
AVMEM - Availability-Aware Overlays for

Management Operations in Non-cooperative

Distributed Systems⋆

Brian Cho, Ramsés Morales, and Indranil Gupta

Dept. of Computer Science
University of Illinois at Urbana-Champaign

Urbana IL 61801
{bcho2,rvmorale,indy}@cs.uiuc.edu

Abstract. Monitoring and management operations that query nodes
based on their availability can be extremely useful in a variety of large-
scale distributed systems containing hundreds to thousands of hosts, e.g.,
p2p systems, Grids, and PlanetLab. This paper presents decentralized
and scalable solutions to a subset of such availability-based management
tasks. Specifically, we propose AVMEM, which is the first availability-
aware overlay to date. AVMEM is intended for generic non-cooperative
scenarios where nodes may be selfish and may wish to route messages
to a large set of other nodes, especially if the selfish node has low avail-
ability. Under this setting, our concrete contributions are the following:
(1) AVMEM allows arbitrary classes of application-specified predicates
to create the membership relationships in the overlay. In order to avoid
selfish nodes from exploiting the system, we focus on predicates that are
random and consistent. In other words, whether a given node y is a neigh-
bor of a given node x is decided based on a consistent and probabilistic
predicate, dependent solely on the identifiers and availabilities of these
two nodes, but without using any external inputs. (2) AVMEM protocols
discover and maintain the overlay spanned by the application-specified
AVMEM predicate in a scalable and fast manner. (3) We use AVMEM
to execute important availability-based management operations, focus-
ing on range-anycast, range-multicast, threshold-anycast, and threshold-
multicast. AVMEM works well in the presence of selfish nodes, scales to
thousands of nodes, and executes each of the targeted operations quickly
and reliably. Our evaluation is driven by real-life churn traces from the
Overnet p2p system, and shows that AVMEM works well in practical
settings.
Keywords: Membership protocols, availability variation, predicates, man-
agement, distributed algorithms, P2P systems.

1 Introduction

Today’s large-scale distributed settings contain hundreds to thousands of hosts,
and include Grids [5, 10, 27], peer-to-peer (p2p) systems, and geographically-

⋆ This work was supported in part by NSF CAREER grant CNS-0448246 and in part
by NSF ITR grant CMS-0427089.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distributed clusters such as PlanetLab [19]. Modern and emerging distributed
applications running in such settings will have to address two challenges: het-
erogeneous availability variation of underlying hosts, and the requirement for
system-wide monitoring operations. Further, these challenges have to work even
under non-cooperative situations, where hosts may behave selfishly.

The availability of hosts (i.e., their fraction uptime) in any of these systems
varies widely across both time and across hosts. For instance, in the Overnet
p2p system 50% of hosts have a 10-day availability lower than 30% [3]. This
heterogeneity across space and time is visible even in Grid applications. For
instance, Grid5000 designers report that each machine reboots several tens of
times per day, depending on the applications that are scheduled to run on it [5].

Orthogonally, in addition to this heterogeneity, several researchers and indus-
trial companies have pointed out the dire need for monitoring and management
of end-user distributed applications. Jim Gray opined that management was the
most difficult problem for any distributed system [18]. The 2005 NSF report
on “Grand Challenges in Distributed Computer Systems” lists among its pri-
mary concerns real-time management, automated monitoring, and dealing with
heterogeneity in distributed systems [7]. Finally, end-user applications routinely
form 24% to 33% of the TCO (Total Cost of Ownership) of today’s clusters [24].

Finally, it is well-known that p2p and Grid systems (e.g., @Home-style ap-
plications, or spread over multiple institutions) consist of many nodes that are
selfish and would like to obtain maximum benefit from the overlay, in spite of
their low availability. For instance, Adar and Huberman point out in [1] that as
many as 70% of nodes in Gnutella are freeloaders. Authors have looked at avoid-
ing the effect of selfish nodes for multicast, e.g., [12], however, we believe we are
the first to look at availability-based management tasks under a non-cooperative
node model.

The conjunction of the above three concerns motivates the problem of de-
signing middleware that executes availability-based monitoring and management
tasks for such distributed applications. To stay concrete, we consider four spe-
cific types of such availability-based tasks (which we sometimes also refer to as
queries), with significant and varied uses:

I. Threshold-multicast and Threshold-anycast: Multicast (or anycast)
to all nodes with availability > b (where b ∈ [0, 1)), starting from any arbi-
trary initiator node. This would be useful for both control and data operations.
Control operations include selecting a supernode in a p2p system with a min-
imal threshold availability, e.g., akin to [13, 14, 16]. Data operations include a
publish-subscribe or multicast application where packets are sent out to only
nodes above a certain availability, e.g., [20]. Such a multicast application would
incentivize hosts to have higher availability, in order to obtain good reliability.

II. Range-multicast and Range-anycast: Multicast (or anycast) to a node
with availability in range [b, b + δ] ⊆ [0, 1], starting from any arbitrary initiator
node. This operation can be used to fingerprint characteristics of the nodes
within an availability range, e.g., one could find out the average bandwidth of

nodes below a certain availability, in order to correlate the two facts. In addition,
threshold anycast would be useful for selection of replica locations for a file [4, 6],
and of deployment instances for a distributed Grid application [5].

There are many other availability-based management operations not listed
above that may be desired by applications. However, we find that all of the exist-
ing overlays in literature are availability-agnostic while selecting neighbors, thus
making it inefficient to run the above classes of tasks. This observation motivates
the need for an availability-aware overlay, that would support availability-based
management operations like the ones listed above.

1.1 Design Goals, Challenges, and Principles

A decentralized solution to the availability-based management problems just de-
scribed consists of two components: (I) an overlay among the nodes that helps
each node maintain a set of neighbors (or a membership list), based on the avail-
abilities of these nodes; and (II) operations to execute the desired management
operations by leveraging this overlay.

In building the overlay (challenge (I) above), we face two challenges. The first
arises because we consider a system model where nodes may be selfish. Under
this setting, nodes (especially those with low availabilities) would like to have as
many other nodes (possibly of high availability) in their own membership list,
and to communicate with them. Further, these selfish nodes may wish to flood
the network with copies of a genuine anycast or multicast request they received.
To address this challenge, we adopt the philosophy of selecting neighbors of a
given node x in a consistent manner based on the availabilities of nodes.

Concretely, given a node x and y, let M(x, y) be a binary variable that
denotes whether y is a valid entry in x’s membership list or not. Consistency
requires that the value of M(x, y) depend only on the addresses (IP and port)
of x, y, and their availabilities av(x), av(y) as reported by the availability moni-
toring service. M(x, y) should not be influenced by any external factors such as
other nodes in the system, the system size, or churn in the system, etc. Notice
that consistency allows both the recipient node y of any message or a third node
to verify the value of M(x, y), regardless of other factors in the system. This im-
plies that any node x (selfish or otherwise) will be able to send messages only to
other nodes y that are legitimately its neighbors under the consistent predicate,
i.e., for which M(x, y) = 1.

The second challenge arises from the fact that we would like to maintain
connectivity in the overlay as well as support efficient anycast and multicast
operations, yet maintain only a small number of neighbors. A small number of
neighbors translates to a lower bandwidth, memory, and computation overhead.
In order to ensure connectivity, scalability, and efficiency, we require the neighbor
selection criteria to be flexible, besides being consistent. Our approach addresses
this challenge by coupling consistency with randomization.

Finally, for challenge (II) above, we would like to execute anycast and mul-
ticast operations in a manner that is fast (i.e., has low latency), scalable (i.e.,

uses a small number of messages), and reliable (i.e., manages to complete suc-
cessfully). We address this challenge by using a variety of techniques, ranging
from flooding and greedy approaches, to gossip and simulated annealing.

1.2 Other Related Work and Eliminated Solutions

Using a centralized solution to execute the management tasks mentioned is pro-
hibitive because this would limit the number of simultaneous tasks that can be
addressed, especially if these tasks are for the multicast variants above. It is
well-known that such central-database solutions are rather ineffective at provid-
ing real-time answers to instantaneous queries.

In the realm of decentralized solutions, one potential alternative is to leverage
p2p ring-based distributed hash tables (DHTs) such as Pastry [21] or Chord [23].
Such an approach would decide DHT nodeIDs for nodes based on the node’s
availability, rather than a hash of its IP address. Although this allows tasks
to be resolved via the DHT routing algorithm itself, this approach causes an
unacceptable amount of churn in the DHTs. This churn arises since a nodeID
changes with the node’s availability, besides the fact that nodes are continuously
going offline and coming online. In addition, when using ring-based DHT routing
the latency for answering a range-multicast task is linear in the number of nodes
involved, thus making it inefficient.

Another alternative could be p2p solutions that are specially built to support
range searches (or range queries) such as skip trees, graphs and others [2, 9, 22,
28], or content-based publish-subscribe architectures like Sub-2-Sub [26]. In this
approach, nodes would be organized and placed in the overlay based on their
current availability, so that anycast and multicast tasks could be executed by
doing a range search on the appropriate availability range. Once again however,
there is a high degree of churn in the system; as nodes’ availabilities change over
time, their positions in the overlay will move around as well. Further, p2p range
query structures are known to be difficult under concurrent operations.

Finally, we would like to eliminate broadcast-based solutions that flood out
the multicast or anycast to all nodes, since this is inefficient, unscalable, and
causes spam to nodes outside the target range.

1.3 Contributions of this Paper

In order to meet the above goals, this paper presents AVMEM which, to the
best of our knowledge, is the first proposed availability-aware membership pro-
tocol. AVMEM explicitly leverages availability information of nodes in the sys-
tem while selecting neighbors. AVMEM avoids the effects of selfish nodes, and
allows efficient execution of our targeted availability-based management opera-
tions. Concretely, each node in AVMEM maintains two small membership lists:
a horizontal sliver and a vertical sliver. The horizontal sliver at node x contains
a small (random) subset of nodes with availability “close” to av(x), the avail-
ability of x. In contrast the vertical sliver contains a small (random) subset of

Availability

1.0

0.0 Fraction of Nodes 1.0

X

Node x

Vertical sliver at node x

Horizontal sliver at node x

Fig. 1. AVMEM membership lists at a node x: Horizontal Sliver and Vertical Sliver.

nodes from among those with availability that is not in the vicinity of av(x).
This is illustrated in Figure 1.

Most importantly, AVMEM supports an arbitrary class of membership pred-
icates that are random and consistent. This gives an application developer the
choice of a family of AVMEM predicates in order to build the appropriate overlay
for their application. The horizontal and vertical slivers at each node are selected
in a randomized and consistent fashion by using the application-specified predi-
cate. This maintains connectivity, reduces the effect of selfish nodes, and provides
efficiency, scale and reliability for the management operations.

We discuss and analyze the family of predicates supported by AVMEM in
Section 2. Then, in Section 3, we present decentralized AVMEM protocols that
achieve scalable and fast discovery as well as updating of neighbors at each
node. Finally, we solve: (1) anycast by using greedy and simulated-annealing
approaches, and (2) multicast by using either a flooding or a gossip-based ap-
proach. We have implemented AVMEM, and we present trace-based simulations
in Section 4. Specifically, we use churn traces from the Overnet p2p system [3]
to evaluate and compare the effectiveness the management operations, as well
as to microbenchmark the behavior of the AVMEM overlay itself. We conclude
in Section 5.

2 AVMEM Membership Graph Predicates

This section presents a range of predicates for creating random and consistent
membership graphs (or overlays) that are availability-aware. Section 3 will de-
scribe the discovery of membership graphs for any such given predicate.

Basics and Notation: Recall that the availability of a node x, as reported by
the availability monitoring service, is denoted as av(x). Further, the identifier
(hash-based or IP-port) of node x is denoted as id(x). Given two nodes x and y

and a membership predicate, M(x, y) is a binary variable that indicates whether

node x (with availability av(x)) should contain node y (with availability av(y))
in its membership list or not.

Due to our principles of randomization and consistency, we use the following
framework for the AVMEM predicate in the rest of the paper:

M(x, y) ≡ {H(id(x), id(y)) ≤ f(av(x), av(y))} (1)

Here, H(.) is a (consistent) normalized cryptographic hash function with
range [0, 1] - a normalized version of SHA-1 or MD-5 could be used for this
purpose. Further, f is a function that takes as input a pair of variables in the
range [0, 1], and outputs a value that lies in [0, 1].

The above predicate means that for given nodes x, y, node x will include y in
its membership list only if the value of H(id(x), id(y)) is less than the value of
f(av(x), av(y)). This provides consistency, since the value of M(x, y), as specified
by equation 1 above, depends only on the identifiers and availabilities of nodes
x and y, but not on anything else in the system. Further, regardless of who
evaluates the condition 1 above, it will produce the same result for nodes x, y.

Since we assume that H is a fixed and well-known function, the actual
AVMEM predicate is thus determined by the nature of f . For instance, if f(., .) =
p, (p ∈ [0, 1]), then we derive a random overlay (like SCAMP or Cyclon), but
with the additional property of consistency. In other words, for this example,
given two nodes x and y, then M(x, y) = 1 consistently with probability p.

Section 2.1 next discusses a family of interesting AVMEM predicates specified
under the framework of equation (1). Section 2.2 analyzes these predicates.

2.1 A Family of Availability-Aware AVMEM Predicates

We consider a family of interesting predicates that leverage the known probabil-
ity distribution function (PDF) of the availability variation in a given system.
Notice that such information can be collected and analyzed offline by either a
crawler or a central server. This information can then be communicated to all
nodes at pre-run-time and used consistently. Suppose the PDF of the availability
distribution of the system is specified as p : [0, 1] → [0, 1], i.e., p(a) · da is the
fraction of nodes with availability between a and (a − da), when da → 0. Then,
our canonical AVMEM predicate is specified as:

f(av(x), av(y)) =

{

hs(av(x), av(y), p(.)) if |av(x) − av(y)| < ǫ. [Hor. Sliver]
vs(av(x), av(y), p(.)) otherwise. [Vertical Sliver]

Recall that a horizontal sliver at node x is defined as a partial list of nodes
(called horizontal sliver neighbors of x in the overlay) with “similar” availability
as node x. According to the above framework, we use an availability range of
(±ǫ) around av(x) as candidate nodes for the horizontal sliver at node x. The
value of ǫ is fixed globally, and does not depend on the target ranges of multicast
or anycast operations (or vice-versa). Our experiments find that using ǫ = 0.1
suffices to give good scalability and reliability for management tasks.

To understand the horizontal sliver concept intuitively, the reader may realize
that the horizontal sliver is somewhat like similar notions in DHTs, i.e., like the
“leaf table entries” in Pastry [21], and the “successors/predecessors” in Chord
[23]. However, our setting is different since those systems deal with hash nodeIDs,
while we are dealing with availability space instead. The horizontal sliver helps to
maintain a connected overlay among nodes with availability around av(x). Notice
that if there are M such nodes, the number of neighbors has to be O(log(M)),
selected uniformly at random, for connectivity to hold w.h.p. [8].

On the other hand, a vertical sliver at node x is defined as a random sample
of nodes with availabilities ranging all the way from 0 to 1. The goal of a vertical
sliver is to maintain connectivity throughout the system via a sufficient number
of “long-distance” links (in availability space) among nodes. This is most akin
to the routing table entries in Pastry or Chord DHTs [21, 23]. However, once
again, we are dealing with the availability space rather than hashed nodeIDs,
thus our problem setting is quite different.

Below we describe and analyze several AVMEM predicates. Some of these
predicates will assume knowledge of the expected system size (i.e., number of
online nodes) as a parameter N∗. Just like the availability PDF, the value of N∗

can be calculated offline by crawlers, and communicated to all nodes consistently.
N∗ would not be changed even if the actual number of online nodes changes.
Thus, N∗ need not be accurate - our algorithms and analysis hold even when
the actual system size is off by a constant factor from the value of N∗.

Below, we first discuss several options for selecting the vertical sliver (i.e.,
different vertical sub-predicates) and then for selecting the horizontal sliver (i.e.,
different horizontal sub-predicates).

I. Vertical Sub-Predicate Possibilities: There are several ways of specifying the
vertical sliver sub-predicate, i.e., vs(). We discuss three options below, in increas-
ing order of complexity. We are most interested in the second option and analyze
it in detail in Section 2.2. The first option we discuss is availability-independent:

vs(av(x), av(y), p(.)) = d1, d1 = O(log(N∗)) [I.A: Constant Vertical Sliver]

This predicate works best in a system where any node is equi-probable of
having any given availability. That is, the availability PDF distribution is a
uniform one.

However, distributed systems rarely have homogeneous availability PDFs.
This motivates us to consider other predicates that are more expressive. We de-
rive a very generic vertical sliver sub-predicate:

vs(av(x), av(y), p(.)) = min(c1·log(N∗)
N∗·p(av(y)) , 1.0) [I.B: Logarithmic Vertical Sliver]

Here, c1 is a constant. Section 2.2 proves that this predicate ensures a uni-
formity of coverage of the availability space (Theorem 1). In other words, for any
availability range [b, b + ǫ] (non-overlapping with [av(x) − ǫ, av(x) + ǫ]), a node

x will have the same expected number of vertical sliver neighbors in this range,
regardless of the value of b.

Finally, one may desire that the density of vertical sliver neighbors in an in-
finitesimal interval around a value b becomes smaller and smaller as the absolute
value of |b − av(x)| becomes larger and larger. This would provide an overlay
somewhat akin to Pastry routing table entries and Chord finger table entries,
where neighbors are chosen with exponentially increasing distance as one moves
away (there, in the hashed id space). This is realized by the following predicate,
as proved in Corollary 1.1 of Section 2.2:

vs(av(x), av(y), p(.)) = min(c1·log(N∗)
N∗·p(av(y))·|av(y)−av(x)| , 1.0)

[I.C: Logarithmic-Decreasing Vertical Sliver]

II. Horizontal Sub-Predicate Possibilities: Just like for vertical slivers, there
are several possible horizontal sliver sub-predicates. We enumerate two of them
below. The second of these predicates is more interesting, and is analyzed in
Section 2.2.

The first option is to select a constant fraction of the nodes that lie in the
availability range [av(x) − ǫ, av(x) + ǫ]. The predicate is:

hs(av(x), av(y), p(.)) = d2, d2 = O(log(N∗)) [II.A: Constant Horizontal Sliver]

Although this ensures connectivity w.h.p. among the nodes in this availabil-
ity range, it involves too many nodes. Specifically, it is possible that the range
[av(x) − ǫ, av(x) + ǫ] contains much fewer nodes than N∗. This raises the pos-
sibility that the size of the horizontal sliver at a node x can be reduced. This
leads us to the following predicate:

hs(av(x), av(y), p(.)) = min(
c2·log(N∗

av(x))

N∗min
av(x)

, 1.0)

[II.B: Logarithmic-Constant Horizontal Sliver]

Here, c2 is a constant. This formulation involves two new parameters - N∗
av(x)

and N∗min
av(x) . First, N∗

av(x) is the expected number of online nodes in the avail-

ability range [av(x) − ǫ, av(x) + ǫ]. Mathematically, this can be derived from

the PDF of the availability distribution. That is, N∗
av(x) = N∗×

∫ av(x)+ǫ

av(x)−ǫ p(a)da,

where N∗ = the stable system size. Second, N∗min
av(x) is the minimum number of ex-

pected online nodes present in any availability interval of width ǫ that lies wholly
within [av(x) − ǫ, av(x) + ǫ]. This can also be calculated from the PDF of the

availability distribution as follows: N∗min
av(x) = N∗× (min{

∫ v+ǫ

v
p(a)da, [v, v + ǫ] ⊆

[av(x) − ǫ, av(x) + ǫ]}).
Note that these values can be easily calculated from a discretized PDF dis-

tribution of the system created from a small sample set of nodes.
∫ v+ǫ

v
p(a)da is

merely the number of nodes that have availability lying in this interval, divided
by the total number of entries in the discretized PDF.

Section 2.2 shows, via Theorems 2 and 3, that the logarithmic constant ver-
tical sliver sub-predicate maintains connectivity w.h.p. among all nodes lying in
the range [av(x) − ǫ, av(x) + ǫ].

2.2 Analysis of AVMEM Predicates

In this section, we show that the logarithmic vertical sliver ensures uniformity of
coverage in the availability space (Theorem 1), the logarithmic-constant horizon-
tal sliver ensures connectivity among online nodes whose availabilities lie close
to each other (Theorem 2), and that the above two sliver rules together ensure
a small, scalable set of online neighbors for each node in the system (Theorem 3).

Theorem 1: The logarithmic vertical sliver sub-predicate (equation I.B) en-
sures that, given a node x, for any a ∈ [av(x)−ǫ, av(x)+ǫ], the expected number
of online nodes with availability in an (infinitesimally small) interval around a,
that are vertical sliver neighbors of node x, does not depend on the value of a.
Proof: The expected number of online nodes, in the vertical sliver of node x,
that have their availabilities lying in an interval of size da around a, is given as

=p(av(y))da · N∗ × c1·log(N∗)
N∗·p(av(y)) = c1 · log(N∗)da. This is independent of a. 2

Corollary 1.1: The logarithmic-decreasing vertical sub-predicate (equation I.C)
selects online neighbors that are exponentially increasing distances from node x,
where distances are measured in the availability space av(.). (The proof follows
along similar lines as Theorem 1.)

Theorem 2: The logarithmic-constant horizontal sliver (equation II.B) sub-
predicate ensures that for a given node x, the sub-overlay consisting of all online
nodes with availabilities in the interval [av(x)− ǫ, av(x) + ǫ] is connected w.h.p.
Proof: For the given node x, define X+ as the set of all online nodes (other than
x itself) that have availability ∈ [av(x), av(x)+ǫ]. Similarly, define X− as the set
of all online nodes (other than x) that have availability ∈ [av(x)− ǫ, av(x)). We
will show the proof in three parts: (i) the sub-overlay graph of nodes in X+ is
connected w.h.p., (ii) the sub-overlay graph of nodes in X− is connected w.h.p.,
and (iii) x knows at least one node in X+ and at least one node in X− w.h.p.

For any node u, define N∗+
av(u) and N∗−

av(u) as the expected number of on-

line nodes lying respectively in the upper half and lower half of the interval

[av(u) − ǫ, av(u) + ǫ]. That is, N∗+
av(u) = N∗ ×

∫ av(u)+ǫ

av(u) p(a)da, and N∗−
av(u) =

N∗ ×
∫ av(u)

av(x)−ǫ
p(a)da.

We first prove (i), and the proof of (ii) follows analogously. For any node
y ∈ X+, notice first that the interval [av(y) − ǫ, av(y) + ǫ] wholly contains the
interval [av(x), av(x) + ǫ]. We use a well-know result from [8] that in a graph of
M nodes, if each node has Ω(log(M)) neighbors that are selected at random,
then the graph is connected w.h.p.

Firstly, from the definition of the logarithmic-constant horizontal sliver rule,
notice for each node u that belongs to X+, the probability of y picking u as

neighbor is independent of where av(u) lies. Thus, neighbors are picked uniformly
at random. Secondly, we need to show that if there are M = N∗+

av(x) nodes in

the interval X+, each node in that interval has an expected Ω(log(M)) online
neighbors lying in X+. From the horizontal sliver rule at node y, the expected
number of online nodes from the interval X+ that y has as neighbors is:

=

∫ av(x)+ǫ

av(x)

(c2 ·
log(N∗

av(y))

N∗min
av(y)

× (N∗ · p(a)))da

=
c2 · log(N∗

av(y))

N∗min
av(y)

· N∗+
av(x)

≥ c2 · log(N∗
av(y)), (since N∗+

av(x) ≥ N∗min
av(y))

≥ c2 · log(N∗+
av(x)), (since N∗

av(y) ≥ N∗+
av(x))

This completes the proof of (i), and thus (ii). Finally, to prove (iii), notice
that we can derive, based on the same reasoning as above, the probability of x

knowing at least one node in the set X+, and at least one node in X−, as:

≥ (1 − (1 − c2 · log(N∗)

N∗+
av(x)

)
N∗+

av(x)) × (1 − (1 − c2 · log(N∗)

N∗−
av(x)

)
N∗−

av(x))

≥ (1 − e−c2·log(N∗)) · (1 − e−c2·log(N∗))

≥ (1 − 2

(N∗)c2
)

2

Theorem 3: The logarithmic-constant horizontal sub-predicate (equation II.B)
and the logarithmic vertical sub-predicate (equation I.B) , together, ensure that
the total expected number of online neighbors (vertical sliver + horizontal sliver)
at a given node x: (1) is at most (N∗

av(x) − 1 + c1 · log(N∗)); and (ii) O(log(N∗))

if N∗min
av(x) = θ(N∗).

Proof: Consider a node x. From the discussion of Theorem 1’s proof, the
expected number of online vertical sliver neighbors at x is:

=
∫ av(x)−ǫ

0
c1 · log(N∗)da +

∫ 1

av(x)+ǫ
c1 · log(N∗)da ≤ c1 · log(N∗)

Since the horizontal sliver at node x can contain at most (N∗
av(x) − 1) nodes,

this proves the part (i) of the theorem.

To show (ii), we use a similar derivation as in the discussion of Theorem
2’s proof. We can show that the expected number of online horizontal sliver
neighbors of node x is:

≤
∫ av(x)+ǫ

av(x)−ǫ
(c2 ·

log(N∗

av(x))

N∗min
av(y)

·ǫ
× (N∗ · p(a)))da = c2 ·

log(N∗

av(x))

N∗min
av(y)

× N∗

Since N∗min
av(x) = θ(N∗) and N∗

av(x) ≤ N∗, this is O(log(N∗)) . 2

3 AVMEM Maintenance and Management Operations

Here, we first discuss in Section 3.1 how nodes discover their AVMEM neighbors
according to any application-specified predicate. Then, Section 3.2 describes how
the anycast and multicast operations are executed atop the AVMEM overlay.

3.1 AVMEM Membership Maintenance

In this subsection, we first describe the techniques used by AVMEM to discover
and maintain neighbors, i.e., horizontal sliver (HS) and vertical sliver (V S)
neighbors, in conformity with the application-specified AVMEM predicate. We
then analyze the optimality of this protocol, and check whether the memory,
bandwidth, and discovery time scale to medium-scale systems.

For discovery and maintenance, we leverage two types of existing services in
a black-box manner. These services are:

1. an availability monitoring service, e.g., centralized, or distributed such as
AVMON [17]; and

2. a decentralized shuffling partial membership service, e.g., SCAMP [8], CY-
CLON [25], T-MAN [11], LOCKSS [15].

An availability monitoring service is defined as one that can be queried for
the long-term availability (e.g., raw, or aged) of any given node. It returns an
answer that is reasonably accurate, and that is reasonably consistent over time.
The level of accuracy and consistency of course depends on the actual availability
monitoring protocol itself. The more accurate and consistent it is, the better our
AVMEM discovery will perform. For our practical implementation, we leverage
our own availability monitoring service called AVMON [17]; our experiments
show that this gives good results.

A decentralized shuffling membership service has a node maintain a random
list of some of the nodes in the system (irrespective of any predicate). This is
a weakly consistent list that is incomplete, and may even contain stale entries.
Further, this list is shuffled, i.e., its contents are continuously changed by the
underlying shuffling protocol, so that given a node y and node x that stay long
enough in the system, the entry for node y will eventually appear in the shuffled
list at node x. For our practical implementation, we could have chosen any one of
existing systems such as SCAMP [8], CYCLON [25], T-MAN [11], LOCKSS [15],
etc.. However, we chose to use our AVMON implementation’s underlying coarse
view mechanism [17], which fulfills the requirements of shuffling membership.
This simplifies the overall design of our system, and Section 4 shows this ap-
proach performs well.

Given the above two services, the core AVMEM maintenance protocol con-
sists of two sub-protocols: (I) a Discovery sub-protocol, and (II) a Refresh sub-
protocol. The discovery protocol enables nodes to discover new AVMEM rela-
tionships and thus HS and V S neighbors. On the other hand, the refresh pro-
tocol checks whether existing HS and V S neighbors still satisfy the predicate,
and eliminates them if they do not. Each sub-protocol is elaborated below.

I. Discovery Sub-Protocol: At any given node x, the discovery protocol runs
periodically, i.e., once every protocol period time units (typically 1 minute). It it-
erates through the entries in the coarse view (i.e., the shuffled membership list).
For each entry node y that is not already in HS(x)∪V S(x), it queries the avail-
ability monitoring service for the availability of y, and checks the AVMEM pred-
icate to see if y is a valid HS or V S neighbor of x. If one of these sub-predicates
evaluates to true, then y is included in HS(x) or V S(x), as appropriate. We will
soon analyze the discovery time of this protocol.

II. Refresh Sub-protocol: The refresh sub-protocol iterates through the entries
of the HS(x) and V S(x) lists. For each node y in these lists, the sub-protocol
queries the availability monitoring service for y’s current availability, and evalu-
ates the appropriate AVMEM predicate to see if M(x, y) = 1 or not. If M(x, y)
has become 0, then y’s entry is deleted from the appropriate list. It is easy to see
that once M(x, y) becomes false, node x will delete y from its AVMEM member-
ship list within a worst case time of 1 protocol period. In our implementation, we
found that using a refresh period of 20 minutes suffices to maintain reasonable
correctness of AVMEM predicates.

Discovery Protocol - Optimality and Reality Check: The underlying shuffling
membership protocols we are considering (SCAMP, T-MAN, CYCLON, LOCKSS,
AVMON’s coarse view) all maintain a view of size v at each node, where the
entries in this view are randomly selected as well as continuously shuffled2. For
AVMEM, we are concerned about the memory, computation, and bandwidth
spent by a node on the one hand, and the discovery time for neighbors on the
other hand. The former three scale linearly with v - memory is of course v,
computation comes from evaluating the predicate periodically for each entry in
the view (thus v), and bandwidth from fetching the availability information for
these entries (O(v)).

Discovery time is defined as follows: given a pair of nodes x and y for which
M(x, y) = 1, this is the time until x actually includes y in its HS(x) or V S(x),
as appropriate. The discovery time depends on the operation of the underlying
shuffling protocol, but fortunately, the fact that there is constant shuffling tells
us that the expected time for a given node y to appear in x’s view is O(N

v).

In order to optimize the above concerns, we thus wish to minimize f(v) =

v + N
v . Differentiating this with v, gives df(v)

dv = 1− N
v2 = 0, or v = O(

√
N). This

is a reasonably small number for medium-scale systems. Even for N = 100, 000,
v =

√
N ≃ 320. With 20 B per entry and a 1 minute protocol period, the memory

is 6.3 KB, and the bandwidth is 105 Bps. Finally, if the average discovery time
is N

v protocol periods, this turns out to be around 5 hours. This is a reasonable
amount given that large-scale Grid computations run for several days, users
survive in p2p systems for months, and PlanetLab nodes are up for years.

2 Since we are using AVMON [17], this v would be the same as cvs in [17], i.e., AV-
MON’s “coarse view size”.

3.2 Management Operations over AVMEM

In this section, we describe algorithms for executing the four operations laid out
in Section 1, namely: threshold-multicast, threshold-anycast, range-multicast,
and range-anycast. For ease of exposition, we first discuss the two anycast oper-
ations, and then the multicast operations.

I. {Threshold,Range} Anycast: We discuss how to route an anycast message
intended for range R - a threshold anycast follows a similar approach, where the
range R stretches from the threshold to 1.0. A node x receiving an anycast
message checks to see if it itself lies within range R - if yes, then the anycast
is successful and we are done. Each anycast has a TTL (time-to-live) that is
decremented by 1 at each virtual hop. If this TTL value is 0 the message is
not forwarded. In any other case the message is forwarded to another node. We
discuss three approaches for forwarding of an anycast below.
• Greedy Forwarding: Node x forwards the multicast to an AVMEM neighbor
that lies inside R. If there is no such neighbor, x selects as the next hop the
neighbor whose availability is closest to r.
• Retried Greedy Forwarding: To increase the reliability for anycasts, we allow
nodes to retry a prospective next-hop if the previous candidate was not respon-
sive (i.e., was found to be offline). To implement this, we introduce an integer
parameter retry, initialized to k at the initiator. Each forwarded message carries
the value of retry = k. This parameter determines the number of nodes tried
using the greedy metric, before dropping the message. Specifically, each next-hop
node is required to acknowledge receipt of the anycast message - failing this, the
previous hop node will decrement the value of retry by 1, and retry its next-best
neighbor, according to the greedy metric (i.e., distance to range target R). The
retrying stops when either retry reaches 0, or there are no more next-best nodes
left in the AVMEM neighbor list of node x.
• Simulated Annealing: An alternative approach is to follow simulated anneal-
ing, where the probability of choosing a random next-hop is high initially (in
the first few hops) but decreases as the anycast proceeds. Specifically, we choose
p = e−∆/ttl, where ttl = remaining time to live, and ∆ = the Euclidean dis-
tance between the edge of R and the availability of the current next-hop under
consideration. At each hop, a random next-hop can be selected (from among
the AVMEM neighbors) with probability p, as the list of neighbors is traversed,
otherwise the greedy approach is used (with probability (1 − p)).

A few notes about the above approaches. Each of the above three variants
naturally has three flavors, depending on whether only the horizontal sliver
neighbors of x are used (HS-only), only the vertical sliver is used (VS-only),
or whether both are used (HS+VS). To be generic, we referred to the considered
set of sliver neighbors as merely “AVMEM neighbors” above. Thus, we have a
total of nine algorithms. Section 4 presents data on the most promising variants.

Further, when node x is considering potential next-hops for an anycast, it
uses cached values of availabilities for its neighbors. Typically, these cached values
were fetched the last time the refresh operation was done at node x - this eschews

querying the availability service for each forwarded message. Section 4 evaluates
how much caching allows flooding attacks by selfish nodes.
II. {Threshold,Range} Multicast: For these operations, we once again
consider only the range R; the threshold-based variant follows similarly. The
multicast operation follows a two-stage process: an anycast into the range R,
followed by a multicast within the range. The anycast follows the techniques
listed above. Hence, we now discuss multicast only when the initiator is within
the range R. Once a node x has received a multicast message M for a range R

(where av(x) ∈ R), it can use one of two approaches for forwarding it:
• Flooding: Node x forwards the multicast to all its AVMEM neighbors that lie
in range R. Any duplicate copies of the multicast are ignored, and the forward-
ing is done only once. This is a highly reliable approach, but is wasteful since
each node will receive multiple copies of the multicast - in the worst case, it may
receive one copy from each of its in-neighbors.
• Gossip: To avoid the above overhead, we use a gossip-based approach. Here,
node x (after receiving the multicast) gossips the multicast M . It does so period-
ically - once every protocol period seconds, it selects up to fanout of its AVMEM
neighbors: (1) whose availabilities lie within the range R, and (2) to whom x has
not already forwarded M . These neighbors could be selected randomly, but for
our implementation we use a deterministic iteration through the list in order to
select gossip targets. The node repeats the above process for Ng protocol periods
after it first receives the multicast. Any duplicate copies of the multicast it re-
ceives are eliminated. We select Ng and fanout so that (Ng×fanout) = log(N∗),
thus ensuring dissemination w.h.p. via gossip [8].

Just as for anycast, there are three variants for each of the above two ap-
proaches - HS-only, VS-only, and HS+VS, depending on which set of AVMEM
neighbors are used for the operations. This gives us a total of six algorithms. We
implemented all these options, and Section 4 presents data from the best ones.

4 Experiments

We implemented AVMEM in C/C++, and present evaluation results from a
discrete event simulation. In order to be realistic, we inject churn (availability
variation) traces from the Overnet p2p system [3] into our system. These traces
were originally collected over a 7 day period, at 20 minute intervals, for a fixed
population of 1442 hosts, and are injected as such. By default, we build and use
AVMEM overlays using the two sub-predicates of Logarithmic Vertical Sliver
(equation I.B) and Logarithmic-Constant Horizontal Sliver (equation II.B), from
Section 2. We evaluate both the AVMEM overlay (Section 4.1) as well as the
management operations atop it (Section 4.2).

4.1 Microbenchmarks: AVMEM Overlay Properties

Overlay Properties: We evaluate whether the number of horizontal and ver-
tical sliver neighbors in our implementation follow theoretical predictions. The

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

od
es

Availability

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

Node availability

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

Node availability

Fig. 2. System Snapshot of Online Nodes showing: (a) the distribution of online
nodes (b) the size of horizontal slivers and (c) the size of vertical slivers with respect
to availability (each dot in the plot stands for a node). There are 442 online nodes.

-5

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

N
um

be
r

of
 n

od
es

 in
 H

S

Number of candidate nodes for HS

Fig. 3. Horizontal Sliver Scaling:
Size of horizontal sliver at a node grows
sub-linearly with total number of nodes
within ǫ availability of the node).

 0

 200

 400

 600

 800

 1000

 1200

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 in

co
m

in
g

V
S

 r
ef

er
en

ce
s

Node availability

Fig. 4. Vertical Sliver Link Distribu-
tion: Number of incoming vertical sliver
links to an availability range is uniform
([0,0.1] skewed as it has one node).

system was allowed to warm up for 24 hours, and a snapshot was taken of online
nodes. Figure 2(a) shows that the availability distribution of online nodes in this
snapshot is highly skewed, making this trace set a good test for our algorithms.

Figures 2(b,c) respectively show the distributions of horizontal sliver size and
vertical sliver size at all these online nodes. From Figure 2(c), it is clear that the
median values of the vertical sliver sizes are uncorrelated to the availability, as
expected. Figure 2(b) shows an increasing median value of the horizontal sliver
size with node availability. Yet, Figure 3 demonstrates that this increase is only
sublinear - the horizontal sliver size grows sublinearly with the total number of
nodes present within ±ǫ availability. Finally, Figure 4 counts the total number of
incoming vertical sliver links to nodes in different availability ranges. We observe
that this number is largely uncorrelated to the distribution of nodes (seen in
Figure 2(a)). Thus, we conclude that the AVMEM slice sizes follow theoretical
analysis, even under realistic churn models.
Attack Analysis: We first evaluate the effect of a flooding attack, where a
selfish (or malicious) node wishes to send out a message to all nodes that are not
part of its AVMEM neighbor list(s). Although each node checks each incoming
message to verify if its sender is a valid in-neighbor (according to the AVMEM
predicate), and reject it if not, this is open to attacks due to several reasons: (1)
nodes may use cached and stale availability information to do this check, and (2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 n
on

-n
ei

gh
bo

rs
 a

cc
ep

tin
g

m
es

sa
ge

s

Node availability

cushion=0
cushion=0.1

Fig. 5. Flooding Attack: Fraction of
peers that are not currently neighbors
that would accept communications. Mea-
surement averaged across 0.1-wide avail-
ability ranges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 r
ej

ec
te

d
re

la
tio

ns
hi

ps

Node availability

cushion=0
cushion=0.1

Fig. 6. Legitimate Rejection Rate:
Fraction of nodes that will reject commu-
nications from an AVMEM in-neighbor.
Measurement averaged across 0.1-wide
availability ranges.

availability information reported by our underlying AVMON service could give
inconsistent or inaccurate answers. Figure 5 (line for cushion=0) depicts that
regardless of the availability of the selfish node, fewer than 10% of nodes outside
of its AVMEM neighbor list accept its flooding message. This is reasonable - it
means that to receive an audience from one additional peer, a selfish node must
obtain information about 10 additional peers.

Second, we evaluate how the above inaccuracies and cached information af-
fect the rejection of valid messages sent to AVMEM neighbors. Figure 6 shows
that this number is below 30% regardless of the sending node’s availability. To
reduce this effect further, we add a constant cushion to the right hand side of
equation (1) in Section 2, i.e., to function f . This reduces the rejection rate to
below 20% (see also Figure 5). This is reasonable - it means that a node at-
tempting to forward a message will have to try only an expected 1

0.8 = 1.25
neighbors before succeeding. From these two attacks, we conclude that AVMEM
guarantees uniform attack resilience and acceptance rate for legitimate messages,
independent of the sending node’s availability.

4.2 Management Operations over AVMEM

In order to explore anycasts and multicasts systematically, we select the initiator
node in one of three ways, and the target range in one of three ways, thus
effectively giving us nine combinations for each management operation. Although
we evaluated all the nine combinations, for brevity, we show data for only the
most interesting ones below. Specifically, the initiator is chosen as either (1)
LOW ∈ [0, 0.3333), or (2) MID ∈ [0.3333, 0.6666), or (3) HIGH ∈ [0.6666, 1.0). For
threshold operations (anycasts or multicasts), the target availability range was
either 0.25, or 0.49 or 0.90. For range operations, the target availability range
was either one of [0.2, 0.3], or [0.44, 0.54], [0.85, 0.95]. Each point on any plot is
the average of 5 different protocol runs, each with 50 messages.

Basic Anycast Operations: We first evaluate anycast based on greedy for-
warding using VS-only, HS-only, and HS+VS, as well as simulated annealing
with HS+VS (see Section 3.2). The retried-greedy variation will be discussed
soon. All anycasts are sent with TTL = 6. Among the nine options discussed
above, the following four settings were the most interesting. First, Figure 7 shows
the results for a range-anycast experiment with initiator in the MID and target
[0.85, 0.95]. All variants gave a 100% success rate for messages, with all except
HS-only finishing w.h.p. within 1 hop. This makes intuitive sense as messages
will not travel far in availability space by using HS-only.

Second, Figure 8 shows the number of delivered range anycasts out of 50
sent, from nodes in availability range HIGH to three different target availability
ranges: [0.85, 0.95], [0.44, 0.54], and [0.2, 0.3]. The third of these is the most harsh
scenario, since it is very likely that either (1) there are no nodes online in the
low availability ranges, or (2) the anycast takes a longer path via low-availability
nodes, and thus has a high probability of being dropped inside the overlay, as
its TTL expires. Of the multiple options, HS+VS comes out the best.

Retried-Greedy Anycast: Figure 9 shows the reliability and latency of retried-
greedy forwarding, for different values of retry, under the harshest possible sce-
nario of the initiator in HIGH and target range [0.2, 0.3]. The latency on each vir-
tual hop here was selected uniformly at random from the interval [20ms, 80ms].
Notice that even under such harsh scenarios, retry = 8 gives as good a perfor-
mance as the plateau - 60% delivery with an average latency of 739ms.

Benefit of AVMEM Predicate: In order to compare the usefulness of the
horizontal (logarithmic-constant) and vertical (logarithmic) sub-predicates used
in the above AVMEM overlay, we ran exactly the same range-anycast operation
from Figure 9, but over a random overlay graph similar to those created by
alternative membership protocols like SCAMP [8], CYCLON [25], T-MAN [25],
etc. Figure 10 shows the data for this, and should be compared against Figure 9.
A look at these figures tells us that for range-anycasts: (1) for management
operations, overlays based on AVMEM predicates give a higher success rate
than random graphs, while (2) both achieve similar latencies.

Multicast Operations: Figure 11 shows the latency performance of range-
and threshold-multicast, using both flooding (default) and lower-cost gossip
(fanout = 5, Ng = 2, gossip period=1 s). The latency for each multicast is
the worst case, i.e., it is the time of the last receiving node obtaining the mul-
ticast. The CDF shows that this stays below 300ms for flooding, and 5.5s for
gossiping. Figure 12 shows that the spam factor for multicasts is low, i.e., the
fraction of multicasts overflowing the target range, and reaching a node outside
is below 8% for most cases, except the topmost case where data is skewed by the
small number of nodes in the target range. Finally, Figure 13 shows that flooding
gets a reliability above 90%, while gossip reaches 70%. Bandwidth savings due to
gossip may thus be worthwhile to applications less concerned about reliability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 r
an

ge
 a

ny
ca

st
s

tr
av

el
in

g
x

ho
ps

Number of hops

VS-only
HS+VS
HS-only

simulated annealing

Fig. 7. Range anycast: Hops required
to delivery when sending from MID to
range [0.85, 0.95].

 0

 0.2

 0.4

 0.6

 0.8

 1

HIGH to [0.85, 0.95] HIGH to [0.44, 0.54] HIGH to [0.15, 0.25]

F
ra

ct
io

n
of

 d
el

iv
er

ed
 r

an
ge

 a
ny

ca
st

s

Range anycast type

Sim. Annealing
HS+VS
VS-only
HS-only

Fig. 8. Range anycast under in-
creasingly harsh scenarios: Lower
target availability ranges have lower
success rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 8 4 2
 0

 500

 1000

 1500

 2000

 2500

F
ra

ct
io

n
of

 a
ny

ca
st

s

A
ve

ra
ge

 d
el

iv
er

y
la

te
nc

y
(m

s)

Number of retries

fraction ttl expired
fraction delivered

fraction retry expired
Avg delivery latency

Fig. 9. Retried Greedy Anycast in
harsh environment: Anycasts sent
to target availability range [0.15, 0.25]
from nodes in HIGH.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 8 4 2
 0

 500

 1000

 1500

 2000

 2500

F
ra

ct
io

n
of

 a
ny

ca
st

s
(r

an
do

m
 n

et
w

or
k)

A
ve

ra
ge

 d
el

iv
er

y
la

te
nc

y
(m

s)

Number of retries

fraction ttl expired
fraction delivered

fraction retry expired
Avg delivery latency

Fig. 10. Retried Greedy Any-
cast (Random Overlay, instead of
AVMEM): Anycasts sent to target
availability range [0.15, 0.25] from nodes
in HIGH.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

F
ra

ct
io

n
of

 m
ul

tic
as

ts
 w

ith
 w

or
st

 la
te

nc
y

be
lo

w
 X

Last message delivery time (ms)

HIGH to [0.85, 0.95]
HIGH to > 0.90
LOW to > 0.20

Gsp, HIGH to > 0.90
Gsp, LOW to > 0.20

Fig. 11. Multicast Latency CDF:
Latency of last message delivered for
each multicast.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
ra

ct
io

n
of

 m
ul

tic
as

ts
 w

ith
 s

pa
m

 r
at

io
 b

el
ow

 X

(number spam) / (number could have been delivered)

HIGH -> [0.85, 0.95]
HIGH -> av > 0.90
LOW -> av > 0.20

Gossip: HIGH -> av > 0.90
Gossip: LOW -> av > 0.20

Fig. 12. Multicast Spam Ration
CDF: Ratio of number of multicasts
received by a node outside target range,
to number of valid nodes in range.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

F
ra

ct
io

n
of

 m
ul

tic
as

ts
 w

ith
 d

el
iv

er
y

be
lo

w
 X

(number delivered) / (number could have been delivered)

HIGH to [0.85,0.95]
HIGH to > 0.90
LOW to > 0.20

Gossip, HIGH to > 0.90
Gossip, LOW to > 0.20

Fig. 13. Multicast Reliability CDF: Fraction of nodes inside target range, that
received a multicast.

5 Conclusions

We have presented the design and evaluation of AVMEM, an availability-aware
overlay. We showed that AVMEM overlay construction is scalable and that a set
of availability-based management operations can be run efficiently and reliably
on this overlay.

Our experimental evaluation using realistic overlay traces shows that the the-
oretical properties hold. Selfish nodes are implicitly kept under control and good
overlay connectivity is achieved by the proposed AVMEM predicates. This allows
anycasting and multicasting to availability ranges to be performed reliably.

References

1. E. Adar and B. A. Huberman. Free riding on Gnutella. First Monday, 5(10), 2000.
2. J. Aspnes and G. Shah. Skip graphs. In Proc. ACM-SIAM SODA, pages 384–393,

2003.
3. R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proc.

IPTPS, pages 135–140, Feb. 2003.
4. R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker. Total Recall:

System support for automated availability management. In Proc. Usenix NSDI,
2004.

5. F. Cappello and et al. Grid’5000: A large scale, reconfigurable, controlable and
monitorable Grid platform. In Proc. GRID, 2005.

6. B.-G. Chun and et. al. Efficient replica maintenance for distributed storage sys-
tems. In Proc. Usenix NSDI, pages 45–58, 2006.

7. F. K. et al. Report of the NSF Workshop on Research Challenges in Distributed
Computer Systems. http://www.nsf.gov/cise/cns/geni/workshop report.pdf.

8. A. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer membership man-
agement for gossip-based protocols. IEEE Transactions on Computers, 52(2):139–
149, Feb. 2003.

9. N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scal-
able overlay network with practical locality properties. In Proc. USITS, 2003.

10. IBM. The Oceano Project. http://www.research.ibm.com/oceanoproject/.
11. M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay toplogy management.

Self-Organising Systems: ESOA, LNCS 3910:1–15, July 2005.
12. H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. BAR

gossip. In Proc. Usenix OSDI, 2006.
13. J. Liang, R. Kumar, and K. W. Ross. The fasttrack overlay: A measurement study.

Computer Networks, 50(6):842–858, Apr. 2006.
14. V. Lo, D. Zhou, Y. Liu, C. Gauthier-Dickey, and J. Li. Scalable supernode selec-

tion in peer-to-peer overlay networks. In Proc. IEEE Hot-P2P, pages 18–27, 2005.
15. P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, M. Baker, and

Y. Muliadi. Preserving peer replicas by rate-limited sampled voting. In Proc.
ACM Symposium on Operating Systems Principles (SOSP), pages 44–59, 2003.

16. S.-H. Min, J. Holliday, and D.-S. Cho. Optimal super-peer selection for large-scale
p2p system. In Proc. ICHIT, pages 588–593, 2006.

17. R. Morales and I. Gupta. AVMON: Optimal and scalable discovery of consistent
availability monitoring overlays for distributed systems. In Proc. ICDCS, 2007 (to
appear).

18. D. Patterson. A conversation with Jim Gray. ACM Queue, 1(4), Jun. 2003.
19. L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing

disruptive technology into the internet. In Proceedings of the First ACM Workshop
on Hot Topics in Networking (HotNets), October 2002.

20. T. Pongthawornkamol and I. Gupta. AVCast : New approaches for implementing
availability-dependent reliability for multicast receivers. In Proc. IEEE SRDS,
2006.

21. A. Rowstron and P. Druschel. Pastry: scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware,
2001.

22. Y. Shu, B. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-dimensional range
queries in peer-to-peer systems. In Proc. P2P, pages 173–180, 2005.

23. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for Internet applications. In Proc. ACM SIG-
COMM, pages 149–160, 2001.

24. TechWise Research Inc. Are some RISC-based clusters easier to manage than
others? http://h71000.www7.hp.com/openvms/whitepapers/sm whitepaper.pdf,
2004.

25. S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive membership
management for unstructured P2P overlays. Journal of Network and Systems
Management, 13(2):197–217, June 2005.

26. S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van Steen. Sub2Sub: self-
organizing conten-based publish-subscribe for dynamic large scale collaborative
networks. In Proc. IPTPS, 2003.

27. T. Weiss. Grid computing gets push from Sun, IBM and Compaq. Computer
World, Nov. 2001.

28. C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Segment Tree: Support of
range query and cover query over DHT. In Proc. IPTPS, 2006.

This article was processed using the LATEX macro package with LLNCS style

