-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

Transfer Learning using Kolmogorov Complexity:
Basic Theory and Empirical Evaluations

M. M. Hassan Mahmud Sylvian R. Ray
Department of Computer Science Department of Computer Science
University of lllinois at Urbana-Champaign University of lllinois at Urbana-Champaign
nmmahnud@i uc. edu ray@s. ui uc. edu

Abstract

In transfer learning we aim to solve new problems quicker §ipgiinformation
gained from solving related problems. Transfer learning lbeen successful in
practice, and extensive PAC analysis of these methods tessdeyeloped. How-
ever it is not yet clear how to define relatedness betwees tdsks is considered
as a major problem as, aside from being conceptually trogbiti makes it unclear
how much information to transfer and when and how to trarisfén this paper
we propose to measure the amount of information one taskirtsabout another
using conditional Kolmogorov complexity between the taskfée show how ex-
isting theory neatly solves the problem of measuring relaéss and transferring
the ‘right’ amount of information in sequential transfeataing in a Bayesian set-
ting. The theory also suggests that, in a very formal andigeesense, no other
transfer method can do much better than the Kolmogorov Cexitgltheoretic
transfer method, and that sequential transfer is alwayi$igts We also develop a
practical approximation to the method and use it to trarisfermation between
8 arbitrarily chosen databases from the UCI ML repository.

1 Introduction

The goal of transfer learnirld] is to learn new tasks with fewer examples given informatiaimgd
from solving related tasks, with each task correspondinthéodistribution/probability measure
generating the samples for that task. The study of transferotivated by the fact that people use
knowledge gained from previously solved, related problensslve new problems quicker. Transfer
learning methods have been successful in practice, fanestit has been used to recognize related
parts of a visual scene in robot navigation tasks, predicards in related regions in reinforcement
learning based robot navigation problems, and predictasglts of related medical tests for the
same group of patients. Figure 1 shows a prototypical teametthod 1], and it illustrates some
of the key ideas. The: tasks being learned are defined on the same input space,earelaied by
virtue of requiring the same common ‘high level feature€@dted in the hidden units. The tasks are
learned in parallel - i.e. during training, the network &itied by alternating training samples from
the different tasks, and the hope is that now the common leigg features will be learned quicker.
Transfer can also be done sequentially where informatiom fiasks learned previously are used to
speed up learning of new ones.

Despite the practical successes, one key question thaludexdeanswer is how one measures re-
latedness between tasks. Most current methods, includmgxtended PAC theoretic analysis in
[2], start by assuming that the tasks are related because theyltammon near-optimal inductive
bias (the common hidden units in the above example). As nlicéxpeasure of relatedness is pre-
scribed, it becomes difficult to answer questions such asrhoweh information to transfer between
tasks and when not to transfer information.

https://core.ac.uk/display/4820581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Output Layer:
- 1unit for each task
Task specific

Weights

Hidden Layer

Weights shared
amongst tasks

Input Layer

Figure 1: A typical Transfer Learning Method.

There has been some work which attempts to solve these prshl@] gives a more explicit mea-
sure of task relatedness in which two tagkand(@ are said to be similar with respect to a given set
of functions if the set contains an elemgrguch that’(a) = Q(f(a)) for all events:. By assuming

the existence of these functions, the authors are able teedeAC sample complexity bounds for
error of each task (as opposed to expected error, w.r.t trdbdison over them tasks, in[2]). More
interesting is the approach [#], where the author derives PAC bounds in which the sample com-
plexity is proportional to the joinkolmogorov complexitjs] of them hypotheses. So Kolmogorov
complexity (see below) determines the relatedness bettesis. However, the bounds hold only
for > 8192 tasks (Theorem 3).

In this paper we approach the above idea from a Bayesian guigp and propose to measure
the relatedness between tasks using conditional Kolmegoomplexity of the hypothesis. We

show how existing theory justifies this approach and neatlyes the problem of measuring task
relatedness. We then we perform experiments to show thetigffaess of this method.

Let us take a brief look at our approach. We assume that eauditlingsis is represented by a program
- for example a decision tree is represented by a progranctimiains a data structure representing
the tree, and the relevant code to compute the leaf nodespameling to a given input vector. The
Kolmogorov complexity of a hypothests(or any other bit string) is now defined as the length of the
shortest program that outputsyiven no input. This is a measure of absolute informatiornieatof

an individual object - in this case the hypothésidt can be shown that Kolmogorov complexity is
a sharper version of Information Theoretic entropy, whidasures the amount of information in an
ensemble of objectsith respect to aistributionover the ensemble. The conditional Kolmogorov
complexity of hypothesié givenh’, K (h|h'), is defined as the length of the shortest program that
outputs the program givenh’ as input. K (h|h') measures amount @onstructiveinformation

h' contains about - how much informatior,’ contains for the purpose of constructihg This

is precisely what we wish to measure in transfer learningndeethis becomes our measure of
relatedness for performing sequential transfer learmirtgé Bayesian setting.

In the Bayesian setting, any sequential transfer learnieghanism/algorithm is ‘just’ a conditional
prior W (-|h") over the hypothesis/probability measure space wheigthe task learned previously

- i.e. the task we are trying to transfer information from.this case, by setting the prior over the
hypothesis space to be(.|n/) := 2-K(1") we weight each candidate hypothesis by how related it
is to previous tasks, and so we automatically transfer tite Emount of information when learning
the new problem. We show that in a certain precise sense ftbisip never much worse than any
transfer learning prior, or any non-transfer prior. So,ugadial transfer learning is always justified
from a theoretical perspective. Due to space constraislonot describe parallel transfer learning
in this setting , but note that while similar results holdparallel transfer learning, unlike sequential
transfer, it cannot be said to be always justified.

Kolmogorov complexity is computable only in the limit (i.@ith infinite resources), and so, while
ideal for investigating transfer in the limit, in practiceweed to use an approximation of it (§6f
for a good example of this). In this paper we perform transf@ayesian decision trees by using a
fairly simple approximation to the=* (1) prior.

In the rest of the paper we proceed as follows. In section 3efiael Kolmogorov complexity more
precisely and state all the relevant Bayesian convergesstdtifor making the claims above. We
then describe our Kolmogorov Complexity based Bayesiamsfea learning method. In section 4
we describe our method for approximation of the above usiageBian decision trees, and then in
section 5 we describ&2 transfer experiments usirystandard databases from the UCI machine

learning repository7]. Our experiments are the most general that we know of, inghsesthat we
transfer between arbitrary databases with little or no sdimeelationships.

2 Preliminaries

We consider Bayesian Transfer Learning for finite input egd¢ and finite output space8;. We
assume finite hypothesis spadés where eaclh € H; is a conditional probability measure @n,
conditioned on elements @. So fory € O; andx € Z;, h(y|x) gives the probability of output
beingy given inputz. GivenD,, = {(z1,y1), (z2,y2), - , (Zn,yn)} fromZ; x O;, the probability
of D,, according toh € H; is given by:

W(Dy) =[] h(wilz:)

=1
The conditional probability of a new sample,c.,, Ynew) € Z; X O; is given by:

h(Dn U {(Inewa ynew)})
h(D.)

h(ynew|xnewaDn) = (21)

So the learning problem is: given a training samplg where for eacliz, y.) € D., v is assumed
to have been chosen according & H;, learnh. The prediction problem is to predict the label of
new sampler,,.,, using (2.1). We are not really interested in how the are generated, we only
assume they are given to us. This is merely the standard Baysstting, translated to a typical
Machine learning setting (e.{8]).

We use MCMC simulations in a computer to sample for our Bayektarners, and so considering
only finite spaces above is acceptable. However, the theepresent here holds for any hypothesis,
input and output space that may be handled by a computer mfitiite resources (sd®; 10 for
more precise descriptions). Note that we are consideringsedomain transfé¢d 1] as our standard
setting (see section 6). We further assume that éaeh’; is a program (therefore a bit string)
for some Universal prefix Turing machii& When it is clear that a particular symbhobtlenotes a
program, we will writep(z) to denote/(p,), i.e. running prograrp on inputz.

3 Transfer Learning using Kolmogorov Complexity

3.1 Kolmogorov Complexity based Task Relatedness

A program is a bit string, and a measure of absotidastructiveinformation that a bit string:
contains about another bit stringis given by the conditional Kolmogorov complexity ofgiven
y. Since our hypotheses are programs/bit strings, the anaflinformation that a hypothesis or
programh’ contains about constructing another hypothgsgsalso given by the same:

Definition 1. The conditional Kolmogorov complexity bfe H; givenh’ € H; is defined as the
length of the shortest program that given the progra@nas input, outputs the program

K(h|W) = InTiIl{l(T) cr(h') = h}

As mentioned in the Introduction, Kolmogorov complexityaisharper version of information the-
oretic measures of informatidid]. We will use a minimality property of. Let f(z,y) be a

computable function over product of bit stringg.is computable means that there is a proggam
such thatp(xz,n), n € N, computesf(z) to accuracy < 2" in finite time. Now assume that

f(z,y) satisfiesy" 2=/(®¥) < 1. Then for a constant, independent of andy,:
K(zly) < f(z,y) +¢ (3.1
3.2 Bayesian Convergence Results

A Bayes mixtureM overH; is defined as follows:

My (Dy,) ==Y h(Dn)W(h) with Y~ W(h) <1
heH; heH;

(the inequality is sufficient for the convergence result)w assume that the data has been gener-
ated by ah; € H; (this is standard for a Bayesian setting, but we will relas ttonstraint below).
Then the following extraordinary result has been shown 1d trae for eacHz, y) € Z; x O,.

> hi(D)[Mw (ylz, Di) = hj(yle, Dy)]* < —log W (hy) Inv/2. (3.2)
t=0 D,

That is, theh; expected squared error goes to zero faster than(as long as:; is not assigned

a 0 probability byW). This result was first proved for the set of all lower seminpuitable semi-
measures ifl12] and then extended to arbitrary enumerable subsets of |@mgrcomputable semi-
measures (and hence all possibigs) over finite alphabets and bounded loss functiod8jin[9]
has also shown that Bayes mixtures are Pareto optimal. émntire, it is not necessary that the
generating probability measubg be in;. The only requirement is that there bé'ac H; such
that thet!” order KL divergence betweery and?’; is bounded byk. In this case the error bound is
—log(kW (h;))In /2 (seel9, section 2.5. A particularly interesting prior in the above case is the
Solomonoff-Levin prior2~ %), Now, for any computable prid# (%), by the minimality property
(3.1) (settingy = the empty string in (3.1)):

K(h) < —logW(h)+¢ (3.3)

By (3.2), this means that the error bound for’*(*) prior can be no more than a constant worse
than the error bound for any any other prior. So this priamiersally optimal[9, section 5.B(and
interestingly, a direct and explicit instantiation of Ootarazor).

3.3 Bayesian Transfer Learning

Assume we have previously observed/learned 1 tasks, with task; € H;,, and them!" task to

be learned is it{;,,. Lett := (t1,t2,--- ,tm—1). In the Bayesian framework, a transfer learning
scheme corresponds to a computable prigf|t) over the spacét;,, ,
> W) <1
heH;,,

In this case, by (3.2), the error bound of the transfer leayschemé\ly, (defined by prioil) is
—log W (h|t) In /2. We now choose as our priar X(It) that is we define our transfer learning
methodM+;, as:
Mpp(Dy) = > h(Dy)2 K*9,
hEHi,,

For My, the error bound ig¢ (h]t) In /2. By the minimality property (3.1), we get that
K(h|t) < —logW (h|t) + ¢

That is the error bound fobry, is no more than a constant worse than the error bound for any
computable transfer learning schemgy - i.e. My, is universally optimalsee[9, section 5.8.

Also note that in generdk (z|y) < K (z)'. Therefore by (3.3) the transfer learning schefig;,

is also universally optimal over all non-transfer learngafpjemes - i.e. in this precise formal sense
of the framework in this paper, sequential transfer leayisralways justified

4 Practical Approximation using Decision Trees

Since K is computable only in the limit, to apply the above ideas iagtical situations, we need
to approximates and hencél;. Furthermore we also need to specify the spa¢g;, Z; and
how to sample from the approximation &f;;. We address each issue in turn.

'Becausewrg K (), with a constant length modification, also outputgiven inputy.

4.1 Decision Trees

We will consider standard binary decision trees as our Hggis spaces . Each hypothesis space
‘H; consists of decision trees f@r defined byf; features. A treé € H;is defined recursively:

h:= Nyo0t

_ i i g
nj:=7r;C;00|r;Cjn} 0|r; C;dny|r; C;jn] nj,

C is a vector of size®;|, with componenC; giving the probability of the'” class. Each rule is
of the form f < v, wheref € f; andv is a value forf. The vectorC is used during classification
only when the corresponding node has one or nflcgkildren. The size of each tree ¥c, where
N is the number of nodes, ang is a constant, denoting the size of each rule entry, the augo
pointers, andC. Sincecy and the length of the program cogg for computing the tree output are
constants independent of the tree, we define the length ekt (h) := N.

4.2 Approximating K and Prior 2~ K(It)

Approximation for a single previously learned tre@/e will approximateK (.|.) using a function
that is defined for a single previously learned tree as fatow

Cra(h|W) == 1(h) — d(h,)

whered(h, k') is maximum number of overlapping nodes starting from the noades:
d(h,h") = d(Droot, 0, pyr) d(n,0) :=0
d(n,n’) :=1+d(ng,n}) + d(ng,nk) d(®,n") =0

In the single task case, the prior is j@st!(®) /Z; (which is an approximation to the Solomonoff-
Levin prior 2-5()), and in the transfer learning case, the priogig’«(1") /Z, where theZs

are normalization termds In both cases, we can sample from the prior directly by gngwthe
decision tree dynamically. Callfin 4 a hole. Then foe—'("), during the generation process, we
first generate an integéraccording t2 ¢ distribution (easy to do using a pseudo random number
generator). Then at each step we select a hole uniformlydbra and then create a node there with
two more holes and the rule generated randomly.

In the transfer learning case, for pripr©<(2I"") we first generate an integérthat according to
2t distribution. Then we generate as above until we get a/tnegh C'(h|h') = K'. It can be seen
with a little thought that these procedures sample froméispective priors.

Approximation for a multiple previously learned tredse defineC;; for multiple tasks as an aver-
aging of the contributions of eaeh — 1 previously learned trees:

m—1
. B 1 —Cra(hm|hi)
Cld(hmlhlahQahm—l)__IOg (m_l 22 Ld

i=1

In the transfer learning case, we need to sample accozdifig - /Z¢» which reduces ta/[(m—
1) Zep] S0t 27l - To sample from this, we can simply select one of the- 1 trees at
random and then use the procedure for sampling f2offi« to get the new tree.

The transfer learning mixturefhe approximation of the transfer learning mixtuee-;, is now:

Prp(Dp) = Y h(Dy)2=CdthY)) z0m
hEHim

So by (3.2), the convergence rate ;. is given byC/% (h|t) Inv/2 + log Z¢,, (thelog Z¢,, is

a constant that is same for &lle 7;). So when using’};, universality is maintained, but only up
to the degree that;? approximateds. In our experiments we actually used the exporiebi5—¢
instead o2~¢ above to speed up convergence of our MCMC method.

>The Z’s exist, here becausks are finite, and in general because= Nco + [(po) gives lengths of
programs, which are known to satis}y . 27k <1,

Table 1: Metropolis-Hastings Algorithm

=]

1. Let D, be the training sample; select the current tree/state using the proposal distributiq
q(heur).
2. Fori=1toJdo

(a) Choose a candidate next stafg,, according to the proposal distributigii/i,,op)-
(b) Draww uniformly at random fronf0, 1] and seticur := hprop if A(hprop, heur) > u, Where

Ais defined by
—C(hlt) (17
A(h,b') = min { 1, UPn)2" 1" —a(h')
h' (D)2 Cd ™19 g(n)

4.3 Approximating Pry using Metropolis-Hastings

As in standard Bayesian MCMC methods, the idea will be to dasamples,,,, from the poste-
rior, P(h|D,,, t) which is given by

P(h|Dy,t) == h(D,,)2~ S0 /(Zew P(D,))

Then we will approximaté’r;, by
X 1 &
Pri(ylz) = N ; o, (yl)

We will use the standard Metropolis-Hastings algorithmample fromPr;, (see[13] for a brief
introduction and further references). The algorithm isgiin table 1. The algorithm is first run for
someJ = T, to get the Markov chain x A to converge, and then starting from the Iast, in the

run, the algorithm is run again fof = IV times to getV samples for... In our experiments we
setT to 1000 and N = 50. We sely to our prior2~ i /Zcyy, and hence the acceptance probability
Alis reduced tanin{1, h(D,,)/h'(D,,)}. Note that every time after we generate a tree according to
q, we set theC entries using the training samplg, in the usual way.

5 Experiments

We used) databases from the UCI machine learning reposit@ryn our experiments (table 2). To
show transfer of information we used ord9% of the data for a task as a training sample, and then
improved its performance using classifiers trained on arddsk usin@g0% of the data as training
sample. Each reported error rate are on the testing sets@aaderages ovei) runs . To the best of
our knowledge our transfer experiments are the most geperédrmed so far, in the sense that the
databases information is transferred between have samefdtionship that is at best superficial,
and often non-existent.

We performed3 sets of experiments In the first set we learned each clasagiag 80% of the
data as training sample ard% as testing sample (since it is a Bayesian method, we did ot us
a validation set). This set ensured that our Bayesian fissiith 2-C:<(") prior is reasonably
powerful and that any improvement in performance in thedi@nexperiments (set 3) was due to
transfer and not deficiency in our base classifier. From aesun¥ literature it seems the error rate
for our classifier is always at least a couple of percentag@pbetter than C4.5. As an example,
for ecoli our classifier outperforms Adaboost and Random Foredi&4h but is a bit worse than
these forGerman Credit

In the second set of experiments we learned the databasegetlase going to transfer to usifg%

of the database as training sample, & of the data as the testing sample. This was done to
establish baseline performance for the transfer learrisg.cThe third and final set of experiments
were performed to do the actual transfer. In this case, firettask was learned usigg,/20 (80%
training,20% testing) data set and then this was used to le&®y/a0 dataset. During transfer, the

Table 2: Database summary. The last column gives the eristandard deviation for 80/20
database split.

Data Set No. of Samples No. of Feats. No. Classes Error/S.D|
Ecoli 336 7 8 9.8%, 3.48
Yeast 1484 8 10 14.8%, 2.0
Mushroom 8124 22 2 0.83%, 0.71
Australian Credit 690 14 2 16.6%, 3.75
German Credit 1000 20 2 28.2%, 4.5
Hepatitis 155 19 2 18.86%, 2.03
Breast Cancer,Wisc. 699 9 2 5.6%,1.9
Heart Disease, Cleve. 303 14 5 23.0%, 2.56

N trees from the sampling of th&)/20 task were all used in the pridrcﬁ(-). The results are
given in table 3. In our experiments, we transferred onlyagks that showed a drop in error rate
with the 20/80 split. Surprisingly, the error of the other data sets didei@tnge much.

As can be seen from comparing the tables, in most casesdrasfdhformation improves the per-
formance compared to the baseline transfer caseeé¢; the transfer resulted in improvement to
nears0/20 levels, while foraustralianthe improvement was better than/20. While the error rate
for mushroomandbc-wiscdid not move up t@®0/20 levels, there was improvement. Interestingly
transfer learning did not hurt in one single case, which egreith our theoretical results in the
idealized setting.

Table 3: Results of2 transfer experiment3ransfer ToandFromrows gives databases information
is transferred to and from. The roMo-Transfergives the baselin0/80 error-rate and standard
deviation. RowTransfergives the error rate and standard deviation after tranasifer the final row
Pl gives percentage improvement in performance due to trangféh our admittedly inefficient
code, each experiment took betweén- 60 seconds on a.4 GHz laptop with512 MB RAM.

Trans. To ecoli Australian
Trans. From Yeast Germ. BC Wisc Germ. ecoli hep.
No-Transfer | 20.6%,3.8 | 20.6%,3.8 | 20.6%,3.8 23.2%, 2.4 23.2%, 2.4 23.2%, 2.4
Transfer 11.3%,1.6 | 10.2%,4.74 | 9.68%,2.98 | 15.47%,0.67 | 15.43%,1.2 | 15.21%, 0.42
Pl 45.1% 49% 53% 33.0% 33.5% 34.4%
Trans. To mushroom BC Wisc.
Trans. From ecoli BC Wisc. Germ. heart Aus. ecoli
No-Transfer | 13.8%,1.3 | 13.8%,1.3 | 13.8%,1.3 10.3%, 1.6 10.3%, 1.6 10.3%, 1.6
Transfer 4.6%,0.17 | 4.64%,0.21 | 3.89%,1.02 | 8.3%,0.93 8.1%,1.22 7.8%,2.03
Pl 66.0% 66.0% 71.8% 19.4% 21.3% 24.3%

6 Discussion

In this paper we introduced a Kolmogorov Complexity theisrislamework for Transfer Learning.
The theory is universally optimal and elegant, and we shatsgutactical applicability by construct-
ing approximations to it to transfer information acrosgdismte domains in standard UCI machine
learning databases. We note here that the theoreticabpastithis paper is largely an adaptation
of existing theory to a transfer setting. Because of spaostcaints we describe the full develop-
ment of the theory if15]. Directions for future empirical investigations are maye did not
consider transferring from multiple previous tasks, arfdafof size of source samples on transfer
performance (using0/30 etc. as the sources) or transfer in regression. Due to therglemature

of our method, we can perform transfer experiments betwagrcambination of databases in the
UCI repository. We also wish to perform experiments usingemmowerful generalized similarity
functions like the gzip compressk#]®.

We also hope that it is clear that Kolmogorov complexity loeasgproach elegantly solves the prob-
lem of cross-domain transfer, where we transfer infornmabetween tasks that are defined over
different input,output spaces and distributions. To thet loé our knowledge, the first paper to ad-
dress this wafl1], and recent works includd 6] and[17]. All these methods transfer information
by finding structural similarity between various network# that form the hypotheses. This is, of
course, a way to measure constructive similarity betweernypotheses, and hence an approxima-
tion to Kolmogorov complexity based similarity. So Kolmagu complexity elegantly unifies these
ideas. Additionally, the above methods, particularly #et two, are rather elaborate and are hypoth-
esis space specifi¢l(7] method is even task specific). The theory of Kolmogorov caxip) and

its practical approximations such Eg] and this paper suggests that we can get good performance
by just using generalized compressors, such as gzip, @imeasure similarity.

Acknowledgments

We would like to thank Kiran Lakkaraju for his comments, aradrfarth Swarup in particular for
many fruitful and interesting discussions.

References

[1] Rich Caruana. Multitask learningachine Learning28:41-75, 1997.

[2] Jonathan Baxter. A model of inductive bias learnidgurnal of Artificial Intelligence Researcti2:149—
198, March 2000.

[3] ShaiBen-David and Reba Schuller. Exploiting task relagsdrior learning multiple tasks. Rroceedings
of the16"International Conference on Learning ThepBp03.

[4] Brendan Juba. Esitmating relatedness via data compressioRroceedings of the3™ International
Conference on Machine Learning006.

[5] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and its Applicais Springer-
Verlag, New York, 2nd edition, 1997.

[6] R. Cilibrasi and P. Vitanyi. Clustering by compressidBEE Transactions on Information theqrg004.

[7] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI répog of machine learning databases,
1998.

[8] Radford M. Neal. Bayesian methods for machine learning S\ttRorial, 2004.

[9] Marcus Hutter. Optimality of bayesian universal prediatior general loss and alphabedournal of
Machine Learning Research:971-1000, 2003.

[10] Marcus Hutter. On universal prediction and bayesian comafiion. Theoretical Computer Science (in
press) 2007.

[11] Samarth Swarup and Sylvian R. Ray. Cross domain knowledgsfer using structured representations.
In Proceedings of the1® National Conference on Atrtificial Intelligence (AAA2006.

[12] R. J. Solomonoff. Complexity-based induction systems: gansons and convergence theoreti&EE
Transactions on Information Theqr4(4):422-432, 1978.

[13] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, arahi! 1. Jordan. An introduction to MCMC
for machine learningMachine Learning50(1-2):5-43, 2003.

[14] Leo Breiman. Random forestMachine Learning45:5-32, 2001.

[15] M. M. Hassan Mahmud. On universal transfer learniip appear in, the Proceedings of th&"
International Conference on Algorithmic Learning Thed907.

[16] Lilyana Mihalkova, Tuyen Huynh, and Raymond Mooney. Magpamd revising markov logic networks
for transfer learning. IProceedings of the2" National Conference on Atrtificial Intelligence (AAAI
2007.

[17] Matthew Taylor and Peter Stone. Cross-domain transfereiofarcement learning. IRroceedings of
the 24" International Conference on Machine Learnjr207.

3A flavor of this approach: if the standard compressor is gtign the functionC,..,(zy) will give
length of stringzy after compression by gzipCl.ip(xy) — Cy-ip(y) Will be the conditionalCly.ip(z|y).
S0Cy.ip(h|R) will give the relatedness between tasks.

