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Abstract

With continued CMOS scaling, future shipped hardware
will be increasingly vulnerable to in-the-field faults. To be
broadly deployable, the hardware reliability solution must
incur low overheads, precluding use of expensive redun-
dancy. We explore a co-designed hardware-software solution
that treats most hardware faults as software bugs and lever-
ages common mechanisms for hardware and software relia-
bility, thereby amortizing some of the overhead. Fundamen-
tal to such a solution is a characterization of how hardware
faults in different microarchitectural structures of a modern
processor propagate through the application and OS. This
paper aims to provide such a characterization, identify low-
cost detection methods to intercept fault propagation, and
to provide guidelines for a complete co-designed reliability
solution. We focus on hard faults because they are increas-
ingly important and have different system implications than
the much studied transients. We achieve our goals through
fault injection experiments with a microarchitecture level full
system timing simulator.
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1 Introduction

As we move into the late CMOS era, hardware reliability
will be a major obstacle to reaping the benefits of increased
integration projected by Moore’s law. It is expected that
components in shipped chips will fail for many reasons in-
cluding aging or wear-out, infant mortality due to insufficient
burn-in, soft errors due to radiation from external sources and
the IC package, design defects, and so on [6]. Such a sce-
nario requires mechanisms to detect, diagnose, recover from,
and possibly repair/reconfigure around these failed compo-
nents so that the system can provide reliable and continuous
operation.

The reliability challenge today pervades almost the en-
tire computing market. A reliability solution that can be ef-
fectively deployed in the broad market must incur limited
area, performance, and power overhead. As an extreme up-
per bound, the cost of reliable operation cannot exceed the
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benefits of scaling. In the recent SELSE-2 workshop, an
industry panel converged on a 10% area overhead target to
handle all sources of chip errors as a guideline for academic
researchers [1]. In this context, traditional high-end solu-
tions involving excessive redundancy are no longer viable.
For example, the conventional popular solution of dual mod-
ular redundancy for fault detection implies at least a 100%
overhead in performance throughput and power. Solutions
such as redundant multithreading and its various flavors im-
prove on this, but still incur large overheads in performance
and/or power [25].

Two high-level observations motivate our work. First,
the hardware reliability solution need handle only the device
faults that propagate through higher levels of the system and
become observable to software. Second, these software man-
ifestations of hardware faults are analogous to manifestations
of software errors in many ways. It may therefore be possi-
ble to leverage techniques for handling software errors for
hardware faults.

These observations motivate using a unified co-designed
hardware/software framework for both hardware and soft-
ware reliability. Such an approach to hardware reliabil-
ity could potentially be more cost-effective than software-
oblivious approaches because (1) much (but not necessar-
ily all) of the overhead incurred may already be paid for
software reliability; (2) software techniques may pay lower
common-case overhead while incurring greater overhead
when an actual error is detected, whereas hardware mecha-
nisms often incur permanent overheads in area, performance,
and/or power; and (3) a software-aware hardware reliabil-
ity solution is potentially easier to customize to the tar-
get application (e.g., using application-specific recovery and
application-specific tuning of fault coverage vs. overhead).

This paper takes a step in exploring the feasibility of
providing hardware reliability through such a co-designed
hardware-software solution that treats hardware faults as
software bugs. Fundamental to such a solution is an under-
standing of how faults in different hardware structures of a
modern superscalar processor propagate through the appli-
cation and operating system software, and low-cost methods
to intercept this propagation within “reasonable” time. The
goals of this paper are to (1) identify and quantitatively char-
acterize the relevant aspects of the propagation of hardware
faults to software in a modern processor, and (2) to use this
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characterization to derive a set of guidelines for a complete
co-designed solution for hardware reliability, including fault
detection, diagnosis, and recovery.

This paper focuses on permanent hardware faults (vs.
transients) because of the increasing importance of such
faults due to phenomena such as wear-out and insufficient
burn-in (Section 2), because transients have already been the
subject of much recent study, and because permanent faults
pose significant challenges different from transients. For ex-
ample, a permanent fault may possibly manifest to software
faster than a transient (because it lasts longer), but for the
same reason, it is also less likely to be masked and more
likely to corrupt the operating system resulting in an irrecov-
erable system crash (unless intercepted quickly). Further, af-
ter software exposes a permanent fault, the system must di-
agnose the faulty unit and repair it or reconfigure around it.
This is generally expensive, and means that permanent fault
detectors cannot afford many false positives (unlike some
techniques proposed for transient fault detection [34]). Sec-
tion 2 further elaborates on these differences and discusses
how prior work for transients fits in a complementary way
within the framework implied by our results.

We explore the following questions for different microar-
chitectural structures in a modern superscalar processor:

e How often does a permanent fault in the structure re-
sult in an easily observable software misbehavior and
what is this misbehavior? The answer to this question
determines which microarchitectural structures can be
covered through low-cost software-level detection tech-
niques (including the specific techniques and their cov-
erage) and which structures need specialized hardware-
level protection.

e For the detectable faults, what is the latency from the
time the fault results in a corruption of the architec-
tural state of the application until the time it is detected?
This has implications for recovery mechanisms — with a
small latency, simple hardware checkpointing and roll-
back can be used while a large latency may require the
use of software checkpointing and recovery (leveraging
software reliability methods). (This assumes a strategy
for repair and/or reconfiguration around the permanent
fault, as discussed later.)

e What is the latency from the time the fault results in
a corruption of the architectural state of the operating
system until the time it is detected? This has profound
implications for recovery since software checkpointing
and recovery of the OS is far more complex than for the
application.

To answer the above questions, we inject a total of 4480
hard faults (stuck-at and bridging faults) in several microar-
chitectural structures in a modern processor and run SPEC
benchmarks on this faulty hardware using a full system
microarchitecture-level simulator. Ideally, we would use
a lower level simulator for fault injections (at least a Ver-
ilog/VHDL level); however, this was not possible due to our
requirement of modeling the operating system and follow-

ing the fault for a very large number of execution cycles (10
million cycles). Our primary findings are as follows:

e We find that for all structures studied except for the
floating point unit, most faults that propagate to soft-
ware eventually either cause fatal traps (crashes) or re-
sult in small infinite loops (hangs). Thus, the use of
fatal traps as symptoms of hard faults is a promising
zero-cost software-level detection technique for a sig-
nificant class of faults. For hangs, a simple hardware
infinite loop detector can be used ( [20] and Section 3)
— our results show that this loop detector need only be
on when the operating system is executing. Overall, the
fault detection coverage is over 98% for structures other
than the floating point unit.

e We find that the latency from the time the applica-
tion state is corrupted to the time the fault is detected
(through a hang or a crash) is often within 100k instruc-
tions (which is in the microseconds range for GHz pro-
cessors) — this can be handled with efficient hardware
checkpointing schemes such as SafetyNet [29] and Re-
vive [21], using simple buffering of persistent state out-
put (and input) to solve the output and input commit
problems. In all cases, the latency is within 10M in-
structions (roughly a few ms for GHz processors). The
high latency cases can be handled using software check-
pointing, with an application specific tradeoff between
buffering persistent outputs/inputs for milliseconds and
full application recovery.

e We find that a large fraction of the faults corrupt oper-
ating system state. The state corruption to detection la-
tency for the OS is within 100k OS instructions most of
the time for all microarchitectural structures other than
the register file (and floating point unit). This implies
that hardware checkpointing of OS state can be used as
a powerful method to recover the OS from a large frac-
tion of faults — this is significant since it is difficult to
recover the OS using software only mechanisms.

Our results have significant implications for resilient sys-
tem design (Section 5). Most notably, they show that soft-
ware level crashes and hangs are a powerful low-cost detec-
tion technique for a large class of permanent hardware faults.
Further, the detection latencies are often small enough to al-
low even operating system recovery through hardware sup-
ported checkpointing.

2 Reated Work

Software-level detection and fault injection and prop-
agation studies.

There is a large body of literature on detecting hardware
faults through monitoring various software behavior; most
notably, control flow signatures, crashes, and hangs [12, 20,
22,24, 27, 32]. There is also a large body of work that per-
forms hardware (and software) fault injections to character-
ize the fault tolerant behavior of a system [2, 14, 16, 17].
Both of these classes of work perform fault injection experi-
ments and follow the path of fault propagation through soft-
ware much like our work.



Our work differs from the above work in several ways.
First, we take a microarchitectural view since our goal is to
understand which hardware structures could be adequately
covered by inexpensive software level techniques, and which
would require more expensive hardware support because of
inadequate software-level coverage. We therefore perform
fault injections into explicit microarchitectural structures in
modern out-of-order superscalar processors; e.g., the register
alias table and the reorder buffer. Our use of a microarchitec-
ture level simulator allows such experiments. Much (but not
all) prior work on fault injection is in the context of real sys-
tems (or high level simulations), where processor microar-
chitectural units are not exposed.

Second, most prior work injects transient or intermittent
faults, where intermittent faults are usually modeled like
transients except that they last a small number of cycles (e.g.,
up to 4 cycles). We study permanent faults because these
are predicted to become increasingly important with grow-
ing concern from phenomena such as aging and inadequate
burn-in [6, 7, 30, 36]. Permanent faults are significantly dif-
ferent from transients and intermittents that last a few cy-
cles. For example, most transients have been shown to be
masked at various levels of the system (device, circuit, mi-
croarchitecture, application) [26]. On the other hand, per-
manents are unlikely to be completely masked. While this
means that a permanent fault may possibly manifest to soft-
ware faster than a transient (because it possibly affects many
instructions), a permanent fault is also more likely to corrupt
the operating system possibly resulting in an irrecoverable
system crash. We therefore perform a detailed analysis of
when and for how long the OS state is corrupted. Further,
after software exposes a permanent fault, the system must
diagnose the faulty unit and repair it or reconfigure around it
— this is not an issue with transients, where the system can
simply rollback to the previous checkpoint and re-execute.
Diagnosis for hard faults based on software level symptoms
is generally expected to be expensive, and means that per-
manent fault detectors cannot afford many false positives. In
contrast, previous work for transients has suggested use of
branch mispredictions and L2 cache misses as symptoms for
transient error detection [34]. Using these as symptoms for
hard error detection would be impractical since these events
occur frequently enough for the large latencies for diagnosis.

Third, while there have been fault injection studies at the
microarchitecture or lower levels (e.g., Wang et al.’s study
of soft errors at the Verilog level [34]), our work is distin-
guished by our study of both the application and operating
system through using a full system simulator. Many of the
results from this work would not be possible from user-only
architecture or lower level simulators. For example, corrup-
tions of the OS state are difficult to recover from — our work
models such corruptions and shows that in many cases, the
detection latencies are small enough to use efficient hardware
checkpointing for recovery.

Fault tolerant systems.

There is a vast amount of literature on fault tolerant archi-
tectures. High-end commercial systems often provide fault
tolerance through system-level or coarse-grain redundancy
(e.g., replicating an entire processor or a major portion of

the pipeline) [5, 19]. Unfortunately, this approach incurs sig-
nificant area, performance, and power overheads. As men-
tioned in Section 1, our focus is on low-cost reliability for
a broader market, where some parts of the market may even
be willing to trade off some coverage for cost. There has
been substantial microarchitecture level work in this con-
text, where redundancy is exploited at a finer microarchi-
tectural granularity. While much of that work handles soft
errors [3, 12, 13, 23, 24, 25, 34] recently, there has been sub-
stantial work on handling hard errors. We focus on that work
here.

Austin proposed DIVA, a very efficient checker proces-
sor that is tightly coupled with the main processor’s pipeline
to check every committed instruction for errors [3]. While
DIVA can be used to provide detection of hard errors, it does
not provide mechanisms for diagnosis or repair. It also re-
quires ensuring that the checker itself does not have errors.
Bower et al. incorporated hard error diagnosis with DIVA
checkers [9]. As an instruction moves through the processor
pipeline, it keeps track of the different hardware structures it
has visited. On detecting an error in an instruction, counters
associated with the structures visited by the instruction are
incremented. Depending on a heuristic based on the value
of the counters, specific structures are deemed failed. Inher-
ent performance-driven redundancy in a superscalar allows
disabling a failed unit and continuing with other available in-
stances of the same unit [9, 31]. This technique uses n DIVA
processors for an n-way superscalar.

Weglarz et al. investigated the use of redundant threading
to perform online-testing of a processor for hard faults [35].
However, this is a preliminary feasibility study and does not
discuss how these tests are generated, coverage, or detection
latency. Shyam et al. have recently proposed online test-
ing of certain structures in the microprocessor for hard-faults
and recover by disabling them and rolling back to a hard-
ware checkpoint [28]. Since these tests are run only when
the structures are idle, the performance loss incurred is rather
small. However, the feasibility of such an approach is unclear
for unstructured control elements that are generally hard to
test.

All of the above schemes that incorporate diagnosis and
recovery incur significant overhead that is paid almost all the
time, in area, performance, and/or power.

In contrast to the above, the motivation for our work is
a reliability solution that pays minimal cost in the common
case where there are no errors, and potentially high cost in
the uncommon case when an error is detected. Specifically,
using application crashes as a detection mechanism has zero
detection overhead until there is actually an error. Using
hangs requires only slight “always-on” overhead (updates of
a branch counter to periodically measure the frequency of
branches), which is likely already paid by standard perfor-
mance counter support for current processors. We also re-
quire checkpoint/rollback support; however, analogous sup-
port is assumed by previous schemes as well [8, 28]. Addi-
tionally, we allow for the possibility of checkpoint support
in software and leveraging such support that may be already
present for software reliability. Finally, working at the soft-
ware level, we only detect errors that are not masked by the



hardware or software.

3 Methodology

We perform our fault injection experiments in a simu-
lated microprocessor. The subsequent sub-sections describe
the simulation environment, microarchitecture configuration,
workloads, fault models, detection techniques, and metrics
used.

3.1 Simulation Environment

Ideally, for fault injection experiments, we would like to
use a real system or a low-level (e.g., gate level) simula-
tor. However, modern processors do not provide enough ob-
servability and control to perform the microarchitecture level
fault injections that are of interest to us. We therefore use
simulation. Although low-level simulators would provide
the ability to use more accurate fault models, they present a
tradeoff in speed and the ability to model long running work-
loads with OS activity. Given our emphasis on understand-
ing the impact of faults on the OS and the need to simulate
for long periods, gate level simulation was not feasible. We
therefore chose to use a microarchitecture level simulator.

We use a full system simulation environment comprising
the Wisconsin GEMS microarchitectural and memory tim-
ing simulators [18] in conjunction with the Virutech SIM-
ICS full system simulator [33]. Together, these simulators
provide cycle-by-cycle microarchitecture level timing simu-
lation of a real workload running on a real operating system
on a modern out-of-order superscalar processor and memory
hierarchy.

A full-blown Solaris OS running on SPARC-V9
instruction-set architecture (ISA) is simulated using this in-
frastructure. The simulation is based on a timing-first ap-
proach where the same instruction is executed by both the
timing-accurate GEMS timing simulator and the functionally
accurate SIMICS functional simulator [18]. The resulting ar-
chitecture states of GEMS and SIMICS are compared every
cycle to detect any mismatches between the states.

The injected fault initially affects only the timing simula-
tor’s execution. Once a mismatch between the architectural
state of the functional and the timing simulator is detected,
we flag a corruption in the architecture state.! Since the re-
tiring instruction can be either privileged or non-privileged,
architecture state corruption of both the application and the
OS can be detected.

3.2 Fault Model

The focus of this study is on permanent or hard faults,
with the goal of modeling increasingly important phenom-
ena such as wear-out or infant mortality due to incomplete
burn-in [6, 7, 36]. Precise fault models for wear-out are still
a subject of research [15]. In this paper, we use the well es-
tablished stuck-at-0 and stuck-at-1 fault models as well as
bridging faults (bridged to gnd and Vcc). Recent work has
suggested that some wear-out faults (on the critical paths of

'GEMS does not implement all the instructions in the SPARC ISA and
hence, a mismatch between the architecture states of GEMS and SIMICS
may not be the result of an injected fault. However, we flag an architecture
state corruption only when the retiring instruction is known to be faulty.

Structure Fault location
Instruction Decoder Input latch

Integer ALU Output latch

FP ALU Output latch
Register Bus Output Data bus
Int Reg file Physical register num 200

Reorder Buffer (ROB) Destination Register num field
Register Alias Table (RAT) Logical—Physical mapping

Table 1. Microarchitectual structures in which wear-out
faults are modeled. Various bits in array structures and
latches are modeled with wear-out due to stuck-at and
bridging faults.

a circuit) may initially manifest as timing violations for a
few hours before resulting in hard breakdown [10]. Model-
ing such faults requires lower level simulation than our cur-
rent infrastructure, along with its attendant tradeoffs (Sec-
tion 3.1). We expect that the results shown here will likely
extend for other errors that are persistent as well.

Table 1 lists the structures in which faults are injected
along with the location of the injected fault in each structure.

For each faulty structure, we perform fault injection ex-
periments with four different bits (one bit per injection). This
allows us to factor out the differences between the various
bits in the structure.

3.3 Workload

Our workloads comprise of a collection of 4 Floating
Point applications (mesa, art, ammp and equake) and 6 In-
teger applications (parser, mcf, bzip2, gzip, gcc and twolf)
from the SPEC CPU 2000 benchmark suite. These appli-
cations are simulated inside of a Solaris-9 Operating System
running on a UltraSparc-III+ processor. The full-system sim-
ulation framework allows us to model all system calls and
OS interactions of the applications and help understand the
effects of wear-out faults on the Operating System as well.

After the application has completed initialization, four
random points are chosen to inject a hardware fault in one
of the many structures that are modeled faulty. After a fault
is injected, the workload is simulated for 10 million instruc-
tions and the the presence of the hardware fault is detected
using software-level symptoms.

The workloads that we use are application intensive, per-
forming a majority of their system calls and other OS inter-
actions during the initialization phases. The OS activity in
the 10 millions simulated instructions is <8%. We identified
phases in these initializations where activity in the OS con-
stituted 15-70% of the execution time and performed fault
injection experiments in those phases as well. However, the
high-level results and implications derived from those exper-
iments were similar to the experiments that had low OS activ-
ity. Hence, the results presented here are only for injections
into the former points.

3.4 Fault Detection

An injected fault is said to be activated when the injection
results in a corruption of the architectural state (Section 3.1).
If the fault is never activated, the fault is said to be masked.

Faults that are not masked result in corrupting the archi-
tecture state of the application or the OS or both. As a result,
the application or OS may perform some illegal operations



Description
Recover Error and Debug state
Invalid data access
(page invalid or protected)
A divide by zero integer error
Unable to decode opcode
Access to a misaligned
memory address
No instruction retired in
the last 216 ticks

Trap type
RED state

Data Access Exception

Division by Zero
Tllegal Instruction

Memory Misaligned

Watchdog Reset

Table 2. List of fatal traps monitored as software symp-

toms of hardware failure
that may result in a crash or a hang. We use software-level
mechanisms to detect such crashes and detect hangs using
small amount of hardware support (see below).

However, not every corruption of architectural state may
result in a crash or a hang. The corrupted application, or OS,
may perform illegal operations that result only in data cor-
ruptions without resulting in a crash or a hang. Such Silent
Data Corruptions (SDC) currently fall outside our detection
mechanism. The fault may also be masked by the application
if the corrupted memory value does not affect outputs gener-
ated by the application. Since we simulate only about 10 mil-
lion instructions of the application, this masking of the fault
by the application is currently not determined by our frame-
work (our coverage numbers are therefore conservative).

The following discusses how we detect crashes and hangs.

3.4.1 Detecting Crashes

Our detection mechanism looks for software-level symptoms
to detect abnormal application behavior. We monitor the
traps thrown when instructions are executed with a look-out
for fatal traps that are typically not thrown during a correct
program execution. These fatal traps are thrown when the
instructions perform some illegal operations like division by
zero, accessing an invalid or protected page, etc. Since OS
instructions are also simulated on the same processor, the fa-
tal trap can be from an instruction in the OS as well. Table 2
lists the Solaris traps that are denoted as fatal traps that lead
to crashes.

3.4.2 Detecting Hangs
Previous work has proposed hardware support to detect ap-
plication and OS hangs with high fidelity but some area and
power overhead [20]. Several optimizations to that work are
possible. First, our results show that most of the hangs occur
in the OS. Thus, the hang detector can potentially be cus-
tomized to OS software; minimally, it need be activated only
when execution enters privileged mode (reducing any power
overhead). Second, a simple detector based on a simple
heuristic can initially be used (e.g., based on the frequency of
branches) — if that heuristic is satisfied, then a more complex
mechanism involving hardware or software can be invoked.
For the purpose of our simulations, we use a heuristic
based hang detector that is based on monitoring all the ex-
ecuted branches. A table of counters, indexed by the PC of
the branch instruction, is accessed every time a branch is ex-
ecuted and the corresponding counter is incremented. Once
any counter exceeds 100,000 (this corresponds to the cor-
responding branch constituting 1% of the total executed in-
structions), the detector flags a hang. Hangs in the OS are
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Figure 1. Different outcomes of an injected fault.
Masked: the fault may be activated but does not cause
an architectural state corruption. Crashed: the activated
fault leads to a fatal trap. Hung: the activated fault
causes a hang in the execution. Not Detected: the fault
is activated but cause neither a fatal trap nor a hang.

distinguished from hangs in the application as the privileged
instructions are distinguishable from non-privileged instruc-
tions.”

Figure 1 shows the different outcomes of an injected fault,
along with the mechanisms that we use to detect them.

3.5 Metrics

To help understand the feasibility of using software-level
methods to detect hardware errors, we report coverage and
latency numbers for our detection methods.

Coverage: The coverage of a detection mechanism de-
notes the percentage of non-masked faults that are detected.
Hardware faults that are not masked and result in either
crashes or hangs can be detected by our symptom-based de-
tection methods. Thus, the coverage numbers that we report
are evaluated as

Crashes + Hangs
Total injections — Masked

Coverage

Detection latency: In addition to high coverage, a good
detection mechanism should also detect the fault with a short
latency so as to facilitate easier diagnosis and aid the recov-
ery and repair process. In our experiments, the detection la-
tency of a fault that resulted in a crash is reported as the total
number of instructions retired after the architecture state cor-
ruption of either the OS or the application until the crash. For
hangs, this latency is reported as the number of instructions
retired from the architecture state corruption to the 100th oc-
currence of the instruction that was found to be part of an
infinite loop.

4 Reaults

Detection of hardware faults using software-only meth-
ods presents a zero to low overhead solution to detect and
diagnose the presence of hardware faults. Aided by mini-
mal hardware support, such solutions possibly open new di-
mensions in recovery and repair from hardware faults. This
section presents results to help understand the feasibility of
such an approach, based on the fault injection experiments

detailed in the previous section.

’In our simulations, we actually start the table updates after seeing ar-
chitecture state corruption and a deviation in the trap behavior of the current
run from the fault-free run.



100%

1l |
y P

90%
80%

70%

Total injections
u
o
S
[
[
[

EEE7H A Y
B-gnd_ [ il H I Y
s-ar T

B-Vcc_ I Y

30% 4/
20% 7 7?%
| 77 .
e [l el BEER
Decoder INT ALU FPALU | [Reg Dbus Int reg ROB fault| |RAT fault
fault fault fault fault fault

[OMask HCrash-App @ Crash-OS  NHang-App M Hang-OS  OOther

Figure 2. Propagation of hardware faults through soft-
ware. For each microarchitectural structure and fault
model, the corresponding bar shows the percentage of
injected faults that are masked, that cause crashes and
hangs in the application and OS. The topmost bar shows
the percentage of injected faults that are not detected us-
ing our method. We see that a large fraction of hardware
faults can be detected at the software level using appro-
priate symptoms.

4.1 How do Permanent Faults Propagate
through Software?

We begin by first understanding how these hardware fail-
ures propagate to the software level. We quantify the effect
of the faults that affect the software, along with the feasibility
of detecting them using our software-level approach.

Figure 2 shows how hardware faults propagate through
software for a given microarchitectural structure and four
fault models. Each bar represents fault injections into the
corresponding microarchitectural structure with one of the
stuck-at fault models (stuck at O and 1) and the bridging
fault models (bridged-to-ground and bridged-to-Vcc, shown
as B-gnd and B-Vcc, respectively). In each bar, the lowest
stack represents the percentage of injections that are archi-
tecturally masked. The next two stacks represent the injec-
tions that resulted in a crash of the application (Crash-App)
and the OS (Crash-OS), respectively. The next two stacks
represent the injections that result in hangs in the applica-
tion (Hang-App) and the OS (Hang-OS), respectively. These
stacks represent the injections that can be detected using our
symptom based detection. The topmost stack (Other) gives
the injections that are not detected. As described in section 3,
some part of this bar may be composed of cases that may be
masked by the application, or may result in SDC.

Table 3 summarizes the above data to show the total cov-
erage of our symptom-based software-level detection mech-
anisms for different microarchitectural structures.

From this data, we find that permanent faults in the pro-
cessor are highly software visible as over 98% of the faults
in all structures except FP ALU result in crashes and hangs.
This high rate is mainly due to the injected faults affecting
the control flows of the software (either the application or
the OS or both). These results imply that software-level de-

tection methods based on crashes and hangs are effective in
detecting permanent faults in many microarchitectural struc-
tures of a modern processor (even though most such faults
are not masked like transient faults).

On the other hand, faults in some structures like the FP
ALU cannot be detected by this software-level method and
warrant other software symptoms or some kind of hardware
support for detection (e.g. residue codes [4]). Contrary to
faults in other structures, faults in the FP ALU seldom affect
the control path of the software. In particular, FP ALU is
usually not involved in address computations in the software
while other structures are. Thus, corruptions in the FP ALU
will at the worst affect the correctness of the data compu-
tation but are least likely to result in incorrect memory ad-
dresses (the effects of faults in other structures) and eventu-
ally lead to crashes or hangs. Hence, when compared with
faults in other structures, faults in FP ALU are hard to detect
through crashes and hangs.

The faults injected into the microarchitecture structures
constituted both stuck-at and bridging faults. However, we
find that faults in either fault model propagate in similar fash-
ion to the software, resulting in little variation across the
number of crashes and hangs caused. This is because the
underlying fault, which is either stuck-at or bridging, is a
permanent fault causing highly intrusive behavior in the soft-
ware’s execution.

Figure 2 also shows that the low OS activity (< 8%) in all
of these application does not necessarily translate to higher
rates of application crashes and hangs. In fact, majority of
the crashes detected (54.1%) were in the OS and almost all
(99.7%) of the hangs detected were in the OS. This can be
explained by the fact that, in general, the OS is more control-
intensive than applications and hence the injected faults are
more likely to cause the OS to crash/hang. Also, some errors
in the application will result in non-fatal traps such as page
misses and trap into the OS code. Since the hardware fault is
still present, the trap handler is likely to activate the fault and
finally causes a crash or a hang in the OS.

Current practices rarely involve checkpointing the OS and
hence, the OS cannot be recovered when it is corrupted if
special care is not provided to make OS fault-tolerant.

Although less than 18.1% of injected faults in all struc-
tures, except the ROB, result in crashes or hangs in the ap-
plication, over 87% of the faults in the ROB result in crashes
in the application. This is because faults in the ROB directly
affect the dependence chain of instructions and hence lead
to early crashes by causing a violation of this dependence.
Since the simulated applications have low OS activity, these
faults are activated more by the application, resulting in its
crash.

To understand the reason for such a high percentage of
crashes and hangs in the OS, we further investigate the soft-
ware sites that were corrupted as a result of the underlying
fault before a crash occurs. Since the variation of crashes
and hangs across different fault models is small, results in
the following subsections aggregate all the fault models.



Mechanism Coverage for microarchitectural structures

Decoder fault INT ALU fault FPALU fault Reg Dbus fault Int Reg fault ROB fault RAT fault
Crashes 87.34% (559/640) | 56.41% (361/640) | 0.00% (0/323) | 76.72% (491/640) | 57.81% (370/640) | 100.00% (640/640) | 86.41% (553/640)
Hangs 12.50% (80/640) 43.13% (276/640) 0.00% (0/323) 22.66% (145/640) 35.47% (227/640) 0.00% (0/640) 13.44% (86/640)

Total

99.84% (639/640) [ 99.53% (637/640) | 0.00% (0/323) [ 99.38% (636/640) | 93.28% (597/640) |

100.00% (640/640) | 99.84% (639/640) |

Table 3. Coverage from hangs and crashes for faults that corrupt the architectural state.
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Figure 3. Number of crashes in the application (bottom
hatched portions) and OS (top non-hatched portions) and
the corresponding fatal trap types. The height of each
bar is the percentage of the total number of faults that re-
sulted in crashes in the corresponding microarchitecture
structure. A fault in the underlying hardware results in
crashes in not just the application, but also the OS.

4.2 Software Sites and Causes for Crashes

Figure 3 shows the number of crashes that occur in the
application (bottom hatched portions) and the number that
occur in the OS (top non-hatched portions). For each portion,
the figure also shows the distribution of the different types of
fatal traps that result in crashes. The height of each bar is the
percentage of injections in the corresponding structure that
results in a crash.

From Figure 3, we see that faults in many hardware struc-
tures result in a wide variety of fatal traps as they corrupt var-
ious software sites in both the application and the OS. Some
of the traps are discussed in the rest of the section.

Even though faults are injected in various structures, ma-
jority of the faults (over 45% of the injected faults in all
structures, except the ROB) lead to accesses to misaligned
addresses. As many of the instructions within the software
are responsible for accessing the memory, the injected fault
is likely to corrupt one of these instructions and eventually
result in accessing a misaligned memory location.

SPARC'’s high-priority Red State Exception, which con-
stitutes 21% of the crashes for faults in the Decoder, INT
ALU and Reg Dbus, is a good indication of the presence of a
permanent fault. Faults that result in this trap causes nested
traps to be thrown in the OS, triggering this reset.> While
this built-in error flagging mechanism in SPARC is effective
in reporting hard faults in the hardware, the system state will

3The SPARC-V9 architecture throws a Red State Exception when a trap
is thrown at (maximum_trap_level - 1) trap level. The UltraSparc-IlI+ pro-
cessor simulated has a maximum_trap_level of 5.

already be corrupted when this trap is thrown.

Faults in the ROB and RAT result in mutating the destina-
tion register to which an instruction writes its data. This often
results in the dependent instructions indefinitely waiting for
its source operands, triggering a Watchdog Timer Reset trap.

While one would expect a fault in the decoder to result in
a large number of Illegal Instruction traps, it constitutes less
than 8% of the fatal traps thrown when a fault is present in the
decoder. This is because the majority of the injected faults
in the instruction word mutate the instruction by changing
either the opcode (to another legal opcode) or the register
values.

4.3 Software Components Corrupted by
Hardware Faults

As the previous subsection discusses the various types of
traps thrown due to the injected faults, the fatal traps only
show the final crash sites and in no way do they suggest the
correctness of the application and the OS at the point of a
crash. To further understand the propagation of the hardware
faults, this section focuses on the software components (ap-
plication or OS) corrupted when a crash or a hang is detected.

When a crash or a hang is detected, if only the appli-
cation’s state was corrupted but the system state remained
integral, the application can likely be recovered through
application-level checkpointing. However, if in any cases the
OS state was corrupted, recovery and repair would require
some form of OS checkpointing, which is difficult and so far
has been proposed only for a virtual machine approach [11].

For all the crashes and hangs caused due to faults in-
jected into each microarchitecture structure, Figure 4 shows
the percentage of injections that resulted in only application
state corruption, OS (and possibly application) state corrup-
tion and corruption of neither the application nor the OS. The
height of each bar gives the percentage of faults injected into
the given structure that resulted in crashes or hangs.

The figure shows that over 78.5% of the faults in all struc-
tures except ROB corrupt the OS before resulting in a hang
or crash. This shows that even though an injected fault may
first corrupt the application, it is not very likely to cause an
immediate crash or hang of the application. Instead, through
other types of non-fatal traps, the fault eventually corrupts
the OS before a crash or a hang results. Hangs in the OS
is far more severe than application hangs because if the OS
hangs, nothing gets to be scheduled, whereas if an applica-
tion hangs, other applications can still run.

Faults in ROB are both easy to detect and to recover. Con-
trary to faults in other structures, all of the ROB faults result
in crashes. Furthermore, over 81.8% of faults have only the
application states corrupted before crashes occur. The high
rate of application-only corruption is due mainly to the high
intrusiveness of the fault (as discussed in Section 4.2) and
the short latency to activate the fault. The former property
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Figure 4. For all the crashes and hangs caused due to
faults injected into each microarchitecture structure, the
figure shows the percentage of cases when only the ap-
plication was corrupted, when the OS (and possibly the
app) was corrupted and when neither were corrupted.
The height of each bar gives the percentage of crashes
and hangs from faults injected in that structure. We see
that for many cases, the hardware fault corrupts the sys-
tem state as well.

causes almost an immediate crash and the latter implies that
the application first activates the fault most of the time.

When compared with other structures except ROB, faults
in Decoder result in a higher number (39.7%) of application-
only state corruptions. These faults are highly intrusive be-
cause they not only corrupt the data (register operands and
immediates) used by the instructions but they also mutate an
instruction into another instruction. The latter effect causes
corruptions in both the data path and the control path and
results in many crashes of the application before other non-
fatal traps are thrown.

Faults in the INT ALU, Reg Dbus, Int Reg file and RAT
take inherently longer to detect and hence result in substan-
tially corrupting both the application and system state before
resulting in a hang or a crash.

There are a small number of cases of faults in the ROB
(4.7%) and RAT 9.5% where neither the application nor the
OS states are corrupted (the None portions in Figure 4) be-
fore a crash occurs. In the ROB cases, the fault causes an
instruction to write a value into a wrong but unmapped phys-
ical register. Since the wrong physical register is part of the
architecture state, there is no state corruption visible. How-
ever, the execution crashes because a future instruction that
depends on the value written by the instruction incurring the
fault cannot make progress (its source register is forever seen
as busy). This case triggers the watchdog timer interrupt, re-
sulting in a crash without an architecture state violation.

In the RAT cases, similar to the ROB cases described
above, the logical-to-physical mapping is corrupted to point
to an unmapped physical register. Subsequently, the de-
pendent instruction will wait for its source indefinitely and
causes a watchdog timer interrupt, again resulting in a crash
without an architecture state violation.

We see that over 79.7% of the injections in faults in the
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Figure 5. Crash and hang detection latency for appli-
cation state corruptions in terms of total instructions ex-
ecuted from the application architecture state corruption
to a crash, or a hang, for injections in different microar-
chitectural structures.

INT ALU, Reg Dbus, Int Reg file and RAT result in corrupt-
ing the system state. Hence, special hardware or software
support to facilitate checkpoint and recovery of the OS be-
comes important. The feasibility of such an approach is de-
pendent on the latency at which the software detects these
failures.

4.4 Detection Latency

Detection latency is a crucial parameter since it affects
the checkpointing and recovery mechanisms. Specifically, it
affects the checkpointing interval, the amount of states that
needs to be preserved for a checkpoint, and the cost of re-
covery. Small latencies allow the use of frequent but effi-
cient hardware checkpoints and fast and complete recovery
for both the application and the OS Large detection laten-
cies potentially require (infrequent) software checkpointing,
longer restart on recovery, and dealing with the input and
output commit problems which could thwart full recovery.

We study the detection latencies for OS corruptions sep-
arately from application corruptions because the two entail
different tradeoffs. Software checkpointing of the OS is dif-
ficult and so far has only been proposed for a virtual ma-
chine approach [11]. Therefore, short detection latencies
coupled with hardware support for checkpointing are likely
to be more effective for OS recovery.

4.4.1 Latency from Application State Corruptions

For each microarchitectural component, Figure 5 shows a
histogram of the number of retired instructions from an appli-
cation architecture state corruption to the detection of a hang
or a crash. While Figure 2 already shows the number of runs
that result in crashes and hangs within the 10M-instruction
simulation interval, Figure 5 categorizes the runs that have
corrupted application states before a hang or a crash accord-
ing to their detection latencies. This information can help
us understand how recovery schemes that tolerate shorter
latency than application-level software checkpointing (bil-
lions to trillions of instructions) can be effective in recov-
ering from a permanent fault.
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Figure 6. Crash and hang detection latency for OS state
corruptions in terms of OS instructions executed from the
OS architecture state corruption to a crash or a hang, for
faults in different microarchitectural components.

From the figure, we see that over 65.2% of the runs in all
structures except Int Reg result in a crash or a hang within
100k instructions (microseconds range for GHz processors).
Within this interval, the faults can be caught with efficient
hardware checkpointing support (e.g., SafetyNet easily sup-
ports multiple checkpoints with a checkpoint interval of 100k
cycles), and replayed with simple buffering of persistent state
output and input to solve the input/output commit problem.

Furthermore, almost all of the faults in ROB and RAT re-
sult in hangs and crashes within 1k instructions. For these
cases, even hardware checkpoint and recovery techniques
with very short checkpoint intervals can be used to recover
from a hard fault.

The figure also shows that a large number of the faults in
Int Reg cannot be detected within 100k instructions. This
is because faults in this structure are less intrusive and have
a lower fault activation rate than those in other structures.
While hardware checkpointing techniques may be ineffective
in recovering from these faults, software checkpointing tech-
niques will be able to recover the application state. However,
this case requires considering a tradeoff between complete
recovery by buffering persistent state outputs and inputs for
up to 10 million instructions (few milliseconds for GHz pro-
cessors) or risking incomplete recovery while immediately
committing external outputs. Milliseconds of delay for many
output operations (e.g., disks) do not violate software seman-
tics and so should not pose a problem.

Thus, when the underlying hardware fault corrupts only
the application, hardware- or software-level checkpoint and
recovery methods can be exploited, depending on the type
of coverage vs. overhead tradeoff desired. For example,
systems where availability is most important may choose to
forgo high coverage for applications.

4.4.2 Latency from OS State Corruptions

From section 4.3, we saw that over 78.5% of the injected
faults resulted in corrupting the system state. When the sys-
tem state is corrupted, application and system recovery is
hard as the OS is rarely checkpointed. Special hardware to
help with checkpointing the OS can allow for efficient recov-
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Figure 7. Number of times the Application-OS bound-
ary is crossed from the OS architecture state corruption
to the fatal trap, for different fatal trap latencies.

ery of the entire system.

Although the detection latency in terms of the total num-
ber of instructions is within the software checkpointing inter-
val (as seen in the previous section), the latency is too large
for hardware checkpointing for full coverage. However, to
recover the system, one has to only recover the OS (this at
least preserves the integrity of the system though the applica-
tion is no longer recoverable). Thus, if the number of OS in-
structions executed after the OS was corrupted is sufficiently
small, such buffering in hardware may be feasible.

Figure 6 shows a histogram of the number of OS instruc-
tions retired from the first OS architectural state corruption
to a crash or a hang across different structures. Each portion
of the bar represents the number of faults that are detected
within the corresponding latencies.

The figure shows that over 49.7% (60.6% without the Int
Reg faults) of the crashes in all structures resulted in crashes
or hangs can be seen within 1k OS instructions. Given this
short interval, hardware buffering of the OS instructions is ef-
fective to recover from majority of the faults. Further, hard-
ware support for checkpoint intervals of up to 100k OS in-
structions (e.g., as in [21, 29]) implies more than 96% of
all but Int Reg faults are recoverable. This implies that a
moderate amount of buffering of OS instructions can recover
systems that are corrupted by a permanent fault.

Across all structures, Int Reg faults tend to have longer
OS latencies to crashes and hangs. This is because of the
same reason discussed in Section 4.4.1. In order to recover
from faults in this structure, more sophisticated techniques
that can tolerate or buffer 10M instructions will be needed.

While the number of OS instructions is a good metric for
guiding the design of an OS checkpointing scheme, the num-
ber of switches between the executions of the applications
and the OS within this interval governs the complexity of the
possible OS recovery schemes.

Figure 7 shows the histogram of the number of times the
Application-OS boundary is crossed from the OS state cor-
ruption to the fatal trap across different fault models and dif-
ferent latencies. Each fault that leads to a crash is categorized
by the number of times the boundary was crossed. For faults
that result in hangs, we found that all of them do not cross



the App-OS boundary.

The figure shows that majority of the faults that result in
crashes are contained within the system once the system state
is corrupted (58 % of Int Reg, 70% of ALU, and 80% or more
of Decoder, Reg Dbus, ROB, and RAT). Thus, using a naive
buffer which does not consider switches between the OS and
application can give reasonable coverage for recovery.

Buffering techniques that consider two crosses
(OS—App—OS) are cost-effective as the coverage rises to
88% and more for Decoder, ALU, Reg Dbus, ROB, and RAT
and 64% for Int Reg. Thus, to design an OS recovery scheme
with decent coverage, OS instruction buffering approaches
that take OS-App switches in account are essential.

Assuming the buffering scheme can tolerate 10 App-OS
crosses, high coverage can be achieved for all structures
(97+% of the crashes) except Int Reg (73% of the crashes).
While full OS recovery can be achieved for most of the struc-
tures, the low coverage in Int Reg shows that other forms of
software-level detection (e.g., invariant violation detection,
etc. [37]) and/or hardware support may be needed for faults
of low intrusiveness in order to effectively shorten the detec-
tion latency and lower the number of boundary crossings for
full recovery of the OS.

5 Conclusions and Implications for Resilient
System Design

This work concerns understanding how permanent hard-
ware faults in microarchitectural structures of modern pro-
cessors propagate through software, including the applica-
tion and operating system. The eventual goal of this project
is to develop a low-cost, customizable hardware/software
co-designed solution for hardware (and software) reliabil-
ity. The findings in this paper provide several new and con-
crete guidelines for a complete low-cost reliability solution,
including detection, recovery, and diagnosis.

Detection. Our results unequivocally show that for most
microarchitectural structures, virtually all faults (more than
99% in all but two cases, and more than 93% in one of
the remaining two) are detected through crashes and hangs.
Crashes provide a zero-cost detection mechanism. For
hangs, it suffices to invoke a (hardware) hang detector only in
the OS. This hardware can initially be a very simple heuris-
tic (e.g., backward branch frequency), which can be further
refined in the rare case that it is invoked.

Our results also show that for the floating point unit,
alternative mechanisms are required (e.g., residue codes,
space/time redundancy), but these would potentially be much
lower overhead than techniques such as full core redundancy.
Further, even for the microarchitecture structures that show
excellent coverage, there are still some faults that are not de-
tected through crashes and hangs. For these cases, for ap-
plications/systems that require higher coverage, we plan to
pursue other software level detection schemes (e.g., invariant
violation detection, etc.) that can leverage software reliabil-
ity techniques [37]. For mission-critical systems that require
the highest coverage, we plan to explore limited on-line test-
ing to backup our high-level detection.

Recovery. Our results show the feasibility of check-
point/replay based recovery. Such an approach assumes a
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strategy for diagnosis, repair/reconfiguration and the ability
to replay on correct hardware. We discuss this in the next
portion of this section — first, we assume that such a strategy
exists and note its implications on checkpointing.

A specific challenge is the recoverability of the operat-
ing system. Our results show that for both the OS-intensive
initialization part and the non-OS intensive remaining part
of our applications, a large fraction of the faults result in
corrupting the OS; therefore, much care is needed to make
our system recoverable from OS failures. At the same time,
our results also show that for the microarchitectural struc-
tures considered for high-level detection, the number of OS
instructions executed from the time that the OS state is ac-
tually corrupted to the time of a crash or hang is usually
small. Except for faults in the register file, most faults are
detectable within 100k OS instructions. Furthermore, for the
longer latency faults, there are few crossings between the OS
and application. These results suggest that hardware check-
point/replay is feasible for the OS, in terms of hardware state
required, performance overhead, and simple solutions to the
input and output commit problems.

For application recovery, we find that the detection laten-
cies are also often within the hardware recovery window;
however, there are also many cases of higher latency. Re-
gardless, in all cases, the latency is within 10M instructions
(roughly a few ms for GHz processors). The high latency
cases can be handled using software checkpointing, with
an application specific tradeoff between buffering persistent
outputs/inputs for milliseconds and full application recovery.

These results have clear and interesting implications for
hardware/software co-designed recovery for the application
and the OS, for both hardware and software reliability. For
example, hardware checkpointing structures for hardware re-
liability can be leveraged for software reliability as well. Fur-
ther, as mentioned above, software reliability driven detec-
tion techniques such as invariant violation detection, etc. can
be used to reduce the detection latency if further needed.

Diagnosis and Repair/Reconfiguration. Although we
do not deal with diagnosis directly here, the main implica-
tion of our approach is that diagnosis will likely be expensive
(time intensive) and requires a potentially error-free proces-
sor to proceed. Expensive diagnosis is acceptable and is the
right tradeoff for cheap detection since diagnosis overhead is
only paid in the rare case that a fault is detected. For the latter
issue (availability of an error-free processor), we assume we
can leverage the multiple cores on current chip multiproces-
sors — we do the same for replay and forward progress of the
workload in parallel with diagnosis. Diagnosis can use a re-
play/test strategy to incrementally determine where the fault
occurred. Repair and reconfiguration can be done at the core
level or within a core, exploiting the available redundancy in
modern processors (albeit at some loss in performance).

Other future work. Besides exploring the system impli-
cations mentioned above, our future work will also include
refining the fault models used here, including studying in-
termittents and integrating solutions for transients (e.g., as
in [34]). We also plan to validate our insights with lower
level simulators. Finally, this study has focused on SPEC
benchmarks, which have little OS activity (although there is



significant OS interaction in the presence of faults). To get
some understanding of OS intensive applications, we stud-
ied the initialization phases of the SPEC applications, which
have significant OS activity. As mentioned in Section 3, our
high-level results were similar for this part of the applica-
tions as well. However, in the future we need to validate
our results for more realistic OS intensive workloads such as
transaction processing and web server workloads.
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