer to the null vector grids as null grids, and we present the explicit
formulas for null vectors in terms of values on such grids. Each value on the
grid is the coefficient for the basis function that is nonzero at that particular
grid point. Null vectors will be denoted as

um,p =

 vm,p

wm,p

zm,p

 ,
and each of v, w, z will be described as a grid. The m, p subscripts are used
to specify particular null vectors. The vm,p, wm,p, and zm,p null grids are
described in terms of values on the problem grid, so they will be additionally
indexed by rows and columns and layers (e.g., vm,p(i, j, k)), where 1 ≤ i ≤ n

indicates the row, 1 ≤ j ≤ n indicates the column, and 1 ≤ k ≤ n indicates the
layer of the grid point in the unit cube, (0, 1)× (0, 1)× (0, 1) and its boundary.
Specifically, vm,p(i, j, k) corresponds to the value of vm,p at the point ((i −
1)h, (j − 1)h, (k − 1)h), where h = 1/(n − 1). The (1, 1, 1) grid point (e.g.,
vm,p(1, 1, 1)) corresponds to the lower, left, front entry of the grid.

The first type of null vector, which we denote as u1,p, has a line of nonzero
values in each null grid. The three lines originate from a common grid point,
and the values follow the sequence s1(1) = 1, s1(2) = −4, s1(3) = 14, s1(r) =
−s1(r−2)−4s1(r−1) for r ≥ 4. The first several values of the sequence are: 1,
−4, 14, −52, 194, −724, 2702, −10084. Specifically, for p = (k−1)n2+(j−1)n+i,

80

(1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n),

v1,p(r, j, k) = s1(i− r + 1), r = 1, . . . , i,

w1,p(i, r, k) = s1(j − r + 1), r = 1, . . . , j,

z1,p(i, j, r) = s1(k − r + 1), r = 1, . . . , k.

The second type of null vector uses values from a similar sequence, merely re-
moving the third starting value from s1 and restarting the recurrence. Here,
s2(1) = 1, s2(2) = −4, and s2(r) = −s2(r − 2)− 4s2(r − 1) for r ≥ 3. The first
several values of the sequence are: 1, −4, 15, −56, 209, −780, 2911, −10864.
These null vectors have nonzeros in one function at a time. They are character-
ized by a line of nonzero values extending from one side of the domain almost
to the other side. The u2,p null vectors are of the second type and have nonzero
coefficients over the domain of the first function. For p = 2(k − 1)n + 2j − 1,
(1 ≤ j ≤ n, 1 ≤ k ≤ n),

v2,p(r, j, k) = s2(n− r), r = 1, . . . , n− 1,

and for p = 2(k − 1)n+ 2j, (1 ≤ j ≤ n, 1 ≤ k ≤ n),

v2,p(r, j, k) = s2(r), r = 2, . . . , n.

Similarly, the null vectors of the second kind with nonzeros in the second func-
tion are defined to be

w3,p(i, r, k) = s2(n− r), r = 1, . . . , n− 1,

for p = 2(k − 1)n+ 2i− 1, (1 ≤ i ≤ n, 1 ≤ k ≤ n), and

w3,p(i, r, k) = s2(r), r = 2, . . . , n,

for p = 2(k − 1)n+ 2i, (1 ≤ i ≤ n, 1 ≤ k ≤ n). Not surprisingly, we also have a
set of null vectors of this variety with nonzero values in the third function.

z4,p(i, j, r) = s2(n− r), r = 1, . . . , n− 1,

for p = 2(j − 1)n+ 2i− 1, (1 ≤ i ≤ n, 1 ≤ j ≤ n), and

z4,p(i, j, r) = s2(r), r = 2, . . . , n,

for p = 2(j − 1)n+ 2i, (1 ≤ i ≤ n, 1 ≤ j ≤ n).
The last type of null vector we use to create an independent set uses a

sequence similar to that used in the second type. In fact, the sequence is built
using the values of s2. Here we use s3(1) = 1, s3(2) = −4, and s3(r) =
s2(r) + s3(r− 2). The first several values are: 1, −4, 16, −60, 225, −840, 3136,

81

−11704. Writing out the recursion, this third sequence is equivalent to the sum
of the odd terms or even terms of the s2 sequence. The Online Encyclopedia of
Integer Sequences [48] contains this sequence without the sign changes as the
expansion of a polynomial 1/((1− t2)(1− 4t+ t2)). These values are arranged
diagonally, spreading from two opposite corners on a particular layer in the grid.
The values of this layer in one case are given by an n× n grid `1, with

`1(i, j) = s3(i− j), 1 < j < n− 1, j + 1 < i < n,

`1(i, j) = s3(j − 2− i), 4 < j < n, 1 < i < j − 3.

For n = 6,

`1 =



0 0 0 1 −4 16
1 0 0 0 1 −4
−4 1 0 0 0 1
16 −4 1 0 0 0
−60 16 −4 1 0 0
225 −60 16 −4 1 0


.

In a second case, this layer is given by the n× n grid `2, with

`2(i, j) = s3(i− j − 1), 1 < j < n− 2, j + 2 < i < n

`2(i, j) = s3(j − i− 1), 3 < j < n, 1 < i < j − 2.

For n = 6,

`2 =



0 0 1 −4 16 −60
0 0 0 1 −4 16
1 0 0 0 1 −4
−4 1 0 0 0 1
16 −4 1 0 0 0
−60 16 −4 1 0 0


.

In both cases, this layer can be rotated and positioned as described below to
create additional null vectors. These layers `1 and `2 are applied one at a time
in one function at a time giving us the following null vectors,

v5,p(p, j, k) = `1(j, k),

for 1 ≤ p ≤ n, (1 ≤ j ≤ n, 1 ≤ k ≤ n),

v5,p(p− n, j, k) = `2(j, k),

for n+ 1 ≤ p ≤ 2n, (1 ≤ j ≤ n, 1 ≤ k ≤ n),

w6,p(i, p, k) = `1(i, k),

82

for 1 ≤ p ≤ n, (1 ≤ i ≤ n, 1 ≤ k ≤ n),

w6,p(i, p− n, k) = `2(i, k),

for n+ 1 ≤ p ≤ 2n, (1 ≤ i ≤ n, 1 ≤ k ≤ n),

z7,p(i, j, p) = `1(i, j),

for 1 ≤ p ≤ n, (1 ≤ i ≤ n, 1 ≤ j ≤ n), and

z7,p(i, j, p− n) = `2(i, j),

for n + 1 ≤ p ≤ 2n, (1 ≤ i ≤ n, 1 ≤ j ≤ n). Note that the subscript changes
between pairs above, indicating three separate sets of null vectors of this type. If
we add the null vectors formed by rotated layers, we also have u∗,p for 2n+1 ≤
p ≤ 4n, where ∗ = 5, 6, or 7.

At this point we have defined n3 null vectors of the first type, 6n2 null
vectors of the second type, and 12n null vectors of the third type, giving a total
of n3 + 6n2 + 12n null vectors. As explained earlier, the matrix has dimension
n3 + 6n2 + 12n− 40 in practice, so we have more null vectors than we can use.
With some careful selection, however, we can create a set of linearly independent
null vectors. Rather than explaining which vectors to use, we provide a list of
vectors to omit from the complete set already described, namely u4,∗ where
∗ = 2n2, 2n2 − 1, 2n2 − 2, 2n2 − 3, 2n2 − 2n, 2n2 − 2n − 1, 2n2 − 2n − 2,
2n2 − 2n − 3 (8 vectors), u5,∗ where ∗ = n − 1, n 2n − 1, 2n, 3n − 2 3n − 1,
3n, 4n− 2, 4n− 1, 4n (10 vectors), u6,∗ where ∗ = n− 1, n 2n− 1, 2n, 3n− 3,
3n− 2 3n− 1, 3n, 4n− 3, 4n− 2, 4n− 1, 4n (12 vectors), u7,∗ where ∗ = n− 1,
n 2n − 1, 2n, 3n − 2 3n − 1, 3n, 4n − 2, 4n − 1, 4n (10 vectors). Although
we have not done a formal proof, empirically we observed that the remaining
set of vectors is a null basis for the discrete curl operator for increasing n. The
conditioning of the basis degrades as n increases, however, and we address that
issue in Section 6.4.

6.3 Computational Results

In this chapter we have presented several options for finding a null basis, in-
cluding

1. compute an orthogonal basis using an SVD factorization of the matrix
(svd)

2. compute an orthogonal basis using a QR factorization of the transpose of
the matrix (qr)

3. compute a sparse basis using a turnback method (or some other sparse
null basis solver) (turnback)

83

4. compute a sparse basis using a turnback method, then orthogonalize the
basis (turnback qr)

5. create a basis using explicit formulas (for specific operators and domains)
(explicit)

6. create a basis using explicit formulas, then orthogonalize the basis (explicit
qr).

In this section we compare these methods in terms of four characteristics: their
sparsity, conditioning, computational complexity, and accuracy. The accuracy
of a null basis relates to the question of whether we obtain the zero matrix when
we premultiply the basis by our problem matrix. We measure accuracy using
the null residual, which we define to be the maximum magnitude of any entry in
the product of the original problem matrix and the null basis, or more simply,
the max norm of that product. The goal, then, is a small null residual, since the
smaller this value is, the closer all values in the product are to zero. Our graphs
provide data for the absolute null residual as described above, though if desired,
a relative null residual could be defined as the max norm of the product of the
two matrices divided by the norm of each. Since the null residuals we compare
to one another all use the same problem matrix and since most of the null bases
are orthogonal, comparing the relative null residuals instead of absolute null
residuals for our examples would change the numeric values on our graphs, but
it would make very little difference in the location of the plots with respect to
one another.

The choice of method for a particular application depends on the relative
importance of the four characteristics listed above. It may be worth additional
computing time for better sparsity. Or better conditioning may be worth tol-
erating more nonzero entries. For our primary application problem, the curl
problem in three dimensions, the null space component composes at least one
third of the complete problem matrix (see Appendix A.1). The way the problem
is formulated (see Section 8.2), the same operator is used with several right-hand
sides as the solution is computed through time. Therefore, we have at least two
good reasons to ensure that our null basis has good sparsity, conditioning, and
accuracy, with relatively less regard to the computational time.

First, we consider the computational complexity of these options. Through-
out these calculations, we assume QR factorizations are computed using House-
holder transformations. Let D be our problem matrix of size m×p, with m < p.
For method 1, the number of operations is on the order of pm2 +m3 for a dense
matrix [29]. Using ARPACK and computing the SVD as a sparse matrix may
reduce the number of operations, though that routine is intended to compute
only a handful of singular values and vectors. To compute a QR factorization
of DT (method 2), we need on the order of pm2 −m3/3 additions and multi-
plications for a dense matrix [29], possibly fewer for a sparse implementation.

84

method number of operations
1. SVD O(pm2 +m3)
2. QR O(pm2 −m3/3)
3. turnback O(mp2 − 1/3(m3 + p5/2 −mp3/2))
4. turnback and QR O(2p3 − p5/2 +mp3/2)
5. explicit O(p)
6. explicit and QR O(2p3 − 3p2m+m3)

Table 6.1: Number of operations to compute null basis

In the case of numeric row dependencies in the original matrix in addition to
column dependencies due to the matrix structure, we have used two QR factor-
izations to compute the null basis. The first pass identifies dependent rows, and
the second computes the QR factorization of a set of independent rows. This
scenario occurs with the 3-D curl problem. It is not clear whether sparse im-
plementations of these two methods produce sparser null bases; we used dense
implementations to obtain the results in this work.

The number of operations for the turnback method (method 3) is unclear,
as it depends on the number of nonzeros in each null vector. If the number of
nonzeros per null vector is proportional to

√
p and the number of null vectors

is p −m, we estimate the number of operations to be about mp2 − 1/3(m3 +
p5/2−mp3/2) (see Appendix A.2). For method 4, we add a QR factorization of
the p × (p −m) basis to that, giving a total of about mp2 − 1/3(m3 + p5/2 −
mp3/2) + p(p−m)2 − (p−m)3/3 = O(2p3 − p5/2 +mp3/2).

Explicit null basis formulas vary in number of operations, but in the worst
case, creating an explicit basis is O(p), where p is the larger dimension of the
matrix and corresponds to the total number of grid points. This result holds
even in cases where a sequence of numbers generates the values of the null
vector. Thus, method 5 is O(p) and method 6 is O(2p3 − 3p2m+m3), the cost
of the subsequent QR factorization.

For easy reference, the results above are summarized in Table 6.1. While
it may appear the methods 4 and 6 are the most complex because of the large
leading term, method 6 has a second term that cancels much of the first term.
Method 4 may well take the most time to compute (the complexity is based
on an approximate number of nonzeros per null vector, so we cannot be precise
here), but the gain in sparsity over the SVD or QR method makes it preferable to
them, since as mentioned earlier, sparsity is a more important factor in method
choice than computational complexity for our primary application.

Now we turn to the other characteristics of the null bases. It is difficult to
characterize these for a general matrix or problem, so we will consider several
specific examples. For each example, we provide information for each of the
methods above in terms of sparsity and accuracy. We provide information on
conditioning only for nonorthogonal bases, produced by methods 3 and 5. In a
few cases the turnback method implementation was unable to compute a basis

85

0 5 10 15 20
10

0

10
5

10
10

10
15

10
20

Null basis conditioning

n

co
nd

iti
on

 n
um

be
r

turnback
explicit

Figure 6.6: Condition numbers for finite difference 2-D Laplacian null bases

for finer discretizations. For those problems, we omit data points for methods 3
and 4 for the larger values of n.

As a first example, we consider the 2-D Laplacian operator discretized with
finite differences. Figures 6.6-6.8 display data for conditioning, sparsity, and
accuracy, respectively, as n, the number of mesh points in each dimension,
increases. For both the turnback and explicit methods, the data are based
on a scaled basis, with each null vector scaled by its maximum norm. As
shown, the condition numbers for the nonorthogonal methods increase at an
intolerable rate. A realistic simulation would likely use on the order of 50
data points per dimension, and at n = 20, both of these methods already
have condition numbers over 1012. Consequently, bases produced by both the
turnback and explicit methods must be orthogonalized or their conditioning
otherwise improved in order to be useful. As the condition numbers grow,
however, direct orthogonalization techniques incur greater difficulty in retaining
the accuracy of the bases, as the larger null residuals indicate. An alternative to
complete orthogonalization for improved conditioning in this case is discussed
in Section 6.4. The explicit method far exceeds the other methods in regard
to sparsity, accuracy, and computational complexity, and the turnback method
is a good alternative to orthogonal methods as long as the conditioning can be
controlled. Other specific problems confirm these trends.

Figures 6.9-6.11 display data for the conditioning, sparsity, and accuracy
for the 2-D curl problem, discretized with finite differences. Here, the turnback
basis is slightly sparser than our explicit basis, but its conditioning and accuracy
are somewhat worse than those for the explicit basis. The turnback method
additionally incurs more floating operations than the explicit method, leaving
the explicit method the overall winner. The null residuals for the explicit method
are all zero to machine precision, so no line shows up on the logarithmic plot.

86

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Null basis density

n

pe
rc

en
t n

on
ze

ro

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.7: Density of finite difference 2-D Laplacian null bases

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Null basis accuracy

n

nu
ll

re
si

du
al

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.8: Accuracy of finite difference 2-D Laplacian null bases

87

5 10 15 20 25 30 35
10

0

10
1

10
2

10
3

Null basis conditioning

n

co
nd

iti
on

 n
um

be
r

turnback
explicit

Figure 6.9: Condition numbers for finite difference 2-D curl null bases

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1
Null basis density

n

pe
rc

en
t n

on
ze

ro

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.10: Density of finite difference 2-D curl null bases

88

5 10 15 20 25 30 35
10

−16

10
−15

10
−14

10
−13

10
−12

Null basis accuracy

n

nu
ll

re
si

du
al

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.11: Accuracy of finite difference 2-D curl null bases

2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

Null basis conditioning

n

co
nd

iti
on

 n
um

be
r

turnback
explicit

Figure 6.12: Condition numbers for finite difference 3-D curl null bases

89

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Null basis density

n

pe
rc

en
t n

on
ze

ro
svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.13: Density of finite difference 3-D curl null bases

2 4 6 8 10 12 14
10

−16

10
−15

10
−14

10
−13

10
−12

Null basis accuracy

n

nu
ll

re
si

du
al

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.14: Accuracy of finite difference 3-D curl null bases

90

2 4 6 8 10 12 14
10

0

10
5

10
10

10
15

Null basis conditioning

n

co
nd

iti
on

 n
um

be
r

turnback
explicit

Figure 6.15: Condition numbers for finite element 3-D curl null bases

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

n

pe
rc

en
t n

on
ze

ro

Null basis density

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.16: Density of finite element 3-D curl null bases

91

2 4 6 8 10 12 14
10

−20

10
−15

10
−10

10
−5

10
0

Null basis accuracy

n

nu
ll

re
si

du
al

svd
qr
turnback
turnback qr
explicit
explicit qr

Figure 6.17: Accuracy of finite element 3-D curl null bases

Moving on to three-dimensional examples, Figures 6.12-6.14 display data for
the conditioning, sparsity, and accuracy for the 3-D curl problem, discretized
with finite differences, and Figures 6.15-6.17 display data for the same problem
discretized with square, bilinear finite elements. There are two special notes
about these results. First, the turnback method did not give a complete basis
for the finite element discretization. The limited data here are gleaned from the
null vectors provided. The condition numbers and density values may be a bit
misleading, however, as additional null vectors may not be as independent or as
sparse as those given. Second, for these problems, we used two QR factorizations
rather than just one for method 2 to deal with dependent rows in the original
matrix. Using MATLAB, this is still notably faster than computing the SVD
of the matrix for larger values of n. We purposely omit computing times for
most of these calculations due to optimizations in MATLAB and non-optimized
implementations of some of these algorithms. As one example, however, for the
finite-difference discretization of the curl in 3-D with n = 13, the computing
times using MATLAB on a Sun V880 750 MHz processor were approximately
4.6 hours, 33 minutes, and 4 seconds respectively for the SVD, QR, and explicit
bases. For these problem sizes, the SVD becomes impractical to compute. As
previously mentioned, the implementation of the turnback method available to
us was unable to compute a null basis for this problem size. Since it appears
from the density values given for small values of n that the number of nonzeros
per null vector is less than the square root of the number of matrix columns,
we assume the computational complexity for turnback is better than what we
estimated earlier and that the turnback method or one of the other methods
mentioned in Section 6.1 would be viable for computing a sparse basis for a
problem of this size.

92

For the finite-difference discretization, all the methods are roughly similar
in conditioning and accuracy. The sparsity for both the turnback and explicit
methods is excellent and about the same. Computationally, the explicit method
wins over turnback, but given a proper implementation, the turnback method
could be a good choice for finding the null basis in a case where an explicit
method were not available.

Results for the finite-element discretization are a little more complicated,
with poor results for all methods in one characteristic or another as the prob-
lem size grows. The SVD and QR factorizations are almost completely dense.
The explicit method followed by a QR factorization is not much better, though
it does improve as the problem size grows. All but the SVD and explicit meth-
ods have trouble maintaining accuracy as the problem grows, and the explicit
method suffers from poor conditioning as the problem grows. Fortunately, we
can improve the conditioning of the explicit method somewhat without incurring
too much fill, as explained in the following section. The turnback method, after
showing positive results for all previous examples, struggles here. The reason
for its inconsistent performance for this problem is not understood and warrants
additional research. It may be a simple matter of tweaking some parameters in
the implementation, but it may be more complicated, involving the details of
this particular example.

In summary, these examples show trends of poor conditioning for the turn-
back and explicit methods for some problems, they show accuracy declining as
the problem size grows for all methods, with methods 4 and 6 having the most
difficulty, and they show the explicit and turnback methods dominating with
respect to sparsity. The poor conditioning of explicit methods for particular
problems is addressed in the next section, and the issue of declining accuracy
of a null basis due to orthogonalization is further discussed in Appendix A.4.

6.4 Improving Conditioning

The heuristic algorithms described in Section 6.1 and the explicit bases provided
in Section 6.2 focus on sparsity but not on the conditioning of the resulting basis.
While sparsity and good conditioning can occur together, e.g., the identity ma-
trix, one is often gained at the expense of the other. The option of computing an
orthogonal basis, either from scratch, using an SVD or QR factorization, or from
a known sparse basis was considered in several methods in Section 6.3. Those
methods solve the conditioning problem at the expense of sparsity. Stewart [51]
suggests that a QR factorization of a sparse matrix (such as in methods 4 and 6
of Section 6.3) does not require storage of a resulting dense matrix if approached
in an intelligent way. Specifically, if a p × k matrix Z (p > k) is a sparse null
basis, and Z = QR, with Q orthogonal and of dimension p × k and R of di-
mension k × k, then Q is an orthogonal basis for the null space. Rather than
storing the likely dense matrix Q directly, however, we can store only Z and R.

93

The null basis must have full rank by definition, and since Q is orthogonal, R is
nonsingular. It follows that Q = ZR−1, with Z sparse, and R likely sparse and
of smaller dimension than Q. Thus, we can store and use our orthogonal basis
Q as a product of two sparse matrices, not directly inverting R, but simply
solving an upper triangular system of equations whenever needed.

Stewart’s paradigm can be useful, and in some cases it may be the best
option for a sparse, well-conditioned matrix, but it requires the storage of two
matrices and may increase the null residual of the matrix (see accuracy graphs of
of methods 4 and 6 in Section 6.3.) As an alternative, we developed a couple of
heuristics to improve conditioning of a sparse matrix while maintaining as much
sparsity as possible. The first algorithm is effective for for improving the con-
ditioning of explicit bases for the 2-D Laplacian operator dicretized with finite
differences. It experiences nominal density gain with appreciable improvement
in the condition number. It is further explained in Section 6.4.1. The second
algorithm works for improving the conditioning of explicit bases for the 3-D curl
operator discretized with finite elements (when the null vectors are ordered ap-
propriately) and shows promise for other matrices as well. This second heuristic
is discussed in Section 6.4.2. Both heuristics are applicable both to square and
overdetermined matrices.

6.4.1 Column Pair Orthogonalization

One heuristic for improving conditioning is the column pair orthogonalization
heuristic. The motivation behind the heuristic is the fact that ill-conditioning
occurs when one column of a matrix is nearly dependent on another column
or on a set of columns. If the first is true, say column a is nearly dependent
on some other column b, then the two columns must have similar sparsity pat-
terns. Following this reasoning, the condition improver searches for columns
with similar sparsity patterns and orthogonalizes them against each other. The
fill caused by orthogonalizing column a against column b occurs where a has
nonzeros that b does not have. (By orthogonalizing column a against column
b, we mean setting b = b − (aT b/aT a)a.) If the sparsity patterns of a and b

are similar, the resulting fill will be minimal.

ColumnPairOrth (numPerRound, numRounds)

loop numRounds times

1. search for column pairs with similar nonzero patterns

a. for each pair of columns

- record number of nonzeros in common

- record maximum fill if orthogonalized against each other

b. sort by incr. maximum fill then by decr. common nonzero values

2. orthogonalize numPerRound pairs of columns based on sorted data

This algorithm is effective for improving the conditioning of the explicit
basis explained in Section 6.2.1. As an example, Figure 6.18 shows results for

94

0 2 4 6 8 10
10

6

10
8

10
10

10
12

10
14
Results of condition improver for finite difference 2−d, n = 20

number of rounds of updating

co
nd

iti
on

 n
um

be
r

numPerRound = 25
numPerRound = 35
numPerRound = 45
numPerRound = 55

Figure 6.18: Results of condition number improver for 2-D Laplacian

ten iterations of updating for the null basis matrix for problem size n = 20. The
value at iteration 0 is the condition number for the matrix with each column
scaled by its maximum norm. The various lines represent different values for
the number of orthogonalizations performed per iteration. This is a heuristic
algorithm. We do not yet have a specific way to choose the optimal values for
number of rounds of updating or number of pairs to orthogonalize per round.

To understand the effectiveness of the algorithm, it is important to consider
not only the resulting condition number after the update (up to seven orders
of magnitude in this example!) but also the density and null residuals of the
resulting matrices. The density of the matrices after ten iterations with the
specified value for numPerRound are shown in Figure 6.19, where we see that
the density gain is very small compared to the improvement of the condition
number. The null residuals for these resulting matrices, shown in Figure 6.20,
could be better but are tolerable. This heuristic provides a good alternative to
completely orthogonalizing the 2-D Laplacian explicit null basis. This step obvi-
ously adds to the total computational time, and the null residuals are not ideal,
but they are better than the null residual of the orthogonalized explicit basis,
and the heuristic improves the condition number considerably while minimally
increasing the density.

6.4.2 Threshold QR Factorization

The algorithm of the previous section works well for the 2-D finite-difference
Laplacian explicit null basis, but it fares much less well in improving the condi-
tion number of the 3-D finite-element curl explicit null basis. For this problem
we found that a partial QR factorization is the key to improving conditioning
without suffering fill comparable to the density of a complete orthogonalization.

95

0 10 20 30 40 50 60
0.15

0.155

0.16

0.165

0.17

0.175

0.18
Density of pair orthogonalized explicit basis

de
ns

ity

numPerRound

Figure 6.19: Results of condition number improver for 2-D Laplacian: sparsity

0 10 20 30 40 50 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

Accuracy of pair orthogonalized explicit basis

nu
ll

re
si

du
al

numPerRound

Figure 6.20: Results of condition number improver for 2-D Laplacian: accuracy

96

10
−2

10
−1

10
010

0

10
1

10
2

10
3

10
4

Conditioning of threshold QR matrices

threshold value

co
nd

iti
on

 n
um

be
r

original order
colamd order
colmmd order
colperm order
other order

Figure 6.21: Threshold QR results for 3-D curl explicit basis (n = 5)

The method is based on modified Gram-Schmidt orthogonalization, in turn
normalizing each column and orthogonalizing it against all subsequent columns,
as long as the inner product of the normalized vector and the column to be
updated is greater than a specified tolerance.

ThresholdQR (inMat, tol)

i = 1 to numColumns of inMat

* normalize column i

(orthogonalize column i against remaining columns)

* j = i+ 1 to numColumns of inMat

- if 〈i, j〉 ≥ tol

orthogonalize column i against column j

- end if

* end loop j

end loop i

As in an LU factorization or complete QR factorization, the amount of fill gener-
ated is sensitive to the column ordering of the matrix. For our 3-D finite-element
basis, any of the MATLAB built-in reordering functions colamd (column approx-
imate minimum degree ordering), colmmd (column minimum degree ordering),
and colperm (column permutation based on increasing nonzero count) decreased
the fill (and thus improved the sparsity of our updated basis) immensely com-
pared to the original ordering of the explicit basis. Figures 6.21 and 6.22 show
the conditioning and density of our explicit basis for various threshold values
with problem size n = 5. Also included in the plots is an ordering of the explicit
basis with the second type of null vectors placed before those of the first type.
As this ordering produces similar results to the non-specific colamd and colmmd

orderings, we did not pursue a smarter ordering of null vectors by hand. The
original condition number of the basis is 3.40× 105, and the original density is

97

10
−2

10
−1

10
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density of threshold QR matrices

threshold value

de
ns

ity

original order
colamd order
colmmd order
colperm order
other order

Figure 6.22: Threshold QR results for 3-D curl explicit basis (n = 5)

10
−2

10
−1

10
010

3

10
4

10
5

10
6

10
7

Conditioning of threshold QR matrices

threshold value

co
nd

iti
on

 n
um

be
r

original order
colamd order
colmmd order
colperm order

Figure 6.23: Threshold QR results for 3-D curl explicit basis (n = 10)

98

10
−2

10
−1

10
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density of threshold QR matrices

threshold value

de
ns

ity

original order
colamd order
colmmd order
colperm order

Figure 6.24: Threshold QR results for 3-D curl explicit basis (n = 10)

just under 2 percent. The graphs suggest a threshold value around 0.1 would
improve the conditioning by 3 orders of magnitude while increasing the density
to around 20 percent, depending on the ordering. This is a better option than
the QR factorization (assuming sparsity is a goal), which improves the condi-
tioning by 5 orders of magnitude but increases the density to over 45 percent.
The results are similar for n = 10, as Figures 6.23-6.24 demonstrate.

To test this method on other matrices, we gleaned sparse matrices with
poor conditioning from the Matrix Market hosted by NIST [8]. Figures 6.25-
6.28 show the conditioning and density values for several threshold values and
several initial column orderings of three sparse matrices with different sparsity
structures. The first matrix, west0381, has an unusual, nonsymmetric sparsity
pattern. The nonzeros form right angle patterns which are spread throughout
the matrix. The condition number of the matrix is approximately 1.26 × 106

and its density is 0.0147 or 1.47 percent. The second matrix, nos7, has a strong
diagonal pattern with a small band at the diagonal and one band each of subdi-
agonal and superdiagonal entries off the main diagonal. It’s original density is
0.0087, and its condition number is 2.37×109. Our third example is the matrix
fs 183 6 which appears to have a symmetric sparsity pattern. It has a banded
diagonal, patterned super and subdiagonal swoops (not straight diagonals), and
several nonzeros dotted elsewhere throughout the matrix. The density is 0.0299
and the condition number is 1.74× 1011.

Each of these examples shows the trade-off between conditioning and spar-
sity. In all cases, it is possible to reduce the magnitude of the condition number
to about the square root of the original condition number while maintaining
a density of less than 20 percent, given the correct threshold value and initial
matrix ordering. In the case of the fs 183 6 matrix, this heuristic is superb, giv-
ing a decrease in the condition number of 9 orders of magnitude while merely

99

10
−6

10
−4

10
−2

10
0

10
210

0

10
1

10
2

10
3

10
4

Conditioning of threshold QR matrices

threshold value

co
nd

iti
on

 n
um

be
r

original order
colamd order
colmmd order
colperm order

Figure 6.25: Threshold QR results for west0381 matrix

10
−6

10
−4

10
−2

10
0

10
20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density of threshold QR matrices

threshold value

de
ns

ity

original order
colamd order
colmmd order
colperm order

Figure 6.26: Threshold QR results for west0381 matrix

100

10
−2

10
0

10
2

10
4

10
610

0

10
2

10
4

10
6

10
8

Conditioning of threshold QR matrices

threshold value

co
nd

iti
on

 n
um

be
r

original order
colamd order
colmmd order
colperm order

Figure 6.27: Threshold QR results for nos7 matrix

10
−2

10
0

10
2

10
4

10
60

0.1

0.2

0.3

0.4

0.5
Density of threshold QR matrices

threshold value

de
ns

ity

original order
colamd order
colmmd order
colperm order

Figure 6.28: Threshold QR results for nos7 matrix

101

10
−2

10
0

10
2

10
4

10
610

0

10
1

10
2

10
3

Conditioning of threshold QR matrices

threshold value

co
nd

iti
on

 n
um

be
r

original order
colamd order
colmmd order
colperm order

Figure 6.29: Threshold QR results for fs 183 6 matrix

10
−2

10
0

10
2

10
4

10
60

0.1

0.2

0.3

0.4

0.5
Density of threshold QR matrices

threshold value

de
ns

ity

original order
colamd order
colmmd order
colperm order

Figure 6.30: Threshold QR results for fs 183 6 matrix

102

doubling the original density. (This can be seen on the graphs at the threshold
value close to 106.) This condition improver does not automatically choose a
threshold value–it requires user involvement, but it is a useful tool for improv-
ing the condition number of a matrix while incurring a “reasonable” amount of
fill. Thus it provides a good alternative to a complete orthogonalization of the
explicit null basis for the 3-D finite element curl.

103

7 Solving the Linear System

After discretizing a differential equation and obtaining a discrete null basis, we
put the pieces together as described in Chapter 5 to create the linear system
with full column rank corresponding to our discetized approximation. Solving
the resulting system is the final step in obtaining a solution using the null-space
approach. Preferably, we would solve the system both quickly and accurately,
but sometimes those goals oppose each other. This chapter presents and dis-
cusses several options for solving the system, which we denote

Cx = d

in its complete form, with C an m′× p matrix with m′ ≥ p, d an m′× 1 vector,
and x a p× 1 vector, and as [

D

ẐT

]
x =

[
a

b

]
, (7.1)

in its original partitioned form (see (5.1)), with D an m×p matrix with m ≤ p,
a an m × 1 vector, Ẑ a p × k matrix with k = p − rank(D), b a k × 1 vector,
and our unknown x a p× 1 vector.

7.1 Problem Characteristics

If our matrix C were well-conditioned and had “nice” characteristics such as
symmetry and sparsity, this chapter would be unnecessary because several ex-
isting linear solvers, direct and iterative, could easily solve the problem. The
formulation of our problem, however, produces a system that is not simple to
solve.

The original problem matrix D will be sparse for finite-difference discretiza-
tions and for finite-element discretizations with localized elements. As Chapter 6
details, we can generally find a sparse null basis for our original problem matrix,
though some of that gain is less evident in the finite element case because we
premultiply our null basis when we create the null basis portion of the complete
system (ẐT). Even so, our system does have the positive characteristic of spar-
sity, which is useful if we can exploit the zeros as we compute a solution. The
sparsity of the complete matrix C is dependent on the sparsity of ẐT because,
while the null basis constraints compose less and less of the system as the prob-

104

lem size grows, they provide at least one-third of the total constraints in our
motivating example (see Appendix A.1).

We do not find symmetry in C even with reordering the matrix. Although
discretized differential equations generally benefit from symmetry, the process
of omitting the boundary-related equations and adding null-space constraints
removes that advantage in the null-space approach.

In some cases, we also face poor conditioning of C as the problem size grows.
The poor conditioning is most problematic for the finite difference discretization
of the Laplacian operator used in combination with its explicit null basis.

7.2 Direct Methods

Direct methods for solving linear systems are one option for solving our system.
Various re-orderings of the matrix, such as nested dissection, minimum degree,
and band orderings exploit sparsity in the matrix, and direct methods are gener-
ally robust even for ill-conditioned problems. Direct methods are also straight-
forward to implement and do not require preconditioning. (See [17, 19, 23] for
more information on sparse direct methods.) With the memory and computing
power of machines available today, direct methods can be used to solve moder-
ately large problems, and in fact, we use direct methods to solve the application
problems we present in Chapter 8. For very large problems, however, solving
the system directly may be infeasible even with a powerful computer; in that
situation, we must turn to iterative methods.

7.3 Iterative Methods

Iterative methods can easily take advantage of sparsity and can be very cheap
computationally compared to direct methods. Iterative methods are most useful
when the eigenvalues of a matrix are clustered, resulting in quick convergence to
the solution and few required iterations. This advantage becomes more evident
as the problem grows. Since our matrix C is sparse and will be large for a fine
discretization of a differential equation, iterative methods seem to be a good
option.

As a first example, we apply the general GMRES method (symmetric itera-
tive methods do not apply as the characteristics given above imply) to the 2-D
Laplacian on the unit square, discretized with finite differences, with an orthog-
onal null basis computed using MATLAB’s null() routine. Discretized evenly
with n nodes in each direction, the problem produces an n2 × n2 system. The
GMRES method [45], applied to the system with no preconditioner and with an
error tolerance of 10−6, requires on the order of n2 iterations to converge, which
is a very poor convergence rate. The convergence curves for n = 5, 10, 15, 20,
and 25, using the MATLAB built-in GMRES solver, are shown in Figure (7.1).

105

0 100 200 300 400 500 600 700
10

−8

10
−6

10
−4

10
−2

10
0

10
2

number of iterations

2−
no

rm
 o

f r
es

id
ua

l

Convergence of GMRES

n=5
n=10
n=15
n=20
n=25

Figure 7.1: Convergence curves for GMRES with no preconditioner

The initial guess is a vector of ones. The graph confirms poor convergence rates
for the GMRES method applied to this problem, with little convergence until
the number of iterations almost equals the number of columns in the matrix. A
look at the eigenvalues explains the difficulty GMRES has in finding the solu-
tion. Figure 7.2 plots the eigenvalues of C for n = 15. We used an orthogonal
basis here to demonstrate the poor eigenvalue spread and convergence rates
without additional conditioning problems due to calculation of the null space.
In fact, the condition number of D is about 49, and the condition number of Ẑ

is 1, but the condition number of the combined matrix C is about 1550. Even
though the conditioning of the problem is reasonable, a preconditioner will be
necessary to make GMRES viable.

7.4 Preconditioned Iterative Methods

Iterative methods converge speedily when the eigenvalues of the system are clus-
tered. Since multiplying by a nonsingular matrix does not change the solution of
a linear system, preconditioners (created as nonsingular matrices) are applied to
the system in an attempt to improve the conditioning and eigenvalue clustering
of the system matrix. Ideally, a preconditioner would maintain sparsity and be
easy to invert (i.e., easy to solve systems with). Since linear systems vary con-
siderably, preconditioners tend to be specific to certain types of problems. Many
of the preconditioners we considered, such as banded preconditioners, polyno-
mial preconditioners (described in [13]), and SPAI preconditioners (discussed
in [16, 26] among others), either do not apply to our problem or provide little
to no help in clustering eigenvalues enough to assist the convergence of iterative
methods. Incomplete LU (ILU) factorization based on thresholding, however
[38], provides us with preconditioners that are generally effective for the various

106

−600 −400 −200 0 200 400
−500

0

500
Eigenvalues for n=15, using null() to find null basis

Figure 7.2: Eigenvalues of complete system for n = 15

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

10
5

number of iterations

2−
no

rm
 o

f r
es

id
ua

l

Convergence of GMRES with LU preconditioner

n=5
n=10
n=15
n=20
n=25

Figure 7.3: Convergence curves for GMRES with ILU preconditioner

107

operators and discretizations we considered. As a first example, compare the
convergence curves for the 2-D Laplacian using ILU preconditioners (plotted in
Figure 7.3) to the original convergence curves with no preconditioner (plotted
in Figure 7.1). The ILU preconditioners for this problem had a drop tolerance
of 10−4.

Incomplete LU factorization works as a forward preconditioner. That is,
we find a matrix M that approximates our system matrix C and solve the
system M−1Cx = M−1d. The method of incomplete LU factorization based
on thresholding finds an approximate LU factorization of C by applying the
usual factorization method but dropping values less than a certain tolerance.
In this way, the factorization takes less time than a complete factorization,
and the L̂ and Û factors are sparser than the exact L and U factors. Since
the approximate factors are lower and upper triangular, respectively, they are
convenient for solving systems; they merely add a number of operations on
the same order as matrix-vector multiplication. This method works well with
iterative methods for our system, as the examples in Section 7.6 show, but it
requires extra memory space as even approximate factors exhibit greater density
than the original matrix.

7.5 Other Perspectives

In addition to considering various solution techniques for our linear system,
we have also considered options for rewriting our problem. In this section, we
present these additional ways to write the problem and discuss the benefits and
liabilities of each.

7.5.1 Optimization Formulations

The form of our original partitioned problem, given in (7.1) above, is sugges-
tive of an optimization problem with one set of equations deemed a minimiza-
tion problem and the other set of equations deemed the constraints. First, we
consider the upper set to be the minimization problem and the lower set the
constraints. Since an exact solution to (7.1) will minimize the 2-norm of the
residual a−Dx and satisfy the constraints, ẐT x = b ,

min
x

1
2
‖a−Dx‖22 s.t. ẐT x− b = 0,

is a valid way to rewrite the problem. When expanded and converted into a
single system using Lagrange multipliers, the problem becomes[

DT D Ẑ

ẐT 0

] [
x

y

]
=
[

DT a

b

]
, (7.2)

108

where the components of y are the Lagrange multipliers. This provides a second
form of the discrete problem represented by the linear system in (7.1).

Similarly, switching the equations in the minimization problem, we obtain[
ẐẐT DT

D 0

] [
x

y

]
=
[

Ẑb

a

]
. (7.3)

Thus we have three equivalent forms of the discretized problem. Both of the
alternate forms given here are full-rank, square systems. The square shape of the
matrices is easily confirmed by considering the dimensions of the submatrices
and the formulation of the complete system. The nonsingular claim is proved
in Appendix A.3.

The advantages of these alternate formulations include better conditioning
of the system to be solved (at least in the case of (7.2) compared to (7.1) for our
sample problems) and symmetry. Unfortunately, we do not have positive definite
systems, which would allow use of the conjugate gradient iterative method. Nor
can we apply the block preconditioners described in [47] (or similar, symmetric
forms) as we had hoped. The problem for such preconditioners is not that the
system is indefinite but that the 1, 1 block submatrix is singular, and attempts to
find a matrix close to the submatrix that is nonsingular or to reorder the entire
matrix to create a nonsingular 1, 1 block have not been effective. Additionally,
these linear systems are larger than the original system so fewer iterations may
take more total compute time due to the increase of work at each iteration.

7.5.2 Decoupled Problems

Finite difference discretizations, for which Ẑ = Z, allow us to decouple our
problem provided D has full row rank, as we now show. Let D be the discretized
operator of size m× p with m < p and rank(D) = m, and let Z be a null basis
for D. By construction, DZ = 0. Thus, the columns of Z are orthogonal to
the rows of D. Equivalently, span(DT) ⊥ span(Z). In addition, span(DT) ∪
span(Z) = Rp. It follows that the solution vector x, which is in Rp, can be
written as DT v + Zw, where v and w are unknown.

Substituting into the problem (form (7.1)), we obtain equations

D(DT v + Zw) = a,

ZT (DT v + Zw) = b.

These simplify to

DDT v = a,

ZT Zw = b,

which can be solved independently for v and w. This formulation breaks the

109

problem into two symmetric positive definite subproblems. (To prove that the
subproblems are positive definite, apply Lemma 2 from Chapter 5 with C = I.
Symmetry follows from the commutativity of the Euclidean inner product.) If
D and Z exhibit good conditioning, this decoupling is an excellent solution tech-
nique. It enables use of the conjugate gradient method, and, in the case where
the same differential equation is solved with different null-space constraints, it
allows reuse of solution vector v. The drawbacks of this formulation include ap-
plicability limited to problems with full row rank, loss of information in forming
DDT and ZT Z, and squaring of the condition numbers of both D and Z.

If a finite element discretization is used with set of orthonormal basis func-
tions to describe the solution, we again have Ẑ = Z, and the argument above
holds for finding the solution vector x with two independent linear systems. Of
course, in the finite element case, the solution vector contains coefficients of the
approximate solution, which is given by V x, where V holds the set of basis
functions as described in Chapter 2.

7.6 Comparison Study

Now that we have presented several options for formulating and solving the
linear system, we address the question of which is best for our problem. As
usual, the answer depends on the importance of various factors, such as time
and memory constraints, but comparisons between options can help clarify the
decision of which method to use. In this section, we compare results of applying
an iterative method to various formulations of the system (described below) in
terms of number of iterations required for convergence to an error tolerance of
10−10 and in terms of memory required for storing the problem matrix and any
preconditioners. The number of iterations does not directly indicate computa-
tion time (e.g., consider the case of a direct solve), but it gives a more definite
comparison than processor time, which varies depending on implementation and
computer speed. For this reason, we omit the direct solve from our comparisons
because it requires one iteration by definition as a direct solver. Our value for
memory assumes the matrices are stored in a sparse format and reports the
total number of nonzero values in the system matrix and any preconditioners.
We do not calculate or report additional memory used by the iterative method
for storing residual vectors.

According to Chen [13, p. 110], it is the choice of preconditioner rather than
the choice of iterative method that makes the most difference in convergence
rate. Accordingly, we will make comparisons using only one iterative method,
namely GMRES [45], which applies to nonsymmetric matrices as necessary for
our system. (Bi-CGSTAB [55], a variant of the conjugate gradient method that
solves nonsymmetric systems, is another applicable iterative method, but as it
fails to converge for some of our examples, we chose to provide data only for
GMRES.) We use full GMRES to obtain our results (that is, no restarting), and

110

10
0

10
1

10
210

0

10
1

10
2

10
3

n

nu
m

be
r

of
 it

er
at

io
ns

GMRES iterations for various problem formulations

orig−ex
orig−null
incLU−ex
SPAI−null
opt−A−ex
opt−B−ex

Figure 7.4: Convergence counts for GMRES applied to fin. diff. 2-D Poisson

we set the initial guess to be a random vector provided by MATLAB.
The forms of the system and various preconditioners we compare are given

below. The brief identifying phrases listed in parentheses at the end of each
description will be used to identify results on the plots, and the portion after
the last hyphen indicates whether the rescaled explicit basis was used (“ex”) or
the orthogonal basis given by MATLAB’s null() command (“null”).

1. original system with no preconditioner using scaled explicit null basis
(orig-ex)

2. original system with no preconditioner using orthogonal null basis (orig-
null)

3. original system with incomplete LU factorization preconditioner found
with appropriate tolerance (incLU-ex)

4. original system with SPAI preconditioner applied to rearranged linear sys-
tem (SPAI-null)

5. reformulated system given in (7.2) (opt-A-ex)

6. reformulated system given in (7.3) (opt-B-ex).

For the SPAI preconditioner, we select the sparsity pattern of the original matrix
as the sparsity pattern of the preconditioner, but we reorder the pattern to
include more nonzero diagonal elements.

First, we return to the 2-D Poisson example, discretized with finite differ-
ences. The choice of α and β should not affect the convergence of the method
when it is given a random initial guess, but we need to choose some problem
to solve, and we set α = 12s2t2 + 2t4 and β = s2t4. The number of iterations
for convergence of GMRES to a tolerance of 10−10 are shown in Figure 7.4.

111

4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9x 10
4

n

nu
m

be
r

of
 n

on
ze

ro
s

Number of nonzeros for various formulations

orig−ex
orig−null
incLU−ex
SPAI−null
opt−A−ex
opt−B−ex

Figure 7.5: Number of nonzeros in matrices for finite difference 2-D Poisson

The explicit basis caused rank deficiency for n = 18, so we include data up to
n = 17. The space requirements for the various systems are shown in Figure 7.5.
The graphs plot the iteration counts and space requirements as the problem size
grows.

We also include convergence and density results for the 3-D finite-element
curl problem in Figures 7.6 and 7.7. The values for α and β have no particular
significance here beyond giving us a specific problem to solve; they are

α =

 12s2t2 + 2t4

1
1

 , and β =

 0
0
0

 .
Since GMRES solves square systems, we used a set of independent rows of the
original matrix D in place of the complete matrix to obtain these results. (For a
compatible system, any set of independent rows will do. The set of independent
rows of D combined with rows created by the null-space constraints provides
a square system.) Here the size of the reformulated systems incurred memory
limitations for n = 12, so we include results for n = 5 to n = 11.

These two examples show similar trends. Both demonstrate that using the
null() basis from MATLAB costs a lot in terms of memory while not buying
much in terms of faster convergence. Similarly, the SPAI preconditioner does
decrease the number of iterations for convergence of GMRES for a particular
value of n, but the change in convergence values as the problem size grows
mimics the change in convergence values of the original problem. Incomplete
LU factorization as a preconditioner is the winner for convergence values for
both examples. The drop tolerance was determined as the largest tolerance of
the form 10k for k ∈ {Z|k < −2} that gave nonsingular matrices L and U . The
convergence values shown on the graph dip where the drop tolerance was lowered

112

10
0

10
1

10
210

1

10
2

10
3

10
4

n

nu
m

be
r

of
 it

er
at

io
ns

GMRES iterations for various problem formulations

orig−ex
orig−null
incLU−ex
SPAI−null
opt−A−ex
opt−B−ex

Figure 7.6: Convergence counts for GMRES applied to fin. el. 3-D curl

5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18x 10
6

n

nu
m

be
r

of
 n

on
ze

ro
s

Number of nonzeros for various formulations

orig−ex
orig−null
incLU−ex
SPAI−null
opt−A−ex
opt−B−ex

Figure 7.7: Number of nonzeros in matrices for finite element 3-D curl

113

10
0

10
1

10
210

0

10
1

10
2

10
3

n

nu
m

be
r

of
 it

er
at

io
ns

Iterations for decoupled problem formulation

orig−ex
dec−all
dec−top
dec−bot

Figure 7.8: Convergence counts for CG applied to fin. diff. 2-D Poisson

by a factor of 10. For the 3-D curl problem, in Figure 7.6, we can connect the
peaks of the graph to get an idea of the convergence trend as the problems size
increases. The line is clearly less steep than the others. The L and U factors
do require extra memory space, as the plots of memory requirements for the
problems show, but all together, the problem does not take as much space as
merely using a dense null basis in place of a sparse one.

Finally, for comparison purposes, we provide iteration counts for the con-
jugate gradient method applied to the decoupled formulation of the finite dif-
ference, 2-D Laplacian operator. The results (see Figure 7.8) are plotted in
comparison to the number of GMRES iterations for the original formulation
without a preconditioner. The explicit basis was used for both. The two parts
of the decoupled problem are plotted separately (“dec-top” and “dec-bot” for
the upper and lower portions respectively) and together (“dec-all”). The graph
indicates that the number of iterations required to solve both parts of the de-
coupled problem is very similar to the number of iterations required to solve
the original formulation of the problem using GMRES. This result may seem
discouraging at first glance, but the iteration counts are improved just with
reformulating the problem, and the symmetric positive definite feature of both
portions of the decoupled problem gives much hope for the existence of effective
preconditioners, perhaps even among the types that were not effective for our
original problem formulation.

114

8 Applications

As explained in the introduction, the methods developed in this thesis were
motivated by a problem in materials science. The null space approach applies
to that problem but is useful in general for elliptic partial differential equations
with either an infinite domain or a domain with unknown boundary conditions.
In this chapter, we consider two specific applications, the curl problem that
motivated this work in Section 8.2, and a Poisson problem, which is common in
the field of electromagnetics.

Throughout this chapter we obtain results using sparse direct methods to
solve the final linear system. The implementation is straightforward and the
problems are small enough that we do not encounter memory limitations using
a direct solver. In addition, solving the system directly removes a potential
source of error, allowing us to observe how a finer grid affects the approximate
solution without concern for possible effects of an iterative solver. When we
refer to convergence in this chapter, then, we are considering the accuracy of
the approximation compared to the exact solution as the grid is refined.

8.1 Poisson Equation in Electromagnetics

A common calculation in electromagnetics is that of finding the electrostatic
potential of a field given a charge density over the field. The domain is in
principle infinite because electrostatic charges do not abruptly lose effect at
some point but gradually diminish in their effect as distance increases between
two charges. Typically, the calculation is done on some finite domain of interest
and the boundary values are estimated. Often the boundaries are extended
beyond the region of interest to lessen the effect of boundary approximation in
the pertinent part of the domain. Sometimes an approximation is found using
a coarse discretization on a larger domain, and that approximate solution is
used to formulate boundary conditions for the smaller domain of interest. The
null space method provides an alternative to the imposition of such unknown
or arbitrarily chosen boundary conditions and may allow us to find the desired
solution using a smaller domain than a conventional method would require.

The problem is described mathematically using the Poisson equation

∆u = −f, (8.1)

115

0

0.5

1

0

0.5

1
−0.02

0

0.02

0.04

0.06

0.08

Solution with exponential density function, boundaries set to zero

Figure 8.1: Specific solution to ∆u = −f

0

0.5

1

0

0.5

1
0

0.02

0.04

0.06

0.08

s

β

t 0

0.5

1

0

0.5

1
−0.02

0

0.02

0.04

0.06

0.08

s

null−space method solution

t

Figure 8.2: β = st(1− s)(1− t) and corresponding Poisson solution

where u is the electrostatic potential and f describes the charge density at
each point of the domain. Suppose the charge density is given by f(s, t) =
exp(−(s − 1/2)2 − (t − 1/2)2) and that we are interested in the electrostatic
potential on the unit square, Ω = (0, 1) × (0, 1). One way to find a unique
solution would be to set boundary values on our domain to zero, estimating the
boundary as described above. If we solve the problem using finite differences
and a zero boundary, we obtain the solution given in Figure 8.1.

Rather than arbitrarily fixing the boundary values, we can instead choose a
β function for the null space method whose shape fits our intuitive expectations
of the shape of the solution. Or, for a problem that we do not have intuition
about, we can set β = 0 to obtain the minimum-norm least squares solution to
the problem. The charge density function for this example is largest in the center
of our domain and tapers off toward the edges. It follows that the potential over
the field might also be large in the center and taper off toward the edges. If we
choose a β function with that shape, β = st(1− s)(1− t) (shown on the left in
Figure 8.2), we obtain a solution (Figure 8.2, right) that is similar to the the
one calculated with zero boundary conditions, but without strictly zero values

116

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

st

β

0

0.5

1

0

0.5

1
−0.04

−0.02

0

0.02

0.04

s

null−space method solution

t

Figure 8.3: β = 0 and corresponding Poisson solution

0

0.5

1

0

0.5

1
−0.08

−0.06

−0.04

−0.02

0

s

β

t 0

0.5

1

0

0.5

1
−0.08

−0.06

−0.04

−0.02

0

0.02

s

null−space method solution

t

Figure 8.4: β = −st(1− s)(1− t) and corresponding Poisson solution

0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

s

β

t 0

0.5

1

0

0.5

1
−0.2

0

0.2

0.4

0.6

s

null−space method solution

t

Figure 8.5: β = (s2 + t2)/4 and corresponding Poisson solution

117

on the boundary.
To illustrate how different choices of β affect the shape of the solution, we

include Figures 8.3-8.5, all of which show valid solutions to the given Poisson
equation. Figure 8.3 shows the minimum norm least squares solution. These
examples are given for a two-dimensional domain. The problem can similarly
be solved on a three-dimensional domain, but the results are more difficult to
visualize.

8.2 Curl Equation in Materials Science

A second application comes from the field of materials science and specifically
considers mechanics of dislocations (lattice defects). That is, the problem equa-
tions describe the stress and strain in a metallic solid over time given an initial
distribution of dislocations in the material. The part of the problem that we have
focused on solving involves the curl of a two-dimensional tensor. As an intro-
duction to the curl operator, we consider the curl applied to a one-dimensional
tensor as described by Schey in [46, p. 85-89]. Schey provides the velocity field
of a volume of water and uses that to calculate the value of the curl. We will
solve the problem backwards, solving

curlu = α, (8.2)

where α is selected to be the value of the curl given in the reference. Specifically,

α =

 0
0
2ω

 .
For our null-space constraint, we will use

β =

−ωsωr

0

 ,
which is the velocity field Schey gave. In physical terms, ω is the constant
angular velocity of the water and we set ω = 2 for our calculations. Since the
null-space constraint functions β satisfy the curl equation (8.2), our solution
should match β.

Using the unit cube as our domain and a uniform finite element discretization
with 9 elements in each dimension, we obtain the results plotted in Figures 8.6-
8.9. For each component of the solution, we provide a plot of the entire 3-D
volume. For the last component, we also include a cross-section of the rs-plane.
We used the program Rocketeer for the 3-D volume plots [22]. The orientation
of the axes are described by the figure in the bottom, left corner, and variables
are correlated to colors as r - red, s - green, and t - blue. The cross-section is

118

Figure 8.6: Curl example, u1

Figure 8.7: Curl example, u2

119

Figure 8.8: Curl example, u3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r

s

u
3

−1

−0.5

0

0.5

1

x 10
−6

Figure 8.9: Curl example, cross-section of u3

120

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Convergence curves for 3−D curl example

n

er
ro

r

fin diff − explicit
fin el − explicit
fin el − null()

Figure 8.10: Error in approximate solutions for linear curl problem

given at t = 1/3. While the “zero” values of the solution (that is, the values
of u3) are not exactly zero, the max norm errors for all three parts of our
approximate solution compared to the discretized solution functions are similar
in magnitude. Specifically, the max norm errors for the three parts are

u1: 2.8852× 10−5,
u2: 1.2672× 10−4,
u3: 1.3169× 10−4.

In order to compare errors for various methods as the grid is refined, we solved
the problem for several values of n. The results for error, using the max norm
of the error of all the components, are plotted in Figure 8.10. While we obtain
the correct answer for small values of n, the solution degrades as we use a
finer mesh. In fact, the finite element method using an explicit basis becomes
so ill-conditioned it appears to have less than full rank for n ≥ 14, and we
omit those invalid data points from the graph. This is the opposite of what
we would expect in terms of convergence, unfortunately. These trends of poor
convergence correlate with the null residual curve of the explicit null basis for
finite differences in Figure 6.14 and with the conditioning curve of the explicit
null basis in Figure 6.15, respectively. In both the cases of using explicit bases,
we see a loss of accuracy in the problem solution due to loss of accuracy in the
null basis in one way or another. It is unclear why the finite element method
using the null() method in MATLAB loses accuracy, but this loss of accuracy
may be an issue for larger problems, even showing up for larger values of n in
this example.

As another example, consider a similar problem for which the solution cannot
be exactly represented as a linear function. The domain and discretization will

121

10
0

10
1

10
210

−4

10
−3

10
−2

10
−1

n

er
ro

r

fin diff − explicit
fin el − explicit
fin el − null()

<−− 1/n

<−− 1/n2

Convergence curves for 3−D nonlinear curl example

Figure 8.11: Error in approximate solutions for nonlinear curl problem

be the same as for the previous problem, and

α =

 0
0

−2r exp(−r2)

 ,

β =

 0
exp(−r2)

0

 .
This example also comes from Schey [46, p. 88-89]. The vector-field solution u
describes an uneven flow in the s direction. As in the prior example, the solution
is given by the β function, and here we omit solution plots. Error values for
various grid sizes are plotted in Figure 8.11. In this example, they demonstrate
the expected convergence as the mesh is refined. Even though the null basis
error increases with a finer mesh, the overall error of the system decreases for
these values of n because the null basis error is hidden by the larger error of
representing a nonlinear function with linear basis functions. For n = 14 and
higher, however, the null basis error does cause trouble for the finite element,
explicit basis method; we omitted data produced by those low rank systems.

The curl operator in the examples above maps a space of one-dimensional
tensors (i.e., vectors) to another. In the materials science application we cover
next, the curl operator maps two-dimensional 3 × 3 tensors. The matrix curl
operator works in the expected way; the curl of a 3 × 3 tensor is the curl of
each of its rows. The curl equation does not appear by itself in this broader
context of dislocations. Rather, the following set of equations is used for those
calculations, where all of the tensors are 3× 3 tensors.

curlup = −α (8.3)

122

up
// = ũp

// (8.4)

T = C (ε− εp) ; ε :=
1
2
(
u + uT

)
; εp :=

1
2
(
up + upT

)
(8.5)

div T = 0 (8.6)

α̇ = −curl (α× V) + s (8.7)

˙̃u
p

= α× V (8.8)

The variables stand for

• up - plastic distortion tensor

• ũp - slip distortion tensor

• α - dislocation density tensor

• u - displacement gradient (strain tensor)

– ε - symmetric part of u

– εp - symmetric part of up

• C - elastic constitutive tensor

• T - symmetric stress tensor

• V - dislocation velocity vector

• s - dislocation nucleation rate tensor

• ˙ - time derivative

• // - component of argument field in the null space of the curl

The equations are solved in pairs, and the first pair, Equations 8.3 and 8.4,
are the two we wish to solve. The solution up that we seek is a 3 × 3 tensor
of functions, and it does not have meaning apart from the following set of
equations, 8.5 and 8.6, which give a value for the strain of the system. From
the strain, we can calculate the stress tensor, denoted by σ. The last set of
equations update the dislocation density tensor α and thereby simulate the
effect of stress and strain through time. More information on mechanics and
dislocations can be obtained from [33, 36], and some recent work on theories of
dislocations are described in [1, 28]. Understanding the effects of dislocations on
stress and strain in metallic solids is important for the design and manufacturing
of metals in many arenas, from large-scale components such as bridge girders
to small-scale components such as thin films in nano-devices [2].

The pair of equations we are solving correlates exactly with the null-space
approach described in Chapter 4, providing a useful application for the research
we have done. The null space constraint has not always been used in formulating
this problem; the idea of solving the curl problem this way was proposed by
Acharya in [2]. Other researchers (see [1, 44, 56, 58], for example) have used

123

−2 0 2 4 6 8 10 12
x 10

−3

−2

0

2

4

6

8

10

12x 10
−3

σ
11

−4

−2

0

2

4

6

x 10
−10

Figure 8.12: Stress of zero stress everywhere, dislocation example

various boundary conditions, seeking a solution for Equations 8.3 and 8.4 that
works well for the subsequent calculations. Specifying boundary conditions
tends to cause steep gradients in the stress field, however, which are not faithful
to the physical problem. The null-space approach offers relief from that issue
at least in one case and presumably in others as well.

For demonstrative purposes, we give a couple of examples with known solu-
tions. Our domain for both examples is the cube of length 0.01 lying completely
in the first quadrant (i.e., Ω = (0, 0.01)× (0, 0.01)× (0, 0.01)), and for our first
example we set

−α =

 0 0 α13

0 0 0
0 0 0

 ,
where

α13 = 0.1,

the constant function 0.1. The stress in a crystalline metal with a constant
distribution of dislocations in α13 is known to be zero everywhere (see [28]),
yet up is nonzero. Specifically, the expected solution for the curl portion of the
problem is

up =

−0.05s 0.05r 0
0 0 0
0 0 0

 .
We choose this as our ũp function and solve the problem using the null-space
approach.

We obtained the results given here using a uniform finite difference dis-
cretization with 11 nodes in each spatial dimension. One layer of the solution
for the σ11 stress component is shown in Figure 8.12, and layers of up

11 and up
12

124

0 5 10
x 10

−3

−2

0

2

4

6

8

10

12x 10
−3 up

12

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−4

0 5 10
x 10

−3

−2

0

2

4

6

8

10

12x 10
−3 up

11

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

x 10
−4

Figure 8.13: up data of zero stress everywhere, dislocation example

are given in Figure 8.13. As Figure 8.12 shows, the stress does have a small
nonzero portion in one corner, which is undesirable since the stress should be
zero everywhere. The nonzero values are quite small, however, and they appear
in only one corner. The values of up are exactly what we desire, producing the
output of up

11 = −0.05s and up
12 = 0.05r, as Figure 8.13 shows, and returning

essentially zero for all other values of up, with a maximum nonzero magnitude
of 2.35 × 10−16. In understanding the plots, it is important to recall that the
domain of our simulation is the cube of length 0.01, producing an output range
of magnitudes 0 to 0.0005. Thus, the plots show the expected results.

For our second example, we demonstrate the null space method applied
to a single screw dislocation. The distribution density vector is not meant
to handle single dislocations (more discussion of this below), yet this example
gives information about whether our method accurately calculates the stress of
a problem with a known solution on most of the domain. Along the dislocation
the solution has a singularity, and we are not concerned with matching any
particular value in that region. In fact, we omit the middle point of the domain
when we calculate the error for this problem. If we were concerned about the
value of the solution at the singularity we could flatten out the singularity using
the finite element method with a weighted inner product that cancels out the
singularity in the solution.

For this example, then, we set

α =

 0 0 0
0 0 0
0 0 α33

 ,

125

where
α33 =

{
0.1, r = 0.005, s = 0.005, 0 ≤ t ≤ 1
0, elsewhere

.

The dislocation distribution corresponds to a single dislocation extending the
length of the domain in the t-direction and cutting through the center of rs
plane. In lay terms, given a cubic domain with no applied stresses, we can
describe such a dislocation as being created by a series of three steps defining
a cut and weld operation [28]. The first step is a cut, which is a slice through
the domain along the half plane s = 0, 0 ≤ r < 0.5. The intermediate step is a
shift of the cut surfaces some distance (d) with respect to each other, and the
last step is a weld that secures the cut surfaces together in new positions. Such
a dislocation has a Burger’s vector of (0, 0, d).

Relating the value of α33 to the Burger’s vector of a single dislocation is not
entirely straightforward since the dislocation density tensor generally specifies
the density of a set of dislocations throughout the domain rather than a single
dislocation. According to [1], however, the following relationship holds,

d

2π
=
∫ ρ0

0

φ(ρ) · ρ dρ,

where ρ is a polar coordinate of radius from the location of the dislocation,
or in this case, the center of the rs plane, and φ is a positive, scalar-valued
function of one variable that vanishes on and outside the cylinder of radius ρ0.
In our example, φ(ρ) = 0.1. We do not have a specific value for ρ0, though the
discretized version of α33 has zero values at every point except the center one,
implying that ρ0 ≤ ∆r = ∆s. Our sample data includes problems of size n = 21,
requiring ρ0 ≤ 0.01/21 ≈ 4.76× 10−4. We suppose ρ0 = 2× 10−4, knowing this
is an approximation but giving us something concrete against which to compare
our results and to asses convergence. Using this value for ρ0, we find

d = 0.1 · π · (p0)2

≈ 1.257× 10−8.

We divide by this value below, effectively removing the specific choice of d from
the plotted results. Nevertheless, the explanation above is important to our
calculation, to enable others to reproduce the results.

Now we are prepared to compare our stress results to the analytical result.
The stress caused by a screw dislocation at the center of our domain is

σ =
µd

2π

 0 0 −(s−c)
(r−c)2+(s−c)2

0 0 r−c
(r−c)2+(s−c)2

−(s−c)
(r−c)2+(s−c)2

r−c
(r−c)2+(s−c)2 0

 ,
where c is 0.005, the midpoint of (0, 0.1), and µ is the shear modulus determined
by the properties of the particular metal we are simulating. Rather than specify

126

−2 0 2 4 6 8 10 12
x 10

−3

−2

0

2

4

6

8

10

12x 10
−3

σ
11

−600

−400

−200

0

200

400

Figure 8.14: σ11 layer for single dislocation example

a particular µ, we will normalize our stress results by µ. We also normalize our
stress results by d so that our expected solution is the right-hand-side of

σ

µd
=

1
2π

 0 0 −(s−c)
(r−c)2+(s−c)2

0 0 r−c
(r−c)2+(s−c)2

−(s−c)
(r−c)2+(s−c)2

r−c
(r−c)2+(s−c)2 0

 .
We applied the null-space approach to this problem using forward finite

differencing on a uniform discretization with the ũp tensor set to zero. For
n = 11, we provide layers of some results in Figures 8.14-8.15, and the expected
result for the corresponding layer of σ13 in Figure 8.16. For the latter figure, we
plotted the expected result discretized with the same number of nodes as the
approximation, and we set the middle value to zero in the center of the domain
(where the solution is discontinuous) so that the contours would be clearer.
The error is quite large for this simulation, but we do see convergence of the
approximation to the expected result as the grid is refined. To demonstrate
convergence, we plotted our results for the line through r = 1/2, t = 1/2 for
n = 7 through n = 21 in Figure 8.17 and error values in Figure 8.18. As long as
we are producing the correct stress values outside the region of discontinuity, the
simulation is valid. The two vertical lines on the plot in Figure 8.17 delineate the
region of discontinuity in the middle of the domain. To obtain error values, we
calculated the maximum absolute difference between the approximate solution
and the expected solution for σ13 at each grid point, omitting the center point
of of the grid where the solution is discontinuous.

Forward finite differences are off-centered, and that is reflected in the results
we obtain from such a discretization. A finite element discretization provides
symmetric results, but because of ill-conditioning of the explicit basis and com-
putational intensity of calculating an orthogonal basis, we had difficulties solving

127

−2 0 2 4 6 8 10 12
x 10

−3

−2

0

2

4

6

8

10

12x 10
−3

σ
13

−800

−600

−400

−200

0

200

400

600

800

Figure 8.15: σ13 layer for single dislocation example

−2 0 2 4 6 8 10 12
x 10

−3

−2

0

2

4

6

8

10

12x 10
−3 Expected result for σ

13
 with n=11

−150

−100

−50

0

50

100

Figure 8.16: Expected solution layer for single dislocation example

128

0 0.002 0.004 0.006 0.008 0.01
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000
Midlines for single dislocation approximation

n=7
n=9
n=11
n=13
n=15
n=17
n=19
n=21
expected

0.005 − ρ
0
 −−>

<−− 0.005 + ρ
0

Figure 8.17: Approx. solutions along center line for single dislocation example

10
0

10
1

10
210

2

10
3

10
4

n

er
ro

r

Convergence of σ
13

 for single dislocation example

<−− 1/n

<−− 1/n2

Figure 8.18: Error in σ13 approximations for single dislocation example

129

problems with n > 15. Since we have more data for the finite difference method,
we chose it for the results to present here. The convergence of the finite dif-
ference method was linear for the earlier curl example, as expected from the
first-order finite difference approximations used. Here we do even better than
linear convergence for reasons not entirely understood but perhaps related to
the approximation of ρ required as part of this simulation. More importantly,
the results show that our solution is converging to the expected answer, and we
expect this trend to continue for larger values of n.

130

9 Conclusions and Future
Work

In this thesis we have presented the null-space approach to solving differential
equations. This approach is useful for problems either without boundary condi-
tions or with boundaries at infinity. We have proved that this approach provides
a unique solution and have included results from several implementations in two
and three dimensions, for finite difference, finite element, and spectral methods.
These results demonstrate convergence of null-space methods to expected an-
swers for example problems and for a mechanics problem in materials science.

As implied by their name, null-space methods require knowledge of a null-
space. We discussed options for finding a basis for a null-space for a general
problem and present explicitly-defined null bases that we derived for four dis-
crete operators on specific domains. (In three cases, we also proved that the null
basis is a basis for all problem sizes.) To demonstrate the benefits of the various
null-basis options, we compared several characteristics of each, showing that the
explicit bases are best except in regard to conditioning. Ill-conditioning of the
explicit bases is controlled by heuristics that trade-off sparsity and conditioning.

The problems we solved in this work produce linear systems small enough
to be solved by direct methods. We also presented information on iterative
solvers. Even if the linear system is well-conditioned, the null-space method
produces a matrix with an eigenvalue distribution that leads to poor convergence
of iterative methods, especially for the Laplacian operator. We have found that
an incomplete LU preconditioner makes iterative methods viable.

In addition to these major topics, we have included additional information
throughout the thesis including somewhat novel notation, comparison of bound-
ary conditions and null-space specification of problems with boundary condi-
tions, results relating the continuous and discrete null spaces, and discussion of
why orthogonalization does not always maintain accuracy of a null basis.

This work lays the foundation for much additional research. Specifically, the
null-space approach to solving differential equations gives additional motivation
for finding large, sparse, well-conditioned null bases and for developing code that
will be effective for large problems. Many papers discuss algorithms for finding
sparse null bases, and the authors must have programmed some implementation
for obtaining results for their papers, but as far as we know, these algorithms
have not resulted in code that is publicly accessible. The implementation we
have been using, which includes the turnback method and its variations, becomes
slow for larger problems and faces ill-conditioning as the problem size grows,

131

leaving room for improvement. Related to the problem of finding a null basis
is the task of improving the conditioning of a basis without resorting to an
orthogonalization routine and the resulting fill. While we have already addressed
that issue in some detail, we believe there may be even better heuristics or a
method that creates a null basis that offers a somewhat sparse, well-conditioned
null basis, perhaps along the lines of an orthogonalized turnback method. (We
have begun some preliminary work on such a method, but this work is premature
to present at this point.) Another avenue for research in this area would involve
a deeper look at graph algorithms, such as those used in [4, 15].

In addition to improving general methods for finding a null basis, an inter-
esting extension of our work would be to find explicit null bases for additional
operators, discretizations, and domains. Our work with explicit bases is limited
to square and cubic domains with uniform discretizations. It is possible that
these formulas could be generalized to less specific domains. Or, perhaps these
formulas could be generalized to tetrahedral elements from the cubic elements
used in our application. As we showed in our work, explicit null bases are ex-
tremely fast in comparison to general methods for computing null bases; progress
in generalizing explicit null bases would speed up null-space methods for a va-
riety of problems, lending additional credence to the use of null-space methods
instead of conventional methods with approximated boundary conditions. The
use of different elements may assist in this endeavor. Nedelec elements [27, 39],
for example, are chosen to include functions that are in the null space of the
curl operator.

Finally, while we have laid the foundation for the null-space approach and
have proved fundamental theorems regarding the discretized linear system, more
questions wait to be answered about the relationship between discrete and con-
tinuous null bases. For example, how do the explicit, discrete null vectors corre-
late to continuous functions in the null space? Can a discretization be chosen so
that discretized null functions are null vectors? In higher dimensional problems,
which of the infinite number of null functions should be represented by the finite
number of null vectors? The answer to this last question may lie in a study of
n-widths, which are used in approximation theory [41].

This research explores a new approach to solving differential equations and
opens the door for future avenues of research. In many ways this thesis is not a
conclusion but is a beginning of other work to come.

132

A Derivations and
Computations

This appendix provides derivations that verify claims in the thesis and that may
be of interest to the reader but are not important to following the text.

A.1 Null-Space Portion of 3-D Curl Problem

As explained in Section 6.2.4, the 3-D curl problem matrix is of dimension
3(n−2)3×3n3 and has a null space of dimension n3 +6n2 +12n−40. Assuming
the extra row dependencies are removed from the original matrix, we simply
take the dimension of the null space over the number of columns (3n3) to find
what percent of the problem is composed of null-space constraints. Specifically,

n3 + 6n2 + 12n− 40
3n3

.

For the value n = 10, this fraction evaluates to 1680/3000 = 0.56 or 56 percent.
For n = 100, the fraction evaluates to 1061160/3000000 ≈ 0.35 or about 35
percent. Using L’Hopital’s rule, we can calculate

lim
n→∞

n3 + 6n2 + 12n− 40
3n3

=
1
3
.

Thus, the null-space criterion determines at least one-third of the constraints
for the problem.

The result is similar when extra row dependencies in the original matrix are
not removed. In this case, the total number of rows is 3(n−2)3+n3+6n2+12n−
40 = 4n3 +24n−64, and in the limit, the null-space constraints provide at least
one-fourth of the rows. While the percentage of rows given by the null-space is
smaller in this calculation than in the previous case, the percentage of unique
constraints that the null-space adds to the linear system is still one-third of the
total.

A.2 Number of Operations for Turnback

Method

Assume our original problem matrix D is of dimension m × p with m < p.
The turnback method begins with a QR factorization of the matrix. That
factorization requires on the order of m2p −m3/3 operations. Then, for each

133

null vector, turnback computes a small QR factorization of dimension (number
of “active rows”) by (number of nonzeros in null vector). We will assume all
rows are active (m), that all null vectors have approximately k nonzero values
with k < m, and that the original matrix has full row rank. For each of our p−m
null vectors, then, we have a factorization requiring O(k2m− k3/3) operations
for a total on the order of (k2m− k3/3)(p−m) = k2(mp−m2)− k3/3(p−m).
Adding in the original QR factorization, we have a total number of operation
of O(m2p−m3/3 + k2(mp−m2)− k3/3(p−m).

The expression above does not tell us much; the added variable just adds
complexity to the formula. If we assume additional information about k, we
can more easily compare this result with others involving only p and m. In
a good scenario, k will be proportional to

√
p. In this case, our number of

operations is O(mp2 − 1/3(m3 + p5/2 −mp3/2)). In the best scenario, k might
be proportional to some constant independent of p. Assuming that, we obtain
a number of operations of O(m2p−m3/3+mp−m2) when we drop lower order
terms.

These results do not take into consideration any operations required for
variants of the turnback that track and search information about columns at
each step of the algorithm, however, those added operations presumably will be
balanced out by smaller QR factorizations and thus result in fewer or a similar
number of operations overall. That said, these numbers are approximations
based on the assumptions we made, and may not be valid for some problems.

A.3 Proof That Alternate Form of Linear

System Is Full Rank

In this section we prove that the linear system given in equation (7.2) is non-
singular for discrete sampling and linear combination approximations. For ref-
erence, the equation is [

DT D Ẑ

ẐT 0

] [
x

y

]
=
[

DT a

b

]
,

with D an m×p matrix of rank k, Z an p×p−k matrix that is a null basis for D

and Ẑ given by Φ∗ΦZ, where Φ contains linearly independent basis functions,
implying that Φ∗Φ is symmetric positive definite.

Lemma 17 The matrix of the linear system in (7.2), derived from an opti-
mization perspective of the linear system produced by the null-space approach
for solving differential equations, is nonsingular for discrete sampling and lin-
ear combination approximations.

Proof: We consider this blocked system as two sets of columns. First, we
note that the product DT D can be considered a set of linear combinations of

134

the columns of DT or as a set of linear combinations of the rows of D. Further,
the product has rank k. (We omit the proof that rank(DT D) = k which can
be shown using SVD’s of both matrices.)

Since DT D is a set of linear combinations of the rows of D, Z contains
valid null vectors, and the left half of the matrix above,[

DT D

ẐT

]
,

has full rank by application of Lemma 3 in Chapter 5. By symmetry, we can
also conclude that the top half of the matrix,

[DT D Ẑ] ,

has full row rank of p. Since DT D has rank k, Ẑ has p − k columns that are
linearly independent from columns of DT D. Therefore, the right half of our
matrix, [

Ẑ

0

]
,

is linearly independent from the left half and has rank p − k. The total rank,
then, is p + p − k = 2p − k, which is the dimension of our matrix. Thus, the
matrix is nonsingular.

A.4 Accuracy After Orthogonalization

In Section 6.3, we consider methods for finding a null basis that include a pri-
mary method producing a sparse null basis followed by a subsequent QR factor-
ization. In some cases, the subsequent QR factorization reduced the accuracy of
the basis (using Q as the basis). That is, the null residual values degraded as the
problem size increased. Investigation has demonstrated that the ill-conditioning
of the null basis contributes to, if not entirely causes, this trend. (Since there
is some rounding error in the process of factorization, ill-conditioning may not
be the only contributing factor. See [31, 57] for more information on rounding
error in QR factorization.)

Consider the product F of our original matrix A and our explicit null basis
Z. We have observed that the null residual is approximately machine precision,
ε, that is,

‖F ‖ = ‖AZ‖ = O(ε)‖A‖‖Z‖.

Supposing we have an exact QR factorization of Z, we have

‖F ‖ = ‖AQR‖ = O(ε)‖A‖‖Q‖‖R‖.

135

Setting G = AQ = FR−1, we have

‖G‖ ≤ ‖F ‖‖R−1‖ ≤ O(ε)‖A‖‖Q‖κ(R),

where κ(R) is the condition number of R. Ill-conditioning of Z will appear in
the R factor of the QR factorization; it follows that the null residual of AQ

may be large when the original null basis is ill-conditioned.

136

References

[1] A. Acharya. A model of crystal plasticity based on the theory of continu-
ously distributed dislocations. J. Mech. Phys. Solids, 49:761–784, 2001.

[2] A. Acharya. Dislocation mechanics and homogenized plasticity – applied
mathematical research in multiscale crystal defect physics. White paper,
2002.

[3] I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. Data struc-
tures and programming techniques for the implementation of Karmarkar’s
algorithm. ORSA J. Comput., 1:84–106, 1989.

[4] M. Arioli, J. Maryska, M. Rozloznik, and M. Tuma. Dual variable methods
for mixed-hybrid finite element approximation of the potential fluid flow
problem in porous media. Electronic Trans. Numer. Anal., 22:17–40, 2006.

[5] Z. Battles and L. N. Trefethen. An extension of MATLAB to continuous
functions. SIAM J. Sci. Comput., 25:1743–1770, 1994.

[6] M. W. Berry, M. T. Heath, I. Kaneko, M. Lawo, R. J. Plemmons, and R. C.
Ward. An algorithm to compute a sparse basis of the null space. Numer.
Math., 47:483–504, 1985.

[7] P. Bochev and R. B. Lehoucq. On the finite element solution of the pure
Neumann problem. SIAM Review, 47:50–66, 2005.

[8] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The
Matrix Market: A web resource for test matrix collections. In Ronald F.
Boisvert, editor, Quality of Numerical Software, Assessment and Enhance-
ment, pages 125–137, London, 1997. Chapman & Hall.

[9] R. A. Brualdi, S. Friedland, and A. Pothen. The sparse basis problem and
multilinear algebra. SIAM J. Matrix Anal. Appl., 16:1–20, 1995.

[10] G. F. Carrier and C. E. Pearson. Partial Differential Equations: Theory
and Technique. Academic Press, San Diego, CA, 1976.

[11] S. F. Chang and S. T. McCormick. A hierarchical algorithm for making
sparse matrices sparser. Math. Prog., 56:1–30, 1992.

[12] S. F. Chang and S. T. McCormick. Implementation and computational
results for the hierarchical algorithm for making sparse matrices sparser.
ACM Trans. Math. Soft., 19(3):419–441, 1993.

[13] K. Chen. Matrix Preconditioning Techniques and Applications. Cambridge
University Press, Cambridge, UK, 2005.

[14] T. F. Coleman and A. Pothen. The null space problem I: Complexity.
SIAM J. Algebraic Discrete Meth., 7:527–537, 1986.

137

[15] T. F. Coleman and A. Pothen. The null space problem II: Algorithms.
SIAM J. Algebraic Discrete Meth., 8:544–563, 1987.

[16] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank. Approximate inverse
preconditioning for sparse linear systems. Int. J. Comput. Math., 44:91–
110, 1992.

[17] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadel-
phia, PA, 2006.

[18] C. de Boor. An alternative approach to (the teaching of) rank, basis, and
dimension. Linear Algebra Appl., 146:221–229, 1991.

[19] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse
Matrices. Oxford University Press, New York, 1986.

[20] T. A. Elkins. Orthogonal harmonic functions in space. Proc. Amer. Math.
Soc., 8:500–509, 1957.

[21] A.S. Farooqui. A complete set of orthonormal harmonic functions. SIAM
J. Math. Anal., 4:309–313, 1973.

[22] R. A. Fiedler and J. C. Norris. Rocketeer User’s Guide, 2005. http://
www.csar.uiuc.edu/rocstar/rocketeer/.

[23] A. George and J. W.-H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

[24] J. R. Gilbert and M. T. Heath. Computing a sparse basis for the null space.
SIAM J. Algebraic Discrete Meth., 8:446–459, 1987.

[25] J. Gondzio. Presolve analysis of linear programs prior to applying an inte-
rior point method. INFORMS J. Comput., 9:73–91, 1997.

[26] N. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners
using norm-minimization techniques. SIAM J. Sci. Comput., 19:605–625,
1998.

[27] M. Hano, H. Komatsu, and K. Taniguchi. Systematic construction of three-
dimensional ultra high order Nedelec’s elements. IEEE Trans. on Magnet-
ics, 36:1623–1626, 2000.

[28] A. K. Head, S. D. Howison, J. R. Ockendon, and S. P. Tighe. An equilibrium
theory of dislocation continua. SIAM Review, 35:580–609, 1993.

[29] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill,
New York, 2nd edition, 2002.

[30] M. T. Heath, R. J. Plemmons, and R. C. Ward. Sparse orthogonal schemes
for structural optimization using the force method. SIAM J. Sci. Stat.
Comput., 5:514–532, 1984.

[31] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 1996.

[32] A. J. Hoffman and S. T. McCormick. A fast algorithm that makes matrices
optimally sparse. In Progress in Combinatorial Optimization, pages 185–
196. Academic Press, New York, 1984. W. R. Pulleyblank, ed.

138

[33] D. Hull and D. J. Bacon. Introduction to Dislocations. Pergamom Press,
Elmsford, NY, 3rd edition, 1984.

[34] I. Kaneko, M. Lawo, and G. Thierauf. On computational procedures for
the force method. Internat. J. Numer. Meth. Engrg., 18:1469–1495, 1982.

[35] C. Lanczos. Linear Differential Operators. Dover, New York, 1997. (Reprint
of 1961 edition).

[36] J. Lemaitre and J.-L. Chaboche. Mechanics of Solid Materials. Cambridge
University Press, Cambridge, UK, 2000. (Translated from French by B.
Shrivasta), (Reprint of 1990 edition).

[37] S. T. McCormick. Making sparse matrices sparser: Computational results.
Math. Prog., 49:91–111, 1990.

[38] J. A. Meijerink and H. A. Van Der Vorst. An iterative solution method for
linear systems. Math. Comp., 31:148–162, 1977.

[39] J. C. Nedelec. Mixed finite elements in R3. Numer. Math., 35:315–341,
1980.

[40] E. Pergola and R. A. Sulanke. Schröder triangles, paths, and parallelogram
polyominoes. J. Integer Sequences, 1, 1998. Article 98.1.7.

[41] A. Pinkus. n-Widths in Approximation Theory. Springer-Verlag, Berlin,
Germany, 1985.

[42] R. J. Plemmons and R. E. White. Substructuring methods for computing
the nullspace of equilibrium matrices. SIAM J. Matrix Anal. Appl., 11:1–
22, 1990.

[43] A. Pothen. Sparse null basis computations in structural optimization. Nu-
mer. Math., 55:501–519, 1989.

[44] A. Roy and A. Acharya. Finite element approximation of field dislocation
mechanics. J. Mech. Phys. Solids, 53:143–170, 2005.

[45] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual al-
gorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput.,
7:856–869, 1986.

[46] H. M. Schey. div, grad, curl and all that. W. W. Norton & Company, New
York, 3rd edition, 1997.

[47] C. Siefert and E. de Sturler. Preconditioners for generalized saddle-point
problems. SIAM J. Numer. Anal., 44:1275–1296, 2006.

[48] N. J. A. Sloane. The on-line encyclopedia of integer sequences, 2005.
http://www.research.att.com/∼njas/sequences/, see sequences A033877,
A006318, A072335.

[49] J. Stern and S. Vavasis. Nested dissection for sparse nullspace bases. SIAM
J. Matrix Anal. Appl., 14:766–775, 1993.

[50] G. W. Stewart. Afternotes Goes to Graduate School: Lectures on Advanced
Numerical Analysis. SIAM, Philadelphia, PA, 1998.

[51] G. W. Stewart. Error analysis of the quasi-Gram-Schmidt algorithm. 2004.
Institute for Advanced Computer Studies, University of Maryland, TR-
2004-17.

139

[52] A. Topcu. A contribution to the systematic analysis of finite element struc-
tures through the force method. PhD thesis, University of Essen, Germany,
1979. (in German).

[53] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, Philadel-
phia, PA, 1997.

[54] A. Tveito and R. Winther. Introduction to Partial Differential Equations:
A Computational Approach. Springer-Verlag, New York, 1998.

[55] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci.
Comput., 13:631–644, 1992.

[56] S. N. Varadhan, A. J. Beaudoin, A. Acharya, and C. Fressengeas. Disloca-
tion transport using an explicit Galerkin/least-squares formulation. Mod-
elling Simul. Mater. Sci. Eng., 14:1245–1270, 2006.

[57] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press,
London, England, 1965.

[58] J. R. Willis. Second-order effects of dislocations in anisotropic crystals. Int.
J. Engng. Sci., 5:171–190, 1967.

[59] X. Ye and C. A. Hall. The construction of a null basis for a discrete
divergence operator. J. Comput. Appl. Math., 58:117–133, 1995.

140

Author’s Biography

Hanna Joy Neradt was born and raised in Illinois, the sixth of seven children
of Richard and Albertha Vander Zee. Except for the time she spent at George
Washington University in 1999 for the Summer Program for Women in Mathe-
matics, Hanna has lived exclusively in Illinois, achieving a B.A. in mathematics
and computer science in 2000 at Trinity Christian College in Palos Heights and
subsequently pursuing doctoral work in computer science at the University of
Illinois at Urbana-Champaign (UIUC). Her final year at Trinity, Hanna was
chosen to be the student laureate to the Lincoln Academy for her class, and
at UIUC she was named both an Illiac Fellow and a SURGE (Scholarship for
Under-Represented Groups in Engineering) Fellow. Hanna recently married
Brian Neradt and plans to take time to be a mom after finishing her doctoral
degree.

141

