
Transfer Learning using Kolmogorov Complexity:
Basic Theory and Empirical Evaluations

M. M. Hassan Mahmud
Department of Computer Science

University of Illinois at Urbana-Champaign
mmmahmud@uiuc.edu

Sylvian R. Ray
Department of Computer Science

University of Illinois at Urbana-Champaign
ray@cs.uiuc.edu

Abstract

In transfer learning we aim to solve new problems quicker by using information
gained from solving related problems. Transfer learning has been successful in
practice, and extensive PAC analysis of these methods has been developed. How-
ever it is not yet clear how to define relatedness between tasks. This is considered
as a major problem as, aside from being conceptually troubling, it makes it unclear
how much information to transfer and when and how to transferit. In this paper
we propose to measure the amount of information one task contains about another
using conditional Kolmogorov complexity between the tasks. We show how ex-
isting theory neatly solves the problem of measuring relatedness and transferring
the ‘right’ amount of information in sequential transfer learning in a Bayesian set-
ting. The theory also suggests that, in a very formal and precise sense, no other
transfer method can do much better than the Kolmogorov Complexity theoretic
transfer method, and that sequential transfer is always justified. We also develop a
practical approximation to the method and use it to transferinformation between
8 arbitrarily chosen databases from the UCI ML repository.

1 Introduction

The goal of transfer learning[1] is to learn new tasks with fewer examples given information gained
from solving related tasks, with each task corresponding tothe distribution/probability measure
generating the samples for that task. The study of transfer is motivated by the fact that people use
knowledge gained from previously solved, related problemsto solve new problems quicker. Transfer
learning methods have been successful in practice, for instance it has been used to recognize related
parts of a visual scene in robot navigation tasks, predict rewards in related regions in reinforcement
learning based robot navigation problems, and predicting results of related medical tests for the
same group of patients. Figure 1 shows a prototypical transfer method[1], and it illustrates some
of the key ideas. Them tasks being learned are defined on the same input space, and are related by
virtue of requiring the same common ‘high level features’ encoded in the hidden units. The tasks are
learned in parallel - i.e. during training, the network is trained by alternating training samples from
the different tasks, and the hope is that now the common high level features will be learned quicker.
Transfer can also be done sequentially where information from tasks learned previously are used to
speed up learning of new ones.

Despite the practical successes, one key question that has eluded answer is how one measures re-
latedness between tasks. Most current methods, including the extended PAC theoretic analysis in
[2], start by assuming that the tasks are related because they have a common near-optimal inductive
bias (the common hidden units in the above example). As no explicit measure of relatedness is pre-
scribed, it becomes difficult to answer questions such as howmuch information to transfer between
tasks and when not to transfer information.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: A typical Transfer Learning Method.

There has been some work which attempts to solve these problems. [3] gives a more explicit mea-
sure of task relatedness in which two tasksP andQ are said to be similar with respect to a given set
of functions if the set contains an elementf such thatP (a) = Q(f(a)) for all eventsa. By assuming
the existence of these functions, the authors are able to derive PAC sample complexity bounds for
error of each task (as opposed to expected error, w.r.t. a distribution over them tasks, in[2]). More
interesting is the approach in[4], where the author derives PAC bounds in which the sample com-
plexity is proportional to the jointKolmogorov complexity[5] of them hypotheses. So Kolmogorov
complexity (see below) determines the relatedness betweentasks. However, the bounds hold only
for ≥ 8192 tasks (Theorem 3).

In this paper we approach the above idea from a Bayesian perspective and propose to measure
the relatedness between tasks using conditional Kolmogorov complexity of the hypothesis. We
show how existing theory justifies this approach and neatly solves the problem of measuring task
relatedness. We then we perform experiments to show the effectiveness of this method.

Let us take a brief look at our approach. We assume that each hypothesis is represented by a program
- for example a decision tree is represented by a program thatcontains a data structure representing
the tree, and the relevant code to compute the leaf node corresponding to a given input vector. The
Kolmogorov complexity of a hypothesish (or any other bit string) is now defined as the length of the
shortest program that outputsh given no input. This is a measure of absolute information content of
an individual object - in this case the hypothesish. It can be shown that Kolmogorov complexity is
a sharper version of Information Theoretic entropy, which measures the amount of information in an
ensemble of objectswith respect to adistributionover the ensemble. The conditional Kolmogorov
complexity of hypothesish givenh′, K(h|h′), is defined as the length of the shortest program that
outputs the programh given h′ as input. K(h|h′) measures amount ofconstructiveinformation
h′ contains abouth - how much informationh′ contains for the purpose of constructingh. This
is precisely what we wish to measure in transfer learning. Hence this becomes our measure of
relatedness for performing sequential transfer learning in the Bayesian setting.

In the Bayesian setting, any sequential transfer learning mechanism/algorithm is ‘just’ a conditional
prior W (·|h′) over the hypothesis/probability measure space whereh′ is the task learned previously
- i.e. the task we are trying to transfer information from. Inthis case, by setting the prior over the
hypothesis space to beP (.|h′) := 2−K(·|h′) we weight each candidate hypothesis by how related it
is to previous tasks, and so we automatically transfer the right amount of information when learning
the new problem. We show that in a certain precise sense this prior is never much worse than any
transfer learning prior, or any non-transfer prior. So, sequential transfer learning is always justified
from a theoretical perspective. Due to space constraints, we do not describe parallel transfer learning
in this setting , but note that while similar results hold forparallel transfer learning, unlike sequential
transfer, it cannot be said to be always justified.

Kolmogorov complexity is computable only in the limit (i.e.with infinite resources), and so, while
ideal for investigating transfer in the limit, in practice we need to use an approximation of it (see[6]
for a good example of this). In this paper we perform transferin Bayesian decision trees by using a
fairly simple approximation to the2−K(.|.) prior.

In the rest of the paper we proceed as follows. In section 3 we define Kolmogorov complexity more
precisely and state all the relevant Bayesian convergence result for making the claims above. We
then describe our Kolmogorov Complexity based Bayesian transfer learning method. In section 4
we describe our method for approximation of the above using Bayesian decision trees, and then in
section 5 we describe12 transfer experiments using8 standard databases from the UCI machine

2

learning repository[7]. Our experiments are the most general that we know of, in the sense that we
transfer between arbitrary databases with little or no semantic relationships.

2 Preliminaries

We consider Bayesian Transfer Learning for finite input spacesIi and finite output spacesOi. We
assume finite hypothesis spacesHi, where eachh ∈ Hi is a conditional probability measure onOi,
conditioned on elements ofIi. So fory ∈ Oi andx ∈ Ii, h(y|x) gives the probability of output
beingy given inputx. GivenDn = {(x1, y1), (x2, y2), · · · , (xn, yn)} fromIi ×Oi, the probability
of Dn according toh ∈ Hi is given by:

h(Dn) :=
n
∏

i=1

h(yi|xi)

The conditional probability of a new sample(xnew , ynew) ∈ Ii ×Oi is given by:

h(ynew|xnew , Dn) :=
h(Dn ∪ {(xnew, ynew)})

h(Dn)
(2.1)

So the learning problem is: given a training sampleDn, where for each(xk, yk) ∈ Dn yk is assumed
to have been chosen according ah ∈ Hi, learnh. The prediction problem is to predict the label of
new samplexnew using (2.1). We are not really interested in how thex’s are generated, we only
assume they are given to us. This is merely the standard Bayesian setting, translated to a typical
Machine learning setting (e.g.[8]).

We use MCMC simulations in a computer to sample for our Bayesian learners, and so considering
only finite spaces above is acceptable. However, the theory we present here holds for any hypothesis,
input and output space that may be handled by a computer with infinite resources (see[9; 10] for
more precise descriptions). Note that we are considering cross-domain transfer[11] as our standard
setting (see section 6). We further assume that eachh ∈ Hi is a program (therefore a bit string)
for some Universal prefix Turing machineU . When it is clear that a particular symbolp denotes a
program, we will writep(x) to denoteU(p, x), i.e. running programp on inputx.

3 Transfer Learning using Kolmogorov Complexity

3.1 Kolmogorov Complexity based Task Relatedness

A program is a bit string, and a measure of absoluteconstructiveinformation that a bit stringx
contains about another bit stringy is given by the conditional Kolmogorov complexity ofx given
y. Since our hypotheses are programs/bit strings, the amountof information that a hypothesis or
programh′ contains about constructing another hypothesish is also given by the same:
Definition 1. The conditional Kolmogorov complexity ofh ∈ Hj givenh′ ∈ Hi is defined as the
length of the shortest program that given the programh′ as input, outputs the programh.

K(h|h′) := min
r

{l(r) : r(h′) = h}

As mentioned in the Introduction, Kolmogorov complexity isa sharper version of information the-
oretic measures of information[5]. We will use a minimality property ofK. Let f(x, y) be a
computable function over product of bit strings.f is computable means that there is a programp
such thatp(x, n), n ∈ N, computesf(x) to accuracyǫ < 2−n in finite time. Now assume that
f(x, y) satisfies,

∑

x 2−f(x,y) ≤ 1. Then for a constantc, independent ofx andy,:

K(x|y) ≤ f(x, y) + c (3.1)

3.2 Bayesian Convergence Results

A Bayes mixtureM overHi is defined as follows:

MW (Dn) :=
∑

h∈Hi

h(Dn)W (h) with
∑

h∈Hi

W (h) ≤ 1

3

(the inequality is sufficient for the convergence results).Now assume that the data has been gener-
ated by ahj ∈ Hi (this is standard for a Bayesian setting, but we will relax this constraint below).
Then the following extraordinary result has been shown to hold true for each(x, y) ∈ Ii ×Oi.

∞
∑

t=0

∑

Dt

hj(Dt)[MW (y|x, Dt) − hj(y|x, Dt)]
2 ≤ − logW (hj) ln

√
2. (3.2)

That is, thehj expected squared error goes to zero faster than1/n (as long ashj is not assigned
a 0 probability byW). This result was first proved for the set of all lower semi-computable semi-
measures in[12] and then extended to arbitrary enumerable subsets of lower semi-computable semi-
measures (and hence all possibleHis) over finite alphabets and bounded loss functions in[9]. [9]
has also shown that Bayes mixtures are Pareto optimal. Furthermore, it is not necessary that the
generating probability measurehj be inHi. The only requirement is that there be ah′

j ∈ Hi such
that thetth order KL divergence betweenhj andh′

j is bounded byk. In this case the error bound is

− log(kW (hj)) ln
√

2 (see[9, section 2.5]). A particularly interesting prior in the above case is the
Solomonoff-Levin prior:2−K(h). Now, for any computable priorW (h), by the minimality property
(3.1) (settingy = the empty string in (3.1)):

K(h) ≤ − log W (h) + c (3.3)

By (3.2), this means that the error bound for2−K(h) prior can be no more than a constant worse
than the error bound for any any other prior. So this prior isuniversally optimal[9, section 5.3] (and
interestingly, a direct and explicit instantiation of Occam’s razor).

3.3 Bayesian Transfer Learning

Assume we have previously observed/learnedm − 1 tasks, with tasktj ∈ Hij
, and themth task to

be learned is inHim
. Let t := (t1, t2, · · · , tm−1). In the Bayesian framework, a transfer learning

scheme corresponds to a computable priorW (.|t) over the spaceHim
,

∑

h∈Him

W (h|t) ≤ 1

In this case, by (3.2), the error bound of the transfer learning schemeMW (defined by priorW) is
− logW (h|t) ln

√
2. We now choose as our prior2−K(.|t), that is we define our transfer learning

methodMTL as:
MTL(Dt) :=

∑

h∈Him

h(Dt)2
−K(h|t).

ForMTL the error bound isK(h|t) ln
√

2. By the minimality property (3.1), we get that

K(h|t) ≤ − log W (h|t) + c

That is the error bound forMTL is no more than a constant worse than the error bound for any
computable transfer learning schemeMW - i.e. MTL is universally optimal(see[9, section 5.3]).
Also note that in generalK(x|y) ≤ K(x)1. Therefore by (3.3) the transfer learning schemeMTL

is also universally optimal over all non-transfer learningschemes - i.e. in this precise formal sense
of the framework in this paper, sequential transfer learning is always justified

4 Practical Approximation using Decision Trees

SinceK is computable only in the limit, to apply the above ideas in practical situations, we need
to approximateK and henceMTL. Furthermore we also need to specify the spacesHi,Oi, Ii and
how to sample from the approximation ofMTL. We address each issue in turn.

1Becausearg K(x), with a constant length modification, also outputsx given inputy.

4

4.1 Decision Trees

We will consider standard binary decision trees as our hypothesis spaces . Each hypothesis space
Hi consists of decision trees forIi defined byfi features. A treeh ∈ Hiis defined recursively:

h := nroot

nj := rj Cj ∅ ∅ | rj Cj n
j
L ∅ | rj Cj ∅ n

j
R | rj Cj n

j
L n

j
R

C is a vector of size|Oi|, with componentCi giving the probability of theith class. Each ruler is
of the formf < v, wheref ∈ fi andv is a value forf . The vectorC is used during classification
only when the corresponding node has one or more∅ children. The size of each tree isNc0 where
N is the number of nodes, andc0 is a constant, denoting the size of each rule entry, the outgoing
pointers, andC. Sincec0 and the length of the program codep0 for computing the tree output are
constants independent of the tree, we define the length of a tree asl(h) := N .

4.2 Approximating K and Prior 2−K(.|t)

Approximation for a single previously learned tree:We will approximateK(.|.) using a function
that is defined for a single previously learned tree as follows:

Cld(h|h′) := l(h) − d(h, h′)

whered(h, h′) is maximum number of overlapping nodes starting from the root nodes:
d(h, h′) := d(nroot,n

′
root) d(n, ∅) := 0

d(n,n′) := 1 + d(nL,n′
L) + d(nR,n′

R) d(∅,n′) := 0

In the single task case, the prior is just2−l(h)/Zl (which is an approximation to the Solomonoff-
Levin prior 2−K(.)), and in the transfer learning case, the prior is2−Cld(.|h′)/ZCld

where theZs
are normalization terms2. In both cases, we can sample from the prior directly by growing the
decision tree dynamically. Call a∅ in h a hole. Then for2−l(h), during the generation process, we
first generate an integerk according to2−t distribution (easy to do using a pseudo random number
generator). Then at each step we select a hole uniformly at random and then create a node there with
two more holes and the rule generated randomly.

In the transfer learning case, for prior2−Cld(h|h′) we first generate an integerk that according to
2−t distribution. Then we generate as above until we get a treeh with C(h|h′) = k′. It can be seen
with a little thought that these procedures sample from the respective priors.

Approximation for a multiple previously learned trees:We defineCld for multiple tasks as an aver-
aging of the contributions of eachm − 1 previously learned trees:

Cm
ld (hm|h1, h2, hm−1) = − log

(

1

m − 1

m−1
∑

i=1

2−Cld(hm|hi)

)

In the transfer learning case, we need to sample according2−Cm
ld(.|.)/ZCm

ld
which reduces to1/[(m−

1)ZCm
ld

]
∑m−1

i=1 2−C(hm|hi). To sample from this, we can simply select one of them − 1 trees at
random and then use the procedure for sampling from2−Cld to get the new tree.

The transfer learning mixture:The approximation of the transfer learning mixtureMTL is now:

PTL(Dn) =
∑

h∈Him

h(Dn)2−Cm
ld(h|t)/ZCm

ld

So by (3.2), the convergence rate forPTL is given byCm
ld (h|t) ln

√
2 + log ZCld

(the log ZCld
is

a constant that is same for allh ∈ Hi). So when usingCm
ld , universality is maintained, but only up

to the degree thatCm
ld approximatesK. In our experiments we actually used the exponent1.005−C

instead of2−C above to speed up convergence of our MCMC method.
2The Z’s exist, here becauseHs are finite, and in general becauseki = Nc0 + l(p0) gives lengths of

programs, which are known to satisfy
∑

i
2−ki ≤ 1.

5

Table 1: Metropolis-Hastings Algorithm

1. Let Dn be the training sample; select the current tree/statehcur using the proposal distribution
q(hcur).

2. Fori = 1 to J do

(a) Choose a candidate next statehprop according to the proposal distributionq(hprop).
(b) Drawu uniformly at random from[0, 1] and sethcur := hprop if A(hprop, hcur) > u, where

A is defined by

A(h, h
′) := min

{

1,
h(Dn)2−Cm

ld (h|t)q(h′)

h′(Dn)2−Cm
ld

(h′|t)q(h)

}

4.3 Approximating PTL using Metropolis-Hastings

As in standard Bayesian MCMC methods, the idea will be to drawN sampleshmi
from the poste-

rior, P (h|Dn, t) which is given by

P (h|Dn, t) := h(Dn)2−Cm
ld (h|t)/(ZCm

ld
P (Dn))

Then we will approximatePTL by

P̂TL(y|x) :=
1

N

N
∑

i=1

hmi
(y|x)

We will use the standard Metropolis-Hastings algorithm to sample fromPTL (see[13] for a brief
introduction and further references). The algorithm is given in table 1. The algorithm is first run for
someJ = T , to get the Markov chainq × A to converge, and then starting from the lasthcur in the
run, the algorithm is run again forJ = N times to getN samples forP̂TL. In our experiments we
setT to 1000 andN = 50. We setq to our prior2−Cm

ld /ZCm
ld

, and hence the acceptance probability
A is reduced tomin{1, h(Dn)/h′(Dn)}. Note that every time after we generate a tree according to
q, we set theC entries using the training sampleDn in the usual way.

5 Experiments

We used9 databases from the UCI machine learning repository[7] in our experiments (table 2). To
show transfer of information we used only20% of the data for a task as a training sample, and then
improved its performance using classifiers trained on another task using80% of the data as training
sample. Each reported error rate are on the testing sets and are averages over10 runs . To the best of
our knowledge our transfer experiments are the most generalperformed so far, in the sense that the
databases information is transferred between have semantic relationship that is at best superficial,
and often non-existent.

We performed3 sets of experiments In the first set we learned each classifierusing80% of the
data as training sample and20% as testing sample (since it is a Bayesian method, we did not use
a validation set). This set ensured that our Bayesian classifier with 2−Cm

ld(·) prior is reasonably
powerful and that any improvement in performance in the transfer experiments (set 3) was due to
transfer and not deficiency in our base classifier. From a survey of literature it seems the error rate
for our classifier is always at least a couple of percentage points better than C4.5. As an example,
for ecoli our classifier outperforms Adaboost and Random Forests in[14], but is a bit worse than
these forGerman Credit.

In the second set of experiments we learned the databases that we are going to transfer to using20%
of the database as training sample, and80% of the data as the testing sample. This was done to
establish baseline performance for the transfer learning case. The third and final set of experiments
were performed to do the actual transfer. In this case, first one task was learned using80/20 (80%
training,20% testing) data set and then this was used to learn a20/80 dataset. During transfer, the

6

Table 2: Database summary. The last column gives the error and standard deviation for 80/20
database split.

Data Set No. of Samples No. of Feats. No. Classes Error/S.D.

Ecoli 336 7 8 9.8%, 3.48
Yeast 1484 8 10 14.8%, 2.0

Mushroom 8124 22 2 0.83%, 0.71
Australian Credit 690 14 2 16.6%, 3.75
German Credit 1000 20 2 28.2%, 4.5

Hepatitis 155 19 2 18.86%, 2.03
Breast Cancer,Wisc. 699 9 2 5.6%, 1.9
Heart Disease, Cleve. 303 14 5 23.0%, 2.56

N trees from the sampling of the80/20 task were all used in the prior2−CN
ld(.). The results are

given in table 3. In our experiments, we transferred only to tasks that showed a drop in error rate
with the20/80 split. Surprisingly, the error of the other data sets did notchange much.

As can be seen from comparing the tables, in most cases transfer of information improves the per-
formance compared to the baseline transfer case. Forecoli, the transfer resulted in improvement to
near80/20 levels, while foraustralianthe improvement was better than80/20. While the error rate
for mushroomandbc-wiscdid not move up to80/20 levels, there was improvement. Interestingly
transfer learning did not hurt in one single case, which agrees with our theoretical results in the
idealized setting.

Table 3: Results of12 transfer experiments.Transfer ToandFrom rows gives databases information
is transferred to and from. The rowNo-Transfergives the baseline20/80 error-rate and standard
deviation. RowTransfergives the error rate and standard deviation after transfer,and the final row
PI gives percentage improvement in performance due to transfer. With our admittedly inefficient
code, each experiment took between15 − 60 seconds on a2.4 GHz laptop with512 MB RAM.

Trans. To ecoli Australian
Trans. From Yeast Germ. BC Wisc Germ. ecoli hep.

No-Transfer 20.6%, 3.8 20.6%, 3.8 20.6%, 3.8 23.2%, 2.4 23.2%, 2.4 23.2%, 2.4
Transfer 11.3%, 1.6 10.2%, 4.74 9.68%, 2.98 15.47%, 0.67 15.43%, 1.2 15.21%, 0.42

PI 45.1% 49% 53% 33.0% 33.5% 34.4%

Trans. To mushroom BC Wisc.
Trans. From ecoli BC Wisc. Germ. heart Aus. ecoli

No-Transfer 13.8%, 1.3 13.8%, 1.3 13.8%, 1.3 10.3%, 1.6 10.3%, 1.6 10.3%, 1.6
Transfer 4.6%, 0.17 4.64%, 0.21 3.89%, 1.02 8.3%, 0.93 8.1%, 1.22 7.8%, 2.03

PI 66.0% 66.0% 71.8% 19.4% 21.3% 24.3%

6 Discussion

In this paper we introduced a Kolmogorov Complexity theoretic framework for Transfer Learning.
The theory is universally optimal and elegant, and we showedits practical applicability by construct-
ing approximations to it to transfer information across disparate domains in standard UCI machine
learning databases. We note here that the theoretical portion of this paper is largely an adaptation
of existing theory to a transfer setting. Because of space constraints we describe the full develop-
ment of the theory in[15]. Directions for future empirical investigations are many.We did not
consider transferring from multiple previous tasks, and effect of size of source samples on transfer
performance (using70/30 etc. as the sources) or transfer in regression. Due to the general nature

7

of our method, we can perform transfer experiments between any combination of databases in the
UCI repository. We also wish to perform experiments using more powerful generalized similarity
functions like the gzip compressor[6]3.

We also hope that it is clear that Kolmogorov complexity based approach elegantly solves the prob-
lem of cross-domain transfer, where we transfer information between tasks that are defined over
different input,output spaces and distributions. To the best of our knowledge, the first paper to ad-
dress this was[11], and recent works include[16] and[17]. All these methods transfer information
by finding structural similarity between various networks/rule that form the hypotheses. This is, of
course, a way to measure constructive similarity between the hypotheses, and hence an approxima-
tion to Kolmogorov complexity based similarity. So Kolmogorov complexity elegantly unifies these
ideas. Additionally, the above methods, particularly the last two, are rather elaborate and are hypoth-
esis space specific ([17] method is even task specific). The theory of Kolmogorov complexity and
its practical approximations such as[6] and this paper suggests that we can get good performance
by just using generalized compressors, such as gzip, etc., to measure similarity.

Acknowledgments

We would like to thank Kiran Lakkaraju for his comments, and Samarth Swarup in particular for
many fruitful and interesting discussions.

References

[1] Rich Caruana. Multitask learning.Machine Learning, 28:41–75, 1997.
[2] Jonathan Baxter. A model of inductive bias learning.Journal of Artificial Intelligence Research, 12:149–

198, March 2000.
[3] Shai Ben-David and Reba Schuller. Exploiting task relatedness for learning multiple tasks. InProceedings

of the16thInternational Conference on Learning Theory, 2003.
[4] Brendan Juba. Esitmating relatedness via data compression. In Proceedings of the23rd International

Conference on Machine Learning, 2006.
[5] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer-

Verlag, New York, 2nd edition, 1997.
[6] R. Cilibrasi and P. Vitanyi. Clustering by compression.IEEE Transactions on Information theory, 2004.
[7] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases,

1998.
[8] Radford M. Neal. Bayesian methods for machine learning, NIPS tutorial, 2004.
[9] Marcus Hutter. Optimality of bayesian universal prediction for general loss and alphabet.Journal of

Machine Learning Research, 4:971–1000, 2003.
[10] Marcus Hutter. On universal prediction and bayesian confirmation. Theoretical Computer Science (in

press), 2007.
[11] Samarth Swarup and Sylvian R. Ray. Cross domain knowledge transfer using structured representations.

In Proceedings of the21st National Conference on Artificial Intelligence (AAAI), 2006.
[12] R. J. Solomonoff. Complexity-based induction systems: comparisons and convergence theorems.IEEE

Transactions on Information Theory, 24(4):422–432, 1978.
[13] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An introduction to MCMC

for machine learning.Machine Learning, 50(1-2):5–43, 2003.
[14] Leo Breiman. Random forests.Machine Learning, 45:5–32, 2001.
[15] M. M. Hassan Mahmud. On universal transfer learning.To appear in, the Proceedings of the18th

International Conference on Algorithmic Learning Theory, 2007.
[16] Lilyana Mihalkova, Tuyen Huynh, and Raymond Mooney. Mapping and revising markov logic networks

for transfer learning. InProceedings of the22nd National Conference on Artificial Intelligence (AAAI,
2007.

[17] Matthew Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. InProceedings of
the24th International Conference on Machine Learning, 2007.

3A flavor of this approach: if the standard compressor is gzip,then the functionCgzip(xy) will give
length of stringxy after compression by gzip.Cgzip(xy) − Cgzip(y) will be the conditionalCgzip(x|y).
SoCgzip(h|h

′) will give the relatedness between tasks.

8

