
Termination of Just/Fair Computations in

Term Rewriting ⋆

Salvador Lucas a José Meseguer b

aDSIC, Universidad Politécnica de Valencia, Spain

bCS Dept., University of Illinois at Urbana-Champaign, USA

Abstract

The main goal of this paper is to apply rewriting termination technology —enjoying
a quite mature set of termination results and tools— to the problem of proving au-
tomatically the termination of concurrent systems under fairness assumptions. We
adopt the thesis that a concurrent system can be naturally modeled as a rewrite
system, and develop a theoretical approach to systematically transform, under rea-
sonable assumptions, fair-termination problems into ordinary termination problems
of associated relations, to which standard rewriting termination techniques and tools
can be applied. Our theoretical results are combined into a practical proof method

for proving fair-termination that can be automated and can be supported by current
termination tools. We illustrate this proof method with some concrete examples and
briefly comment on future extensions.

Key words: Concurrent programming, fairness, term rewriting, program analysis,
termination.

1 Introduction

Our goal in this paper is the development of new automated methods for prov-
ing termination of concurrent systems under fairness assumptions. Specifically,

⋆ Salvador Lucas was partially supported by the EU (FEDER) and the Spanish
MEC, under grants TIN 2004-7943-C04-02 and HA 2006-0007, and by the General-
itat Valenciana under grant GV06/285; José Meseguer was partially supported by
ONR grant N00014-02-1-0715 and NSF Grant CCR-0234524.

Email addresses: slucas@dsic.upv.es (Salvador Lucas),
meseguer@cs.uiuc.edu (José Meseguer).

Preprint submitted to Elsevier

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we want to contribute new methods that take advantage of the rich set of ter-
mination results and tools developed in recent years for term rewriting systems
to prove termination of concurrent systems under fairness assumptions. This
requires both adopting a certain theoretical stance about the modeling of
concurrent systems, and developing new results and techniques to make the
rewriting-based termination techniques applicable to fair concurrent systems.

The theoretical stance in question is the thesis that a concurrent system can
be naturally modeled as a rewrite system. This has by now been amply demon-
strated to hold by theoretical approaches such as reduction semantics [2] and
rewriting logic [23], and by quite exhaustive studies showing that almost any
imaginable concurrent system can be naturally modeled as a rewrite theory
(see [25]). Once this theoretical stance is adopted, since fairness is a pervasive
property of concurrent systems, needed to establish many properties of inter-
est, the first thing required is to correctly express the fairness notion within
the rewriting framework. In this regard, the early work of Porat and Francez
[28,29], and the work of Tison for the ground fair termination case [32], com-
plemented by the more recent “localized fairness” notion in [24] offer a good
basis. In this setting, a subset RF of the rules of a Term Rewriting System
(TRS) R, whose rules are conveniently labelled can be used to localize the
desired fairness requirements over particular rules of R.

As we explain in Section 9, other notions of fairness have also been proposed
for rewrite systems, with other, quite different, motivations that make such no-
tions inadequate for our purposes, namely, modeling the fairness of concurrent
systems. For concurrent systems, rewrite rules describe system transitions, and
the notion of fair computation (also called strong fairness) should require that
if a rule is infinitely often enabled, then it is infinitely often taken. Similarly,
the notion of just computation (also called weak fairness) should require that
if a rule is eventually always enabled, then it is infinitely often taken.

Example 1 The following TRS models a scheduler which is responsible for
the distribution of processing in a concurrent operating system, where a number
of processes proc (where proc is a constant symbol) run independently.

[end] exec(P) -> stop

[execute] schedule(cons(proc,PS)) -> schedule(shift(exec(proc),PS))

[remove] schedule(cons(stop,PS)) -> schedule(PS)

[round] schedule(cons(exec(P),PS)) -> schedule(shift(exec(P),PS))

[shift1] shift(P,nil) -> cons(P,nil)

[shift2] shift(P,cons(Q,PS)) -> cons(Q,shift(P,PS))

2

Processes are in one of three states: ready (proc), running (exec(proc)), and
finished (stop). A “round robin” fair scheduling strategy gives each process a
fixed amount of processing time and then shifts the activity to the next one in a
list of processes. If a process is ready, then it is executed (rule execute). If it is
running, then the next one is taken (round). If the process stops, then it is re-
moved from the system (remove). A running process exec(proc) finishes when
the rule end is applied. Although the system is clearly nonterminating, compu-
tations following a fair strategy regarding rules end, execute and remove will
terminate. Example 15 below shows how to give a formal proof of this claim
by using the results in this paper. Furthermore, the proof can be obtained by
using existing tools for proving termination (properties) of rewrite systems.

The question that this paper then addresses, and presents partial answers to,
is: how can rewriting termination techniques and tools be used to automatically
prove the fair or just-termination of a concurrent system? To the best of our
knowledge, except for the quite restricted case of fair-termination of ground
term rewriting systems for which Tison’s tree automata techniques provide a
decision procedure [32], this precise question has not been previously posed or
answered in the literature. Yet, we believe that, given the maturity of methods
and tools for termination of rewrite systems, this is an important problem to
attack, both theoretically and because of its many practical applications.

The related question of finding general methods for proving fair termination of
term rewriting systems has indeed been studied before, particularly by Porat
and Francez [28,29]. However, their efforts followed Floyd’s classical approach,
which uses predicates on states (in our setting, ground terms) to achieve ter-
mination (see [10, Chapter 2] for a general description of this approach, and
also [19]). In particular, their characterization of fair-termination of a rewrite
system in terms of the compatibility of a well-founded ordering with all pos-
sible full derivations [29, Definition 9] does not lend itself to mechanization.
Some parallelism can be found with the use of Manna and Ness’s versus Lank-
ford’s termination criteria in proofs of termination of rewriting (see, e.g., [6]).
Manna and Ness’ theorem [22] establishes that termination of a TRS R is
equivalent to the existence of a well-founded ordering > which is compatible
with all rewriting steps s → t (i.e., s > t whenever s → t for all terms s and
t). Since in general there is an infinite number of rewriting steps s → t, Manna
and Ness’ theorem is not amenable to automation. In contrast, Lankford’s the-
orem establishes that termination of a TRS R is equivalent to the existence
of a reduction ordering > (i.e., a stable, monotonic and well-founded ordering
on terms) which is compatible with the rules (typically finitely many) of the
TRS (i.e., l > r for all rules l → r of R). Provided that a suitable reduction
ordering on terms > is available (typically a simplification ordering [4,5,30]),
automatic testing of compatibility with the set of rules is then feasible.

The need to check all (infinitely many) full derivations (as in Porat and

3

Francez’s approach) makes automatic proofs of fair-termination quite unfeasi-
ble. Instead, our approach seeks reasonable conditions under which just/fair-
termination can be reduced to ordinary termination of associated relations, for
which standard rewriting termination techniques and tools can be applied to
automate the proof process.

In Section 3, we introduce the notions of justice and fairness we work with.
In particular, we introduce the notions of 1-label RF -justice and 1-label RF -
fairness. Basically they correspond to labelled justice and fairness (in the sense
of [24]) where all rules in RF (describing the desired just/fair behavior) are
labelled in the same way. In our setting, these notions are specially relevant
because (as shown in the subsequent sections) we are able to characterize the
corresponding termination notions as termination of (combinations of) more
standard reduction relations. In the literature on fairness, though, labels are
usually identified with rules, thus leading to the notion of rule justice/fairness,
where each rule in RF is assumed to ‘own’ a different label (e.g., [29]). Fur-
thermore, when RF = R this becomes the notion of fairness in term rewriting
proposed in [28]. Although the notion of 1-label RF -fairness is new, similar
notions of fairness can also be found in the literature [18]. In this sense, our
framework (which is based on [24]) can be seen as unifying previous notions of
fairness in term rewriting. Moreover, our definitions regarding justice in term
rewriting and the associated proof methods are novel in the literature.

In Section 4, we define just/fair termination in this more general setting and
show that the problem of proving rule just/fair-termination of a TRS R (w.r.t.
the whole system, as done in [28]) can be treated as the problem of proving
just/fair-termination of R w.r.t. a sub-TRS RF of R. We also show how these
more general notions of just/fair-termination are related to 1-label just/fair-
termination. Actually, the ‘1-label’ properties are often sufficient conditions
for the ‘rule’ properties of RF -just/fair-termination.

In Section 5 we show that, if we take S = R − RF , then the 1-label RF -
just/fair-termination of R can be proved by proving termination of combina-
tions of (restrictions of) the relations →S , →RF

and →R. Actually, we prove
that 1-label just/fair-termination can be fully characterized as termination of
combinations of such reduction relations. Furthermore, we prove that termina-
tion of some of such reduction relations is actually necessary for more general
notions like rule RF -just/fair-termination.

Section 6 shows how to translate such requirements into more standard termi-
nation problems, namely: proving or disproving termination and relative ter-
mination of TRSs. Fortunately, such termination problems can be managed
by existing termination tools like AProVE [12], CiME [3], Jambox [9], Matchbox

[33], mu-term [1,20], TTT [13], and TPA [17], among others. Therefore, we get
a quite practical approach for proving fair-termination of TRSs which clearly

4

differs from more ad-hoc or restrictive approaches like the ones in [28,29,32].
In the case of just-termination of a TRS, we are not aware of any previous
approaches in the literature, except for [24], to either characterize the notion
or provide any proof techniques.

In Section 7 we explain how our results can be combined into a unified method,
which offers different proof strategies to tackle a fair-termination problem.
We show this method in action in proofs of concrete examples in Section 8.
We consider the results obtained so far as encouraging, since they can allow
proving just/fair-termination automatically.

Comparisons with related work are drawn in Section 9, where we also discuss
how this paper extends and improves a previous version published in [21].
Section 10 concludes the paper and discusses future work.

2 Preliminaries on Term Rewriting

Let R ⊆ A × A be a binary relation on a set A. We denote by R+ the
transitive closure of R and by R∗ its reflexive and transitive closure. Given
binary relations R,S ⊆ A × A, by R ◦ S we mean the relation {(x, z) | ∃y ∈
A, x R y ∧ y S z}. Given R ⊆ A × A and B ⊆ A, we let R|B = {(a, b) ∈
R | a ∈ B} and R ∩ B2 = {(a, b) ∈ R | a, b ∈ B}. An R-sequence is a finite
or countably infinite sequence (i.e., either a1, a2, . . . , an for some n ∈ N, or
a1, a2, . . .) such that for ai, ai+1 two consecutive elements in the sequence, we
have ai R ai+1; we say that such a sequence begins with a1 (if it is finite, we
also say that it ends with an). An element a ∈ A is said to be an R-normal
form if there exists no b such that a R b. The set of all R-normal forms is
denoted by NFR. The complement REDR = A − NFR is called the set of R-
reducible elements. We say that b is an R-normal form of a (written a R! b)
if b ∈ NFR and a R∗b. We say that R is terminating iff there is no infinite
sequence a1 R a2 R a3 · · ·. Given binary relations R and S (on the same set
A), we say that S preserves R-normal forms if for each a ∈ NFR and b ∈ A,
a S b implies that b ∈ NFR.

Throughout this paper, X denotes a countable set of variables, and F denotes
a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity
given by a mapping ar : F → N. The set of terms built from F and X
is T (F ,X). Terms are viewed as labelled trees in the usual way. Positions
p, q, . . . are represented by chains of positive natural numbers used to address
subterm positions of t. The set of positions of a term t is denoted Pos(t). The
subterm at position p of t is t|p, and t[s]p is the term t with the subterm at
position p replaced by s.

5

A rewrite rule is a sequent of the form α : l → r, with l, r ∈ T (F ,X), l 6∈ X ,
Var(r) ⊆ Var(l), and α ∈ L, a label marking the rule and belonging to a set
L of labels. The left-hand side (lhs) of the rule is l and r is the right-hand
side (rhs). A TRS is a pair R = (F , R) with R a (possibly infinite) set of
rewrite rules. We denote by L(R) the set of labels used in the rewrite rules
of R. A term t ∈ T (F ,X) rewrites to s (at position p ∈ Pos(t) and using

the rule α : l → r ∈ R), written t
p
→l→r s (or just t →R s or even t → s if

no confusion arises), if t|p = σ(l) and s = t[σ(r)]p, for some substitution σ.
A rewrite sequence (or R-sequence) A is a finite or infinite sequence t1, t2, . . .

of terms ti such that ti → ti+1 for all i ≥ 1 (and i < n + 1 if tn+1 is the last
term of a finite sequence of n + 1 terms). A TRS R is terminating if →R is
terminating. The set of normal forms of R (R-normal forms) is denoted by
NFR.

Given TRSs R = (F , R) and S = (F , S), we denote by R ∪ S the TRS
(F , R ∪ S); also, we write R ⊆ S to indicate that R ⊆ S.

3 Justice and Fairness in Term Rewriting

Our definitions of justice and fairness in term rewriting are based on the
formulation of localized justice/fairness properties given in [24]. Let us first
introduce some basic terminology:

(1) We say that a rule α : l → r is enabled on a term t if t contains a redex
of this rule, i.e., t = C[σ(l)] for some context C[] and substitution σ.

(2) An α-rule is a rule with label α. In our setting, a label can mark not just
one but possibly several different rules. Thus, given a term t, we can think
of a label α as representing the one-step rewriting computations which
can be performed by using an α-rule to rewrite t to a term t′; we then
write t →α t′ if there is a rule α : l → r with label α such that t = C[σ(l)]
and t′ = C[σ(r)] for some substitution σ. Note that the one-step rewrite
relation → is the union of those relations: → =

⋃
α∈L(R) →α.

(3) We say that a (one-step computation with) label α is enabled on a term
t if some α-rule is enabled on t.

(4) We say that a (one-step computation with) label α is taken in a reduction
step t → s if t →α s for some α-rule.

An R-sequence is fair (w.r.t. the labeled rules contained in a sub-TRS RF

of R) if for each different label α corresponding to rules in RF , each label α

which is infinitely often enabled during the sequence is infinitely often taken.
Similarly, an R-sequence is just if for each label α for rules in RF , if from
some point on α is continuously enabled, then α is infinitely often taken. We
make this more precise in the following definition.

6

Definition 1 (Labelled justice and fairness) Given a TRS R, a finite or
infinite R-sequence A : t1 →R t2 →R · · ·, and a label α, we let

IA
α = {i ∈ N | ∃α : l → r, Ci, σi, pi, such that ti = Ci[σi(l)]pi

}

Let RF ⊆ R be such that it shares no label with R−RF , i.e., L(RF)∩L(R−
RF) = ∅. We say that the sequence A is:

(1) just (also called weakly fair) w.r.t. the rules in RF (abbreviated RF -just)
if for all α ∈ L(RF)if there is k ∈ N such that IA

α ⊇ {n | n ≥ k}, then
there is an infinite set JA

α ⊆ IA
α such that, for all j ∈ JA

α , tj →α tj+1.
(2) fair (also called strongly fair) w.r.t. the rules in RF (abbreviated RF -fair)

if for all α ∈ L(RF) whenever IA
α is infinite, then there is an infinite set

JA
α ⊆ IA

α such that, for all j ∈ JA
α , tj →α tj+1.

The following example illustrates these notions.

Example 2 Consider the following TRS R:

α1 : a -> b α3 : b -> c

α2 : b -> a α4 : a -> c

where RF consists of the rules α3 and α4. The R-sequence:

a →α1
b →α2

a →α1
b →α2

a → · · ·

is RF -just (there is no label from L(RF) which is continuously enabled) but
it is not RF -fair, because the labels of the rules in RF are infinitely often
enabled but never taken. Assume now that we slightly modify RF to R′

F by
making α3 = α4 = α. Then, the previous sequence is not R′

F -just anymore,
because one of the two rules in R′

F is always enabled (hence reductions labelled
with α are continuously enabled) but never taken.

As a simple consequence of Definition 1, a finite R-sequence is always fair
and just w.r.t. any RF ⊆ R. Also, all R-sequences are fair and just w.r.t.
RF = ∅. Calling fairness “strong fairness”, and justice “weak fairness” is
justified because of the following.

Proposition 1 Let R be a TRS. Any RF -fair R-sequence A is always RF -
just.

Proof. Consider an RF -fair R-sequence A : t1 →R t2 →R · · ·. If there are
α ∈ L(RF) and k ∈ N such that IA

α ⊇ {n | n ≥ k}, then, by RF -fairness, α is
infinitely often taken along A, i.e., there is an infinite set JA

α ⊆ IA
α such that,

for all j ∈ JA
α , tj →α tj+1. Thus, A is RF -just too. 2

7

Definition 1, because of the fact that the same label can be shared by more
than one rule, allows us to consider more or less localized notions of fairness
and justice. In the rest of the paper, we will focus our attention on the following
two special cases of fairness and justice.

Definition 2 Let R be a TRS and RF ⊆ R. An R-sequence A is said to be

(1) Rule RF -fair (resp. rule RF -just) if A is RF -fair (resp. RF -just) and
every rule in RF has a different label: |L(RF)| = |RF |.

(2) 1-label RF -fair (resp. 1-label RF -just) if A is RF -fair (resp. RF -just)
and all rules in RF have the same label: |L(RF)| = 1.

Regarding related notions of fairness and justice, we have the following:

(1) Porat and Francez’s notion of rule fairness for a TRS R [28, page 289], is
captured by rule fairness w.r.t. R itself (i.e., RF = R in Definition 2.1).

(2) Rule RF -fairness in Definition 2.1 corresponds to Porat and Francez’s
relativized fairness (denoted RF -fairness in [28, page 291]).

(3) Justice has not been discussed in the realm of term rewriting systems
(except in [24]), although our definition of rule justice w.r.t. R in Defini-
tion 2 can be thought of as a natural translation of well-known notions
like Lehmann, Pnueli and Stavi’s [19] for concurrent systems.

(4) As far as we are aware of, except for [24], the notions of 1-label RF -fairness
and 1-label RF -justice have not been discussed before in the literature.

Remark 1 Concerning Definition 2, in the following we only consider two
‘extreme’ labellings for the rules in RF : either (1) each rule in RF has a
different label (|L(RF)| = |RF |), or (2) all rules in RF have the same label
(|L(RF)| = 1). When discussing justice and fairness, we will not explicitly
distinguish TRSs containing the same rules but having different labellings. In-
stead, in each case we will indicate the ‘rule’ or ‘1-label’ uses we are interested
in.

The different notions introduced by Definition 2 are related as follows:

Proposition 2 Let R be a TRS and RF be a finite sub-TRS of R. Then, all
rule RF -fair R-sequences A are 1-label RF -fair.

Proof. Let us assume that α is the only label in RF , and suppose that IA
α

is infinite. Then, since the number of rules in RF is finite, there must be some
rule that is enabled an infinite number of times. By rule fairness that rule is
taken infinitely often. But this means that the set JA

α must be infinite, so we
have 1-label fairness. 2

The following example shows that, in general, 1-label RF -fair sequences need
not be rule RF -fair.

8

Example 3 Consider the TRS R and the R-sequence A in Example 2. As-
sume that RF consists of rules α2 and α3. Note that A is 1-label RF -fair but
it is not rule RF -fair.

The following example shows that there are no similar general results connect-
ing 1-label RF -justice and rule RF -justice.

Example 4 Consider the TRS R in Example 2.

(1) Assume that RF consists of rules α3 and α4. Then, the R-sequence A in
Example 2 is rule RF -just but it is not 1-label RF -just.

(2) Assume now that RF consists of rules α1 and α4. Then, the sequence:

d(a,a) →α1
d(b,a) →α2

d(a,a) →α1
d(b,a) →α2

d(a,a) → · · ·

(where we assume the existence of a binary symbol d) is 1-label RF -
just but it is not rule RF -just (rule α4 is continuously enabled but never
taken).

According to Definition 2, for single rule TRSs RF ⊆ R, rule RF -just (resp.
RF -fair) sequences and 1-label RF -just (resp. RF -fair) sequences coincide.
Also, if R itself is a single rule TRS, then the sets of: (i) 1-label R-fair se-
quences, (ii) 1-label R-just sequences, and (iii) arbitrary R-sequences, coin-
cide.

4 Termination of just/fair sequences

The following definition introduces the termination notions related to just and
fair sequences considered above.

Definition 3 (just/fair-termination) Let R be a TRS and let RF ⊆ R.
We say that R is rule RF -fairly-terminating (respectively 1-label RF -fairly-
terminating, 1-label RF -justly-terminating, rule RF -justly-terminating) if all
rule RF -fair R-sequences (respectively all 1-label RF -fair R-sequences, all 1-
label RF -just R-sequences, all rule RF -just R-sequences) are finite.

Remark 2 The notion of rule R-fair-termination in Definition 3 coincides
with Porat and Francez’s notion of fair-termination [28], and that of rule RF -
fair-termination is equivalent to [29, Definition 17].

As far as we are aware of, the notions of 1-label RF -fair-termination, 1-label
RF -just-termination and rule RF -just-termination have not been discussed
before in the literature.

9

Remark 3 Note that ordinary termination of TRSs is subsumed by Defini-
tion 3: if RF = ∅, then all R-sequences are trivially RF -fair and R is ∅-
fairly-terminating if and only if R is terminating. And, clearly, termination
of R implies all just/fair-termination properties considered here. However, the
opposite is not true: for instance, the system {a -> b, a -> a} is rule fairly-
terminating but not terminating.

4.1 Extensional vs. intensional just/fair-termination

A perceptive reader might have noticed that our definitions of just/fair rewrite
sequence and of just/fair termination are extensional, in the precise sense of
being based on rewrite sequences. This agrees well with the usual treatment
of the rewriting relation as a binary relation between terms, and is technically
convenient, because it will allow us to consider various binary relations on
terms as means to prove just/fair termination.

However, in some sense a more faithful modeling of the justice/fairness phe-
nomenon would be obtained by viewing the rewriting relation as a labelled
transition system, that is, as a ternary relation made up of triples (t, α, t′),
displayed as t

α
→ t′. This would lead to what we might call an intensional

notion of (finite or infinite) labelled rewrite sequence of the form

t1
α1→ t2

α2→ t3
α3→ · · ·

which we shall call a computation. We can view a computation as a pair (A, Γ),
where A is the rewrite sequence t1 → t2 → t3 . . ., and Γ is the sequence of la-
bels α1 α2 Then, given RF ⊆ R, we would call the computation (A, Γ) fair
w.r.t. the rules in RF if for all α ∈ L(RF), whenever IA

α is infinite, then there
is an infinite set JA

α ⊆ IA
α such that for al j ∈ JA

α we have tj
α
→ tj+1 in (A, Γ),

that is, α is the j-th element of the sequence of labels Γ. And we would likewise
define the notion of (A, Γ) being just w.r.t. the rules in RF in the obvious sim-
ilar way. Note that the intensional notions are different form the extensional
ones, because in general the projection function π : (A, Γ) 7→ A mapping a
computation to its underlying rewrite sequence is not injective: there can in
general be infinitely many labelings Γ for the same rewrite sequence A.

The intensional definitions of R being RF -just/fair terminating would then
be the obvious ones: all just (resp. fair) computations w.r.t. the rules in RF

are finite.

Since the intensional and extensional notions are different, this raises the rea-
sonable concern of whether the extensional Definition 3 and the above, inten-
sional definition would describe different notions of just/fair termination. But

10

there is nothing to worry about since we have:

Proposition 3 R is RF -just (resp. RF -fair) terminating in the extensional
sense of Definition 3 if and only if it is RF -just (resp. RF -fair) terminating
in the intensional sense defined above.

Proof. Obviously, if (A, Γ) is a nonterminating just (resp. fair) computa-
tion w.r.t. the rules in RF , then A is a nonterminating just (resp. fair) rewrite
sequence w.r.t. the rules in RF . To see the converse implication, the key ob-
servation is that the projection function π : (A, Γ) 7→ A, which is well-defined
for all computations, restricts to a surjective function from the set of all just
computations w.r.t. the rules in RF to the set of all just rewrite sequences
w.r.t. the rules in RF . Likewise, π restricts to a surjective function from the
set of all fair computations w.r.t. the rules in RF to the set of all fair rewrite
sequences w.r.t. the rules in RF . Therefore, if A is a nonterminating just (resp.
fair) rewrite sequence w.r.t. the rules in RF , then we can always find a (not
necessarily unique) nonterminating just (resp. fair) computation (A, Γ) w.r.t.
the rules in RF . 2

4.2 A hierarchy of just/fair-termination properties

As remarked in the introduction, we are going to show that 1-label just/fair-
termination can be fully characterized as termination of combinations of some
reduction relations. We will handle these termination problems by using exist-
ing termination tools. In this section we show how 1-label just/fair-termination
can be used to prove rule RF -just/fair-termination.

Using Propositions 1 and 2, we have the following obvious facts:

Proposition 4 Let R be a TRS and let RF ⊆ R be a finite sub-TRS. Then,
we have:

(1) R is rule RF -fairly-terminating if R is 1-label RF -fairly-terminating.
(2) R is 1-label RF -fairly-terminating if R is 1-label RF -justly-terminating.
(3) R is rule RF -fairly-terminating if R is rule RF -justly-terminating.

And, according to Definition 2 again, if RF ⊆ R is a single rule TRS, then R is
rule RF -fairly-terminating iff R is 1-label RF -fairly-terminating. Furthermore,
R is rule RF -justly-terminating iff R is 1-label RF -justly-terminating. We also
have the following.

Proposition 5 Let R be a TRS and let RF ⊆ R be a finite sub-TRS. If
R is 1-label RF -fairly-terminating and rule RF -justly-terminating, then R is
1-label RF -justly-terminating.

11

Fig. 1. Comparing Just/fair-termination properties

Proof. By contradiction. If R is not 1-label RF -justly-terminating, then
there is an infinite 1-label RF -just sequence A : t1 →R t2 →R · · ·. Consider
IA
α for the unique label α which is assumed to be used in RF . Then either:

(1) IA
α is finite, which means that A is an RF -fair infinite sequence, thus

contradicting 1-label RF -fair-termination of R, or
(2) IA

α is infinite but α is not continuously enabled on A. So, in particular,
no individual rule in RF is continuously enabled on A. Therefore, A

contradicts rule RF -just-termination of R, or
(3) There is k ≥ 1 such that IA

α ⊆ {n | n ≥ k} and (by the assumption that
A is 1-label RF -just) there is an infinite set JA

α ⊆ IA
α such that, for all

j ∈ JA
α , tj →α tj+1. Therefore, A contradicts 1-label RF -fair-termination

of R.

2

Figure 1 summarizes these results; examples mentioned there are introduced
and discussed below.

4.3 Simplifying just/fair-termination problems

In contrast to ordinary termination, just-termination and fair-termination are
not preserved if some of the rules of the TRS are dropped: there are TRSs
R which are RF -fairly-terminating for some RF ⊆ R, but are not R′

F -fairly-

12

terminating for a subset R′
F ⊂ RF .

Example 5 Consider the following TRS R [28,32]:

a -> f(a)

a -> b

As noticed by Tison, R is rule fairly-terminating (i.e., fairly-terminating w.r.t.
R itself). Let RF be the sub-TRS of R consisting of the first rule (then take
S = R−RF). The following infinite R-sequence (as usual, we underline the
contracted redex):

a →RF
f(a) →RF

f(f(a)) →RF
· · ·

is RF -fair. This shows that R is not RF -fairly-terminating.

The key observation is that, given RF ,R′
F ⊆ R, where RF and R′

F are label-
closed inside R, i.e., RF does not share any labels with R−RF , and the same
holds for R′

F , the set of RF ∪ R′
F -fair (resp. just) sequences is the intersec-

tion of the sets of RF -fair and R′
F -fair (resp. RF -just and R′

F -just) sequences.
Therefore, we have the following obvious sufficient condition in the other di-
rection.

Proposition 6 A TRS R is rule RF -fairly-terminating (resp. 1-label RF -
fairly-terminating, 1-label RF -justly-terminating, rule RF -justly-terminating)
for some RF ⊆ R if there is a subset R′

F ⊂ RF not sharing any labels
with R −R′

F , such that R is R′
F -fairly-terminating (resp. 1-label R′

F -fairly-
terminating, 1-label R′

F -justly-terminating, rule R′
F -justly-terminating).

The subset R′
F in Proposition 6 can be a single rule. For instance, Tison

observes that R in Example 5 is rule fairly-terminating thanks to the rule
a -> b. As we have seen above, this is a specially interesting case. The system
in Example 1, however, is RF -fairly-terminating provided that RF contains
all three rules end, execute, and remove. It is easy to see that the absence
of one of them destroys fair-termination. Proposition 6 will be used later and
has the following obvious consequence.

Corollary 1 A TRS R is rule fairly-terminating if there is a subset RF ⊆ R
not sharing any labels with R−RF , such that R is rule RF -fairly-terminating.

13

5 Reducing Just/fair-termination to Termination

Termination analysis has recently experienced a remarkable development in
the term rewriting community, leading to a new generation of promising meth-
ods, tools, and applications. An important goal of this paper is giving an ap-
propriate theoretical basis for just/fair-termination which allows us to take
advantage of term rewriting methods and tools in order to develop automatic
proof techniques.

In this section, we investigate how to reduce a proof of just/fair-termination to
the problem of proving termination of particular (combinations of) reduction
relations. Our approach is as follows: for S = R − RF we characterize 1-
label just-termination and 1-label fair-termination in terms of termination of
combinations of (restrictions of) the relations →S , →RF

and →R. We show
that such characterizations can be used for proving 1-label just-termination
and 1-label fair-termination in practice. Regarding rule just-termination and
rule fair-termination, we use Proposition 4, but we also provide some necessary
conditions for them which are formulated as termination properties as well.

5.1 From 1-label just-termination to termination

In order to ensure that no infinite 1-label RF -just sequences are possible for
a given TRS R (w.r.t. an intended RF ⊆ R), we have to ensure that the
following two kinds of RF -just sequences are not possible:

(1) Infinite sequences A containing an infinite number of terms which are
not enabled for any rule in RF (i.e., an infinite number of terms in the
sequence are in RF -normal form). This means that A is as follows:

t1 →
∗

R t′1 →S t2 →
∗

R t′2 →S t3 →
∗

R · · ·

where t′i ∈ NFRF
for i ≥ 1.

(2) Infinite sequences A where, from some point on, some rules in RF are
continuously enabled and RF rules are infinitely often taken. This means
that A must have the form

t0 →
∗

R t1 →
∗

S t′1 →RF
t2 →

∗

S t′2 →RF
t3 →

∗

S · · ·

where ti, t
′
i 6∈ NFRF

for i ≥ 1 and for each subsequence ti = ui1 →S

ui2 →S · · · →S uini
= t′i, where ni ≥ 0, we also have uij 6∈ NFRF

for
1 ≤ j ≤ ni.

Therefore, since infinite 1-label RF -just sequences can only be of one of these
two forms, we have the following.

14

Theorem 1 A TRS R = RF∪S with RF finite is 1-label RF -justly-terminating
if and only if →∗

R ◦ (→S |NFRF

) and (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) are
terminating.

Proof. The if part is clear from the previous considerations. For the only if
part, assume that R is 1-label RF -just-terminating but either →∗

R ◦(→S |NFRF

)

or (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) are not terminating. In the first case,
we would have an infinite sequence

t1 →
∗

R t′1 →S t2 →
∗

R t′2 →S t3 →R · · ·

where t′i ∈ NFRF
for i ≥ 1, which is obviously 1-label RF -just (because there

is an infinite number of terms t′i ∈ NFRF
where no rule of RF is enabled). In

the second case, we would have an infinite sequence

t1 →
∗

S t′1 →RF
t2 →

∗

S t′2 →RF
t3 →R · · ·

where ti, t
′
i 6∈ NFRF

for i ≥ 1 and for each subsequence ti = ui1 →S ui2 →S

· · · →S uini
= t′i, where ni ≥ 0, we also have uij 6∈ NFRF

for 1 ≤ j ≤ ni, which
is also 1-label RF -just. Thus, in both cases we get a contradiction. 2

We can use Theorem 1 for proving 1-label RF -just-termination.

Example 6 Consider again the TRS R in Example 2 and assume that RF

consists of the rules α3 and α4. Let S = R−RF . Then, we have that NFRF
=

{c} ∪ X and REDRF
= {a, b}. Thus, →S |NFRF

= ∅ and hence →∗
R ◦ (→S

|NFRF

) = ∅, i.e., →∗
R ◦ (→S |NFRF

) is terminating. Also, since no right-hand

side in RF is in REDRF
, we have that the relation (→∗

S ◦ →RF
)∩RED

2
RF

= ∅

is also terminating. Therefore, R is 1-label RF -justly-terminating. As noticed
in Example 2, the infinite sequence A in the example is RF -just; therefore, R
is not rule RF -justly-terminating.

We give the following necessary condition for 1-label RF -just-termination.

Proposition 7 If a TRS R = RF ∪ S with RF finite is 1-label RF -justly-
terminating, then RF is terminating.

Proof. By contradiction. If RF is not terminating, then there is an infinite
RF -sequence t1 →RF

t2 →RF
· · ·, where (obviously) ti ∈ REDRF

for all i ≥ 1.
Thus, →RF

∩RED
2
RF

is not terminating and (→S ∩RED
2
RF

)∗◦(→RF
∩RED

2
RF

)
is not terminating either. Thus, by Theorem 1 it is not 1-label RF -justly-
terminating. 2

We have the following result which is useful to disprove rule RF -just-termination.

15

Proposition 8 If a TRS R = RF ∪ S with RF finite is rule RF -just-
terminating, then →∗

R ◦ (→S |NFRF

) is terminating.

Proof. By contradiction, assume that there is an infinite →∗
R ◦ (→S |NFRF

)-
sequence. Such a sequence is RF -just because there is no rule in RF which is
continuously enabled. Thus, R is not rule RF -just-terminating. 2

5.2 From 1-label fair-termination to termination

Now we consider 1-label RF -fair-termination. First of all, notice that, ac-
cording to Proposition 4, we can use Theorem 1 for proving 1-label RF -fair-
termination by proving 1-label RF -just-termination. There are, however, 1-
label RF -fairly-terminating TRSs which are not 1-label RF -justly-terminating.

Example 7 The TRS R in Example 2 where RF consists of the rule α3 is
not 1-label RF -justly-terminating (see Example 2). Furthermore, since RF

consists of a single rule, R is not rule RF -justly-terminating. However, R is
1-label RF -fairly-terminating (see Example 8 below).

To prove 1-label RF -fair-termination directly, rather than by reduction to a
proof of 1-label RF -just-termination, we have to ensure that the following two
kinds of infinite sequences are not possible:

(1) Infinite sequences A where only a finite number of positions are RF -
enabled (i.e., after a finite number of steps all terms in the sequence are
RF -normal forms). This means that A is as follows:

t0 →
∗

R t1 →S t2 →S t3 →S · · ·

where ti ∈ NFRF
for i ≥ 1.

(2) Infinite sequences A where some rules in RF are infinitely often taken.
This means that A is as follows:

t1 →
∗

S t′1 →RF
t2 →

∗

S t′2 →RF
t3 →S · · ·

Since infinite 1-label RF -fair sequences must exactly be of one of these two
forms, we have the following.

Theorem 2 A TRS R = RF∪S with RF finite is 1-label RF -fair-terminating
if and only if →S ∩ NF

2
RF

and →∗
S ◦ →RF

are terminating.

Example 8 Consider the TRS R in Example 2 and assume that RF consists
of the rule α3. Let S = R−RF . Then, we have that NFRF

= {a, c}∪X . Thus,
→S ∩ NF

2
RF

= {a -> c} is terminating. Also, since every RF -step yields c

which is an R-normal form (hence also an S-normal form and RF -normal

16

form), we have that →∗
S ◦ →RF

is also terminating. Therefore, R is 1-label
RF -fairly-terminating. In Example 7, we have shown that R is neither rule
RF -justly-terminating nor 1-label RF -justly-terminating.

Example 9 Consider the following TRS R:

α1 : a -> c(a,b) α3 : b -> d

α2 : a -> d

and assume that RF consists of the rules α1 and α2. Then, S = R − RF

consists of the rule α3. The sequence

a →α1
c(a,b) →α1

c(c(a,b),b) →α1
· · ·

shows that →∗
S ◦ →RF

is not terminating, i.e., R is not 1-label RF -fairly-
terminating. Therefore, it is not 1-label RF -justly-terminating. However, it
is possible to see that R is rule RF -justly terminating: since the sub-TRS
consisting of the rules α2 and α3 is clearly terminating, every infinite R-
sequence must perform an infinite number of applications of α1. But each
application of α1 keeps both α1 and α2 enabled. As soon as α2 is applied, the
sequence terminates; on the other hand, if only α1 is applied infinitely often
and α2 is not applied at all, then the infinite sequence is not just (because
α2 is continuously enabled but is never taken). Thus, R is rule RF -justly-
terminating.

Note that termination of →∗
S ◦ →RF

implies termination of RF . Therefore, we
can give the following easy necessary condition for 1-label RF -fair-termination.

Proposition 9 If a TRS R = RF ∪ S with RF finite is 1-label RF -fair-
terminating, then RF is terminating.

Again, we can give the following necessary condition for rule RF -fair-termi-
nation, which can be used to disprove it.

Proposition 10 If a TRS R = RF ∪ S with RF finite is rule RF -fair-
terminating, then →S ∩ NF

2
RF

is terminating.

Proof. If →S ∩NF
2
RF

is not terminating, then there is an infinite sequence

t1 →S t2 →S t3 →S · · ·

where ti ∈ NFRF
for i ≥ 1 which is clearly rule RF -fair. This contradicts rule

RF -fair-termination of R. 2

17

We can use Proposition 4 and Theorem 2 to obtain a sufficient condition for
proving rule RF -fair-termination of TRSs. Furthermore, Proposition 10 shows
that termination of →S ∩NF

2
RF

is necessary for rule RF -fair-termination. The
following example, however, shows that Theorem 2 does not extend (in the
only if direction) to rule RF -fair-termination (i.e., termination of →∗

S ◦ →RF

is not necessary for rule RF -fair-termination).

Example 10 Consider the following TRS R [28]:

a -> f(a) g(a,b) -> c a -> g(a,b)

which is rule fairly-terminating. It is not difficult to see that R is RF -fairly-
terminating when RF ⊂ R is given by the two rightmost rules above. However,
since RF is not terminating, →∗

S ◦ →RF
is nonterminating. Thus, R is not

1-label RF -fairly-terminating. Moreover, →RF
∩ RED

2
RF

is not terminating,
since we have the RF -sequence:

a →RF
g(a,b) →RF

g(g(a,b),b) →RF
· · ·

where all terms are RF -reducible. Therefore, R is not 1-label RF -justly-ter-
minating. Furthermore, the infinite sequence

a →RF
g(a,b) →S g(f(a),b) →RF

g(f(g(a,b)),b) → · · ·

is RF -just: the second rule of RF is continuously enabled and infinitely often
taken, whereas the first rule of RF is not continuously enabled. Thus, R is
not rule justly-terminating.

We end this section with the following result, which connects the four termi-
nation properties which are used in Theorems 1 and 2.

Proposition 11 Let R be a TRS, RF ⊆ R and S = R−RF .

(1) If →∗
S ◦ →RF

is terminating, then (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) is
terminating.

(2) If →∗
R ◦ (→S |NFRF

) is terminating, then →S ∩ NF
2
RF

is terminating.

Proof.

(1) Trivial.
(2) Termination of →∗

R ◦(→S |NFRF

) clearly implies termination of →S |NFRF

.

Since →S ∩ NF
2
RF

⊆→S |NFRF

, termination of →S ∩ NF
2
RF

follows.

2

18

6 Proving Just/Fair-Termination

According to Corollary 1 and Proposition 4, we can prove rule fair-termination
and rule RF -fair-termination of a TRS R by proving 1-label RF -fair-termina-
tion of R. By Theorems 1 and 2, given a TRS R, RF ⊆ R and S = R−RF , we
can characterize 1-label RF -fair-termination and 1-label RF -just-termination,
by respectively proving termination of the following reduction relations:

1-label RF -fair-termination 1-label RF -just-termination

→∗
S ◦ →RF

(→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

)

→S ∩ NF
2
RF

→∗
R ◦ (→S |NFRF

)

Thus, in the following, we consider how to address these four termination
problems in more detail.

6.1 Termination of →∗
S ◦ →RF

Given binary relations →1 and →2 on an abstract set A, →1 is called rel-
atively noetherian (or better, relatively terminating) with respect to →2 if
every infinite →1 ∪ →2-sequence contains only finitely many →1-steps (see
[11, Section 2.1], although the notion goes back to Klop: see also [16, Exercise
2.0.8(11)]). In his PhD thesis [11], Geser has investigated relative termination.
In our setting, this notion is interesting due to the following result.

Proposition 12 [11] Let →1 and →2 be binary relations. Then, →∗
2 ◦ →1 is

terminating if and only if →1 is relatively terminating with respect to →2.

Thus, according to this result, termination of →∗
S ◦ →RF

can be investigated as
the relative termination of RF w.r.t. S. Fortunately, there are even automatic
tools such as Jambox [9], Matchbox [33], and TPA [17], which can be used to
prove or disprove relative termination of TRSs.

Example 11 Consider the TRS R in Example 5. Let RF be the sub-TRS
consisting of the rule a -> b and S = R−RF . The TPA tool [17] can be used
to prove termination of →∗

S ◦ →RF
.

Consider again the system R in Example 1 with RF consisting of the rules
end, execute, and remove and S = R−RF consisting of rules round, shift1,
and shift2. We have used TPA to obtain an automatic proof of termination
of →∗

S ◦ →RF
.

19

6.2 Termination of →S ∩ NF
2
RF

As remarked before, termination of →S ∩NF
2
RF

is guaranteed if S terminates,
but this can lead to a quite restrictive setting. The following result is helpful
to overcome this problem.

Proposition 13 Let R and S be two TRSs. Let S ′ = {l → r ∈ S | l, r ∈
NFR}. Then, →S ∩NF

2
R is terminating if and only if →S′ ∩NF

2
R is terminat-

ing.

Proof. By definition of S ′, we have →S′ ∩ NF
2
R = →S ∩ NF

2
R. 2

Corollary 2 Let R and S be two TRSs and S ′ = {l → r ∈ S | l, r ∈ NFR}.
If S ′ is terminating, then →S ∩ NF

2
R is terminating.

Example 12 Consider the TRS R in Example 5 with R = RF ∪ S as in
Example 11. Since S ′ defined as in Corollary 2 is empty, →S ∩ NF

2
RF

is
terminating.

Consider again the TRS in Example 1 with RF and S as in Example 11.
The use of Corollary 2 yields a simpler version S ′ of S, which consists of the
rules shift1 and shift2. Since S ′ can be proved terminating (by using, e.g.,
AProVE), by Proposition 13, →S ∩ NF

2
RF

is also terminating.

The following example shows the limitations of this approach.

Example 13 Consider the following TRS R:

f(a,a) -> a

f(a,X) -> f(X,a)

Let RF be the sub-TRS of R consisting of the first rule and S = R − RF .
Although →S ∩NF

2
RF

is clearly terminating, it is not possible to use Corollary
2 to prove it: both the lhs f(a,X) and rhs f(X,a) are RF -normal forms.
Thus, S ′ = S is nonterminating.

6.3 Termination of (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

)

First, note that if we write →2 = →S ∩ RED
2
RF

and →1 = →RF
∩ RED

2
RF

,

then termination of (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) becomes termination
of →∗

2 ◦ →1, which is equivalent to the termination of →1 relative to →2.

However, by Proposition 11, termination of →∗
S ◦ →RF

(which we can try

20

to prove automatically by the methods and tools discussed in Section 6.1) is
a sufficient condition for termination of (→S ∩ RED

2
RF

)∗ ◦ (→RF
∩ RED

2
RF

).
Furthermore, if →∗

S ◦ →RF
is not terminating, then by Theorem 2 R is not

1-label RF -fairly-terminating. Thus, by Proposition 4, R is not 1-label RF -
justly-terminating. Therefore, if termination of →∗

S ◦ →RF
can actually be

disproved, then we are also disproving 1-label RF -just-termination of R, and
proving termination of (→S ∩ RED

2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) becomes useless.
In this respect, it is interesting to note that recent termination tools like
Matchbox [33] are able to disprove relative termination.

Therefore, if we can prove or disprove termination of →∗
S ◦ →RF

, it makes
no sense to try to prove termination of (→S ∩ RED

2
RF

)∗ ◦ (→RF
∩ RED

2
RF

).

Disproving termination of →RF
∩ RED

2
RF

amounts to disproving termination

of (→S ∩RED
2
RF

)∗◦(→RF
∩RED

2
RF

). And since termination of RF is necessary

for termination of →RF
∩ RED

2
RF

, we have the following result which can be

used to disprove termination of (→S ∩RED
2
RF

)∗ ◦ (→RF
∩RED

2
RF

). In fact, it
is implicit in the proof of Proposition 7.

Proposition 14 If (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) is terminating, then
RF is terminating.

6.4 Termination of →∗
R ◦ (→S |NFRF

)

Clearly, →∗
R ◦ (→S |NFRF

) terminates if →∗
R ◦ →S terminates; futhermore, we

have the following.

Proposition 15 Let →,→1 and →2 be binary relations on a set A such that
→ = →1 ∪ →2. Then, →∗ ◦ →2 is terminating if and only if →∗

1 ◦ →2 is
terminating.

Proof. The only if part is obvious. For the if part, just consider that,
since → = →1 ∪ →2, any →∗ ◦ →2-sequence can always be written as a
sequence of →2-steps with possible →1-steps in the middle. This yieds an
infinite →∗

1 ◦ →2-sequence, which contradicts termination of →∗ ◦ →2. 2

Therefore, we can prove termination of →∗
R ◦ (→S |NFRF

) by proving relative
termination of S w.r.t. RF .

Corollary 3 If →∗
RF

◦ →S is terminating, then →∗
R ◦ (→S |NFRF

) is termi-
nating.

Let R and S be two TRSs, and let S ′ = {l → r ∈ S | l ∈ NFR}. Then,
→S |NFR

= →S′ |NFR
and →∗

R ◦ (→S |NFR
) = →∗

R ◦ (→S′ |NFR
). We can use

21

this fact to prove termination of →∗
R ◦ (→S |NFRF

) by proving termination of
→∗

R ◦ →S′ , i.e., by proving the relative termination of S ′ w.r.t. R.

Corollary 4 Let R and S be two TRSs. Let S ′ = {l → r ∈ S | l ∈ NFR}. If
→∗

R ◦ →S′ is terminating, then →∗
R ◦ (→S |NFRF

) is terminating.

Example 14 Consider the TRS R in Example 5 with R = RF ∪ S as in
Example 11. Since here S ′, defined as in Corollary 4, is empty, →∗

R ◦ (→S

|NFRF

) is also empty and hence terminating.

Furthermore, we have the following result which allows us to prove termination
of →∗

R ◦ (→S |NFRF

) by proving termination of S ′ as above.

Proposition 16 Let R and S be TRSs such that S preserves the R-normal
forms. If S ′ = {l → r ∈ S | l ∈ NFR} is terminating, then →∗

R∪S ◦ (→S |NFR
)

is terminating.

Proof. If S preserves the R-normal forms, then →S |NFR
=→S ∩ NF

2
R and

(→∗

R∪S ◦ (→S |NFR
))+ = →∗

R∪S ◦ (→S ∩ NF
2
R)+

Clearly, termination of (→S ∩ NF
2
R)+ implies that of →∗

R∪S ◦ (→S ∩ NF
2
R)+.

Termination of (→S ∩ NF
2
R)+ is equivalent to termination of →S ∩ NF

2
R.

By Proposition 13, termination of S ′ implies termination of →S ∩NF
2
R (note

that, since S ′ ⊆ S preserves the R-normal forms, we must have r ∈ NFR for
all l → r ∈ S ′; thus Proposition 13 applies to S ′ as defined here). 2

We can use the previous results as an alternative method for proving termi-
nation of →∗

R ◦ (→S |NFRF

) as follows.

Corollary 5 Let R be a TRS, RF ⊆ R, and S = R − RF be such that S
preserves the RF -normal forms. Let S ′ = {l → r ∈ S | l ∈ NFRF

}. If S ′ is
terminating, then →∗

R ◦ (→S |NFRF

) is terminating.

In Section 8 we use these results for proving just/fair termination.

7 A Method for Proving Just/Fair-Termination as Termination

The results presented in this paper provide a characterization of 1-label rule
just/fair-termination as termination of a number of combinations of rela-
tions (Theorems 1 and 2). According to Theorem 1, proving 1-label RF -just-

22

termination is equivalent to proving:

TJ1 : Termination of (→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

), and

TJ2 : Termination of →∗
R ◦ (→S |NFRF

).

By Theorem 2, proving 1-label RF -fair-termination is equivalent to proving:

TF1 : Termination of →∗
S ◦ →RF

, and

TF2 : Termination of →S ∩ NF
2
RF

.

More general problems such as rule RF -just/fair-termination are reduced to
the former ones (see Figure 1). In general, however, in doing this we only get
sufficient conditions for such problems (see Proposition 4).

7.1 Proving rule just/fair-termination

Proposition 4 provides the basis for proving rule RF -just/fair-termination by
proving 1-label RF -just/fair-termination. Regarding refutations of just/fair
RF -termination properties, we can use Propositions 8 and 10 (among others)
to translate them into refutations of termination of concrete (combinations
of) reduction relations.

7.1.1 Rule RF -fair-termination

PROBLEM F0: Given a TRS R, is R fairly-terminating?

Since Porat and Francez’s notion of fair-termination of a TRS R is rule R-fair-
termination (Remark 2), we can use Proposition 6 to prove fair-termination of
R by proving rule RF -fair-termination of R for some RF ⊆ R. Hence, we look
for a finite sub-TRS RF ⊆ R and go to Problem F1 below to try to prove the
new reformulation of the problem. Regarding the choice of RF , see Remark 6
below.

PROBLEM F1: Given a TRS R and a finite sub-TRS RF ⊆ R, is R rule
RF -fairly-terminating?

In order to disprove RF -fair-termination of R, we can use Proposition 10
for disproving rule RF -fair-termination of R by disproving TF2. Additionally,

23

if RF is a single rule TRS, then rule RF -fair-termination and 1-label RF -
fair-termination are equivalent; by Proposition 9, we can disprove RF -fair-
termination of R by disproving termination of RF .

According to Proposition 6, we can prove RF -fair-termination of R by look-
ing for a subset R′

F ⊆ RF and, by Proposition 4, proving 1-label R′
F -fair-

termination of R (see Section 7.2 below). If R is proved 1-label R′
F -fairly-

terminating, then it is also rule RF -fairly-terminating; otherwise, nothing can
be said with the present methods.

Remark 4 In particular, choosing RF = ∅ amounts to proving ∅-fair-termi-
nation of R which, as discussed in Section 4, is equivalent to proving ter-
mination of R (Remark 3), which of course implies all kinds of just/fair-
termination properties discussed here.

7.1.2 Rule RF -just-termination

PROBLEM J0: Given a TRS R, is R justly-terminating?

Following Porat and Francez’s notion of fair-termination of a TRS R, we
can speak of just-termination of R as rule R-just-termination. According to
Proposition 6 we can look for a single rule sub-TRS RF ⊆ R and go to Prob-
lem J1 below to try to prove the new formulation of the problem.

Remark 5 In contrast to fair computations, there is no general connection
between rule and 1-label RF -just-termination. For this reason, we cannot deal
with arbitrary sub-TRSs RF ⊆ R and we restrict the attention to single-rule
TRSs RF for which we can prove rule RF -just-termination by proving 1-label
RF -just-termination.

PROBLEM J1: Given a TRS R and a single rule sub-TRS RF ⊆ R, is R
rule RF -justly-terminating?

Since our techniques actually prove 1-label RF -just-termination, we try to
prove 1-label RF -just-termination of R (see Section 7.2 below).

Regarding refutations of rule RF -just-termination, we can use Proposition 7
to disprove 1-label RF -fair-termination of R by disproving termination of RF .
Furthermore, we can use Proposition 8 to disprove rule RF -just-termination,
even when RF consists of more than one rule.

Remark 6 According to our method, which proves rule RF -just/fair-termi-

24

Fig. 2. Proving 1-label RF -fair-termination

nation by proving 1-label RF -just/fair-termination, RF (or R′
F ⊆ RF) should

be chosen to be terminating. Otherwise, by Propositions 7 and 9, R is not
1-label RF -justly/fairly-terminating.

7.2 Proving 1-label just/fair-termination

The results in Section 5 are used here, sometimes in combination with those in
Section 3, to establish two decision graphs which can be used to prove 1-label
RF -just/fair-termination. In particular, we use the following two facts:

Fact 1: 1-label RF -just-termination implies 1-label RF -fair-termination (Prop-
osition 4).

Fact 2: TF1 implies TJ1 (Proposition 11).

The decision graphs are shown in Figures 2 and 3. In order to use them, the
nodes should be visited from top to bottom, performing the corresponding
termination tests which are supposed to either give a positive answer (y), a
negative answer (n), or fail/abort (?). The answer indicates which is the next
node to be visited: the arc whose label corresponds to the answer should be
followed. We briefly justify both decision graphs as follows:

1-label RF -fair-termination

• The two arcs with label ‘n’ which leave the nodes TF1 and TF2 clearly
lead to disproving 1-label RF -fair-termination, because both TF1 and TF2

25

are necessary conditions for the property. When both proofs succeed, we
conclude the 1-label RF -fair-termination of R.

• If, after proving TF1, the proof of TF2 fails, then we can use Fact 1 and try
to prove 1-label RF -just-termination; however, since at this stage we know
that TF1 holds, by Fact 2 we only need to check TJ2 (node with label (1) in
the diagram). If TJ2 holds, then we conclude the 1-label RF -fair-termination
of R. Otherwise, we cannot say anything.

• If nothing can be said about TF1, then we can use Fact 1 and try to prove
1-label RF -just-termination (2). Since TF1 and TJ1 are connected by Fact
2, we use this knowledge during the proof of TJ1: see the next bullets.

• If the proof of TJ1 fails, then we cannot conclude anything about the 1-label
RF -fair-termination of R.

• If we can prove TJ1, then we still need to check TJ2 as above (3).
• If we can disprove TJ1, then by Fact 2 this also disproves TF1 and then we

can conclude that R is not 1-label RF -fairly-terminating (4).
• Finally, if the proof of TJ1 fails, we can still try to disprove 1-label RF -fair-

termination by disproving TF2 (node with label (5)). However, at this node
of the decision graph, where we know that TF1 failed, if TF2 can be proved
(or fails) we cannot conclude anything regarding 1-label RF -fair-termination
of R.

1-label RF -just-termination

• The two arcs with label ‘n’ which leave the nodes TJ1 and TJ2 clearly lead to
disproving 1-label RF -just-termination, because both TJ1 and TJ2 are nec-
essary conditions for the property. When both proofs succeed, we conclude
the 1-label RF -just-termination of R.

• If, after proving TJ1, the proof of TJ2 fails, then we can still disprove 1-
label RF -just-termination by disproving TF2: indeed, if TF2 does not hold,
then R is not 1-label RF -fairly-terminating and, by Fact 1, it is not 1-label
RF -justly-terminating. Otherwise (i.e., TF2 holds or fails to be proved), we
cannot conclude anything regarding 1-label RF -just-termination of R.

• If nothing can be said about TJ1, then we can use Fact 2 and try to prove
TF1 (node with label (1)), see the next bullets.

• If we can prove TF1, by Fact 2 TJ1 holds but we still need to check TJ2.
• If we can disprove TF1, then R is not 1-label RF -fairly-terminating and, by

Fact 1, we can also conclude that R is not 1-label RF -justly-terminating
(2).

• If the proof of TF1 fails (node with label (3)), then we can still disprove
1-label RF -just-termination by disproving TF2 as explained above.

26

Fig. 3. Proving 1-label RF -just-termination

7.3 Proving TF1, TF2, TJ1, and TJ2

As discussed in Section 6, it is possible to use standard termination techniques
(and the corresponding termination tools) for proving the required termination
properties TF1, TF2, TJ1, and TJ2.

(1) As discussed in Section 6.1, TF1, i.e., termination of →∗
S ◦ →RF

, is equiva-
lent to relative termination of RF w.r.t. S. Relative termination problems
in term rewriting can be specified by means of the TPDB format 1 and
are accepted by several termination tools like Jambox, Matchbox, and
TPA. Proofs and refutations of relative termination can be obtained in
this way. We can also disprove TF1 by disproving termination of RF . For-
tunately, termination tools like AProVE and TTT, among others, are able
to disprove termination of TRSs (although they do not currently handle
relative termination problems).

(2) The second termination problem, TF2, i.e., termination of →S ∩ NF
2
RF

can be proved by proving termination of S ′ = {l → r ∈ S | l, r ∈ NFRF
}

(Corollary 2).
(3) Regarding TJ1, i.e., termination of (→S ∩ RED

2
RF

)∗ ◦ (→RF
∩ RED

2
RF

),
we do not provide any particular technique to directly address it. Rather,
we propose (and motivate, see Section 6.3) proving termination of →∗

S

◦ →RF
, i.e., the relative termination of RF w.r.t. S. Again, it is possible

1 See the Termination Problems Data Base (TPDB): http://www.lri.fr/
∼marche/tpdb

27

to disprove TJ1 by disproving termination of RF (Proposition 14).
(4) Finally, regarding TJ2, i.e., termination of →∗

R ◦(→S |NFRF

), in Section 6.3
we provide a number of possibilities for proving this property. We propose
to sequentially proceed as follows: for S ′ = {l → r ∈ S | l ∈ NFRF

}:
(a) If S preserves the RF -normal forms, then prove termination of S ′

(Corollary 5).
(b) Prove termination of →∗

R ◦ →S′ , i.e., the relative termination of S ′

w.r.t. R (Corollary 4).
(c) Prove termination of →∗

RF
◦ →S , i.e., the relative termination of S

w.r.t. RF (Corollary 3).
Of course, since all these proof methods are just sufficient conditions
for proving TJ2, we can only use the positive answers. Nothing can be
concluded from negative ones (refutations).

8 More examples

In this section we describe several examples of nonterminating systems which
are justly- or fairly-terminating and, for most of them, show how to formally
prove this property using our results. We start with our main example by
proving that it is fairly-terminating (Problem F0).

Example 15 (Continuing Example 1) Let RF be composed by the rules end,
execute, and remove. Then, S contains rules round, shift1, and shift2. As
shown in Examples 11 and 12, TF1 and TF2 hold. Thus, by Theorem 2, 1-label
RF -fair-termination of R follows. By Proposition 4, rule RF -fair-termination
holds and by Proposition 6, R is fairly-terminating.

Examples from Porat and Francez’s papers

The following example was proved fairly-terminating by Porat and Francez.
We refine their result by showing that it is actually justly-terminating accord-
ing to our definitions in Section 3.

Example 16 The following TRS R [28, page 289, second example, 1)]:

a -> b a -> f(a)

is justly-terminating: take RF = {a -> b}. Then, S = R−RF consists of the
rule a -> f(a). Then, →∗

S ◦ →RF
is clearly terminating. By Proposition 11,

(→S ∩ RED
2
RF

)∗ ◦ (→RF
∩ RED

2
RF

) is terminating. Now consider S ′ = {l →
r ∈ S | l ∈ NFRF

} = ∅ which is also terminating. Obviously, S preserves

28

the RF -normal forms. Thus, by Corollary 4, →∗
R ◦ (→S |NFRF

) is terminating.
Therefore, by Theorem 1, R is 1-label RF -justly-terminating and R is rule RF -
justly-terminating. Finally, by Proposition 6, we conclude just-termination of
R.

Fair-termination of R in Example 16 above follows from the just-termination
proved in the example by using Proposition 4.

Porat and Francez also showed fair-termination of the following example. We
prove it by using our techniques and also show that it is a proper case of
fair-termination in the sense that it is not justly-terminating.

Example 17 The following TRS R [28, page 290, second example]:

b -> c b -> a f(X,X) -> f(a,b)

is fairly-terminating. Take RF = {b -> c} and S = R − RF . Then, →∗
S

◦ →RF
is clearly terminating and so is S ′ = {l → r ∈ S | l, r ∈ NFRF

} = ∅.
By Corollary 2, →S ∩ NF

2
RF

is terminating. Thus, by Theorem 2, R is 1-
label RF -fairly-terminating and R is rule RF -fairly-terminating. Finally, by
Proposition 6, we conclude fair-termination of R. Note that R is not justly-
terminating: the infinite sequence

f(a,a) →R f(a,b) →R f(a,a) →R · · ·

is just, because no rule is continuously enabled.

The following example is also fairly-terminating but it is not justly-terminating.

Example 18 Consider the following TRS R [28, page 294, example 1]:

a -> c a -> b b -> a

This TRS is fairly-terminating: Take RF = {a -> c}. Then, →∗
S ◦ →RF

is clearly terminating and S ′ = {l → r ∈ S | l, r ∈ NFRF
} = ∅ also is.

Thus, by Theorem 2, R is 1-label RF -fairly-terminating and R is rule RF -
fairly-terminating. Finally, by Proposition 6, we conclude fair-termination of
R. The system is not rule justly terminating: the infinite sequence

a →R b →R a →R b →R · · ·

is just, because no rule is continuously enabled.

Example 19 Consider the following TRS R [28, page 292, remark]:

a -> f(a) g(a,b) -> c a -> g(a,b)

29

This TRS is fairly-terminating but, as discussed in Example 10, we cannot
prove it by using our current results.

Lottery

Consider the following scenario: a lottery where a finite number of balls are
rolling inside a container assumed here to be circular. Eventually, a ball will
be removed to pick a number and, of course, the repeated extraction of balls
will make the whole process terminating. The following TRS can be used to
model this process:

[extract] cons(X,XS) -> XS

[shift] cons(X,cons(Y,XS)) -> cons(Y,snoc(XS,X))

[circular1] snoc(nil,X) -> cons(X,nil)

[circular2] snoc(cons(X,XS),Y) -> cons(X,snoc(XS,Y))

Here, RF consists of the rule extract, which represents the extraction of a
ball. The remaining rules (shift, circular1 and circular2) are collected
into a nonterminating TRS S which represents a finite list whose elements are
shifted in a circular fashion over and over again.

Let us prove that R is fairly-terminating w.r.t. RF . According to Corollary
4 and Theorem 2, we have to prove that both →S ∩ NF

2
RF

and →∗
S ◦ →RF

are terminating. Regarding termination of →∗
S ◦ →RF

, by Proposition 12
this is equivalent to proving that RF is relatively terminating with respect
to S. We have used TPA to obtain an automatic proof of this. Regarding
termination of →S ∩ NF

2
RF

, we can use Proposition 13 to obtain a sub-TRS
S ′ of S which only contains circular1. The TRS S ′ is obviously terminating.
Thus, by Corollary 2, →S ∩ NF

2
RF

is also terminating and we conclude that
R is RF -fairly-terminating.

Noisy channel

Consider the following scenario: there are three agents A, B, and C. Agents A
and B have to perform tasks a and b (respectively) in a distributed fash-
ion. Agent C receives information about their completion through a two-
component channel. Agent A (resp. B), writes “a”, (resp. “b”) on the cor-
responding channel to communicate to C that his/her task has been finished.
Once the tasks performed by A and B have both terminated, C closes the

30

channel. However, the channel is noisy in such a way that, when both values
are in it, they may get lost. Thus, both A and B may have to repeat their
respective signals before the channel is closed. The following TRS can be used
to model this process:

[A] [null,Y] -> [a,Y]

[B] [X,null] -> [X,b]

[C] [a,b] -> done

[loss] [a,b] -> [null,null]

The key point here is that if rule C is fair, then the system is terminating.
Thus, we consider RF consisting of rule C.

Let us prove that R is fairly-terminating w.r.t. RF . Let S = R − RF , i.e.,
S contains the rules A, B and loss (and it is nonterminating). According to
Corollary 4 and Theorem 2, we have to prove that both →S ∩ NF

2
RF

and →∗
S

◦ →RF
are terminating. Regarding termination of →∗

S ◦ →RF
, by Proposition

12 this is equivalent to proving that RF is relatively terminating with respect
to S. Again, we have used TPA to obtain an automatic proof of this. Regarding
termination of →S ∩NF

2
RF

, we use Proposition 13 to obtain a simpler version

S ′ of S, namely, S ′ containing rules A and B. Termination of →S ∩ NF
2
RF

is equivalent to termination of →S′ ∩ NF
2
RF

. The TRS S ′ is easily proved
terminating. Hence, R is RF -fairly-terminating.

9 Related work

Porat and Francez’s pioneered the research on fair computations and fair-
termination in term rewriting. In [28,29], they introduce the notion of fair
computation in term rewriting and give a definition of termination of such
computations (fair-termination). As remarked in Sections 3 and 4, these no-
tions are subsumed by ours. They also investigated how to prove fair termi-
nation, but followed Floyd’s classical predicate-based approach, which is com-
pletely different from ours. In fact, they do not discuss how to automatically
prove fair-termination in their approach. Tison also investigated decidability
of fair-termination of rewriting and gave some results for ground TRSs [32].

Various other approaches to fairness within term rewriting have been devel-
oped so far. In particular, the notion of fairness as related to the removal of
(residuals) of redexes rather than concerning the application of rules is well-
known after O’Donnell’s work [26] on the so-called outermost-fair reduction

31

strategy and the corresponding normalization results [26,14]. O’Donnell’s no-
tion of fairness was intended to provide a basis for computing the normal form
of terms. In those works, a (finite or infinite) reduction sequence t1 → t2 → · · ·
is fair if for all i ≥ 1, and (position of a) redex ∆ in ti, there is j > i such that
tj does not contain any residual of ∆ [31, Definition 4.9.10] (see also [16]). It is
not difficult to see that this notion of fairness is not comparable to ours. Fol-
lowing these works, fairness plays a very important role in infinitary rewriting
as an essential ingredient of strategies which intend to approximate infinitary
normal forms [15]. The introduced notions, however, follow the previous style
and become, then, incomparable to ours.

Termination techniques have been recently proposed as suitable tools for prov-
ing liveness properties of fair computations [18]. As in our approach, Koprowski
and Zantema define fairness by using two TRSs. According to [18, Section
2.2], an infinite reduction in RF ∪S is called fair (w.r.t. RF) if it contains in-
finitely many RF -steps 2 . Nothing is said regarding finite reduction sequences.
No distinction between enabled and taken steps is made. Actually, infinite fair
sequences in Koprowski and Zantema’s sense are of the form

t1 →
∗

S t′1 →RF
t2 →

∗

S t′2 →RF
· · ·

where rules in RF are infinitely often enabled (in t′i) and infinitely often taken
(in t′i again, for i ≥ 1) without paying attention to the particular rules in
RF which are enabled or taken. So, infinite fair sequences in Koprowski and
Zantema’s sense are easily seen to be 1-label RF -fair. However, there are
infinite 1-label RF -fair sequences which are not fair according to [18].

Example 20 Consider the TRS R

a -> b

b -> b

Let RF consists of the first rule (thus, S consists of the second rule). Then,
the infinite sequence

b →S b →S · · ·

is not fair (w.r.t. RF) in Koprowski and Zantema’s sense (there is no RF -
rewriting step) but it is indeed 1-label RF -fair (rules in RF are never enabled).

Thus, Koprowski and Zantema’s fairness does not really coincide with 1-label

2 Actually, Koprowski and Zantema’s paper use R= and R instead of our notation
S and RF , respectively.

32

RF -fairness. Furthermore, the notions of fairness we have discussed in this
paper are more expressive: rule RF -fairness is not captured by [18] as soon as
we use different labels for the rules in RF .

Koprowski and Zantema’s paper does not try to give any notion of fair-
termination of TRSs (since this is not their concern, they actually do not
mention any of the papers on this topic in the literature [28,29,32]). An at-
tempt to give such a definition in a reasonable way (e.g., “there is no infinite
fair sequence”) would actually lead to characterizing such a notion of fair-
termination as relative termination (i.e., termination of →∗

S ◦ →RF
). In par-

ticular, the TRS R in Example 20 would be considered as fairly-terminating
(indeed, →∗

S ◦ →RF
is terminating).

Our analysis, however, has shown that, even for the 1-label RF -fair case, rel-
ative termination is only one of the ingredients of 1-label RF -fair-termination
(see Theorem 2). Furthermore, we have shown that termination of →S ∩NF

2
RF

(the other ingredient) is necessary for all other notions of fair-termination
investigated here (Proposition 10). Nothing about that is discussed in [18],
perhaps in agreement with the fact that they do not consider the problem of
termination of fair computations. According to our results, for instance, R in
Example 20 is not 1-label RF -fairly-terminating because →S ∩NF

2
RF

=→S is
not terminating.

As far as we are aware of, [21] is the first attempt to use standard termination
techniques and tools for proving fair-termination of rewriting. This paper is
an extended and revised version of [21]. The main differences are:

(1) Justice is not treated in any way in [21].
(2) The termination notions for labelled justice and fairness, and for 1-label

RF -just-computation and 1-label RF -fair-computation are new.
(3) The results which characterize 1-label RF -just-termination and 1-label

RF -fair-termination by means of termination of (combinations of) stan-
dard reduction relations are new.

(4) The necessary conditions for all just/fair-termination properties discussed
in this paper are new.

(5) Except for termination of →∗
S ◦ →RF

, the termination properties which
are used and discussed in Sections 5 and 6 are new. The results for proving
and disproving them are also new.

(6) The detailed proof/refutation method described in Section 5 is new.
(7) We have given more examples, both from the related literature and as a

way to motivate concurrent system applications.

33

10 Conclusions and future work

On the basis of the notion of localized justice/fairness properties in term rewrit-
ing [24], we have defined the notions of labelled justice and fairness (Definition
1). Although fairness has been investigated for term rewriting by Porat and
Francez [28], the termination notions for labelled justice and fairness that we
have introduced here seem to be new in the literature. Furthermore, Porat and
Francez’s notions of fairness are covered as special cases of our definition. We
have defined the two specialized notions of rule and 1-label RF -justice, and
rule and 1-label RF -fairness (Definition 2). Roughly speaking, the difference
between rule and 1-label RF -justice/fairness arises when we distinguish each
rule with a different label (in the first case) or we do not distinguish their la-
bels at all (in the second case). We have investigated the connections between
these two notions (Propositions 1 and 2).

We have defined rule and 1-label RF -just-termination and rule and 1-label
RF -fair-termination (Definition 3). Again, Porat and Francez’s notions of fair-
termination are particular cases of ours (Remark 2). We have investigated the
connections between these notions of termination. Our results are summarized
in Figure 1. Specifically, 1-label RF -fairly-terminating TRSs R are rule RF -
fairly-terminating. In contrast, there are 1-label RF -justly-terminating TRSs
which are not rule RF -justly-terminating (and viceversa!). Nevertheless, rule
RF -justly-terminating TRSs which are 1-label RF -fairly-terminating are 1-
label RF -justly-terminating. Finally, every 1-label RF -justly-terminating TRS
R is 1-label RF -fairly-terminating. If RF is a single rule TRS, then rule fair-
termination and 1-label fair-termination coincide. The same happens regard-
ing just-termination.

We have shown that the problem of proving 1-label RF -just-termination of a
TRS R w.r.t. a sub-TRS RF (where we let S = R−RF) is equivalent to the
problems of proving termination of (→S ∩ RED

2
RF

)∗ ◦ (→RF
∩ RED

2
RF

), and
→∗

R ◦ (→S |NFRF

) (Theorem 1). Similarly, proving 1-label RF -fair-termination

is equivalent to proving termination of →∗
S ◦ →RF

and →S ∩NF
2
RF

(Theorem
2).

We have given necessary conditions for rule RF -just-termination (Proposition
8) and rule RF -fair-termination (Proposition 10). We have also given useful
necessary conditions for 1-label just-termination (Proposition 7) and 1-label
fair-termination (Proposition 9)

We have investigated how to prove termination of such particular relations.
Termination of →∗

S ◦ →RF
is equivalent to the relative termination of RF

w.r.t. S. Regarding termination of the other reduction relations, we have given
a number of results which allow us to use standard methods and tools for prov-

34

ing them (Corollaries 2, 3, 4 and 5). Also, we provide a number of results for
disproving some of these properties (Proposition 14). By using our results, we
can reduce the automatic proof of just/fair termination to that of standard
termination problems, namely: proving and disproving termination and rel-
ative termination of TRSs, which can be addressed by existing termination
tools. We have shown how to combine the results in this paper to provide a
practical proof method for proving fair-termination (Section 7).

A number of interesting issues remain to be investigated. For instance, Ex-
ample 10 (which we cannot handle at present with our method) shows that
a deeper analysis is needed to extend the use of termination techniques (and
tools) for proving fair-termination. Regarding future extensions of our tech-
niques, we think that the following ones are interesting to consider:

(1) Investigating more precise methods for proving and disproving the main
termination properties enumerated in Section 6.

(2) Just/fair-termination modulo a set of equations. Fairness modulo a set of
equations (and the corresponding termination notion) was already con-
sidered by Porat and Francez [29], but without exploiting standard ter-
mination techniques and tools.

(3) Another important aspect of fairness is that, in many applications, only
initial expressions satisfying concrete properties are expected to exhibit
a fairly-terminating behavior. Indeed, this can be crucial to achieve fair-
termination in some cases.

(4) The role of typing information in fair-termination. It is well-known that
types play an important role in termination. As shown in [7,8], it is pos-
sible to deal with termination of sorted TRS by reducing this problem to
the problem of proving termination of a TRS (without sorts). We believe
that a similar treatment could be useful for fair-termination.

(5) The implementation of our techniques, and their associated proof method,
in a system like MTT [7,8] which is able to use external tools to solve
termination problems is also envisaged. This will enable the possibility
of more experimentation on practical examples, probably in the context
of some of the extensions 1-4 above.

Acknowledgements. We thank the referees for many useful remarks.

References

[1] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving Termination of
Context-Sensitive Rewriting with MU-TERM. Electronic Notes in Theoretical

35

Computer Science, 188:105-115, 2007.

[2] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical

Computer Science 96(1):217–248, 1992.

[3] E. Contejean and C. Marché, B. Monate and X. Urbain. Proving termination
of rewriting with CiME. In A. Rubio, editor, Proc. of 6th International

Workshop on Termination, WST’03, pages 71-73, Technical Report DSIC
II/15/03, Valencia, Spain, 2003. Available at http://cime.lri.fr.

[4] N. Dershowitz. A note on simplification orderings. Information Processing

Letters, 9(5):212-215, 1979.

[5] N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer

Science, 17(3):279–301, 1982.

[6] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3:69-115, 1987.

[7] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving
Termination of Membership Equational Programs. In P. Sestoft and N. Heintze,
editors, Proc. of ACM SIGPLAN 2004 Symposium on Partial Evaluation and

Program Manipulation, PEPM’04, pages 147-158, ACM Press, New York, 2004.

[8] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving
Operational Termination of Membership Equational Programs. Higher-Order

and Symbolic Computation, to appear, 2007.

[9] J. Endrullis. Jambox, 2006. http://joerg.endrullis.de.

[10] N. Francez. Fairness. Springer-Verlag, Berlin, 1986.

[11] A. Geser. Relative Termination. PhD Thesis. Fakultät für Mathematik und
Informatik. Universität Passau, 1990.

[12] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic
Termination Proofs in the Dependency Pair Framework. In U. Furbach
and N. Shankar, editors, Proc. of Third International Joint Conference on

Automated Reasoning, IJCAR’06, LNAI 4130:281-286, Springer-Verlag, Berlin,
2006. Available at http://www-i2.informatik.rwth-aachen.de/AProVE.

[13] N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool. In J.
Giesl, editor, Proc. of 16th International Conference on Rewriting Techniques

and Applications, RTA’05, LNCS 3467:175-184, 2005. Available at http://

cl2-informatik.uibk.ac.at.

[14] G. Huet and J.J. Lévy. Computations in orthogonal term rewriting systems I,
II. In J.L. Lassez and G. Plotkin, editors, Computational logic: essays in honour

of J. Alan Robinson, pages 395-414 and 415-443. The MIT Press, Cambridge,
MA, 1991.

[15] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite Reductions
in Orthogonal Term Rewriting Systems. Information and Computation

119(1):18-38, 1995.

36

[16] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum. Handbook of Logic in Computer Science, volume 2, pages
1-116. Oxford University Press, 1992.

[17] A. Koprowski. TPA: Termination Proved Automatically. In F. Pfenning,
editor, Proc of the 18th International Conference on Rewriting Techniques

and Applications, RTA’06, LNCS 4098:257-266, Springer Verlag, Berlin, 2006.
http://www.win.tue.nl/tpa

[18] A. Koprowski and H. Zantema. Proving Liveness with Fairness using Rewriting.
In B. Gramlich, editor, Proc. of the 5th International Workshop on Frontiers

of Combining Systems, FroCoS’05, LNAI 3717:232-247, 2005.

[19] D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, Justice and Fairness: the
ethics of concurrent termination. In S. Even and O. Kariv, editors, Proc. of

the 8th International Colloquium on Automata, Languages, and Programming,

ICALP’81, LNCS 115:264-277, Springer-Verlag, Berlin, 1981.

[20] S. Lucas. MU-TERM: A Tool for Proving Termination of Context-Sensitive
Rewriting In V. van Oostrom, editor, Proc. of 15h International Conference on

Rewriting Techniques and Applications, RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004. Available at http://www.dsic.upv.es/∼slucas/csr/

termination/muterm.

[21] S. Lucas and J. Meseguer. Termination of Fair Computations in Term
Rewriting. In G. Sutcliff and A. Voronkov, editors, Proc. of 12th Conference on

Logic for Programming, Artificial Intelligence and Reasoning, LPAR’05, LNAI
3835:184-198, Springer-Verlag, Berlin, 2005.

[22] Z. Manna and S. Ness. On the termination of Markov algorithms. In Proc. of

the Third Hawaii International Conference on System Science, pages 789-792,
1970.

[23] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96(1):73-55, 1992.

[24] J. Meseguer. Localized Fairness: A Rewriting Semantics. In J. Giesl,
editor, Proc. of the 16th International Conference on Rewriting Techniques and

Applications, RTA’05, LNCS 3467:250-263, Springer-Verlag, Berlin, 2005.

[25] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.
Theoretical Computer Science 285(2):121–154, 2002.

[26] M.J. O’Donnell. Computing in Systems Described by Equations. LNCS 58,
Springer-Verlag, Berlin, 1977.

[27] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, Berlin,
2002.

[28] S. Porat and N. Francez. Fairness in term rewriting systems. In J.-P. Jouannaud,
editor, Proc. of the 1st International Conference on Rewriting Techniques and

Applications, RTA’85, LNCS 202:287-300, Springer-Verlag, Berlin, 1985.

37

[29] S. Porat and N. Francez. Full-commutation and fair-termination in equational
(and combined) term rewriting systems. In J.H. Siekmann, editor, Proc. of

the 8th International Conference on Automated Deduction, CADE’86, LNCS
230:21-41, Springer-Verlag, Berlin, 1986.

[30] J. Steinbach. Simplification orderings: History of results. Fundamenta

Informaticae, 24:47–88, 1995.

[31] TeReSe, editor, Term Rewriting Systems, Cambridge University Press, 2003.

[32] S. Tison. Fair termination is decidable for ground systems. In N. Dershowitz,
editor, Proc. of the 3rd International Conference on Rewriting Techniques and

Applications, RTA’89, LNCS 355:462-476, Springer-Verlag, Berlin, 1989.

[33] J. Waldmann. Matchbox: A Tool for Match-Bounded String Rewriting.
In V. van Oostrom, editor, Proc. of the 15h International Conference on

Rewriting Techniques and Applications, RTA’04, LNCS 3091:85-94, Springer-
Verlag, Berlin, 2004. Available at http://141.57.11.163/matchbox.

38

