
Five Isomorphic Boolean Theories and Four
Equational Decision Procedures

Camilo Rocha
José Meseguer

February, 2007

Technical Report
UIUCDCS-R-2007-2818

Formal Methods and Declarative Languages Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N Goodwin Ave
Urbana, IL 61801

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

And, finally, when the symbol manipulation would become
too labor-intensive, computing science could provide the tools

for mechanical assistance. In short, the world of computing
became Leibniz’s home; that it was my home as well was my luck.

E.W. Dijkstra, “Under the spell of Leibniz’s dream”
Information Processing Letters, Vol.77, 2001.

II

Table of Contents

Abstract . IV
Extended Abstract . IV

1 Introduction . 1
2 Theories, Morphisms, and Definitional Extensions 3

2.1 Definitional Extensions . 5
3 Five Isomorphic Boolean Theories . 6
4 Four Equational Decision Procedures . 23
5 Optimizing Equations . 29
6 Experiments . 35

6.1 Comparing the Four Decision Procedures . 35
6.2 Using Optimizing Equations . 35
6.3 Comparison with SAT-Solving . 36

7 Conclusions . 37
A Executable Specification in Maude of the Four Decision Procedures . . 39

A.1 TDEC
DS . 39

A.2 TDEC
BR . 40

A.3 TDEC
∧/≡ . 40

A.4 TDEC
∨/⊕ . 41

List of Figures

1 Isomorphisms between the Boolean theory and the other four theories. 8
2 Commutation and composition of Boolean isomorphisms. 23
3 (a) The expression q ∧ (((r ∨ T) ⇐ s ≡ ¬T) ∨ ¬p) is depicted with

a corresponding ‘syntax tree’. (b) An equivalent expression to that
of (a), but with replacement of q by T applied. (c) A semantically
equivalent proposition to the one in (b) further simplified with the
optimizing equations. 34

4 Time taken by the decision procedures to simplify propositional
expressions to their respective canonical forms as a function of the
size of the propositions. 36

5 Comparison of TDEC
DS with and without using optimizing equations

in terms of the number of rewrites as a function of the proposition’s
size. 37

6 Comparison of TDEC
DS with optimizing equations enabled against a

DPLL(T) SAT-Solver implemented in Maude. 38

Abstract

We present four equational theories that are isomorphic to the traditional Boolean
theory and show that each one of them gives rise to a canonical rewrite system
modulo associativity, thus providing four decision procedures for propositional
logic. The four theories come in two pairs of isomorphic dual theories. The first
pair corresponds to J. Hsiang’s rewrite system for the theory of Boolean rings,
and to a rewrite system we propose for Dijkstra-Scholten propositional logic.
The second pair uses the same Boolean operators as the previous pair but in a
“twisted” fashion. These procedures, when run on a high performance rewrite
engine, are quite efficient, but can be further sped up by the use of optimizing
equations that perform obvious simplifications in the input expression before a
decision procedure is invoked. Based on their Maude implementation, we present
experimental results comparing the performance of the different procedures, and
showing that they outperform a DPLL(T)-based SAT-solver.

Extended Abstract

We present four equational theories that are isomorphic to the traditional Boolean
theory and show that each one of these gives rise to a canonical rewrite system
(modulo associativity and commutativity of some Boolean operators), thus solv-
ing the word problem of the theory. The four theories come in pairs of isomorphic
dual theories. The first pair exploits the known connection between Boolean al-
gebras and Boolean rings. Its two dual theories, respectively, coincide with the
well-known equational axiomatization of J. Hsiang, and with the axiomatiza-
tion of propositional logic of E.W. Dijkstra and C.S. Scholten. The second pair,
for which we are not aware of previous equational formulations, uses the same
Boolean operators as the previous pair, but is not obtained from the connec-
tion between Boolean algebras and Boolean rings. We also introduce a generic
technique to improve the efficiency of the executable specifications of the four
decision procedures, in which optimizing equations are used, prior to any eval-
uation of the decision procedure, to ‘pre-process’ the input proposition by first
‘replacing variables with constants’ and then simplifying subexpressions of the
resulting expression in the presence of annihilators for some operators. In this
paper we use the Maude system, which is an efficient and general implementa-
tion of equational logic, to specify the decision procedures and mechanize their
execution. Moreover, results from different experiments involving the executable
specifications of the decision procedures are presented and analyzed. The first
experiment compares the four canonical systems in terms of time and number of
simplification steps needed to bring arbitrary propositional expressions to their
canonical forms. In the second experiment, we exercise the decision procedures
enabling the optimizing equations and compare their behavior with the previous
ones. In the third and last experiment, the decision procedures are compared
together with a DPLL(T) SAT solver (also specified in Maude) when solving the
satisfiability problem for arbitrarily formed propositional expressions.

IV

1 Introduction

The key challege in (semi-)automated deduction is scaling up. For the large
proof efforts involved in nontoy mathematical and system verification proofs it
is essential to raise the level of abstraction, so that the person performing the
proofs can delegate large chunks of the effort to automated proof assistants, and
can guide the entire effort, like a good general, at the strategic level by marshaling
such automated “troops.” This need is widely felt, and approaches to meet it
take different guises, such as the growing support for decision procedures, the
autarkic/skeptical distinction between proofs and computations [2], and the so-
called “deduction modulo” approach [6], which, as shown by Viry [23], is just
the use of rewriting logic as a logical framework [19], so that one decomposes the
proof system as a rewrite theoryR = (Σ, E,R), with the automated components
consisting of a set E of confluent and terminating equations (often modulo some
axioms), and R the high-level rules that are applied modulo E.

Our original motivation for this work is as part of a bigger effort to mecha-
nize the Dijkstra-Scholten logic [5]. This logic has been shown by Dijkstra and
Scholten to be very useful in program correctness proofs in the Dijkstra style,
and has attracted a substantial following, including textbooks such as [10]. It
has the same expressive power as standard first-order logic [18]; and includes an
interesting propositional fragment ([11]). However, to the best of our knowledge,
due perhaps to the preferential option for proofs by Montblanc fountain pen and
paper in the Dijkstra school, this logic has not yet been mechanized. The obvious
approach to obtain a scalable mechanization is to specify it as a rewrite theory
RDS = (ΣDS, EDS, RDS), where EDS includes a decision procedure, in the form
of confluent and terminating rewrite rules, for Dijkstra-Scholten propositional
logic. We have indeed developed an axiomatization RDS in exactly this way, and
have implemented it in Maude, for monadic first-order Dijkstra-Scholten logic
[21]. This paper provides both the foundations and the experimental perfor-
mance evaluation for our decision procedure for Dijkstra-Scholten propositional
logic.

However, we observed that Dijkstra-Scholten propositional logic, which uses
equivalence (≡) and disjunction (∨), is the exact dual of another well-known
Boolean axiomatization going back to Stone, namely Boolean rings [14, 22],
which uses exclusive or (⊕) and conjunction (∧). The Boolean ring axiomatiza-
tion has an important history in rewriting-based automated deduction. Finding
a good axiomatization of Boolean algebra by confluent and terminating rewrite
rules was a problem that eluded researchers for quite some time. The break-
through came in the early 1980s with J. Hsiang’s thesis [13], who gave a con-
fluent and terminating set of equations for the theory of Boolean rings modulo
associativity and commutativity. Several inference systems for first-order logic
based on the above-mentioned idea of a rewrite theory RBR = (ΣBR, EBR, RBR)
in which the equations for Hsiang’s propositional decision procedure are in EBR,
were then given, such as Hsiang’s refutation rewrite-based N-strategy method,
[15], and the Bachmair-Dershowitz first-order inference system [1]. Furthermore,
A. Foret extended Hsiang’s system to give a complete term rewriting system for

1

the K, Q, T and S5 modal propositional logics [8]. Hsiang’s rewrite system was
also adopted for the BOOL module in both OBJ3 [9], and in Maude [4].

There was, however, and important performance obstacle for Hsiang’s deci-
sion procedure, due to the fact of its being based on associative-commutative
(AC) matching, which is known to be an NP-complete problem [3]. For example,
some uses of OBJ3 in hardware verification theorem proving found a major bot-
tleneck in the Boolean simplification part supported by Hsiang’s algorithm. A
second breakthrough came with Steven Eker’s stunning algorithmic solution to
the AC matching problem for frequently occurring AC matching patterns based
on red-black trees and implemented in Maude [7]. For such patterns, although
the general problem remains NP-complete, it is often possible to find a match
in time proportional to the logarithm of the subject term. So, the situation in
terms of implementation algorithms has drastically improved, but as far as we
know has never been experimentally evaluated. In fact, this matter raises inter-
esting questions such as the following: are SAT-solvers the only game in town for
propositional logic? Can rewriting-based methods compete with them? The ex-
perimental performance evaluation results we present in this paper indicate that,
when implemented in Maude, both Hsiang’s procedure, and our rewriting-based
decision procedure for Dijkstra-Scholten propositional logic outperform by two
orders of magnitude a DPLL(T)-based SAT-solver developed by Joe Hendrix as
a component of Maude’s inductive theorem prover.

Of course, although dual, both Hsiang’s procedure and our decision procedure
for Dijkstra-Scholten propositional logic stand on their own and can support dif-
ferent axiomatizations of first-order logic. The point is that the particular syntax
of the canonical forms provided by each procedure matters a grear deal in a “de-
duction modulo” approach. For example, somebody used to proofs of program
correcteness in the Dijkstra-Scholten style who wants to use the rewrite theory
RDS = (ΣDS, EDS, RDS) as a proof assistant will heavily rely on having formulas
expressed in terms of the connectives ≡ and ∨, and would have a very hard
time reasoning with formulas expressed in terms of the dual connectives ⊕ and
∧, which is what a Boolean-ring-based rewrite theory RBR = (ΣBR, EBR, RBR)
would provide. The opposite would of course happen for a user accustomed to
think in terms of the ⊕ and ∧ connectives. Since diversity and multiculturalisms
and present-day truisms, we have thought about providing even more options for
diverse classes of users. What about users who might prefer an axiomatization
in terms of ≡ and ∧? Or users who might instead prefer the dual connectives ⊕
and ∨? In this work we show that those users can also be happy, by providing
sets of confluent and terminating equations modulo AC for both of those syntax
choices. This additional pair of dual decision procedures have also good perfor-
mance but, as it turns out from our evaluation, not as good as Hsiang’s and our
Dijkstra-Scholten procedures.

The first mater we address is the correctness of all these procedures. This can
be naturally decomposed into two substasks; (i) their mathematical correctness
(studied in Section 3), which amounts to proving that they are all isomorphic to
the standard theory of Boolean algebras; and (ii) their operational correctness

2

(studied in Section 4), which involves checking that they are all indeed confluent
and terminating modulo AC. What we mean by a theory isomorphism is not an
entirely trivial matter, so we spell out all the mathematical details in Section 2.
It turns out that, from the performance point of view, we can do even better,
gaining an additional 20–30-fold speedup, by performing some obvious simplifi-
cations on the input Boolean expression before we invoke any of the four decision
procedures. Our optimizing equations, as well the mathematical proof of their
soundness, are discussed in Section 5. Our experimental performance evaluation
results are presented in Section 6. We present some final conclusions in Section
7.

2 Theories, Morphisms, and Definitional Extensions

This section gathers basic notions on equational theories, theory morphisms, and
definitional extensions that are needed in the rest of the paper. Although the
subject matter is well-known, there are some technical points that may not be so
well-known. For example, the usual notion of a theory morphisms as a signature
morphism has to be qualified in two important ways: (i) “signature morphims”
are generalized, so that they need not map basic operations to basic operations,
but can map basic operations to terms; and (ii) a theory morphism is not a
signature morphism, but instead an equivalence class of signature morphisms.
We give also some useful results about definitional extensions that we have found
very helpful in cutting down the amount of things to be cheked, and that we
will make use of later in the paper. Although nihil novum sub sole, the reader
may find this background section of some independent interest, besides its use
in subsequent sections.

Since all the Boolean theories we shall consider are unsorted, we give the
whole treatment in the, simpler, unsorted setting. All ideas, however, extend
naturally to typed settings. A signature Σ, therefore, is a countable family of
sets of function symbols Σ = {Σn}n∈N. An equational theory1 is a pair (Σ,E),
with Σ a signature, and E a set of Σ-equations, that is, formal equalities of
the form t = t′, with t, t′ ∈ TΣ(X), where TΣ(X) denotes the free Σ-algebra
on the set X of variables, which we assume throughout to be the countable set
X = {xn | n ∈ N ∧ n > 0}. An equational theory (Σ, E) defines the full
subcategory Alg(Σ,E) of the category AlgΣ of all Σ-algebras determined by all
those algebras that satisfy the equations E.

Definition 1. A signature morphism H : Σ −→ Σ′ is an assignment, for
each n ∈ N, to each f ∈ Σn of a term H(f) ∈ TΣ′(X) with vars(H(f)) ⊆
{x1, . . . , xn}, where vars(t) denotes the set of variables occurring in term t.

1 More precisely, this should be called a theory presentation. However, since the notion
of isomorphism we define will make isomorphic not only all equivalent presentations
for the same Σ, but also all equivalent presentations with different signatures, this
abus de langage will hardly matter.

3

Note that H gives as a “view” of each Σ′-algebra A as a Σ-algebra A|H ,
just by interpreting on A each operation f ∈ Σn by means of the “derived
operation” H(f), where there is no ambiguity about the order of the arguments
thanks to the linear order in X. Indeed, any signature morphism defines a functor
|H : AlgΣ′ −→ AlgΣ .

Definition 2. Given signature morphisms H : Σ −→ Σ′ and G : Σ′ −→ Σ′′

we can compose them to obtain a signature morphism G ◦ H : Σ −→ Σ′′ as
follows: for each f ∈ Σn we have (G ◦H)(f) = Ĝ(H(f)), where Ĝ : TΣ′(X) −→
TΣ′′(X)|G denotes the unique Σ′-homomorphism leaving the variables X un-
changed.

It is then easy to check that composition is associative, the assignment f 7→
f(x1, . . . , xn) is the identity morphism for Σ, and we have a category Sign of
signatures and signature morphisms.

Definition 3. A pre-theory morphism H : (Σ, E) −→ (Σ′, E′) is a signature
morphism H : Σ −→ Σ′ such that E′ ` Ĥ(E), where ` denotes the equational
provability relation, and Ĥ is extended to equations in the obvious way. We say
that two pre-theory morphisms H,H ′ : (Σ, E) −→ (Σ′, E′) are equivalent, de-
noted H ≡ H ′, iff for each n ∈ N, and each f ∈ Σn we have, E′ ` H(f) = H ′(f).
It is easy to check that this is indeed an equivalence relation. We denote each
equivalence class by [H], and call such an equivalence class a theory morphism
from (Σ,E) to (Σ′, E′).

Such equivalence relation is clearly a congruence for composition of pre-
theory morphisms as signature morphisms. That is, if we have pre-theory mor-
phisms H,H ′ : (Σ, E) −→ (Σ′, E′), and G, G′ : (Σ′, E′) −→ (Σ′′, E′′), with
H ≡ H ′, and G ≡ G′, then G ◦H ≡ G′ ◦H ′. Therefore, we can compose theory
morphisms by the rule, [G] ◦ [H] = [G ◦ H]. This defines a category Th, with
theories as objects and theory morphisms as morphisms. It can, furthermore,
be shown that Th is equivalent to the category of Lawvere theories [17]. We
will be particularly interested in theory isomorphisms, so it may be worthwhile
to “unpack” what they are. [H] : (Σ, E) −→ (Σ′, E′) will be an isomorphism
iff there is a [H−1] : (Σ′, E′) −→ (Σ, E) such that [H−1] ◦ [H] = 1(Σ,E) and
[H]◦[H−1] = 1(Σ′,E′); iff for each n ∈ N and each f ∈ Σn and f ′ ∈ Σ′

n we have: (i)
E ` f(x1, . . . , xn) = (H−1◦H)(f); and (ii) E′ ` f ′(x1, . . . , xn) = (H ◦H−1)(f ′).

One important, model-theoretic point to notice is that a theory morphism
[H] : (Σ, E) −→ (Σ′, E′) induces a functor |[H] : Alg(Σ′,E′) −→ Alg(Σ,E),
which is just the restiction of the functor |H : AlgΣ′ −→ AlgΣ . Furthermore,
since the assignment [H] 7→ |[H] is itself a contravariant functor (see [17]), if
[H] is a theory isomorphism, then |[H] : Alg(Σ′,E′) −→ Alg(Σ,E) is an isomor-
phism of categories that preserves the sets and functions underlying the alge-
bras an homomorphisms. Lawvere’s beautiful Strucuture-Semantics Adjointness
Theorem [17] proves also the opposite direction: any isomorphism of categories
α : Alg(Σ′,E′)

∼= Alg(Σ,E) that preserves the sets and functions underlying the

4

algebras an homomorphisms is of the form α = |[H] for some theory isomorphism
[H].

Therefore, theory isomorphism give us a presentation-independent view of
axiomatic classes of algebras. For example, the theory of groups can be presented
with many different signatures and sets of axioms. What all these presentations
have in common is precisely that they are isomorphic theories in the precise sense
defined above. In this paper we will be interested in theory isomorphisms for the
theory of Boolean algebra. A paradigmatic example of a theory isomorphism
in this case, in fact one of the isomorphisms we shall consider, is the Stone
isomorphism between the theory of Boolean algebras and that of Boolean rings.

2.1 Definitional Extensions

Given two signatures Σ and Σ′, we define their union Σ ∪Σ′, resp. intersection
Σ ∩Σ′, resp. difference Σ−Σ′, in the obvious way: for each n ∈ N (Σ ∪Σ′)n =
Σn ∪Σ′

n, (Σ ∩Σ′)n = Σn ∩Σ′
n, and (Σ −Σ′)n = Σn −Σ′

n.

Definition 4. We call a theory morphism [H] : (Σ,E) −→ (Σ′, E′) unambigu-
ous iff [H] restricted to Σ ∩Σ′ is the identity.

This captures the intuitive, and frequently occurring situation where [H]
does not change the meaning of shared symbols: only the function symbols that
Σ does not share with Σ′ are given a new interpretation by [H].

Lemma 1. If (Σ, E)
[H]−→ (Σ′, E′)

[G]−→ (Σ′′, E′′) are unambiguous theory mor-
phisms such that Σ ∩Σ′′ ⊆ Σ′, then [G ◦H] is unambiguous.

Proof. Let f ∈ Σ. If f 6∈ Σ ∩ Σ′′, then the Lemma trivially holds. Assume
f ∈ Σ ∩Σ′′. Since Σ ∩Σ′′ ⊆ Σ′′, f ∈ Σ ∩Σ′ ∩Σ′′. Moreover, because [H] and
[G] are unambiguous, [G]([H](f)) = [G](f) = f . Hence, [G] ◦ [H] = [G ◦ H] is
unambiguous.

Definition 5. Given an unambiguous theory morphism [H] : (Σ, E) −→ (Σ′, E′),
the definitional extension of (Σ′, E′) along [H], denoted (Σ′, E′)[H], is the the-
ory (Σ′, E′)[H] = (Σ ∪ Σ′, E′ ∪ ∆[H]), where ∆[H] = {f(x1, . . . , xn) = H(f) |
f ∈ Σ−Σ′}. It is trivial to check that the obvious identity inclusion (Σ′, E′) ↪→
(Σ′, E′)[H] is a theory isomorphism with inverse the identity on Σ′, and mapping
each f ∈ Σ −Σ′ to H(f).

If we have two unambiguous theory morphisms

(Σ, E)
[H]−→ (Σ′, E′)

[G]−→ (Σ′′, E′′)

such that Σ ∩Σ′′ ⊆ Σ′, then it is easy to prove using the above lemma that we
can iterate the definitional extension process to form a “tower” of definitional
extensions

(Σ′′, E′′) ↪→ (Σ′′, E′′)[G] ↪→ (Σ′, E′)[G]⊗[H]

5

where (Σ′, E′)[G]⊗[H] = (Σ∪Σ′∪Σ′′, E′′∪∆[G]∪Ĝ(∆[H])). In particular we get in
this way a theory isomorphism (Σ′′, E′′) ∼= (Σ′, E′)[G]⊗[H]. This construction will
be technically useful for the Boolean decision procedures we will present, based
on theory isomorphisms; because it will automatically justify the correctness of
each decision procedure simultaneously supporting all the Boolean operations
of the different signatures involved.

3 Five Isomorphic Boolean Theories

In this section we present five equational theories, one of them the traditional
Boolean theory. We prove that the other four are isomorphic to it. We struc-
ture each of these theories in the form (Σ, E] A), where we decompose the
equations into a set A of commonly occurring axioms, such as associativity and
commutativity of some operators, and a remaining set of equations E.

The axiomatization of the traditional Boolean theory TBOOL is that of a
complemented distributive lattice.

Definition 6. The equational theory TBOOL = (ΣBOOL, EBOOL] ABOOL) is
given by:

ΣBOOL = {T(0),F(0),¬(1),∧(2),∨(2)}
ABOOL = {P ∧ (Q ∧R) = (P ∧Q) ∧R , P ∧Q = Q ∧ P ,

P ∨ (Q ∨R) = (P ∨Q) ∨R , P ∨Q = Q ∨ P }
EBOOL = {P ∧ P = P , P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R) ,

P ∨ P = P , P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R) ,
P ∧ (P ∨Q) = P , P ∨ (P ∧Q) = P ,
P ∧ ¬P = F , P ∨ ¬P = T } .

The constants T and F denote the obvious true and false constant symbols;
the other function symbols in ΣBOOL have the following intended meaning and
are listed by decreasing binding power: ¬ denotes negation while ∨ and ∧ de-
note disjunction and conjunction, respectively. The axioms in ABOOL express
the associativity and commutativity properties (AC) of the binary operators in
ΣBOOL. The set of axioms EBOOL define both ∧ and ∨ to be idempotent, to dis-
tribute over each other and to follow the absorption laws. The last two equations
in EBOOL are the well-known laws of complements, the first being the definition
of contradiction and the second that of the excluded middle.

In the rest of this paper we rely on AC properties and precedence of operators
to omit unnecessary parentheses. For example, thanks to this convention, the
expression P ∨ (Q ∨ (R ∧ S)) can be written as P ∨Q ∨ (R ∧ S). Furthermore,
due to the commutativity property of ∧ and ∨, the latter expression can as well
be written as Q ∨ (S ∧R) ∨ P .

We introduce the remaining four equational theories, namely TDS, TBR, T∧/≡
and T∨/⊕, respectively. The theory TDS is our axiomatization as a set of con-
fluent and terminating equations modulo AC of the Dijkstra-Scholten propo-
sitional logic [5]. The theory TBR is the theory of Boolean rings and is based
on the isomorphism between Boolean algebras and Boolean rings discovered by

6

M.H.Stone [14, 22]. As a rewrite system, TBR was proposed by J. Hsiang [13] in
the 1980’s as a decision procedure for propositional logic. We are not aware of
earlier equational presentations of T∧/≡ and T∨/⊕, so we use their main function
symbols as acronyms.

Definition 7. The equational theories TDS = (ΣDS, EDS]ADS), TBR = (ΣBR, EBR]
ABR), T∧/≡ = (Σ∧/≡, E∧/≡]A∧/≡) and T∨/⊕ = (Σ∨/⊕, E∨/⊕]A∨/⊕) are de-
fined as follows:

ΣDS = {T(0),F(0),∨(2),≡(2)}
ADS = {P ≡ (Q ≡ R) = (P ≡ Q) ≡ R , P ≡ Q = Q ≡ P ,

P ∨ (Q ∨R) = (P ∨Q) ∨R , P ∨Q = Q ∨ P}
EDS = {P ≡ T = P , P ≡ P = T , P ∨ T = T , P ∨ F = P , P ∨ P = P ,

P ∨ (Q ≡ R) = (P ∨Q) ≡ (P ∨R)} ,

ΣBR = {T(0),F(0),∧(2),⊕(2)}
ABR = {P ⊕ (Q⊕R) = (P ⊕Q)⊕R , P ⊕Q = Q⊕ P}

P ∧ (Q ∧R) = (P ∧Q) ∧R , P ∧Q = Q ∧ P}
EBR = {P ⊕ F = P , P ⊕ P = F , P ∧ F = F , P ∧ T = P , P ∧ P = P ,

P ∧ (Q⊕R) = (P ∧Q)⊕ (P ∧R)} ,

Σ∧/≡ = {T(0),F(0),∧(2),≡(2)}
A∧/≡ = {P ≡ (Q ≡ R) = (P ≡ Q) ≡ R , P ≡ Q = Q ≡ P ,

P ∧ (Q ∧R) = (P ∧Q) ∧R , P ∧Q = Q ∧ P}
E∧/≡ = {P ≡ T = P , P ≡ P = T , P ∧ T = P , P ∧ F = F , P ∧ P = P ,

P ∧ (Q ≡ R) = (P ∧Q) ≡ (P ∧R) ≡ P} ,

Σ∨/⊕ = {T(0),F(0),∨(2),⊕(2)}
A∨/⊕ = {P ⊕ (Q⊕R) = (P ⊕Q)⊕R , P ⊕Q = Q⊕ P ,

P ∨ (Q ∨R) = (P ∨Q) ∨R , P ∨Q = Q ∨ P}
E∨/⊕ = {P ⊕ T = P , P ⊕ P = T , P ∨ T = P , P ∨ F = F , P ∨ P = P ,

P ∨ (Q⊕R) = (P ∨Q)⊕ (P ∨R)⊕ P} .

The function symbols ≡ and ⊕ denote equivalence and discrepancy, respec-
tively, and have less binding power than any other function symbol. Both sym-
bols are associative and commutative in the theories where they are defined.
The other function symbols correspond to those of ΣBOOL; we have chosen not
to change their notation in order to keep the definitions and proofs as compact
as possible. The symbol ⊕ is sometimes denoted by 6≡ and it is known as either
the symmetric difference operator in algebra or as the exclusive or operator in
switching theory.

Definition 8. The nine morphisms appearing in Fig. 1 are defined as follows:

– G maps identically T, F and ∨. For ¬ and ∧ we have: G(¬P) = P ≡ F and
G(P ∧Q) = P ≡ Q ≡ P ∨Q.

– G−1 maps identically T, F and ∨. For ≡ we have G−1(P ≡ Q) = (P ∨¬Q)∧
(¬P ∨Q).

7

– H maps identically T, F and ∧. For ¬ and ∨ we have: H(¬P) = P ⊕T and
H(P ∨Q) = P ⊕Q⊕ P ∧Q.

– H−1 maps identically T, F and ∧. For ⊕ we have H−1(P ⊕Q) = (P ∧¬Q)∨
(¬P ∧Q).

– K maps identically T, F and ∧. For ¬ and ∨ we have: K(¬P) = P ≡ F and
P ∨Q = P ≡ Q ≡ P ∧Q.

– K−1 maps identically T, F and ∧. For ≡ we have K−1(P ≡ Q) = (P ∨¬Q)∧
(¬P ∨Q).

– L maps identically T, F and ∨. For ¬ and ∧ we have: L(¬P) = P ⊕ T and
L(P ∧Q) = P ⊕Q⊕ P ∨Q.

– L−1 maps identically T, F and ∨. For ⊕ we have L−1(P ⊕Q) = (P ∧¬Q)∨
(¬P ∧Q).

– op is the duality morphism for Boolean algebras, mapping T to F, F to T, ¬
to ¬, ∧ to ∨ and ∨ to ∧.

Observe that, except for op which is its own inverse, all the other morphisms
come in pairs of a morphism and its inverse. The ‘translation’ of ∧ and ∨ in every
case is known as the golden rule [10]. The translations of ≡ and ⊕ coincide in
each case and both coincide if properly composed with op.

Fig. 1. Isomorphisms between the Boolean theory and the other four theories.

Theorem 1. The morphisms op, G, H, K and L are theory isomorphisms be-
tween the corresponding theories.

Proof. Since op is its own inverse, its being a theory isomorphism is obvi-
ous. For the other four we have: for each theory morphism M : TBOOL =
(ΣBOOL, EBOOL]ABOOL) −→ (Σ, E]A), we prove:

(a) All the axioms of TBOOL hold in (Σ, E]A),
(b) All the axioms of (Σ,E]A) hold in (Σ, E]A)TBOOL,

8

(c) M ◦M−1 is the identity in (Σ, E]A), and
(d) M−1 ◦M is the identity in (Σ, E]A)TBOOL.

Note that these conditions correspond to the ones an isomorphism between
theories should satisfy, as indicated in Section 2.

1. Let us begin with G.

(a) EDS]ADS ` G(α) = G(β) , for α = β ∈ EBOOL]ABOOL.

This proof is obtained mechanically by term rewriting in the Maude Sys-
tem [4]. First, we present the executable specification of TDS in Maude:
fmod BOOL-DS is

sort BoolDS .

ops TRUE FALSE : -> BoolDS .

op _equ_ : BoolDS BoolDS -> BoolDS [assoc comm prec 80] .

op _or_ : BoolDS BoolDS -> BoolDS [assoc comm prec 50] .

vars P Q R : BoolDS .

eq P equ P = TRUE .

eq P equ TRUE = P .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P or P = P .

eq P or (Q equ R) = P or Q equ P or R .

endfm

Note that only the function symbols in ΣDS appear in the specification:
TRUE and FALSE respectively correspond to T and F, equ to ≡ and or to
∨. The associativity and commutativity properties of ≡ and ∨ (i.e. the
axioms in ADS) are specified with the operation attributes assoc and
comm, respectively. The precedence of each function symbol is specified
with the keyword prec followed by a natural number: the higher this
value, the lower the binding power. After the declaration of the function
symbols, the specification of the equations follows, which is an ad-hoc
translation of the axioms in EDS. We refer the reader to Maude’s man-
ual [4] for further details.
To have the translation due to G in an automatic way, we extended
the previous specification with the symbols not and and for the function
symbols ¬ and ∧ of ΣBOOL, respectively, together with the corresponding
equations in the morphism G, namely:

op not_ : BoolDS -> BoolDS [prec 10] .

op _and_ : BoolDS BoolDS -> BoolDS [prec 50] .

eq not P = P equ FALSE .

eq P and Q = P equ Q equ P or Q .

We use Maude’s built-in symbol == to denote syntactic equality of terms;
the execution script of the proofs is show below.

9

reduce in BOOL-DS : (P or Q) or R == P or (Q or R) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P and (Q and R) == (P and Q) and R .

rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P or Q == Q or P .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P and Q == Q and P .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P or P == P .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P and P == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P or (P and Q) == P .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P and (P or Q) == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P or (Q and R) == (P or Q) and (P or R) .

rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P and (Q or R) == (P and Q) or (P and R) .

rewrites: 22 in 0ms cpu (2ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P or TRUE == TRUE .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS : P and FALSE == FALSE .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

(b) EBOOL]ABOOL ` G−1(α) = G−1(β) , for α = β ∈ EDS]ADS.

10

Since G−1(∨) = ∨, associativity and commutativity of ∨ in TDS follow
directly from the associativity and commutative of ∨ in TBOOL.

i. G−1(P ∨ (Q ∨R)) = G−1((P ∨Q) ∨R).
Trivial, since ∨ is associative in TBOOL.

ii. G−1(P ∨Q) = G−1(Q ∨ P).
Trivial, since ∨ is commutative in TBOOL.

iii. G−1(P ≡ (Q ≡ R)) = G−1((P ≡ Q) ≡ R). After algebraic simplifi-
cations, it is easy to show that both sides of the equality reduce to
(P ∧Q ∧R) ∨ (P ∧ ¬Q ∧ ¬R) ∨ (¬P ∧Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧R).

iv. G−1(P ≡ Q) = G−1(Q ≡ P).
G−1(P ≡ Q)

= 〈 Def. of G−1 〉
(P ∨ ¬Q) ∧ (¬P ∨Q)

= 〈 ∨ is commutative in TBOOL 〉
(¬Q ∨ P) ∧ (Q ∨ ¬P)

= 〈 ∧ is commutative in TBOOL 〉
(Q ∨ ¬P) ∧ (¬Q ∨ P)

= 〈 Def. of G−1 〉
G−1(Q ≡ P).

v. G−1(P ∨ T) = G−1(T).
G−1(P ∨ T)

= 〈 Def. of G−1 〉
P ∨ T

= 〈 Excluded middle 〉
P ∨ P ∨ ¬P

= 〈 ∨ is idempotent in TBOOL 〉
P ∨ ¬P

= 〈 Excluded middle 〉
T

= 〈 Def. of G−1 〉
G−1(T)

vi. G−1(P ∨ P) = G−1(P).
Trivial, since ∨ is idempotent in TBOOL.

vii. G−1(P ∨ F) = G−1(P).
G−1(P ∨ F)

= 〈 Def. of G−1 〉
P ∨ F

= 〈 Contradiction 〉
P ∨ (P ∧ ¬P)

11

= 〈 Absorption 〉
P

= 〈 Def. of G−1 〉
G−1(P).

viii. G−1(P ≡ T) = G−1(P).
G−1(P ≡ T)

= 〈 Def. of G−1 〉
(P ∨ ¬T) ∧ (¬P ∨ T)

= 〈 Excluded middle, ¬T = F 〉
(P ∨ F) ∧ T

= 〈 F is the module of ∨ and T of ∧ in TBOOL 〉
P

= 〈 Def. of G−1 〉
G−1(P).

ix. G−1(P ≡ P) = G−1(T).
G−1(P ≡ P)

= 〈 Def. of G−1 〉
(P ∨ ¬P) ∧ (¬P ∨ P)

= 〈 Excluded middle 〉
T ∧ T

= 〈 T is the module of ∧ 〉
T

= 〈 Def. of G−1 〉
G−1(T).

x. G−1(P ∨ (Q ≡ R)) = G−1(P ∨Q ≡ P ∨R).
In this proof we use the well-known fact that both DeMorgan’s laws
hold in any Boolean algebra. We also rely on the identity P ∨ (¬P ∧
Q) = P ∨Q:

P ∨ (¬P ∧Q) = (P ∨ ¬P) ∧ (P ∨Q) = T ∧ (P ∨Q) = P ∨Q.

G−1(P ∨Q ≡ P ∨R)
= 〈 Def. of G−1 〉
(P ∨Q ∨ ¬(P ∨R)) ∧ (¬(P ∨Q) ∨ P ∨R)

= 〈 DeMorgan’s law 〉
(P ∨Q ∨ (¬P ∧ ¬R)) ∧ ((¬P ∧ ¬Q) ∨ P ∨R)

= 〈 Given identity 〉
(P ∨Q ∨ ¬R) ∧ (P ∨ ¬Q ∨R)

= 〈 Distribution of ∨ over ∧ 〉
P ∨ ((Q ∨ ¬R) ∧ (¬Q ∨R))

= 〈 Def. of G−1 〉

12

G−1(P ∨ (Q ≡ R)).

(c) G ◦G−1 = 1DS.

Since for T, F and ∨ both G and G−1 are the identity, it is enough to
show that G(G−1(P ≡ Q)) = P ≡ Q, that is,

G((P ∨ ¬Q) ∧ (¬P ∨Q)) = P ≡ Q.

This proof has been obtained mechanically by term rewriting using the
extended specification of TDS presented above:

reduce in BOOL-DS : (P:BoolDS or not Q:BoolDS) and (not P:BoolDS or Q:BoolDS)

(Q:BoolDS equ P:BoolDS) .

rewrites: 20 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

(d) G−1 ◦G = 1BOOL.

Since for T, F and ∨ both G and G−1 are the identity, the condition is
only checked for ¬ and ∧.

i. (G−1 ◦G)(¬P) = ¬P .
(G−1 ◦G)(¬P)

= 〈 Def. of ◦ and def. G 〉
G−1(P ≡ F)

= 〈 Def. of G−1 〉
(P ∨ ¬F) ∧ (¬P ∨ F)

= 〈 ¬F = T, F is the module of ∨ in TBOOL 〉
(P ∨ T) ∧ ¬P

= 〈 Excluded middle 〉
T ∧ ¬P

= 〈 T is the module of ∧ 〉
¬P.

ii. (G−1 ◦G)(P ∧Q) = P ∧Q.
Observe that

G−1(Q ≡ P ∨Q) = (Q ∨ ¬(P ∨Q)) ∧ (¬Q ∨ P ∨Q) = ¬P ∨Q.

We also use the fact that ¬¬P = P (Double negation) holds in
TBOOL. (G−1 ◦G)(P ∧Q)
= 〈 Def. of ◦ and def. G 〉
G−1(P ≡ Q ≡ P ∨Q)

= 〈 Associativity of ≡, def. of G−1, given identity 〉
(P ∨ ¬(¬P ∨Q)) ∧ (¬P ∨ ¬P ∨Q)

= 〈 DeMorgan, double negation, idempotency of ∨ 〉
(P ∨ (P ∧Q)) ∧ (¬P ∨Q)

13

= 〈 Absorption law 〉
P ∧ (¬P ∨Q)

= 〈 Identity of a previous proof 〉
P ∧Q.

Thus, G and G−1 are theory isomorphisms for TBOOL and TDS, respec-
tively, and both are inverse morphisms.

2. We continue with the corresponding proof for H.
(a) EBR]ABR ` G(α) = G(β) , for α = β ∈ EBOOL]ABOOL.

We have mechanized TBR in the Maude system. The specification with
the corresponding extension for ¬ and ∨ is presented below. We follow
the same naming convention we had for BOOL-DS and include neq for ⊕.

fmod BOOL-BR is

sort BoolBR .

ops TRUE FALSE : -> BoolBR .

op _neq_ : BoolBR BoolBR -> BoolBR [assoc comm prec 80] .

op _and_ : BoolBR BoolBR -> BoolBR [assoc comm prec 50] .

op not_ : BoolBR -> BoolBR [prec 10] .

op _or_ : BoolBR BoolBR -> BoolBR [prec 50] .

vars P Q R : BoolBR .

eq P neq P = FALSE .

eq P neq FALSE = P .

eq P and TRUE = P .

eq P and FALSE = FALSE .

eq P and P = P .

eq P and (Q neq R) = P and Q neq P and R .

eq not P = P neq TRUE .

eq P or Q = P neq Q neq P and Q .

endfm

The script with the proofs is shown below.

reduce in BOOL-BR : P or (Q or R) == (P or Q) or R .

rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P and (Q and R) == (P and Q) and R .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P or Q == Q or P .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P and Q == Q and P .

14

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P or P == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P and P == P .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P or Q and P == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P and (P or Q) == P .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P or (Q and R) == (P or Q) and (P or R) .

rewrites: 22 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P and (Q or R) == (P and Q) or (P and R) .

rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P or TRUE == TRUE .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-BR : P and FALSE == FALSE .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

(b) EBOOL]ABOOL ` H−1(α) = H−1(β) , for α = β ∈ EBR]ABR.

i. H−1(P ∧ (Q ∧R)) = H−1((P ∧Q) ∧R).
Trivial, since ∧ is associative in TBOOL.

ii. H−1(P ∧Q) = H−1(Q ∧ P).
Trivial, since ∧ is commutative in TBOOL.

iii. H−1(P ⊕ (Q⊕R)) = H−1((P ⊕Q)⊕R).
Observe that:

op(H−1(P⊕Q)) = op((P∧¬Q)∨(¬P∧Q)) = (P∨¬Q)∧(¬P∨Q) = G(P ≡ Q).

Since ≡ is associative, ⊕ is necessarily associative.

15

iv. H−1(P ⊕Q) = H−1(Q⊕ P). Accordingly, as in the previous proof,
⊕ is commutative since ≡ is commutative.

The remaining proofs for this requirement are similar in structure to
those proofs in the same numeral for TDS.

(c) H ◦H−1 = 1BR.

Since for T, F and ∧ both H and H−1 are the identity, it is enough to
show that H(H−1(P ⊕Q)) = P ⊕Q, that is,

H((P ∧ ¬Q) ∨ (¬P ∧Q)) = P ⊕Q.

This proof has been obtained mechanically by term rewriting using the
extended specification of TBR presented above:

reduce in BOOL-BR : (P and not Q) or (not P and Q) == (P neq Q) .

rewrites: 20 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

(d) H−1 ◦H = 1BOOL.

Since for T, F and ∧ both H and H−1 are the identity, the condition is
only checked for ¬ and ∨.

i. (H−1 ◦H)(¬P) = ¬P .
(H−1 ◦H)(¬P)

= 〈 Def. of H 〉
H−1(P ⊕ T)

= 〈 Def. of H−1 〉
(P ∧ ¬T) ∨ (¬P ∧ T)

= 〈 ¬T = F, T is the module of ∧ 〉
(P ∧ F) ∨ ¬P

= 〈 Contradiction 〉
F ∨ ¬P

= 〈 F is the module of ∨ 〉
¬P.

ii. (H−1 ◦H)(P ∨Q) = P ∨Q.
Observe that

H−1(Q⊕ P ∧Q = (Q ∧ ¬(P ∧Q)) ∨ (¬Q ∧ P ∧Q) = ¬P ∧Q.

(H−1 ◦H)(P ∨Q)
= 〈 Def. of H 〉
H−1(P ⊕Q⊕ P ∧Q)

= 〈 Associativity of ⊕, def. of H−1, given identity 〉

16

(P ∧ ¬(¬PandQ)) ∨ (¬P ∧ ¬P ∧Q)
= 〈 DeMorgan, double negation, idempotency of ∧ 〉
(P ∧ (P ∧ ¬Q)) ∨ (¬P ∧Q)

= 〈 Absorption law 〉
P ∨ (¬P ∧Q)

= 〈 P ∨ (¬P ∧Q) = P ∨Q 〉
P ∨Q.

This concludes the proof for H and H−1.

3. For K we have:

(a) E∧/≡]A∧/≡ ` K(α) = K(β) , for α = β ∈ EBOOL]ABOOL.

We have mechanized T∧/≡ in the Maude system. The specification with
the corresponding extension for ¬ and ∨ is presented below. We follow
the same naming convention we had for BOOL-DS and BOOL-BR.

fmod BOOL-AE is

sort BoolAE .

ops TRUE FALSE : -> BoolAE .

op _equ_ : BoolAE BoolAE -> BoolAE [assoc comm prec 80] .

op _and_ : BoolAE BoolAE -> BoolAE [assoc comm prec 50] .

op not_ : BoolAE -> BoolAE [prec 10] .

op _or_ : BoolAE BoolAE -> BoolAE [prec 50] .

vars P Q R : BoolAE .

eq P equ P = TRUE .

eq P equ TRUE = P .

eq P and TRUE = P .

eq P and FALSE = FALSE .

eq P and P = P .

eq P and (Q equ R) = P equ P and Q equ P and R .

eq P or Q = P equ Q equ P and Q .

eq not P = P equ FALSE .

endfm

The script with the proofs is shown below.

reduce in BOOL-AE : P or (Q or R) == (P or Q) or R .

rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P and (Q and R) == (P and Q) and R .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P or Q == Q or P .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

17

result Bool: true

==

reduce in BOOL-AE : P and Q == Q and P .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P or P == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P and P == P .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P or (P and Q) == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P and (P or Q) == P .

rewrites: 10 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P or (Q and R) == (P or Q) and (P or R) .

rewrites: 32 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P and (Q or R) == (P and Q) or (P and R) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P or TRUE == TRUE .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-AE : P and FALSE == FALSE .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

(b) EBOOL]ABOOL ` K−1(α) = K−1(β) , for α = β ∈ E∧/≡]A∧/≡.

i. K−1(P ∧ (Q ∧R)) = K−1((P ∧Q) ∧R).
Trivial, since ∧ is associative in TBOOL.

ii. K−1(P ∧Q) = K−1(Q ∧ P).
Trivial, since ∧ is commutative in TBOOL.

iii. K−1(P ≡ (Q ≡ R)) = K−1((P ≡ Q) ≡ R).

18

Observe that G−1(≡) = K−1(≡), and we have already proved that
for G−1 this proposition holds. Hence, it holds for K−1.

iv. K−1(P ≡ Q) = K−1(Q ≡ P). Accordingly, as in the previous proof,
≡ is commutative.

v. K−1(P ∧ T) = K−1(P).
K−1(P ∧ T)

= 〈 Def. of K−1 〉
P ∧ T

= 〈 Excluded middle 〉
P ∧ (P ∨ ¬P)

= 〈 Distribution of ∧ over ∨ 〉
(P ∧ P) ∨ (P ∧ ¬P)

= 〈 Idempotency of ∧, contradiction 〉
P ∨ F

= 〈 F is the module of ∨ 〉
P

= 〈 Def. of K−1 〉
K−1(P).

vi. K−1(P ∧ P) = K−1(P).
Trivial, since ∧ is idempotent in TBOOL.

vii. K−1(P ∧ F) = K−1(F).
K−1(P ∧ F)

= 〈 Def. of K−1 〉
P ∧ F

= 〈 Contradiction 〉
P ∧ (P ∧ ¬P)

= 〈 ∧ is associative 〉
(P ∧ P) ∧ ¬P

= 〈 ∧ is idempotent 〉
P ∧ ¬P

= 〈 Contradiction 〉
F

= 〈 Def. of K−1 〉
K−1(F).

viii. K−1(P ≡ T) = K−1(P)
Follows from the observation that G−1(≡) and K−1(≡) are equiva-
lent, and from the proof for the same proposition for G.

ix. K−1(P ≡ P) = K−1(T).

19

Follows from the observation that G−1(≡) and K−1(≡) are equiva-
lent, and from the proof for the same proposition for G.

x. K−1(P ∧ (Q ≡ R)) = K−1(P ≡ P ∧Q ≡ P ∧R).
First, observe that we have the following identity in TBOOL:

K−1(P ≡ P ∧Q) = (P ∨ ¬(P ∧Q)) ∨ (¬P ∨ (P ∧Q)) = ¬P ∨Q

Then, we have:
K−1(P ≡ P ∧Q ≡ P ∧R)

= 〈 Def. of K−1, previous observation 〉
((¬P ∨Q) ∨ ¬(P ∧R)) ∧ (¬(¬P ∨Q) ∨ (P ∧R))

= 〈 DeMorgan, double negation 〉
(¬P ∨Q ∨ ¬P ∨ ¬R) ∧ ((P ∧ ¬Q) ∨ (P ∧R))

= 〈 ∨ is idempotent, ∧ distributes over ∨ 〉
(¬P ∨Q ∨ ¬R) ∧ P ∧ (¬Q ∨R)

= 〈 P ∧ (¬P ∨Q) = P ∧Q 〉
(Q ∨ ¬R) ∧ P ∧ (¬Q ∨R)

= 〈 ∧ is commutative and associative 〉
P ∧ ((Q ∨ ¬R) ∧ (¬Q ∨R))

= 〈 Def. of K−1, previous observation 〉
K−1(P ∧ (Q ≡ R)).

(c) K ◦K−1 = 1∧/≡.

Since for T, F and ∧ both K and K−1 are the identity, it is enough to
show that K(K−1(P ≡ Q)) = P ≡ Q, which follows directly from the
observation of K−1(≡) = G−1(≡).

(d) K−1 ◦K = 1BOOL.

Since for T, F and ∧ both K and K−1 are the identity, the condition is
only checked for ¬ and ∨.

i. (K−1 ◦K)(¬P) = ¬P .
The observation of G−1(≡) = K−1(≡), and the proof of this same
statement for G, gives us a direct proof.

ii. (K−1 ◦K)(P ∨Q) = P ∨Q.
The observation of G−1(≡) = K−1(≡), and the proof of this same
statement for G, gives us a direct proof.

This concludes the proof for K and K−1.

4. Finally, for L we have:

20

(a) E∨/⊕]A∨/⊕ ` L(α) = L(β) , for α = β ∈ EBOOL]ABOOL.

We have mechanized T∨/⊕ in the Maude system. The specification with
the corresponding extension for ¬ and ∨ is presented below. We follow
the same naming convention we had for BOOL-DS and BOOL-BR.

fmod BOOL-OX is

sort BoolOX .

ops TRUE FALSE : -> BoolOX .

op _or_ : BoolOX BoolOX -> BoolOX [assoc comm prec 50] .

op _neq_ : BoolOX BoolOX -> BoolOX [assoc comm prec 80] .

op not_ : BoolOX -> BoolOX [prec 10] .

op _and_ : BoolOX BoolOX -> BoolOX [prec 50] .

vars P Q R : BoolOX .

eq P neq P = FALSE .

eq P neq FALSE = P .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P or P = P .

eq P or (Q neq R) = P neq P or Q neq P or R .

eq P and Q = P neq Q neq P or Q .

eq not P = P neq TRUE .

endfm

The script with the proofs is shown below.

reduce in BOOL-OX : P or (Q or R) == (P or Q) or R .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P and (Q and R) == (P and Q) and R .

rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P or Q == Q or P .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P and Q == Q and P .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P or P == P .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P and P == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

21

==

reduce in BOOL-OX : P or (P and Q) == P .

rewrites: 10 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P and (P or Q) == P .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P or (Q and R) == (P or Q) and (P or R) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P and (Q or R) == (P and Q) or (P and R) .

rewrites: 32 in 10ms cpu (0ms real) (3200 rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P or TRUE == TRUE .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-OX : P and FALSE == FALSE .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

(b) EBOOL]ABOOL ` L−1(α) = L−1(β) , for α = β ∈ E∨/⊕]A∨/⊕.

i. L−1(P ∨ (Q ∨R)) = L−1((P ∨Q) ∨R).
Trivial, since ∨ is associative in TBOOL.

ii. L−1(P ∨Q) = L−1(Q ∨ P).
Trivial, since ∨ is commutative in TBOOL.

iii. H−1(P ⊕ (Q⊕R)) = H−1((P ⊕Q)⊕R).
This follows from H−1(⊕) = L−1(⊕) and the proof given before for
H−1.

iv. H−1(P ⊕Q) = H−1(Q⊕ P). Accordingly, as in the previous proof,
⊕ is commutative.

The remaining proofs for this requirement are similar in structure to
those proofs in the same numeral for TBR.

(c) L ◦ L−1 = 1∨/⊕.

Since for T, F and ∨ both L and L−1 are the identity, it is enough to
show that L(L−1(P ⊕Q)) = P ⊕Q, which follows directly from the ob-

22

servation of L−1(⊕) = H−1(⊕) and the corresponding proof for H−1.

(d) L−1 ◦ L = 1BOOL.

Since for T, F and ∨ both L and L−1 are the identity, the condition is
only checked for ¬ and ∧.

i. (L−1 ◦ L)(¬P) = ¬P .
The observation of H−1(≡) = L−1(≡), and the proof of this same
statement for H, gives us a direct proof.

ii. (L−1 ◦ L)(P ∨Q) = P ∨Q.
The observation of H−1(≡) = L−1(≡), and the proof of this same
statement for L, gives us a direct proof.

This concludes the proof for L and L−1.

This concludes the proof of Theorem 1.

We call these isomorphisms Boolean isomorphisms. They give rise to new
Boolean isomorphisms by composition among them.

Fig. 2. Commutation and composition of Boolean isomorphisms.

Figure 2 highlights two particular ones, namely G◦op◦H−1 and L◦op◦K−1,
which show that the theories TBR and TDS, and the theories T∧/≡ and T∨/⊕ are
pairs of dual theories. These morphisms are used in the next section to build
decision procedures for propositional logic by term rewriting using the non-
traditional Boolean theories TDS, TBR, T∧/≡ and T∨/⊕. It is important to point
out that the relation between the work of Dijkstra-Scholten and that of J.Hsiang
has passed unnoticed until now.

4 Four Equational Decision Procedures

Equational theories can be used as programs when appropriate executability
requirements are satisfied, so that their equations can be used as simplifica-
tion rules from left to right. Typical requirements are that the rules should be

23

terminating (i.e., that there are no infinite simplification sequences) and conflu-
ent, which under the termination assumption is equivalent to the fact that each
expression can be fully simplified to a unique equivalent expression, called its
canonical form, that cannot be further simplified. Termination and confluence
may be defined modulo a set A of axioms, as it will be the case for all our deci-
sion procedures. If we have such simplification system, we then have a decision
procedure for the word problem in the theory.

In this section we construct a decision procedure for propositional logic from
the equational theory TDS by means of definitional extensions (Section 2.1).
Same constructions apply to TBR (where it is well-known since [13]), to T∧/≡
and to T∨/⊕. Decision procedures for propositional logic have been a matter of in-
terest in the rewriting community. The first decision procedure for propositional
logic based on rewriting was developed by J. Hsiang in the early 1980s [13].

Consider the natural extension TBOOL′ of TBOOL with the function symbols
⇒(2) (implication) and ⇐(2) (consequence) and with corresponding equations
P ⇒ Q = ¬P ∨Q and P ⇐ Q = P ∨¬Q, and let M be the theory isomorphism
from TBOOL′ to TBOOL. Since both G and M are unambiguous, by Lemma 1, we
obtaing the theory TG⊗M

DS as a definitional extension of TDS in which negation,
conjunction, implication and consequence are included:

ΣG⊗M
DS = {T(0),F(0),∨(2),∧(2),≡(2),⇒(2),⇐(2)}

AG⊗M
DS = {P ≡ (Q ≡ R) = (P ≡ Q) ≡ R , P ≡ Q = Q ≡ P ,

P ∨ (Q ∨R) = (P ∨Q) ∨R , P ∨Q = Q ∨ P ,
P ∧ (Q ∧R) = (P ∧Q) ∧R , P ∧Q = Q ∧ P}

EG⊗M
DS = {P ≡ T = P , P ≡ P = T , P ∨ T = T , P ∨ F = P , P ∨ P = P

P ∨ (Q ≡ R) = (P ∨Q) ≡ (P ∨R) , P ∧Q = P ≡ Q ≡ P ∨Q ,
P ⇒ Q = P ∨Q ≡ Q , P ⇐ Q = P ∨Q ≡ P } .

Furthermore, we can extend this theory to include the ⊕ operator in the
following way:

TDEC
DS = (TG⊗M

DS)J◦H−1
,

where J is the inclusion morphism from TBOOL to TG⊗M
DS . The resulting theory

is shown below:

ΣDEC
DS = ΣG⊗M

DS ∪ {⊕(2)}
ADEC

DS = AG⊗M
DS ∪ {P ⊕ (Q⊕R) = (P ⊕Q)⊕R , P ⊕Q = Q⊕ P }

EDEC
DS = EG⊗M

DS ∪ {P ⊕Q = P ≡ Q ≡ F } .

TDEC
DS contains all the Boolean function symbols we have defined so far. We

prove that TDEC
DS is a decision procedure for Boolean algebras, and hence, for

propositional logic.

Theorem 2. The equations EDEC
DS in TDEC

DS are confluent and terminating mod-
ulo ADEC

DS .

Proof. Termination and confluence modulo ADEC
DS can be established mechani-

cally by using formal tools that: (i) find a well-founded ordering � on ADEC
DS -

24

equivalence classes of terms such that [t]ADEC
DS

→EDEC
DS /ADEC

DS
[t′]ADEC

DS
implies

[t]ADEC
DS

� [t′]ADEC
DS

, and (ii) check confluence of EDEC
DS modulo ADEC

DS by comput-
ing all so-called ‘critical-pairs’ modulo ADEC

DS and showing they are all confluent.
We have used the CiME tool [16] to check termination and confluence of EDEC

DS

modulo ADEC
DS . In CiME, TDEC

DS is specified as follows:

let S_BoolDS =

signature

"

TRUE,FALSE : constant ;

not : unary ;

equ,neq,or,and : AC ;

imp,cos : infix binary ;

";

let V = vars "P Q R";

let R_BoolDS =

TRS S_BoolDS V

"

P equ TRUE -> P ;

P equ P -> TRUE ;

not(P) -> P equ FALSE ;

P neq Q -> not (P equ Q) ;

P or P -> P ;

P or FALSE -> P ;

P or TRUE -> TRUE ;

P or (Q equ R) -> (P or Q) equ (P or R) ;

P and Q -> P equ Q equ (P or Q) ;

P imp Q -> (P or Q) equ Q ;

P cos Q -> (P or Q) equ P ;

";

S BoolDS specifies ΣDEC
DS with the arities and AC properties of the operators,

V the variables and R BoolDS the equations EDEC
DS , defining a Term Rewrite

System (TRS).
Confluence of the TRS modulo ADEC

DS is checked with the following command:

CiME> confluence R_BoolDS ;

Computing self critical pairs

...

System is confluent (127 critical pair(s) tested).

Termination of the TRS modulo ADEC
DS requires dependency pairs with marks

and dependency graphs:

CiME> polyinterpkind {("simple",10)};

CiME> termcrit "dp";

CiME> termcrit "marks";

25

CiME> termcrit "graph";

CiME> termination R_BoolDS;

Entering the termination expert. Verbose level = 0

...

(12 termination constraints)

Search parameters: simple polynomials, coefficient bound is 10.

Solution found for these constraints:

[TRUE] = 0;

[FALSE] = 0;

[not](X0) = X0 + 1;

[equ](X0,X1) = X1 + X0 + 1;

[neq](X0,X1) = X1 + X0 + 2;

[or](X0,X1) = X1*X0 + X1 + X0;

[and](X0,X1) = X1*X0 + 2*X1 + 2*X0 + 2;

[imp](X0,X1) = X1*X0 + 2*X1 + X0 + 1;

[cos](X0,X1) = X1*X0 + X1 + 2*X0 + 1;

Termination proof found.

Hence, TDEC
DS is confluent and terminating modulo ADEC

DS .

The executable specification of TDEC
DS in Maude is presented below. We use

imp and cos for ⇒ and ⇐, respectively. It can be shown with help of Maude’s
Sufficient Completeness Checker [12] that the canonical form of any term is
either T, F or t0 ≡ . . . ≡ tn, where all ti are distinct disjunctions (modulo AC)
of propositional variables.

fmod BOOL-DS is

sort BoolDS .

ops TRUE FALSE : -> BoolDS [ctor] .

op _equ_ : BoolDS BoolDS -> BoolDS [ctor assoc comm prec 80] .

op _or_ : BoolDS BoolDS -> BoolDS [ctor assoc comm prec 50] .

op not_ : BoolDS -> BoolDS [prec 10] .

op _and_ : BoolDS BoolDS -> BoolDS [assoc comm prec 50] .

op _imp_ : BoolDS BoolDS -> BoolDS [prec 60] .

op _cos_ : BoolDS BoolDS -> BoolDS [prec 60] .

vars P Q R : BoolDS .

eq P equ P = TRUE .

eq P equ TRUE = P .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P or P = P .

eq P or (Q equ R) = P or Q equ P or R .

eq P and Q = P equ Q equ P or Q .

eq not P = P equ FALSE .

eq P imp Q = P or Q equ Q .

eq P cos Q = P or Q equ P .

endfm

26

Lemma 2. The canonical form canEDEC
DS /ADEC

DS
[t] of any term t is either T, F or

t0 ≡ . . . ≡ tn, where all ti are distinct disjunctions (modulo AC) of propositional
variables.

Proof. First, we check with Maude’s Sufficient Completeness Checker that the
canonical form of any term can contain only the function symbols T, F, ∨ and ≡.
For this purpose, we have annotated the definition of the function symbols TRUE,
FALSE, or and equ, with the ctor (i.e. constructor) attribute, in the specification
given above.

Maude> load scc

Maude> select CC-LOOP .

Maude> loop init-cc .

Starting the Maude Sufficient and Canonical Completeness Checker.

Maude> (scc BOOL-DS .)

Checking sufficient completeness of BOOL-DS ...

Warning: This module has equations that are not left-linear which will be

ignored when checking.

Success: BOOL-DS is sufficiently complete under the assumption that it is

ground weakly-normalizing, confluent, and ground sort-decreasing.

Now, we prove that the canonical form of any term is either T, F or t0 ≡ . . . ≡
tn, where all ti are distinct disjunctions (modulo AC) of propositional variables.
Assume it is not. By Sufficient Completeness, canEDEC

DS /ADEC
DS

[t] can only contain
T, F, ∨ and ≡ as function symbols. Since canEDEC

DS /ADEC
DS

[t] is not of the form T,
F or t0 ≡ . . . ≡ tn, where all ti are distinct disjunctions (modulo AC) of proposi-
tional variables, the equation P or (Q equ R) = P or Q equ P or R could
be applied, and therefore, canEDEC

DS /ADEC
DS

[t] is not the canonical form of t. Since
TDEC

DS is confluent and terminating, this contradicts our assumption. Hence, the
canonical form of any term in TDEC

DS is either T, F or t0 ≡ . . . ≡ tn, where all ti
are distinct disjunctions (modulo AC) of propositional variables.

Since TDEC
DS is both confluent and terminating, we can use it as a decision

procedure for propositional logic. For any propositional expressions t and t′:

TDEC
DS ` t = t′ ⇔ TDEC

DS ` t ≡ t′ = T ⇔ canEDEC
DS /ADEC

DS
[t] = canEDEC

DS /ADEC
DS

[t′].

In particular, since T and F are both in EDEC
DS /ADEC

DS -canonical form, we have:

TDEC
DS ` t ≡ t′ = T ⇔ canEDEC

DS /ADEC
DS

[t ≡ t′] = [T]

and
TDEC

DS ` t ≡ t′ = F ⇔ canEDEC
DS /ADEC

DS
[t ≡ t′] = [F].

27

Definition 9. We call a proposition t a tautology iff canEDEC
DS /ADEC

DS
[t] = [T] and

a falsity iff canEDEC
DS /ADEC

DS
[t] = [F]. We call t satisfiable iff canEDEC

DS /ADEC
DS

[t] 6= [F].

Therefore, our decision procedure gives also a decision procedure for checking
satisfiability of any proposition t, capability we used in experiments described
in Section 6.3.

Theorem 3. The theories TDEC
BR = (TH⊗M

BR)F◦G−1
, TDEC

∧/≡ = (TK⊗M
∧/≡)I◦L−1

and
TDEC
∨/⊕ = (TL◦M

∨/⊕)N◦K−1 are confluent and terminating modulo ADEC
BR , ADEC

∧/≡ and
ADEC
∨/⊕ , respectively, where F , I and N are the inclusion morphisms from TBOOL

to the corresponding theories.

Proof. One can mechanically checked using the CiME tool and following the
same procedure used in the proof of Theorem 2 that all these theories, including
their definitional extensions, are confluent and terminating modulo the corre-
sponding sets of AC axioms.

The executable specifications of these theories in Maude, and therefore of the
decision procedures, can be found in Appendix A.

Remark 1. Following the same schema used in Lemma 2 is easy to check:

– The canonical form canEDEC
BR /ADEC

BR
[t] of any term t is either T, F or t0⊕. . .⊕tn,

where all ti are distinct conjunctions (modulo AC) of propositional variables.
– The canonical form canEDEC

∧/≡ /ADEC
∧/≡

[t] of any term t is either T, F or t0 ≡
. . . ≡ tn, where all ti are distinct conjunctions (modulo AC) of propositional
variables.

– The canonical form canEDEC
∨/⊕ /ADEC

∨/⊕
[t] of any term t is either T, F or t0⊕. . .⊕tn,

where all ti are distinct disjunctions (modulo AC) of propositional variables.

Hence, together with TDEC
DS , these equational theories serve as decision proce-

dures for propositional logic by term rewriting and also solve the satisfiability
problem for propositional logic.

Because of the duality isomorphism G ◦ op ◦H−1, TDEC
DS is dual to Hsiang’s

canonical system TDEC
BR . The theories T∧/≡ and T∨/⊕, as well as their definitional

extensions, form another pair of dual theories thanks to the duality isomorphism
K−1 ◦ op ◦ L mentioned in Section 3.

Decision procedures for propositional logic have been a matter of persistent
interest in the rewriting community. The first decision procedure for proposi-
tional logic based on rewriting was developed by J.Hsiang in the early 1980s [13],
as mentioned before. Various first-order and modal propositional theorem prov-
ing systems have used canonical systems for propositional logic. A refutation
rewrite-based method, the N-strategy, was designed by Hsiang for the word
problem in first-order predicate logic in 1985 [15]. The N-strategy used Hsiang’s
canonical system for Boolean algebras to reduce a set of clauses to canonical
form and then converting the clauses into a set of simplifying equations. Follow-
ing a similar approach, L. Bachmair and N. Dershowitz developed a complete

28

inference system for first-order theorem proving based on Hsiang’s rewrite sys-
tem for Boolean algebras [1]. D. Kapur and P. Narendran in 1985, following
a different approach, developed another refutation method for first order theo-
rem proving. In 1992 A. Foret extended Hsiang’s system to give a complete term
rewriting system for the modal propositional logics known as K, Q, T and S5 [8].
A generic extension of the four decision procedures presented in this paper has
been studied in [21] as an equation-based decision procedure for Monadic First
Order Logic’s word problem.

5 Optimizing Equations

In Section 3 we have presented five isomorphic Boolean theories. In Section 4
we established that four of them give rise to decision procedures for proposi-
tional logic by term rewriting. This section introduces optimizing equations as
a technique to improve the efficiency of these decision procedures. The goal is
to use such optimizing equations as a sound and efficient mechanism to simplify
propositional expressions to semantically equivalent ones before the decision pro-
cedures are applied. We use TDEC

DS to mechanically prove some propositions in
this section. Since the other three decision procedures are isomorphic to this one,
the results obtained in this section are generic for all the decision procedures.

Behind optimizing equations lies the idea of exploiting annihilators of Boolean
operators to simplify propositions in a generic way. One can observe, for exam-
ple, that in TDS the constant symbol T is the annihilator of ∨, since P ∨T = T is
one of the equations. On the other hand, it is not clear that F is the annihilator
of ∧ in TDS, since there is no equation explicitly describing such property for
conjunction. Of course, P ∧ F simplifies to F no matter what the canonical form
of P is, but the TDS simplification process may require substantial amounts of
computational resources, since futile simplifications over P could be performed.
If P happens to be a large expression, the efficiency of the simplification pro-
cess can be highly decreased, due to the non-deterministic application of the
equations in the decision procedure.

The optimizing equations we propose are a set of generic simplifying equa-
tions, together with other equations that implement a syntactic process of re-
placement of atomic propositions with constants. These generic equations sim-
plify expressions in the presence of an annihilator of a Boolean operator. The
replacement of atomic propositions with constants introduces constants in a
proposition under certain conditions.

Definition 10. The set EOPT of generic simplifying equations is defined as fol-
lows:

EOPT = {¬T = F , ¬F = T ,¬¬P = P , P ∨ T = T , P ∧ F = F ,
F ⇒ P = T , P ⇒ T = T , P ⇐ F = T, T ⇐ P = T } .

Lemma 3. The set of equations EOPT is confluent and terminating modulo
AOPT, where AOPT consists of the AC equations for ∧ and ∨.

29

Proof. We have mechanically proved, using again the CiME System [16], that
the set of equations EOPT is confluent and terminating modulo AOPT. Consider
the specification of this set of equations in CiME:

let S_BoolOPT =

signature

"

TRUE,FALSE : constant ;

not : unary ;

or,and : AC ;

imp,cos : infix binary ;

";

let V = vars "P";

let R_BoolOPT =

TRS S_BoolOPT V

"

not TRUE -> FALSE ;

not FALSE -> TRUE ;

not not P -> P ;

P or TRUE -> TRUE ;

P and FALSE -> FALSE ;

P imp TRUE -> TRUE ;

FALSE imp P -> TRUE ;

P cos FALSE -> TRUE ;

TRUE cos P -> TRUE ;

";

Confluence of EOPT modulo AOPT is checked as follows:

CiME> confluence R_BoolOPT ;

Computing self critical pairs

...

System is confluent (30 critical pair(s) tested).

Accordingly, termination is checked with the following script of commands:

CiME> polyinterpkind {("simple",5)};

- : unit = ()

CiME> termcrit "dp";

Termination now uses dependency pair criterion

- : unit = ()

CiME> termination R_BoolOPT ;

Entering the termination expert. Verbose level = 0

...

(10 termination constraints)

Search parameters: simple polynomials, coefficient bound is 5.

Solution found for these constraints:

30

[TRUE] = 0;

[FALSE] = 0;

[not](X0) = X0;

[or](X0,X1) = 0;

[and](X0,X1) = X1 + X0 + 1;

[imp](X0,X1) = 0;

[cos](X0,X1) = 0;

Termination proof found.

Hence, the set of equations EOPT is confluent and terminating modulo AOPT.

Note that the previous lemma does not make any assumption on the under-
lying Boolean theory, that is, this simplifying equations are generic for the four
decision procedures defined in Section 4.

Under certain conditions, some atomic propositions occurring in a proposi-
tional expression can be replaced with the constants T or F without altering the
truth value of the propositional expression. The replacement of atomic proposi-
tions with constants relies on a specialization of Shannon’s law [10]:

Theorem 4. Let P and Q be Boolean expressions and p be an atomic propo-
sition. The textual substitution P (Q/p) is the expression obtained from P by
respectively replacing each occurrence of p by Q in P . Shannon’s law is stated
as follows:

P = P (p/p) = (p ⇒ P (T/p)) ∧ (¬p ⇒ P (F/p))

We have given a sufficiently complete, confluent and terminating equational
specification of Shannon’s law in the Maude system by extending TDEC

DS and
then proving by structural induction that it holds as a theorem. Since in Shan-
non’s law, and in the equations given below in Theorem 5, p ranges over atomic
propositions, whereas P ranges over propositional expressions, the extension of
TDEC

DS is order sorted, with a subsort AtomDS < BoolDS, so that p : AtomDS
and P : BoolDS. Furthermore, we have define the subsort ConDS < BoolDS (for
constant symbols), such that T : ConDS and F : ConDS. The extension of TDEC

DS

with Shannon’s law as an equation, and with the needed infrastructure, is shown
below:

fmod BOOL-DS-EXT is

sort ConDS .

sort AtomDS .

sort BoolDS .

subsorts ConDS AtomDS < BoolDS .

ops TRUE FALSE : -> ConDS [ctor] .

op _equ_ : BoolDS BoolDS -> BoolDS [ctor assoc comm prec 80] .

op _or_ : BoolDS BoolDS -> BoolDS [ctor assoc comm prec 50] .

op not_ : BoolDS -> BoolDS [prec 10] .

op _and_ : BoolDS BoolDS -> BoolDS [assoc comm prec 50] .

op _imp_ : BoolDS BoolDS -> BoolDS [prec 60] .

31

op _cos_ : BoolDS BoolDS -> BoolDS [prec 60] .

vars P Q R : BoolDS .

eq P equ P = TRUE .

eq P equ TRUE = P .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P or P = P .

eq P or (Q equ R) = P or Q equ P or R .

eq P and Q = P equ Q equ P or Q .

eq not P = P equ FALSE .

eq P imp Q = P or Q equ Q .

eq P cos Q = P or Q equ P .

op _‘(_/_‘) : BoolDS AtomDS BoolDS -> BoolDS .

op _‘(_/_‘) : BoolDS ConDS BoolDS -> BoolDS .

var Av : AtomDS .

eq P(Av / Q) = (Av imp P(TRUE / Q)) and (not Av imp P(FALSE / Q)) .

endfm

Observe that:

1. There are two specifications of textual substitution which only differ in the
second sort of the corresponding specifications. The one appearing first, con-
straints it to be an atomic variable, as in P (p/Q), while the second con-
straints it to be a Boolean constant, as in P (T/Q). This, is in turn, exploited
by the equation corresponding to Shannon’s law in BOOL-DS-EXT, so the
substitution process is well founded.

2. There is no explicit mention to how the textual substitution is computed.
We will soon see that such detailed description is not needed.

3. We are going to use BOOL-DS-EXT as a mechanical tool to prove automatically
some propositions involving Shannon’s law.

The method suggested by Shannon’s law, when used without any ‘context’
is of course of little help, since it gives rise to an exponential explosion of the
original proposition in terms of its number of variables. The replacement of
atomic propositions with constants as a specialization of Shannon’s law to various
useful contexts is stated as follows:

Theorem 5. Let P be a propositional expression and p an atomic proposition.
The following are theorems of any of the five Boolean theories:

1. p ∧ P (p/p) = p ∧ P (T/p) 5. p ∨ P (p/p) = p ∨ P (F/p)
2. ¬p ∧ P (p/p) = ¬p ∧ P (F/p) 6. ¬p ∨ P (p/p) = ¬p ∨ P (T/p)
3. p ⇒ P (p/p) = p ⇒ P (T/q) 7. p ⇐ P (p/p) = p ⇐ P (F/p)
4. ¬p ⇒ P (p/p) = ¬p ⇒ P (F/p) 8. ¬p ⇐ P (p/p) = ¬p ⇐ P (T/p).

Proof. We use the executable specification BOOL-DS-EXT to mechanically prove
all eight propositions.

reduce in BOOL-DS-EXT : p:AtomDS and P(p:AtomDS / p:AtomDS) ==

32

p:AtomDS and P(TRUE / p:AtomDS) .

rewrites: 24 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : not p:AtomDS and P(p:AtomDS / p:AtomDS) ==

not p:AtomDS and P(FALSE / p:AtomDS) .

rewrites: 33 in 0ms cpu (2ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : p:AtomDS imp P(p:AtomDS / p:AtomDS) ==

p:AtomDS imp P(TRUE / p:AtomDS) .

rewrites: 24 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : not p:AtomDS imp P(p:AtomDS / p:AtomDS) ==

not p:AtomDS imp P(FALSE / p:AtomDS) .

rewrites: 33 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : p:AtomDS or P(p:AtomDS / p:AtomDS) ==

p:AtomDS or P(FALSE / p:AtomDS) .

rewrites: 20 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : not p:AtomDS or P(p:AtomDS / p:AtomDS) ==

not p:AtomDS or P(TRUE / p:AtomDS) .

rewrites: 27 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : p:AtomDS cos P(p:AtomDS / p:AtomDS) ==

p:AtomDS cos P(FALSE / p:AtomDS) .

rewrites: 22 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==

reduce in BOOL-DS-EXT : not p:AtomDS cos P(p:AtomDS / p:AtomDS) ==

not p:AtomDS cos P(TRUE / p:AtomDS) .

rewrites: 29 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

We have shown that the equalities hold for any atomic proposition p and any
Boolean expression P . Observe that we have indirectly used TDEC

DS to calculate
at its meta-level.

Theorem 5 provides the foundation for a syntactic replacement of atomic
propositions with constants in any Boolean expression without altering its se-
mantic value. The optimizing equations (i.e., the generic simplifying equations
in Definition 10 together with the equations replacing atomic propositions with
constants in Theorem 5) work by inspecting a given proposition to find whether
a replacement of an atomic proposition with a constant can be performed and
then, if possible, applying the generic equations to simplify it.

33

To illustrate how the process is conducted, let us consider the example de-
picted in Fig. 3, where p, q, r and s are atomic propositions. The process has
as input the proposition q ∧ (((r ∨ T) ⇐ s ≡ ¬T) ∨ ¬p); a ‘syntax tree’ of this
expression, with the expression itself at the top appears in column (a). In column
(b), the replacement of q by T has taken place as a result of the first proposition
in Theorem 5. Finally, in column (c), the result after applying various equations
of EOPT is shown. In this way, the proposition q ∧ (((r ∨ T) ⇐ s ≡ ¬T) ∨ ¬p)
has been simplified to a semantically equivalent one, namely q ∧ ((T ≡ F)∨¬p),
before using any decision procedure.

Fig. 3. (a) The expression q∧(((r∨T) ⇐ s ≡ ¬T)∨¬p) is depicted with a corresponding
‘syntax tree’. (b) An equivalent expression to that of (a), but with replacement of q by
T applied. (c) A semantically equivalent proposition to the one in (b) further simplified
with the optimizing equations.

Observe that the ‘inspection’ process can be guaranteed to terminate, since
any Boolean expression has finitely many symbols. However, the integrated pro-
cess does not need to be confluent, since it preserves validity and the resulting
proposition will be fed to a decision procedure which is both confluent and ter-
minating.

We have developed an efficient inspection and substitution algorithm for
Boolean expressions, characterized by binary function symbols having either
an atomic proposition or the negation of an atomic proposition as one of its
operands. Currently, we are studying how to extend the algorithm to the general
case without compromising the efficiency of the technique. In Section 6 we
present experiments in which the current specification of the algorithm is put
under test.

34

6 Experiments

The objective of this section is to study experimentally the computational behav-
ior of the four decision procedures as automatic decision tools when implemented
in a high-performance rewrite engine with efficient support for AC rewriting such
as Maude’s [4]. We present the results of three experiments in which executable
specifications of the four decision procedures in the Maude system were exer-
cised against sets of propositional expressions. Each propositional expression was
randomly generated, with a normal distribution for function symbols and vari-
ables, and then each propositional expression and its dual were automatically
fed to each decision procedure2. Both, the number of rewrites (number of times
an equation was used to simplify the input expression) and the time needed to
simplify each input expression to its canonical form were recorded. Furthermore,
each set of propositional expressions was parameterized by the number of vari-
ables and the height of the syntax trees of the propositions. The internal nodes
of a syntax tree are function symbols with positive arity, whereas its leaves are
atomic propositions or constant symbols. In the three experiments the size of
a Boolean expression is the number of nodes of its syntax tree. In all three ex-
periments, we used the median value instead of the mean value to analyze the
gathered data.

6.1 Comparing the Four Decision Procedures

This experiment compares the performance of the four decision procedures with
each other. One expects a decision procedure for propositional logic to be ex-
ponential in the size of its input, since SAT, which is one of the applications
of these procedures, is an NP-Complete problem. Figure 4 depicts the average
time required for each decision procedure to simplify sample propositions to their
corresponding canonical forms as a function of their size. As already mentioned,
the set of propositions used in this experiment was ‘fair’ in the sense that each
proposition and its dual were given as inputs.

On average (using the median value), the pair of dual decision procedures
for TDEC

DS and TDEC
BR performed 40% faster than the other pair of dual decision

procedures for TDEC
∧/≡ and TDEC

∨/⊕ . Moreover, the efficiency within each pair of dual
decision procedures did not exceed the 1% difference.

6.2 Using Optimizing Equations

As described in Section 5, optimizing equations can be used to simplify each
propositional expression prior to the execution of the decision procedures. This
2 As seen in [20], due to the random nature of the inputs and the quite different

performance of each procedure for each input, when we did not dualize the inputs, the
average performance of dual procedures was substantially different. However, when
we did feed each propositional expression and its dual to each of the procedures, the
performance of each pair of dual procedures became almost identical.

35

Fig. 4. Time taken by the decision procedures to simplify propositional expressions to
their respective canonical forms as a function of the size of the propositions.

second experiment shows how optimizing equations improve the overall perfor-
mance of the decision procedures. We have implemented an efficient executable
specification of this technique for propositional expressions in which every bi-
nary function symbol has at least one atomic proposition or a negated atomic
proposition as one of its operands. Figure 5 presents a comparison of the decision
procedure TDEC

DS with and without optimizing equations enabled, in terms of the
average number of rewrites as a function of the expression’s size.

In this case, the dashed line is used to present the results for the execution of
the decision procedure with the optimization technique disabled, while the con-
tinuous line describes those of the decision procedure with the technique enabled.
The number of rewrites of the optimization phase are also included in the average
in the case were the optimizing equations were enabled. In this experiment, the
number of rewrites required to simplify the propositions was approximately 24
times less when using the technique of optimizing equations. In another experi-
ment, in the same spirit, the optimizing equations with Hsiang’s TDEC

BR decision
procedure performed up to 29 times faster than the same procedure with the
optimizing equations disabled [20].

6.3 Comparison with SAT-Solving

In this third experiment, the performance of TDEC
DS with optimizing equations

enabled is compared against that of a DPLL(T) SAT-Solver implemented in
Maude by Joe Hendrix. As the latter tool is optimized for SAT-Solving, this

36

Fig. 5. Comparison of TDEC
DS with and without using optimizing equations in terms of

the number of rewrites as a function of the proposition’s size.

experiment uses the decision procedure to solve the satisfiability problem, that
is, to determine if the canonical form of a given expression is different from F.

Similar to the previous experiments, the input data consisted of randomly
generated propositional expressions in which every binary function symbol had at
least one variable, or constant, or either a negated variable or negated constant,
as one of its operands. The DPLL(T) SAT-Solver was equipped with a utility
to convert arbitrary propositional expressions into semantically equivalent ones
in Conjunctive Normal Form (CNF) format, since this is required as part of
DPLL’s input format.

Figure 6 presents a comparison of the tools in terms of the average number
of rewrites needed to solve the satisfiability problem. In both cases, the average
number of rewrites includes those rewrites needed to pre-process each proposi-
tion. That is, we include both the number of rewrites employed by the optimizing
equations in the case of the TDEC

DS , and the number of rewrites to convert to CNF
in the case of the SAT-Solver. Note that the average number of rewrites is plot-
ted within a logarithmic scale. Overall, TDEC

DS with optimizing equations enabled
performed 125 times faster that the DPLL(T) SAT-Solver.

7 Conclusions

We have presented four Boolean equational theories giving rise to four rewriting-
based decision procedures for propositional logic, have proved their mathematical

37

Fig. 6. Comparison of TDEC
DS with optimizing equations enabled against a DPLL(T)

SAT-Solver implemented in Maude.

and operational correctness, and have shown how they can be further sped up by
the use of optimizing equations. We have also presented experimental results sug-
gesting that these procedures, when implemented on a high-performance rewrite
engine, have very good efficiency and outperform a DPLL(T)-based SAT-solver.
Some research directions that seem worth following include: (i) exploiting these
decision procedures as components in “deduction modulo” inference systems;
(ii) studying if the use of context-sensitive rewriting such as in Maude’s func-
tional evaluation strategies [4] can further increase procedure performance; and
(iii) carrying out a more extensive comparison with other SAT-solvers to gain a
more comprehensive performance evaluation.

References

1. L. Bachmair and N. Dershowitz. Inference rules for rewrite-based first-order the-
orem proving. In LICS, pages 331–337. IEEE Computer Society, 1987.

2. H. Barendregt and E. Barendsen. Autarkik computations and formal proofs. Jour-
nal of Automated Reasoning, 28(3):321–336, 2002.

3. D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. J.
Symb. Comput., 3(1/2):203–216, 1987.

4. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and C. Tal-
cott. All About Maude. Springer LNCS Vol. 4350, 2007. To appear.

5. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990.

38

6. G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. J. Autom.
Reasoning, 31(1):33–72, 2003.

7. S. M. Eker. Associative-commutative rewriting on large terms. In Rewriting Tech-
niques and Applications (RTA’03), volume 2706 of Lecture Notes in Computer
Science, pages 14–29. Springer-Verlag, 2003.

8. A. Foret. Rewrite rule systems for modal propositional logic. J. Log. Program.,
12(3&4):281–298, 1992.

9. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: Algebraic Specification in Action,
pages 3–167. Kluwer, 2000.

10. D. Gries and F. B. Schneider. A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer Verlag, 1993.

11. D. Gries and F. B. Schneider. Equational propositional logic. Inf. Process. Lett.,
53(3):145–152, 1995.

12. J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness checking with
propositional tree automata. Technical Report UIUCDCS-R-2005-2635, University
of Illinois Urbana-Champaign, 2005.

13. J. Hsiang. Topics in automated theorem proving and program generation. PhD
thesis, University of Illinois at Urbana-Champaign, 1982.

14. N. Jacobson. Basic algebra. I. W. H. Freeman and Co., San Francisco, Calif., 1974.
15. J.-P. Jouannaud, editor. Rewriting Techniques and Applications, First Interna-

tional Conference, RTA-85, Dijon, France, May 20-22, 1985, Proceedings, volume
202 of Lecture Notes in Computer Science. Springer, 1985.

16. Laboratoire de Recherche en Informatique. The CiME 2.0 System
(http://cime.lri.fr/).

17. F. W. Lawvere. Functorial semantics of algebraic theories. Proceedings, National
Academy of Sciences, 50:869–873, 1963. Summary of Ph.D. Thesis, Columbia
University.

18. V. Lifschitz. On calculational proofs. Unpublished, 1998.
19. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-

work. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
2nd. Edition, pages 1–87. Kluwer Academic Publishers, 2002. First published as
SRI Tech. Report SRI-CSL-93-05, August 1993.

20. C. Rocha and J. Meseguer. Five isomorphic boolean theories and four equational
decision procedures. Technical Report (to be indexed), University of Illinois at
Urbana-Champaign, 2007.

21. C. Rocha and J. Meseguer. A rewriting decision procedure for Dijkstra-Scholten’s
monadic first-order logic. In Submited to Segundo Congreso Colombiano de Com-
putación, 2007.

22. G. F. Simmons. Introduction to topology and modern analysis. McGraw-Hill Book
Co., Inc., New York, 1963.

23. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

A Executable Specification in Maude of the Four
Decision Procedures

A.1 T DEC
DS

fmod BOOL-DS is

39

sort BoolDS .

ops TRUE FALSE : -> BoolDS [ctor] .

op _equ_ : BoolDS BoolDS -> BoolDS [ctor assoc comm prec 80] .

op _or_ : BoolDS BoolDS -> BoolDS [ctor assoc comm prec 50] .

op not_ : BoolDS -> BoolDS [prec 10] .

op _and_ : BoolDS BoolDS -> BoolDS [assoc comm prec 50] .

op _imp_ : BoolDS BoolDS -> BoolDS [prec 60] .

op _cos_ : BoolDS BoolDS -> BoolDS [prec 60] .

vars P Q R : BoolDS .

eq P equ P = TRUE .

eq P equ TRUE = P .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P or P = P .

eq P or (Q equ R) = P or Q equ P or R .

eq P and Q = P equ Q equ P or Q .

eq not P = P equ FALSE .

eq P imp Q = P or Q equ Q .

eq P cos Q = P or Q equ P .

endfm

A.2 T DEC
BR

fmod BOOL-BR is

sort BoolBR .

ops TRUE FALSE : -> BoolBR [ctor] .

op _neq_ : BoolBR BoolBR -> BoolBR [ctor assoc comm prec 80] .

op _and_ : BoolBR BoolBR -> BoolBR [ctor assoc comm prec 50] .

op not_ : BoolBR -> BoolBR [prec 10] .

op _or_ : BoolBR BoolBR -> BoolBR [assoc comm prec 50] .

op _imp_ : BoolBR BoolBR -> BoolBR [prec 60] .

op _cos_ : BoolBR BoolBR -> BoolBR [prec 60] .

vars P Q R : BoolBR .

eq P neq P = FALSE .

eq P neq FALSE = P .

eq P and FALSE = FALSE .

eq P and TRUE = P .

eq P and P = P .

eq P and (Q neq R) = P neq Q neq P and R .

eq P or Q = P neq Q neq P and Q .

eq not P = P neq TRUE .

eq P imp Q = P and Q neq P neq TRUE .

eq P cos Q = P and Q equ Q neq TRUE .

endfm

A.3 T DEC
∧/≡

fmod BOOL-AE is

sort BoolAE .

40

ops TRUE FALSE : -> BoolAE [ctor] .

op _equ_ : BoolAE BoolAE -> BoolAE [ctor assoc comm prec 80] .

op _and_ : BoolAE BoolAE -> BoolAE [ctor assoc comm prec 50] .

op not_ : BoolAE -> BoolAE [prec 10] .

op _or_ : BoolAE BoolAE -> BoolAE [assoc comm prec 50] .

op _imp_ : BoolAE BoolAE -> BoolAE [prec 60] .

op _cos_ : BoolAE BoolAE -> BoolAE [prec 60] .

vars P Q R : BoolAE .

eq P equ P = TRUE .

eq P equ TRUE = P .

eq P and TRUE = P .

eq P and FALSE = FALSE .

eq P and P = P .

eq P and (Q equ R) = P equ P and Q equ P and R .

eq P or Q = P equ Q equ P and Q .

eq not P = P equ FALSE .

eq P imp Q = P and Q equ P .

eq P cos Q = P and Q equ Q .

endfm

A.4 T DEC
∨/⊕

fmod BOOL-OX is

sort BoolOX .

ops TRUE FALSE : -> BoolOX [ctor] .

op _neq_ : BoolOX BoolOX -> BoolOX [ctor assoc comm prec 80] .

op _or_ : BoolOX BoolOX -> BoolOX [ctor assoc comm prec 50] .

op not_ : BoolOX -> BoolOX [prec 10] .

op _and_ : BoolOX BoolOX -> BoolOX [assoc comm prec 50] .

op _imp_ : BoolOX BoolOX -> BoolOX [prec 60] .

op _cos_ : BoolOX BoolOX -> BoolOX [prec 60] .

vars P Q R : BoolOX .

eq P neq P = FALSE .

eq P neq FALSE = P .

eq P or TRUE = TRUE .

eq P or FALSE = P .

eq P or P = P .

eq P or (Q neq R) = P neq P neq Q neq P and R .

eq P and Q = P neq Q neq P or Q .

eq not P = P neq TRUE .

eq P imp Q = P or Q neq Q neq TRUE .

eq P cos Q = P or Q equ P neq TRUE .

endfm

41

