
A Unified Framework for Multi-Agent Agreement ∗

Kiran Lakkaraju and Les Gasser
Technical report number: UIUCDCS-R-2006-2803

December 15, 2006

Abstract

Multi-Agent Agreement problems (MAP) - the ability of a population
of agents to search out and converge upon a common state - are central
issues in many multi-agent settings, from distributed sensor networks, to
meeting scheduling, to development of norms, conventions, and language.
While much work has been done on particular agreement problems, no
unifying framework exists for comparing MAPs that vary in, e.g., strategy
space complexity, inter-agent accessibility, and solution type, and under-
standing their relative complexities. We present such a unification, the
Distributed Optimal Agreement Framework, and show how it captures a
wide variety of agreement problems. To demonstrate DOA and its power,
we apply it to two well-known MAPs: convention evolution and language
convergence. We demonstrate the insights DOA provides toward improv-
ing known approaches to these problems. Using a careful comparative
analysis of a range of MAPs and solution approaches via the DOA frame-
work, we identify a single critical differentiating factor: how accurately an
agent can discern other agent’s states. To demonstrate how variance in
this factor influences solution tractability and complexity we show its ef-
fect on the convergence time and quality of Particle Swarm Optimization
approach to a generalized MAP.

1 Introduction

In a Multi-Agent Agreement Problem (MAP) multiple agents must navigate a
space of possible states (a potential agreement space) and eventually converge
on the same state. By illustration, a simple MAP from distributed transaction
processing is the distributed commit problem: all agents participating in a single
transaction must eventually converge on one state in a two-valued potential
agreement space, namely whether to commit or abort the transaction. The well-
known “two-phase commit” and “three-phase commit” protocols are different
specific solutions to this MAP, with differing degrees of robustness, complexity,
and centralization (cf. [9]).

∗A version of this paper was submitted to the 2007 International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2007))
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Different types of MAPs occur in many other multi-agent domains as well. In
distributed active sensor networks (such as an array of active temperature sen-
sors embedded in a road), the agreement state often of interest is some function
f of the sensor values across the whole sensor collection (commonly, f is max,
min, or average), which should become known to all active sensors. The agents
must locate and agree upon this state using a distributed algorithm. Here the
potential-agreement space is the set of potential values of f , and the final needed
agreement is the actual value of f . [13]. Similar problems arise in stabilizing the
physical formation of a set of agents (agreement on roles and positions), flock-
ing/swarming (agreement on overall direction), and synchronization of coupled
oscillators (agreement on state of the oscillation). Negotiation can be viewed as
a MAP, in which agents aim to converge on a common state in an offer space
(or fail). Meeting scheduling can be viewed as a MAP governed by a set of
equality constraints over time and availability [11]. Multi-agent agreement is at
the heart of the notions of “norms” and “conventions” for multi-agent systems
[15, 18]. Here the potential agreement space is the collection of agents’ possible
action strategies in a particular class of situations, and the resulting convention
is a strategy agreed to and followed by all agents.

Our particular area of interest is the autonomous creation of language by an
agent collection [2, 7, 16, 17]1. Language necessarily a collective phenomenon.
One quality measure over a population of language users is the population’s
average communicability2. Communicability implies agreement on language. A
set of agents can achieve high communicability by settling on any one of a wide
variety of possible languages. But individual languages might also differ on “ob-
jective” qualities, such as expressivity (ability to express important concepts),
efficiency (of production and interpretation), and so on. Thus, for the language
MAP, a solution has both a frequency-dependent component (communicability,
which depends on the frequency of agents sharing a language) and an intrin-
sic or objective quality component. Agents need agreement on a common and
high-quality state (language).

This type of solution condition that combines frequency-dependent and in-
trinsic components is characteristic of many MAPs, but not all. Clearly, agents
pursuing distributed commit must collectively make the right choice, not just
any choice. In contrast, however, for some social conventions agreement itself is
more important than what is agreed upon—it’s frequency-dependent only—so
agents can settle on any state in the possible agreement space.

At first glance it would seem that since these various problems can all be
cast as agreement problems, both the MAPs and their solutions should follow a
general and by now well understood pattern. Indeed, our first assumption was
that well-known distributed algorithms such as those collected in [9] provide
the solution concept for most MAPs, so we could reuse these and little more

1Language is also important because it is a model problem for dynamic semantics in general
in distributed information systems: e.g., evolving shared schemas/ontologies, shared denota-
tions, common information structures, etc.

2Defined as the average probability that an “utterance” by one agent will be understood
by another; see [12]).
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remained to be done. Trying this, however, we found two issues:
First, each MAP domain has its own idiosyncrasies of problem description

that are sometimes hard to apply to other domains. Some kind of MAP lingua
franca is needed to validate any unity among MAPs. Thus the first contribu-
tion of this paper is to present a framework, which we call Distributed Optimal
Agreement (DOA), that can unify the different agreement problems from differ-
ent problem domains under one common descriptive model, allowing researchers
to compare, contrast, and understand MAP differences clearly. We detail the
DOA framework in Section 2 and show examples of MAPs captured with Dis-
tributed Optimal Agreement in Section 3.

Second, and more importantly, by using the DOA framework to compare
MAPs across domains we discovered how MAP problems differ on dimensions
including complexity of the potential-agreement space, state-to-state accessibil-
ity, agent interaction topologies, state evaluation measures, and type of solution
needed (to name a few). Further, we analyzed how these dimensions cause com-
plexity to emerge in MAP solutions, what factors make a MAP difficult to solve,
and how differences impact potential MAP solution strategies.

From our comparison of different MAPs via the DOA framework we iden-
tified the discernibility level - that is how well an agent can discern the states
of other agents in the population - to be a critical factor in determining how
difficult it is to solve a MAP. Our final contribution is to elaborate on this role of
discernibility and demonstrate how variance in this factor influences convergence
times for Particle Swarm Optimization approaches to MAPs.

2 DOA Framework

The Distributed Optimal Agreement framework comprises a specification of
a problem and a specification of the dynamics of the agents in solving that
problem. Informally, we view the process of solving a MAP as search. Each
agent moves about in a possible agreement space that comprises a number of
possible agreement states (PAS). Any of the PASes might be the substance of
an agreement, depending on its own qualities and the number of agents that
have settled on it. A complete agreement is the condition that all searching
agents have arrived at the same PAS. If there is a distance metric on the space
of states, a MAP may enjoy the concept of complete ε-agreement, i.e. all agents
being within ε distance of each other. For example, an accessibility relation over
the possible activity states allows us to define distance as path length between
states, and ε as the largest diameter of the accessibility graph for states agents
are in. Analogously, a k-agreement is the condition that at least k agents have
settled on a single state.

Defining a MAP in the DOA framework involves defining the characteristics
of the possible agreement space, accessibility relation, solution criteria, and so
on. We present the more formal DOA model below.
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2.1 Formal Problem Model

An agreement problem in the DOA framework is defined by the 7-tuple:

{A,Σ,∆,Θ, ρ, S,Ω}

where:

1. Agents: A is a set of n agents, α ∈ A. Agents are the active processes in
the DOA model, whose actions take place in an interval in a time line T .
At each time t ∈ T , an agent is said to be “in” some Possible Agreement
State (see below).

2. Possible Agreement Space: The substance of an agreement in the
DOA model is the possible agreement state (PAS), denoted by σ: a state
of the world on which agents could agree. For instance, a PAS could be a
language an agent chooses to speak, an offer in a negotiation, a candidate
strategy for a convention, or a decision to commit/abort a transaction.
Some previous work in this area uses the term “strategy” where we use
“Possible Agreement State”, but we prefer PAS because we aim to capture
many more kinds of agreement than just shared strategy choices. Σ is the
set of all PASes, thus σ ∈ Σ. We use σαi,t to denote the PAS that agent
αi is “in” at time t.

Configurations

Let Σn be the set of all possible associations of PASs with all the agents
in A. Σn is thus an n-dimensional space. At time t the configuration of
the entire system is st ∈ Σn—that is, one specific association of all agents
with states.

3. Accessibility Relation: ∆ : A × Σ × Σ → {<
⋃
∞} is the accessibility

relation for PASes σ. ∆(αi, σj , σk) describes the (possibly infinite) cost
for some agent αi to move from σi to σj . ∆ models the structure of
the possible agreement space Σ from the perspective of each agent. An
agent with more limited capabilities might have a higher cost for changing
from one PAS to another, or one PAS might be inherently more difficult
(or impossible) to reach directly. For example, representing languages
as binary strings and assuming only single point mutations as transition
operators[10] results in a hypercube-structured ∆ for the language space.

4. Interaction Relation: Θ : A × A × T → {<
⋃
∞} is the interaction

relation. Θ(αi, αj , ti) describes the cost for an agent αi to interact with
(e.g. sense, observe, communicate with) some other agent αj at time
ti ∈ T . Cost is a very general basis for an interaction relation. For
example, a close interaction neighborhood for some agent can be defined
as the set of other agents with which communication is cheap relative to
other agents. If cost is inversely related to probability of interaction over
time, then Θ describes agent-to-agent interaction frequencies, and can be
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used to model a type of frequency-weighted social network. In many MAPs
the interaction relation is already specified as a graph, where the nodes
are agents and the weighted edges reflect the probability with which the
agents interact. This is easily represented in the DOA framework. The
interaction relation is conditioned on time to capture changing topologies
of interaction (cf. [13]).

5. Intrinsic Value: ρ : A × Σ → < defines the intrinsic value of an agent
being in a particular PAS. ρ(αi, σj) defines the reward agent αi receives
from being in PAS σj . Σ can be seen as a landscape with hills and valleys
corresponding to ρ. Since ρ is defined based only on the agent and what
strategy it is using, and not on what strategies other agents have, we
consider ρ to be the intrinsic value of the state with respect to an agent.
In many cases ρ is independent of the agent as well. We define max(ρ) as
the set {(αi, σj)} with the highest ρ(αi, σj)

6. Starting Configurations The set of possible starting configurations,
S ⊆ Σn. s0 ∈ S is the initial state of the population.

7. Termination Configurations The set of possible termination configu-
rations, Ω ⊆ Σn. There are many types of termination configurations.
Here are several interesting ones:

Simple Consensus Configurations in Ω are agreements. A complete
agreement is formed by a set of agents all being “in” the same PAS,
for example all choosing to subscribe to a particular language, nego-
tiation offer, convention strategy, etc. This is denoted as a configu-
ration with the following property:

s 3 ∀i, j, σαi,t = σαj ,t (1)

Other consensus-oriented configurations types include those for the
ε- and k- agreements as described informally above.

Consensus+Optimization At some t σαi,t = σαj ,t, ∀i, j and (α0, σα0,t) ∈
max (ρ). This is the set of configurations in which every agent is using
the same strategy, and that strategy has the highest intrinsic value.

Consensus+Computation Given a function χ : Σn → Σ, at some t,
σαi,t = χ(s0), ∀ i. The set of configurations where every agent is
in the same PAS, and that specific PAS is a function of the initial
PASes of the entire population.

2.2 System Dynamics

Solving an instance of a DOA problem involves specifying the behavior of the
agents such that the system moves from a configuration s0 ∈ S to a configuration
sω ∈ Ω in some finite amount of time. We assume a turn-based system, where
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at each time step t the three-step process of active agent selection, information
gathering, and information use occurs, as follows:

1. Active Agent Selection: A subset Ct ⊂ A (called the active agent set)
becomes active at this time step.

2. Information Gathering: Information (call it ψ) is necessary for ef-
ficient search. Complete information about a system configuration is costly,
being influenced by Θ, n, and |Σ| and the history of activity represented by T .
Thus strategic selection of information sources at each time step is necessary in
a MAP. Once this choice is made, the actual interactions occur.

2a. Interaction Choice Each active agent αi ∈ Ct chooses some other
subset of agents Ii,t ⊂ A (called the interaction set of αi), from which to gather
information about the current configuration. This substep is purely the choice
a set of other agents to observe or communicate with.

2b. Interaction) αi interacts with the agent(s) in I from the previous
step. This interaction produces some information for αi about the current
configuration.

3. Information Use Finally, all agents active in this time step (Ct) apply
a decision rule σαi,t+1 = f(σαi,t, ψ) possibly moving to another PAS.

2.2.1 Agent Activation

The agent activation stage which agents are active at each time step. This choice
is implemented at a system wide level. In a discrete-time model this amounts
a rule to decide which agent or agents are allowed to gather information and
change their state. There are generally three options for this choice: Random,
State-based, or Complete.

In Random activation an agent or set of agents is chosen at random from the
population, and proceed to gather information and change their state. Work in
the evolution of conventions area has used this type of dynamics ([15]).

In Complete agent activation all agents are chosen to be active at each
time step. An example of this kind of activation occurs in Particle Swarm
Optimization (PSO) systems ([6]).

Finally, in State-based activation, an agent or set of agents are chosen for
activation based on some attribute of the state they are in. For instance, the
probability of choosing an agent might be proportional to the intrinsic value of
the agent’s state. The system described in Lieberman et. al., ([8]) exhibited
this property - agents were chosen according to their current fitness.

2.2.2 Information Gathering

Once the set of agents Ct has been chosen, each agent must gather information
from other agents in the population. There are two issues: which other agents
are accessible for information, and what type of information can be gathered.

We define an information gathering event as an interaction, and it is governed
by the interaction relation Θ. The decision of what agents to interact with
is influenced by the interaction cost. In much of the literature, interaction
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cost is implemented as a social network in which vertices are agents and edges
denote the probability of interactions between the agents at their ends. In some
MAP work ([15], [4], [14]) agents choose interaction sets with a neighbor in
their interaction relation, where neighbor-ness is defined by weight of the edge
between them.

On the other hand, in PSO system and Olfati-Saber & Murry ([13]) agents
interact with all of their neighbors. In this case, the edge weights do not indicate
the probability of interaction, but rather the degree of influence of one agent on
another.

Note that if the social network is not defined we assume that it is complete.
Thus a situation where an agent picks some other agent at random from the
population can still be modeled as a random choice from its neighborhood -
which just happens to be every other agent in the population.

Once an agent decides on an interaction set, an interaction will take place.
The purpose of an interaction between two or more agents is for the agents to
gain information about each others’ states. The information could be direct
knowledge of the agents state, as in PSO systems or [13], or it could be based
on a task that the agents must do. This latter case was modeled in [15]. Two
agents played a game defined by a payoff matrix. Two games in particular
were examined: the coordination game and the prisoners’ dilemma game. In
the coordination game the agents are given rewards based on whether their
strategies are equivalent or not. If two agents have the same strategy, they are
given a positive reward. If the two agents do not have the same strategy, they
are given a negative reward. The reward, combined with an agent’s knowledge
of its own state and a memory of past rewards, provides the only information
available about the strategy of the other agent.

In PSO systems and the systems studied by Olfati-Saber et. al., Σ is usually
continuous - oftentimes it is the space of reals, <. In this case direct knowledge
of the strategy of the other agents can allow agents to find the “average” or
“center” strategy. The use of such information is studied in the next section.

In these two stages the goal of an agent is to form an estimate of the state of
the entire system. Since this is impossible, the agent relies on an approximation.
This approximation is influenced by two factors, first the choice of agents affects
the diversity of the approximation. The more potential agents to interact with
- the better estimates of the state of the entire system. Secondly, the quality of
information. The more precis information and agent gets from its interactions,
the better its approximation of the systems state.

These two stages are the key factors in determining the complexity of an
agreement problem.

2.2.3 Information Usage

In the final step, all agents that were active in this time step (including both Ct

and It have the opportunity to change their strategy based on the information
they have gathered in the previous step. Laying out the different types of uses
of the information gathered is difficult, as there are a wide variety of methods

7



that could be used.
One division could be between memoryfull and memoryless systems. In a

memoryfull system the agent has a memory that can store the information it
has gathered over many time steps. In [15] each agent had a memory that could
keep track of its strategy and the reward it received in the last k time steps.
An agent decided whether to change its strategy or not by applying the Highest
Cumulative Reward(HCR) rule. According to the HCR rule, an agent changes
its strategy when the total reward in the past k steps for that strategy is greater
than the total reward in the last k steps for the current strategy the agent is in.

Agents in a particle swarm optimization system also have a memory. Each
agent can remember the best (according to the intrinsic value) state that it has
ever been at.

On the other hand, in memoryless systems agents only remember the results
of their just completed interaction. [13] is an example of a memoryless system
- agents do not remember the result of interactions from before.

3 Convention Emergence in the DOA Frame-
work

The DOA framework is general enough to represent many different situations
described in the MAS community. As an example, we show how to map con-
vention emergence situations (as described in [15]) into our DOA framework.

Shoham & Tennenholtz were interested in the emergence of social conven-
tions. A social convention, as defined in [15], is:

A social law that restricts the agents’ behavior to one particular
strategy is called a (social) convention.

(emphasis in the original).
A social convention is agreed upon by everyone in the society. Thus it is an

instance of an multi-agent agreement problem.
Shoham & Tennenholtz use the framework of stochastic games to explore the

emergence of social conventions. At each time step two agents are chosen. The
two agents play a 2-person-2-choice symmetric game. The agents can choose
between two strategies, 0 and 1. The payoff matrix for this coordination game
is:

M =
(

1, 1 −1,−1
−1,−1 1, 1

)
(2)

This payoff matrix means that when the two agents are using the same strat-
egy they both get a positive reward. When they are using opposite strategies
both agents will get a negative reward.

Each agent used the Highest Cumulative Reward (HCR) rule to determine
whether to change its strategy. Each agent has a memory that allowed it to
keep track of its last k strategies and the payoff each strategy received.
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According to the HCR rule, an agent changes its strategy when the total
reward in the past m steps for that strategy is greater than the total reward in
the last m steps for the current strategy the agent is in. Shoham & Tennenholtz
show, for a particular set of payoff matrices, that a population of agents using
the HCR rule will reach a social convention, and stay in the social convention.

Mapping the Shoham & Tennenholtz model into the DOA framework is
straightforward. First the set of agents, A is just the population of agents in
S&T.

The possible agreement space, Σ is just the space of the two strategies that
the agents can play. We will label them 0 and 1: Σ = {0, 1}.

There are no restrictions on the accessibility between states. Thus the ac-
cessibility relation will map every pair of states to 0. ∆(σi, σj) = 0 ∀ σi, σj

There are no restrictions on who an agent can interact with. Thus the
interaction relation will specify the same, 0, cost for every pair of agents.
Θ(αi, αj) = 0 ∀αi, αj . This corresponds to an interaction graph that is complete
- every agent can interact with every other agent.

In this model the intrinsic value of a state is not considered important. All
that matters is that the population converges on some state. Thus the intrinsic
value function will specify the same value, 0, for every possible agreement state.
ρ(αi, σ) = 0 ∀αi, σ.

There are no restrictions on the start state.
The termination configurations are the states where all the agents agree

upon the same strategy - the consensus problem.
We can see that mapping the problem into the DOA framework is relatively

straightforward. Modeling their solution is also straightforward. At each time
step two agents are picked to be active. This is done uniformly randomly and
there is no choice in the matter for the agents chosen. Both Ct and It are chosen
in one step.

In the information gathering stage the two agents chosen in the previous step
play the stochastic game defined by the payoffs listed above. The payoffs do not
indicate the state of the other agent, so we can consider this a case of gathering
indirect knowledge of the other agents state (as we will see in the next section
the discernibility of the system is low - agents do not get direct knowledge of
another agents state 3)

Finally, the agents employ the HCR rule to update their state. This is
mapped into the information use stage of the system dynamics.

Mapping the situation from [15] into the DOA framework has provided in-
sight into the inner workings of the model. In the next section we summarize our
results from mapping several different MAPs into the DOA framework and dis-
cuss the key factor in understanding the complexity of MAPs, the discernibility
level of the system.

3in a 2-strategy case, though, it is actually direct knowledge. A payoff of -1 would indicate
that the other agent has the opposite state. All results and simulations done in [15] assume
a 2-strategy 2-agent game

9



Info. 
Gathering

Indirect

Direct

Direct

Direct

Indirect

Indirect

Complete

Single

Complete

Complete

Local 
Dynamics

Single

Single

Complete

Random

Complete

Complete

Agent
Activation

Random

Random

2Distributed Commit 
Problem

n/a randomcomplete Consensuscomplex

consensus+
optimization

Termination 
Configuration

Consensus+
Optimization

Consensus

Consensus

Consensus+
Computation

random

random

random

Start
Configuration

random

random

non-
uniform

n/a

n/a

Intrinsic 
Value

non-
uniform

n/a

Interaction
Graph

complex

complex

complex

complete

complex

complete

Accessibility

complete

complete

complete

complete2

State 
Space Size

2

2Emergence of Socially
Efficient Conventions

Social Conventions in 
Complex Networks

Emergence of 
Conventions

Particle Swarm 
Optimization

Consensus on Graphs ∞
∞

Figure 1: Examples ofconsensus problems. Distributed Commit Problem
are from[9];Consensus on Graphs are from [13] (in their work they study
dynamic graphs - graphs where edges appear and disappear. This is modeled
in the DOA framework by making the interaction relation change with time.);
Particle Swarm Optimization systems are from [6]; Emergence of Con-
ventions is from [15]; Social Conventions in Complex Networks is from
[4]; Emergence of Socially Efficient Conventions is from [14]

4 The role of discernibility in MAPs

To gain an understanding of the similarities and differences between MAPs
across domains we mapped several MAPs into the the DOA framework.Figure 1
summarized our results.

In a MAP the goal of a set of agents is to agree on a particular state. To
achieve this each agent must make an approximation of the current configuration
of the system - that is the states of all the agents. By making an accurate
estimate of the configuration of the system an agent has the information to be
able to change its state to minimize the time required to reach consensus.

To illustrate the necessity of an agent making this approximation let us
consider the simplest possible scenario for a MAP.In this scenario there are only
2 agents in some possible agreement space. The fitness function specifies only a
single high fitness state. In this situation each agent can independently arrive
at the global optimum by performing a gradient ascent type search. There is
no need for any agent to know the states of the other agents in the population
- since both agents are doing gradient ascent it is guaranteed that they will
converge at some point in time on the optimum.

Now let us expand the situation by adding just one other peak to the state
space. So now there are two peaks with equal fitness. Under this situation
it is no longer guaranteed that two agents independently following a gradient
ascent type algorithm will converge on the same state. Because there are two
optima, one agent may choose the optima A, and the other may choose optima
B. Thus, in order to converge, it is necessary for the agents to estimate what
peak its neighbors are going towards. Thus even in this extremely simple case,
the agents must endeavor to estimate the configuration of the population.

The way an agent arrives at an approximation of the system configuration is
specified by the global dynamics section of the DOA framework. Agents arrive at
this approximation by interacting with other agents in the population and using
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that information to change their own state. The quality of the approximation is
determined by three factors, who they interact with (modeled in the interaction
choice ), what information they gather from these interactions (modeled by the
information gathering stage) and finally how they use this information (modeled
in the information usage stage).

Of these three, let us consider the information gathering stage. Issues in
interaction choice are being explored in numerous places already (for instance
[4]). The information usage stage is beyond the scope of this paper.

In all the models presented in Figure 1 the agents collected information
about the state of neighboring agents. The only difference was in how accurate
an estimate of the agents state it is. We call this the discernibility level of
the system, and it measures how accurately an agent can discern the state of
another agent.

In many of the scenarios in Figure 1 the discernibility level is very high, in
fact agents could directly observe the states of other agents. In other instances
discernibility is low, for instance in [15]. From this admittedly limited set of
examples we start to see a pattern emerging. In the scenarios where there is low
discernibility (any of the situations where the info. gathering column indicates
“indirect”), the size of the possible agreement space is very small. On the other
hand, when there is high discernibility (as in the first three cases), most of the
time the state space is quite large 4.

This emerging pattern that links the discernibility level of a system and the
size of the potential agreement space led us to conjecture that the discernibility
level plays a large role in determining the complexity of solving a MAP.

We demonstrate the role of discernibility by showing how differing levels
of discernibility affect the convergence time in a Particle Swarm Optimization
system.

5 PSO Model example

In a Particle Swarm Optimization(PSO) system multiple agents (called parti-
cles) navigate a high dimensional state space in search of high fitness states.
The fitness of a state is defined by a globally known fitness function, f . Agents
change their states by integrating information from their neighbors and from
the history of states they have visited. The goal is for all the agents to converge
on the optimal state (the one that has the highest fitness).

PSOs have been used to solve complex optimization problem in many areas
and domains, see [5] for more information.

PSO systems map naturally into the DOA framework, as we show below.
The goal of a PSO system is for all the particles to converge on the single best
state in the state space, which is equivalent to the Consensus+Search termina-
tion condition from the DOA framework and the objective of a MAP. Because

4With the exception of the Distributed Commit Problem. This could be due to the fact
that in the distributed commit problem messages between nodes could be lost, thus making
it much more difficult to solve.
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of their natural fit into the DOA framework and their relative simplicity, PSO
systems make an illustrative domain in which to explore the effect of partial
discernibility on convergence.

In the following we describe how PSO systems are related to DOA systems,
describe how we implemented partial discernibility, and finally show results from
our trials.

5.1 PSO systems in the DOA Framework

We do the mapping by going through each element of a PSO system and show
its equivalent in the DOA framework. First we consider a DOA problem.

A swarm is composed of a set of particles, where each particle is identified by
its position in the solution space (xi) and its velocity (vi). The set of particles
is equivalent to the set of agents, A in the DOA framework. The solution space
maps to the potential agreement space Σ. The velocity of an agent(particle) is
part of its internal memory and will be discussed later.

PSOs do not define any cost to move from state to state - thus the accessi-
bility relation ∆ is uniform over all pairs of states.

Each agent(particle) can interact with only its neighbors in a social network.
This network is equivalent to the interaction relation Θ in the DOA framework.

Each position in the solution space has a fitness defined by the fitness func-
tion f . The fitness of a potential solution is independent of the agent(particle).
Thus the fitness function maps into the intrinsic value function ρ - where
ρ : Σ→ <.

The agents(particles) in a PSO can start from anywhere in the solution
space. The start configuration of the system is randomly drawn from S = Σn.

The goal of a PSO system is to have the agents(particles) converge upon the
best state. This is equivalent to the Consensus+Search termination condition.

Now let us look at the system dynamics.
At each time step every agent in the population is chosen to be active, thus

there is a complete agent activation: Ct = A. This is the Agent Activation
stage of the system dynamics.

Each agents queries the agents in its neighborhood to see who has the best
state. Thus It for an agent is equivalent to its neighbors in the social graph.
An interaction involves one agent querying the other agent about its state and
fitness. An agent gather information about who has the best state, and remem-
bers the position of its neighbor with the best state. This is the interaction
choice and information gathering stages of the system dynamics.

In the information usage stage an agent updates its state by applying this
update rule:

vi ← χ

(
vi + U

(
0,
φ

2

)
· (pi − xi) + U

(
0,
φ

2

)
· (pg − xi)

)
xi ← xi + vi
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where pi is the best state that agent i has been at, and pg is the best state
of agent i’s neighbors. χ is a constriction coefficient and φ is an acceleration
constant. χ is usually set to 0.729 and φ to 4.1 (for more information on these
parameter settings see [1]). vi is part of an agents internal memory.

We can see that PSO systems can be easily mapped into the DOA framework.
Next we show how we implemented partial discernibility in the PSO system.

5.2 Partial Discernibility

Discernibility refers to how well an agent can make an estimate of another
agents state via an interaction. Discernibility plays an important role in the
information gathering phase of the global dynamics, as this is the only time in
which agents interact.

In a PSO system the information gathering stage is where an agent finds its
neighbor with the best state. In regular PSO systems agents have full discerni-
bility - they get accurate information of their neighbors state.

To investigate the effects of partial discernibility we added random error to
the information an agent gathers from its neighbors.

In the information gathering stage an agent evaluates the state of its neigh-
bors and finds the best position based on fitness. This evaluation relies on
particles being able to discern the state of another particle. We implemented
partial discernibility by adding noise to this evaluation process.

When a particle evaluates it’s neighbors, it receives an estimate of each
neighbors fitness based on a noisy version of its position. For instance, Particle
1 will get the impression that Particle 2 is at a position that is different from
its actual position. The error is bounded by the “max error level” d which is a
system wide parameter.

The error was implemented as random additive noise to each dimension of
an agents state. Suppose agent i queries its neighbor agent j for its state. Given
a max error level of d, agent j informs agent i that its state is (in the 2D case):[

xj,0 + U(−d, d)
xj,1 + U(−d, d)

]
Figure 2 visually depicts this.
Clearly, as the max error level increases the less likely the state returned by

agent j is its true state. Thus, as the max error level increases, the discernibility
of agent j’s state decreases.

5.3 Methodology

We studied the effects of varying max error levels (and thus discernibility) on
the convergence of the particle swarm. We measured two quantities:

1. Whether the swarm had converged within 1000 iterations.
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Figure 2: When queried about its location a particle will respond with a location
within the grey cube. The parameter d determines the size of the hypercube.
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Figure 3: Convergence time. Results were same for max level of error greater
than 2.0

2. At the end of the run, how well did the swarm converge (measured by the
average of the the euclidean distance between every pair of particles in the
swarm).

We explicitly looked at the effects on a very simple fitness function, the 2-d
sphere:

f(x, y) = x2 + y2

This is the first function in DeJongs widely used five function testbed ([3]).
There is one global optima at (0, 0) with a fitness value of 0. By using a very
simple fitness function we can study the effects of partial discernibility on the
swarm and discount the influence of a complex fitness function.

The specific parameters we used were: χ = .4179, φ = 4.1, 10 particles,
randomly initialized between [−10, 10] for each dimension. The neighborhood
of each particle was the entire population. We did 10 trials for each run and
averaged the results.

5.4 Results

Figure 3 and Figure 4 show the results of our experiments.
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Figure 4: max error level vs. Mean Euclidean distance of population.

Figure 3 shows the number of iterations till a population successfully con-
verged on the correct state. We considered a run to be a success if the agents
had an average euclidean distance of less than .01 and the average fitness of the
population was greater than −.01.

If the population did not successfully converge within 1000 iterations we
used the value 1000. It is clear that the maximum error level had a devastating
effect on the convergence time - with even very small levels of error the system
would not converge within 1000 iterations. (we also tried to see if the population
would converge within 3000 iterations and the results were similar).

Figure 4 graphs the mean euclidean distance between agents in the popu-
lation (calculated by summing the distances between every pair of particles in
the population then dividing by the number of particles) versus the max level
of error. We can see a clear decrease in the clustering of the population as the
max level of error increases. This corresponds to the particles not clustering.

We can clearly see that the max level of error - and thus the discernibility
- make a huge impact on the convergence of the population of particles. The
convergence of the particles relies on accurate estimates of the states of the other
particles in the population. As more error was added the particles could not not
accurately estimate the state of their neighbors and thus could not converge.

From these simple experiments on PSO systems we can see that discernibility
plays a huge role in the convergence of such a system. While the PSO system
was very simple its results are quite interesting. Especially in light of the fact
that these results were reached in situations where a very easy fitness function
was used. More complex problems, with possible agreement spaces that cannot
be dimensionalized, would prove to be much more difficult to solve as well!

6 Future Work

Language evolution is an area of substantial interest to us, and was in fact the
inspiration to studying MAPs. Our future work is to show how the language
convergence problem - the problem of having a society of agents come to an
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agreement about what language to use - is in fact a type of a MAP. By consid-
ering language convergence as a search problem, we hope to leverage the results
from other MAPs. This will be much easier to do with the use of the DOA
framework which can serve as an interlingua between the different models.

Studying language convergence will also shed light on the effect of learning
under varying discernibility levels. Humans coordinate meanings and lexicons
in situations with very low levels of discernibility. Studying how discernibility
affects the complexity of solving a MAP would bring us closer to understanding
the language convergence issue.

7 Conclusions

While there has been much work in MAP problems for individual domains no
unifying framework has emerged that can provide a MAP lingua franca that
will allow us to leverage results between domains. In this paper we propose the
framework to do just this - provide a unifying framework that can model many
different agreement problems under one common descriptive domain.

The creation of the Distributed Optimal Agreement framework allowed us
to compare and contrast MAP problems from a wide variety of disciplines. By
mapping MAPs from different domains into the Distributed Optimal Agreement
framework we discovered how MAP problems differ on dimensions including:
complexity of the potential-agreement space, state-to-state accessibility, agent
interaction topologies, state evaluation measures, and type of solution needed
(to name a few).

A significant outcome of this comparison was the the discovery of a single
critical differentiating factor that determines the difficulty of a MAP problem.
The discernibility level - that is how accurately an agent can discern the state of
another agent - has a large impact on the difficulty of solving a MAP problem.
Our final contribution in this paper is to show how discernibility has an affect on
the convergence time and quality of convergence in particle swarm optimization
systems.
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